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Abstract

A new multiscale computational strategy was recently proposed for the analysis of
structures described both on a fine space scale and a fine time scale. This strategy,
which involves homogenization in space as well as in time, could replace in several
domains of application the standard homogenization techniques, which are generally
limited to the space domain. It is an iterative strategy which calls for the resolution
of problems on both a micro (fine) scale and a macro (homogenized) scale. In this
paper, we review the bases of this approach and present improved approximation
techniques to solve the micro and macro problems.
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1 Introduction

In the structural mechanics field, one can observe a growing interest in the
multiscale analysis of structures with complex microstructural geometry and
behavior. When an accurate solution is required, calculations must be per-
formed on a finely discretized model of the structure (on the micro level).
Since its components often have very different mechanical characteristics, the
resulting structure is highly heterogeneous and the local solution involves phe-
nomena with a short length of variation both in space and in time. This type
of situation leads to problems with very large numbers of degrees of freedom
whose calculation costs are generally prohibitive if one uses classical FE codes.
Our objective is to reduce the calculation costs drastically while, at the same
time, trying to improve robustness.

One possible strategy, especially for linear problems, consists of applying the
theory of periodic media homogenization initiated by Sanchez-Palencia [20].
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Further developments of related computational approaches can be found in
[4,8,9,11,19,21,22]. The macro problem yields effective values of the unknowns;
then, the micro solution must be calculated locally in terms of the macro
solution. Besides periodicity, the fundamental assumption is that the ratio
of the small-scale length to the large-scale length must be small. Boundary
zones, in which the material cannot be homogenized, require special treatment.
Moreover, this theory is not directly applicable to time-dependent nonlinear
problems.

Relatively few works have been devoted to multi-time-scale computational
strategies. The so-called multi-time-step methods [1,12] and time-decomposed
parallel time-integrators [7] deal with different time discretizations and inte-
gration schemes. Local enrichment functions were introduced in [3]. In multi-
physics problems, coupling between time grids may be envisaged. This type of
problem was solved in [5] by introducing “micro-macro projectors” between
grids. None of these strategies involves a true time-homogenization technique.
Such a technique seems to have been used only for periodic loading histories
(see [2,10,13,14]).

A first answer to our challenge was to devise a new micro-macro computa-
tional strategy [15] which includes a space homogenization technique valid on
the whole domain, while avoiding the drawbacks of the classical homogeniza-
tion theory. This technique was extended to both space and time in [17,18].
The strategy is iterative and works over the entire space-time domain. Here,
this strategy will be detailed for (visco)plastic materials and optional unilat-
eral contact with or without friction, a case already introduced in [16]. More
complex material behaviors could be taken into account.

The first characteristic of the method resides in a partitioning of the space-
time domain. The structure is defined as an assembly of substructures and
interfaces. Each component has its own variables and its own equations. The
time interval is divided into subintervals, using the discontinuous Galerkin
method to handle possible discontinuities. The junction between the macro
and the micro scales takes place only at the interfaces.

The second characteristic of the method is the use of the so-called LATIN
method, a nonincremental iterative computational strategy applied over the
entire time interval being studied [14]. At each iteration, one must solve a
macro problem, defined over the entire structure and the entire time interval,
along with a family of independent linear problems each defined on a compos-
ite cell and its boundary. These are “micro” problems, by contrast with the
“macro” problem which corresponds to the entire structure homogenized in
time as well as in space.

After reviewing the bases of the multiscale strategy with space and time ho-
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mogenization, this paper will concentrate on approximation techniques suit-
able for the resolution of the micro and macro problems.

A first improvement consists of introducing a third scale, which can be very
useful for many composite structures. This can be viewed as an approximation
of the macro problem, represented as a Cosserat-like medium. On this third
scale, the representative volume is defined as an assembly of substructures (i.e
composite cells).

Another improvement concerns the resolution over the space-time domain of
the micro problem within cells, which can be very large if the micro description
is detailed. A “radial-type approximation” [14] is introduced. This technique
consists of approximating a function defined on the space-time domain by a
sum of products of scalar functions of the time variable by functions of the
space variable. As the iterations proceed, the functions of the space variable
constructed in this manner constitute a consistent basis which can be reused
for the following iterations. Moreover, when dealing with similar substruc-
tures, such as composite cells, this basis is common to all the substructures.
Several numerical examples will illustrate the capabilities of the approach
presented and the improvements made possible by these approximation tech-
niques.

2 The reference problem

2.1 Description of the problem

Let us consider, under the assumptions of small perturbations and isothermal,
quasi-static state, the equilibrium of a structure defined in the space domain
Ω. At each time t of the interval [0, T ] being studied, this structure is subjected
to volume forces fd and surface forces Fd on a portion ∂2Ω of the boundary.
On the complementary part ∂1Ω, the displacement ud is prescribed. All the
quantities with subscript “d” are known. Displacements, strains and stresses
are subject to initial conditions at t = 0.

2.2 Constitutive relation model with internal state variables

The inelastic strain εp is considered separately from the other internal vari-
ables, denoted X. The conjugate variable of X is Y; thus, the dissipation rate
is:
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Tr [σ ε̇p] − Y · Ẋ

From the free energy ρΨ(εe,X), under usual decoupling assumptions, we have:





σ = ρ ∂Ψ
∂εe

= Kεe

Y = ρ ∂Ψ
∂X

= ΛX

(1)

where the Hooke’s tensor K and the operator Λ are material characteristics.
The advantage of such a model lies in the simple expression of the correspond-
ing constitutive relation, which, except for (1), can be written as a differential
equation:

d

dt




εp

−X


 = B

(



σ

Y




)
, εp|t=0 = 0, X|t=0 = 0 (2)

where B is a positive operator characterizing the material.
This formulation is “normal” in the sense that the operator Λ is linear, con-
stant, symmetric and positive definite. With a change of internal variables,
most material models can be described by such a normal formulation [14].

2.3 Partitioning of the structure into substructures and interfaces

The first step of the multiscale computational strategy consists of describing
the structure as an assembly of simple components: substructures and inter-
faces [14] (see Figure 1). Each component has its own variables and equations.
A substructure ΩE, E ∈ E, is subjected to the action of its environment (the
neighboring interfaces) defined by a force distribution FE and a velocity distri-
bution ẆE on its boundary ∂ΩE. An interface ΓEE′ between two substructures
E et E ′ transfers both the velocity and the force distributions: ẆE, ẆE′ and
FE, FE′ .

2.4 Approximation - Choice of the spaces

In practice, the interfaces and substructures are discretized in space classically
using finite elements. The time interval [0, T ] being considered is decomposed
into Th = {t0 = 0, t1, ..., tN = T}. A space S[0,T ] with superscript [0, T ] desig-
nates the space of functions defined on [0, T ] which take values in S.
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Fig. 1. Decomposition of a structure into substructures and interfaces

The spaces W
[0,T ]
h,ΓEE′

and F
[0,T ]
h,ΓEE′

The displacements W and the forces F at the interface ΓEE′ belong to the
spaces W

[0,T ]
h,ΓEE′

and F
[0,T ]
h,ΓEE′

respectively. These spaces are compatible with
the force-velocity duality:

(
W, F

)
7−→

∫

ΓEE′×[0,T ]

F · Ẇ dSdt

W
[0,T ]
h,ΓEE′

× F
[0,T ]
h,ΓEE′

(3)

and Proposition (1).

Proposition 1

{
F ∈ F

[0,T ]
h,ΓEE′

;
∫

ΓEE′×[0,T ]

F · Ẇ dSdt = 0 , ∀W ∈ W
[0,T ]
h,ΓEE′

}
⇔ F = 0

{
W ∈ W

[0,T ]
h,ΓEE′

;
∫

ΓEE′×[0,T ]

F · Ẇ dSdt = 0 , ∀F ∈ F
[0,T ]
h,ΓEE′

}
⇔ W = 0

Since the boundary of the substructure is discretized using finite elements, it
is consistent to take for W and F regular functions, e.g. constant values within
each element. On the time level, we consider discontinuous functions at times
ti, i ∈ {0, ..., N}. This choice turns out to be very efficient, but it requires the
expression of work to be redefined.
Let us introduce Z[0,T ]

r , the space of polynomial functions of degree r on each
Ii =]ti, ti+1[, i ∈ {0, ..., N − 1}, with possible discontinuities. Then, for (a, b) ∈
Z[0,T ]

r , the expression of work becomes:
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∫

[0,T ]

a ḃ dt =
N−1∑

i=0

∫

Ii

a ḃ dt + a(t+i )
(
b(t+i ) − b(t−i )

)
(4)

where b(t−0 ) = b0 is the initial condition .
This definition is associated with Galerkin discontinuous method [6]. A space

S
[0,T ]
h is said of type Z[0,T ]

r if

S
[0,T ]
h = {x : [0, T ] → Xh / ∀i ∈ {0, ..., N − 1}, x|Ii

=
r∑

k=0

xi,kt
k, xi,k ∈ Sh}

If the spaces are of type Z[0,T ]
r , the work is taken in the sense of (4). Let us

observe that Proposition (1) is still verified.

Spaces e
[0,T ]
h,E and f

[0,T ]
h,E

(σE,YE) and (εpE
,XE) belong to f

[0,T ]
h,E and e

[0,T ]
h,E respectively; these spaces

are defined such that they are compatible with the dissipation bilinear form
on E:

∫

ΩE×[0,T ]

{
Tr [σ ε̇p] − Y · Ẋ

}
dΩdt

On the space level, a classical finite element discretization is used. On the time
level, spaces of type Z[0,T ]

r are used. The dissipation is taken in the sense of
(4).

The following additional notations are introduced: YE and XE belong to Y
[0,T ]
h,E

and X
[0,T ]
h,E respectively; sE = (εpE

,XE, WE,σE,YE, FE) indicates the set of
variables associated with substructure E. The corresponding space is desig-
nated by S

[0,T ]
h,E .

2.5 Reformulation of the reference problem

First of all, it is necessary to clarify the sense in which the equilibrium equa-
tions are verified. Considering the space of the virtual displacements U

[0,T ]
h,E ,

let us write:

F
[0,T ]
h,E,ad =

{
(σE, FE) ∈ F

[0,T ]
h,E / ∀u⋆ ∈ U

[0,T ]
E ,

∫

ΩE×[0,T ]

Tr [σE ε(u̇⋆)] dΩdt =

∫

ΩE×[0,T ]

fd · u̇
⋆ dΩdt +

∫

∂ΩE×[0,T ]

FE · u̇⋆
|∂ΩE

dSdt
}

(5)
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The space associated with fd = 0 is designated by F
[0,T ]
h,E,0. (σE, FE) verify the

equilibrium equations if and only if (σE, FE) ∈ F
[0,T ]
h,E,ad.

Now, let us write:

E
[0,T ]
h,E,ad =

{
(εE, WE) ∈ E

[0,T ]
h,E / ∀(σ∗, F∗) ∈ F

[0,T ]
h,E,0,

∫

ΩE×[0,T ]

Tr [ε̇E σ
∗] dΩdt =

∫

∂ΩE×[0,T ]

ẆE · F∗dSdt
}

(6)

(εE, WE) verify the compatibility equations if and only if (εE, WE) ∈ E
[0,T ]
h,E,ad.

Definition 2 sE = (εpE
,XE, WE, σE,YE, FE) ∈ S

[0,T ]
h,E is E-admissible if it

verifies:

• the equilibrium equations: (σE, FE) ∈ F
[0,T ]
h,E,ad

• the compatibility equations: (εE, WE) ∈ E
[0,T ]
h,E,ad

• the state equations: εE − εpE
= K−1

σE, YE = ΛXE

• the initial conditions.

The corresponding space is designated by S
[0,T ]
h,E,ad.

The reference problem can be reformulated as follows:

Find s =
⋃

E∈E sE with sE = (εpE
,XE, WE,σE,YE, FE) ∈ S

[0,T ]
h,E which veri-

fies:

• the E-admissibility of sE

• the constitutive relation describing the state evolution:

∫

ΩE×[0,T ]

(



ε̇pE

−ẊE


 − B

(



σE

YE




)
·




σ
∗

Y∗


 = 0 ∀(σ∗,Y∗) ∈ f

[0,T ]
h,E (7)

• the behavior at the interfaces, of which the boundary conditions on ∂1Ω and
∂2Ω are particular cases.

3 Description of quantities on the macroscale and on the microscale

in the space-time domain Ω × [0, T ]

The distinction between the micro and macro levels is made only at the in-
terfaces. For space, the macro scale is defined by the characteristic length of
the interfaces, which is a priori much larger than the discretization scale. For
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time, the macro scale is associated with a coarse partitioning of the time inter-
val Th′ = {t

′

0 = 0, t
′

1, ..., t
′

N ′ = T} being studied, which contains the previous
partitioning Th. Its characteristic time TM = supi∈{0,...,N ′−1}(t

′

i+1 − t
′

i) is much
larger than the characteristic time Tm = supi∈{0,...,N−1}(ti+1 − ti).

Let us consider the interface ΓEE′ between two substructures E and E’; we
may freely choose the spaces in which the macro displacements and forces are
sought, i.e.

W
[0,T ],M
h,ΓEE′

and F
[0,T ],M
h,ΓEE′

(8)

These spaces are not necessarily subspaces of W
[0,T ]
h,ΓEE′

and F
[0,T ]
h,ΓEE′

. Never-
theless, they are taken such that they are compatible with the force-velocity
duality and Property (3).

Proposition 3

{
FM ∈ F

[0,T ],M
h,ΓEE′

;
∫

ΓEE′×[0,T ]

FM · Ẇ
M

dSdt = 0 , ∀WM ∈ W
[0,T ],M
h,ΓEE′

}
⇔ FM = 0

{
WM ∈ W

[0,T ],M
h,ΓEE′

;
∫

ΓEE′×[0,T ]

FM · Ẇ
M

dSdt = 0 , ∀FM ∈ F
[0,T ],M
h,ΓEE′

}
⇔ WM = 0

For example, one could take, on the space level, affine functions on ΓEE′ for
WM and FM and, on the time level, functions of type Z[0,T ]

p (polynomials
of degree p in the macro intervals IMi =]t′i, t

′
i+1[, i ∈ {0, ..., N ′ − 1}) for the

grid Th′ . The only constraint is that the rigid body modes on ∂ΩE must be
included in the space of the macro displacements. Finally, we write WM and
FM on ΓEE′ × IMi in the form

∑
k,l αk,le

M
k (M)fM

l (t), for which a choice of basis
functions eM

k and fM
l is represented in Figures 2 and 3.

e  (M)4e  (M)3

e  (M)2e  (M)1
MM

M M

Fig. 2. Space level: affine basis functions {eM
k }k∈{1,...,4} for an interface ΓEE′

The rationale adopted for the definition of the macro quantities is physically
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f   (t)1
M f   (t)2

M f   (t)3
M

Fig. 3. Time level: quadratic basis functions (p = 2) {fM
l }l∈{1,...,3}, in a macro

interval IMi

sound: these quantities are mean values in space as well as in time. More
precisely, they are the best approximations in the sense of the work bilinear
form (3). Due to Property (3), they are uniquely defined:

Definition 4 The macro parts
(
WM , FM

)
∈ W

[0,T ],M
h,ΓEE′

×F
[0,T ],M
h,ΓEE′

of
(
W, F

)
∈

W
[0,T ]
h,ΓEE′

× F
[0,T ]
h,ΓEE′

are defined by the following expressions:

WM ∈ W
[0,T ],M
h,ΓEE′

;
∫

ΓEE′×[0,T ]

(
Ẇ

M
− Ẇ

)
· FM∗

dSdt = 0 ; ∀FM∗

∈ F
[0,T ],M
h,ΓEE′

FM ∈ F
[0,T ],M
h,ΓEE′

;
∫

ΓEE′×[0,T ]

(
FM − F

)
· Ẇ

M∗

dSdt = 0 ; ∀WM∗

∈ W
[0,T ],M
h,ΓEE′

Consequently, the micro parts are:

Fm = F − FM and Wm = W − WM

and the scales are uncoupled as follows:

∫

ΓEE′×[0,T ]

F · Ẇ dSdt =
∫

ΓEE′×[0,T ]

(
FM · Ẇ

M
+ Fm · Ẇ

m
)

dSdt (9)

This partitioning, extended to the set of interfaces, leads to the spaces W
[0,T ],M
h ,

W
[0,T ],m
h , F

[0,T ],M
h and F

[0,T ],m
h .

Another important feature of the multiscale computational strategy presented
here is that the transmission conditions at the interfaces are partially verified
a priori. The macro forces are required to systematically verify the transmis-
sion conditions, including the boundary conditions. These conditions remain
unchanged under unilateral contact. The corresponding space is designated by
F

[0,T ],M
h,ad .

Remark 5 Relation (9) is independant of our homogenization procedure. We
will see later that, taking the interfaces of a cell and integrating over them,
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the micro work can be written in terms of the data and of macro quantities.

4 Multiscale computational strategy with space and time homog-

enization

4.1 Principle

Partial verification a priori of the transmission conditions at the interfaces
leads to the following reformulation of the reference problem: Find s =

⋃
E∈E sE

with sE ∈ S
[0,T ]
h,E which verifies:

Ad

∥∥∥∥∥∥∥

− sE is E-admissible, E ∈ E

−
⋃

E∈E

{
FM

E

}
∈ F

[0,T ],M
h,ad

Γ

∥∥∥∥∥∥∥

− the constitutive relation describing the state evolution (7)

− the behavior at the interfaces

Γ represents a set of (possibly nonlinear) equations which are local in the
space and time variables. Ad is a set of global linear equations. With this par-
titioning, it is possible to apply the LATIN method, a general computational
strategy for time-dependent nonlinear problems which operates globally over
the entire time-space domain. This method, described in [14], relies on some
remarkable properties which are verified by most models encountered in struc-
tural mechanics. Figure 4 shows the scheme for one iteration, which consists
of two steps.

(s,Y,F)

(ep,X,W)

Fig. 4. The scheme for one iteration
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4.2 The local stage at Iteration n

sn =
⋃

E∈E sEn
is given. The problem consists of building ŝn+1/2 ∈ Γ knowing

sn ∈ Ad.
(
ŝn+ 1

2
− sn

)
must follow a search direction E+: more precisely, for

each substructure E and each interface ΓEE′ , ŝn+1/2 must verify:

∀(σ∗,Y∗) ∈ f
[0,T ]
h,E ,

∫

ΩE×[0,T ]








˙̂
εpE − ε̇pE

−(
˙̂
XE − ẊE)


 + H




σ̂E − σE

ŶE − YE







·




σ
∗

Y∗


 dΩdt = 0 (10)

∀F∗
E ∈ F

[0,T ]
h,ΓEE′

,
∫

ΓEE′×[0,T ]

{
h

(
F̂E − FE

)
−

( ˙̂
WE − ẆE

)}
· F∗

E dSdt = 0 (11)

where index n has been dropped. H is a symmetric, positive definite operator
which is a classical parameter of the method. h is another parameter of the
method which can be interpreted as a micro flexibility of the interface. The
local step presents no difficulty. The problems to be solved are local in the
space and time variables and, therefore, lend themselves to the highest degree
of parallelism.

4.3 The linear stage at iteration n

ŝn+1/2 =
⋃

E∈E ŝE,n+1/2 is given. The problem consists of building sn+1 ∈ Ad

knowing ŝn+1/2 ∈ Γ.
(
sn+1 − ŝn+1/2

)
must follow a search direction E−: more

precisely, for each substructure E:

∀(σ∗,Y∗) ∈ f
[0,T ]
h,E ,

∫

ΩE×[0,T ]








ε̇pE − ˙̂
εpE

−(ẊE −
˙̂
XE)


 − H




σE − σ̂E

YE − ŶE







·




σ
∗

Y∗


 dΩdt = 0 (12)

∀F∗ ∈ F
[0,T ],m
h ∪ F

[0,T ],M
h,ad ,

∑

E∈E

∫

∂ΩE×[0,T ]

{
h

(
FE − F̂E

)
+

(
ẆE −

˙̂
WE

)}
· F∗

E dSdt = 0 (13)

where index n has been dropped. One can easily prove that this problem is
well-defined and has a unique solution if h and H are symmetric, positive
definite operators.
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The problem can be split into two parts: a micro problem defined in each
substructure and on each subinterval [ti, ti+1], i ∈ {0, ..., N − 1} and a global
macro problem defined on the entire space-time domain Ω × [0, T ].
Most importantly, let us observe that Relation (13) can be rewritten as:

∀F∗ ∈ F
[0,T ]
h ,

∑

E∈E

∫

∂ΩE×[0,T ]

{
h

(
FE − F̂E

)
+

(
ẆE −

˙̂
WE

)}
· F∗

E dSdt =

∑

E∈E

∫

∂ΩE×[0,T ]

˙̃
W

M

E · F∗
E dSdt (14)

∀W̃
M∗

∈ W
[0,T ],M
h,0 ,

∑

E∈E

∫

∂ΩE×[0,T ]

˙̃
W

M∗

E · FE dSdt =
∑

E∈E

∫

(∂ΩE∩∂2Ω)×[0,T ]

˙̃
W

M∗

E · Fd dSdt (15)

where the Lagrange multiplier W̃
M

belongs to the space W
[0,T ],M
h,ad of macro

displacements which are continuous at the interfaces, are equal to zero on ∂1Ω
and are initially zero at t0

−. Let us note that, in this context, W
[0,T ],M
h,0 =

W
[0,T ],M
h,ad . Equation (15) expresses the admissibility of the macro forces.

4.3.1 The micro problem defined on substructure E and its boundary ∂ΩE

and on [0, T ]

The micro problem associated with substructure E can be written as:
Find sE = (εpE

,XE, WE, σE,YE, FE) ∈ S
[0,T ]
h,E which verifies:

• sE is E-admissible
• the search direction (12) and (14).

This is a linear problem. Since the search direction (14) is local at each inter-
face, the micro problem consists of a series of independent problems in each
substructure. The kinematic admissibility equation and the state equations
can be expressed in a weak sense as follows:

∀(σ∗, F∗) ∈ F
[0,T ]
h,E,0, ∀Y∗ ∈ Y

[0,T ]
h,E ,

∫

ΩE×[0,T ]

Tr
[(

K−1
σ̇E + ε̇pE

)
σ

∗
]

dΩdt +
∫

ΩE×[0,T ]

(
Λ−1ẎE − ẊE

)
· Y∗ dΩdt =

∫

∂ΩE×[0,T ]

ẆE · F∗dSdt (16)

Introducing the search directions (12) and (14) into Equation (16), the micro
problem becomes:

12



Find (σE, FE) ∈ F
[0,T ]
h,E,ad and YE ∈ Y

[0,T ]
h,E which verify the initial conditions

and

∀(σ∗, F∗) ∈ F
[0,T ]
h,E,0, ∀Y∗ ∈ Y

[0,T ]
h,E ,

∫

ΩE×[0,T ]

Tr
[
K−1

σ̇E σ
∗
]

dΩdt +
∫

ΩE×[0,T ]

Λ−1ẎE · Y∗ dΩdt +

∫

ΩE×[0,T ]

H




σE

YE


 ·




σ
∗

Y∗


 dΩdt +

∫

∂ΩE×[0,T ]

hFE · F∗dSdt =

∫

∂ΩE×[0,T ]

(
h F̂E +

˙̂
WE +

˙̃
W

M

E

)
· F∗dSdt +

∫

ΩE×[0,T ]

(
H




σ̂E

ŶE


 −




˙̂
εpE

−
˙̂
XE




)
·




σ
∗

Y∗


 dΩdt (17)

This problem can be reformulated in terms of displacements and solved easily.
The solution to the micro problem related to substructure E depends only on
the known quantities fd|ΩE

, ŝE, on the given initial condition and on the value

of W̃
M

E at the boundary ∂ΩE which, at this stage, is unknown. One can prove
that:

Proposition 6 If H and h are symmetric, positive definite operators, the
micro problem defined in substructure E and at its boundary has a unique
solution such that:

FM
E|[0,T ] =LF

E

(
W̃

M

E|[0,T ]

)
+ F̂

M

E,d|[0,T ] (18)

WM
E|[0,T ] =LW

E

(
W̃

M

E|[0,T ]

)
+ Ŵ

M

E,d|[0,T ] (19)

where W̃
M

E ∈ W
[0,T ],M
h,E . F̂E,d and ŴE,d depend on fd|ΩE

, ŝE and on the initial
conditions.

LF
E (respectively LW

E ) is a linear operator from W
[0,T ],M
h,E to F

[0,T ],M
h,E (respec-

tively from W
[0,T ],M
h,E to W

[0,T ],M
h,E ) and can be interpreted as a homogenized

behavior operator over the space-time substructure ΩE × [0, T ]. LF
E and LW

E

are calculated with zero initial conditions at a relatively low cost because W̃
M

E

on ∂ΩE × [0, T ] depends on only a few scalar parameters. They represent the
coupling effect among the different scales. A relation between the macro forces
and the real macro displacements, which defines a more classical homogenized
operator, can be easily deduced from relations (18) and (19).
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Let us recall that from the Lagrange multiplier W̃
M

E , we can deduce all the
quantities sE on ΩE × [0, T ], i.e. there exists a localization operator LE, which

is a linear operator from W
[0,T ],M
h,E to S

[0,T ]
h,E such that

sE = LE

(
W̃

M

E

)
+ ŝM

E,d (20)

where ŝM
E,d depends on fd|ΩE

, ŝE and on the initial conditions.

The micro problems defined on ΩE × [ti, ti+1], E∈ E and i ∈ {0, ..., N −
1}, are independent. Therefore, the local times can be different within the
substructures. However, for each substructure E, the resolution of the micro
problems must follow an incremental time scheme. This step lends itself to
parallelism very well.

4.3.2 The macro problem defined on Ω × [0, T ]

Relations (18) and (15) lead to the macro problem, which can be written as:

Find W̃
M

=
⋃

E∈E

{
W̃

M

E

}
∈ W

[0,T ],M
h,ad which verifies:

∀W̃
M∗

∈ W
[0,T ],M
h,0 ,

∑

E∈E

∫

∂ΩE×[0,T ]

˙̃
W

M∗

E ·
(
LF

E

(
W̃

M

E ) + F̂
M

E,d

)
dSdt =

∑

E∈E

∫

(∂ΩE∩∂2Ω)×[0,T ]

˙̃
W

M∗

E · Fd dSdt (21)

One can easily prove that the macro problem has a unique solution. Problem
(21) can be formulated in terms of macro forces through a duality transfor-
mation.
The macro problem yields W̃

M
. Then, using the micro problem again, or the

localization operator LE if it has been stored, one can determine sn+1 com-
pletely.

Macro quantities are defined only at the interfaces; by treating the medium
as a Cosserat material, one can define macrostresses, macrostrains, ... inside a
substructure E. Each cell is supposed to be homogeneous at the macroscale.
So, from the generalized forces and displacements at the interfaces, macro
quantities (displacements, directors) and conjugate quantities could be de-
fined, which would lead to a non-conventional Cosserat-like material. This
should be developped in a forecoming paper.
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4.4 Reformulation of the linear stage at iteration n

If the number of macro intervals increases, the cost of calculating the homoge-
nized operator LE and solving the macro problem can become prohibitive. It is
possible to reformulate the linear stage to circumvent this problem. Due to the
use of Galerkin discontinuous method on the time level, the macro quantities
(4) are defined independently in each macro interval IMi , i ∈ {0, ..., N ′ − 1}:
the macro projection of displacements and forces on the interval IMi does not
depend on the distribution of these displacements and forces in the other in-
tervals IMj , j 6= i.

Assuming that s and W̃
M

are known for t < t′i, let us define the following
relation:

∫

[t′
i
,t′

i+1
]

a ḃ dt =
∫

IM
i

a ḃ dt + a(t′i
+
)
(
b(t′i

+
) − b(t′i

−
)
)

4.4.1 The micro problem on ΩE × [t′i, t
′
i+1]

The micro problem reduced to the interval [t′i, t
′
i+1] can be written as: Find

(σE, FE) ∈ F
[t′

i
,t′

i+1
]

h,E,ad and YE ∈ Y
[t′

i
,t′

i+1
]

h,E which verify the initial conditions

(σE(t′i
−), FE(t′i

−)) and YE(t′i
−) and Equation (17), in which the integrals over

[0, T ] have been replaced by integrals over [t′i, t
′
i+1].

The initial conditions (σE(t′i
−),YE(t′i

−)) can be viewed as load sets on the
“time interface” ΩE × {t′i}.

Proposition 7 If H and h are symmetric, positive definite operators, then
∀E ∈ E and ∀i ∈ {0, ..., N ′ − 1} the micro problem defined on substructure
ΩE × [t′i, t

′
i+1] and its boundary ∂ΩE × [t′i, t

′
i+1] has a unique solution such that:

FM
E|IM

i

= LF
E,i

(
W̃

M

E|IM
i

− W̃
M

E (t′i
−
)
)

+ F̂
M

E,d|IM
i

(22)

where W̃
M

E ∈ W
[t′

i
,t′

i+1
],M

h,E . F̂
M

E,d|IM
i

depends on fd|ΩE×IM
i

, ŝE and on the initial

conditions at t′i
−.

Operator LF
E,i is a homogenized behavior operator on the space-time sub-

structure ΩE× IMi and can be calculated by solving a set of micro problems on
ΩE × IMi with zero initial conditions at t′i

−. These problems consist in taking

successively, for (W̃
M

E|IM
i

− W̃
M

E (t′i
−)), the macro basis functions on ∂ΩE × IMi .

The operator is defined in each substructure ΩE × IMi independently and its
calculation can be parallelized in space as well as in time. Moreover, if the
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macro intervals IMi and the operators H and h on these intervals are identical,
the calculation needs to be performed only once.

4.4.2 The macro problem on Ω × [t′i, t
′
i+1]

Find W̃
M

=
⋃

E∈E

{
W̃

M

E

}
∈ W

[t′
i
,t′

i+1
],M

h,ad which verifies the initial condition

W̃
M

(t′i
−) and

∀W̃
M∗

∈ W
[t′

i
,t′

i+1
],M

h,0 ,

∑

E∈E

∫

∂ΩE×[t′
i
,t′

i+1
]

˙̃
W

M∗

E ·
(
LF

E,i

(
W̃

M

E − W̃
M

E (t′i
−
)) + F̂

M

E,d

)
dSdt =

∑

E∈E

∫

(∂ΩE∩∂2Ω)×[t′
i
,t′

i+1
]

˙̃
W

M∗

E · Fd dSdt (23)

where the space W
[t′

i
,t′

i+1
],M

h,0 corresponds to W
[t′

i
,t′

i+1
],M

h,ad with zero value at t′i
−.

One can easily show that the macro problem has a unique solution.

4.4.3 Adaptivity

Due to causality, we must solve the linear stage incrementally over the macro
time intervals. However, the reformulation of the problem enables a specific
treatment on the time level. For example, one can choose, for the first few
iterations, to solve the problem over the entire space-time domain; then, as
the macro solution converges rapidly, one can calculate the following iterations
on selected macro time intervals of interest.
Of course, this selection can be performed over a set of macro intervals, which
leads to the definition of a homogenized operator over a small number of macro
intervals.

5 Convergence

If the operator B which characterizes the material is monotonous and if the
interfaces represent perfect connection, boundary conditions or unilateral con-
tact without friction, the multiscale computational strategy verifies the usual
assumptions of the LATIN method; indeed, we can use conjugate search di-
rections and we have:
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Proposition 8 If B is monotonous and the interfaces are without friction,
the following inequalities are verified:

•∀(ŝ, ŝ′) ∈ Γ2, 〈(ŝ − ŝ′), (ŝ − ŝ′)〉 > 0

•∀(s, s′) ∈ A2
d, 〈(s − s′), (s − s′)〉 6 0

(24)

where 〈 , 〉 is the bilinear form from S
[0,T ]
h × S

[0,T ]
h to R such that:

〈s, s′〉 =
∑

E∈E





∫

ΩE×[0,T ]

(
Tr

[
σE ε̇

′
pE

]
+ Tr [σ′

E ε̇pE] −YE · Ẋ′
E − Y′

E · ẊE

)
dΩdt

−
∫

∂ΩE×[0,T ]

(
FE · Ẇ

′

E + F′
E · ẆE

)
dSdt





The above expression is taken in the sense of (4).

Following the proof of the monoscale strategy given in [14], we can prove
that the iterative strategy converges. To ensure convergence for many types
of material behavior, let us modify the linear stage: renaming s̃n+1 ∈ Ad the
quantity previously denoted sn+1, we define sn+1 by the relation:

sn+1 = µ s̃n+1 + (1 − µ) sn (25)

where µ is a relaxation parameter usually chosen equal to 0.8.

Remark 9 This result does not work for softening material for which localiza-
tion occurs. However, numerical experiments have been succesfully performed
for the monoscale version.

6 Approximation of the macro problem: introduction of a third

scale

If the number of macro space-time substructures ΩE×[t′i, t
′
i+1] is large, the cost

of solving the macro problem can be prohibitive. For example, let us consider
the response of a simple composite structure made of 100 × 100 cells and
subjected to 100 loading cycles. With a classical macro space, the size of the
macro problem is about 5 × 106, which is beyond our reasonable capabilities.
Here, we propose to seek an approximate solution to the macro problem by
introducing a third scale over the space-time domain.
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6.1 The approximate macro problem

Let us recall that the macro problem (21) yields the Lagrange multiplier W̃
M

,
from which we can deduce the complete solution of the linear stage. It con-
verges towards zero along the iterations of the algorithm. In the case where
the macro wavelength is rather large compared to the cell dimension, one can
proceed to a further approximation for the macro quantities. Then, the idea
is to seek an approximation to the solution of problem (21) in a “well-chosen”

subspace W
[0,T ],M,M
h,ad of W

[0,T ],M
h,ad . The approximate macro problem can be ex-

pressed as:

Find W̃
M,M

=
⋃

E∈E

{
W̃

M

E

}
∈ W

[0,T ],M,M
h,ad , which verifies:

∀W̃
M,M∗

∈ W
[0,T ],M,M
h,0 ,

∑

E∈E

∫

∂ΩE×[0,T ]

˙̃
W

M,M∗

E ·
(
LE

(
W̃

M,M

E ) + F̂
M

E,d

)
dSdt =

∑

E∈E

∫

(∂ΩE∩∂2Ω)×[0,T ]

˙̃
W

M,M∗

E · Fd dSdt (26)

The solution W̃
M,M

to Problem (26) is an approximation of the solution W̃
M

to Problem (21).

Remark 10 Another and more conventional version consists in approximat-
ing the macro problem, formulated in terms of macro forces.

6.2 Description of the third scale

6.2.1 Three-level decomposition of Ω × [0, T ]

On the space level, the substructures ΩE are gathered into separate macrocells
ΩEM =

⋃
E∈EM ΩE, EM ∈ EM such that

⋃
EM∈EM ΩEM = Ω (Figure 5).

On the space level, the third scale is defined by the characteristic length of
the macrocells.
Similarly, one can easily introduce a third time scale.

6.2.2 Description of the kinematics of the third scale

The set of macrocells can be viewed as a coarse mesh of Ω made of linear quad-
rangles. An interface between two quadrangles is denoted Γpq, p and q being
the interface’s end nodes (Figure 6). The basis functions associated with node
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W WEM

WE

¶WE

¶WEM

Structure Macro-cell Cell 
(substructure)

¶W

Fig. 5. Decomposition of the structure Ω into macrocells ΩEM and of the macrocells
into substructures ΩE

p of this element are defined as usual and designated by {ϕ
p(1)

, ϕ
p(2)

}. We as-

sociate each side Γpq of this quadrangle connecting nodes p and q with “super-

macro” basis functions {eM,M
pq,k }k∈{1,...,6} defined on the interfaces of the macro-

cell ΩEM : the macro kinematics of the internal interfaces is interpolated from
the global motions of the face Γpq (including translations {ϕ

p(i)
+ ϕ

q(i)
}i∈1,2,

rotation {ϕ
q(2)

− ϕ
p(2)

} and expansion {ϕ
q(1)

− ϕ
p(1)

}). This interpolation is

weighted by the orientation of the interfaces. Figure 7 illustrates these super-
macro basis functions.

p q

WEM

Gpq
npq

X1

X2

Fig. 6. The macrocell ΩEM

e     (M)1
M,M e     (M)2

M,M e     (M)3
M,M

e     (M)4
M,M e     (M)5

M,M e     (M)6
M,M

Fig. 7. “Super-macro” basis functions associ-
ated on the space level with the interface Γpq

of a macrocell ΩEM
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7 Example 1: Three-scale modeling of a composite structure under

tension and bending loads

7.1 Description of the problem

Let us consider the 2D problem of a composite structure (Figure 8) fixed on the
left and subjected to tension and bending Fd loads on the right (Figure 9). We
assume plane strain conditions. The in-plane dimensions are 30 mm × 10 mm
and the thickness is 1 mm. The structure is made of two types of cells, denoted
I and II. The materials are viscoelastic with Young’s modulus Ei, Poisson’s
ratio νi and viscosity ηi. Their constitutive relations are such that Bi = 1

ηi

K−1
i .

Fd

Type-I cells Type-II cells

Group of cells G

Interface G  and Point M  (belonging to G )11
Group of cells G1

2

1

x

y

Fig. 8. Description of the problem:
traction and bending loads on a com-
posite structure with two types of cells
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ce
 (
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a)

F
dx

F
dy

Fig. 9. Loading Fd

Each cell is a substructure of the partitioned problem. The Type-II cell (Figure
11) is homogeneous with a Type-1 material whose characteristics are E1 =
1.3 ∗ 105MPa, ν1 = 0.45 and η1 = 10s. It is meshed with 218 TRI3. The
Type-I cell (Figure 10) consists of a matrix of Type-1 material and inclusions
of Type-2 material whose characteristics are E2 = 1.3 ∗ 107MPa, ν2 = 0.2
and η2 = 1000s. It is meshed with 1,068 TRI3. Each interface is meshed with
10 elements. The time interval being considered is [0, 10s]. On this example,
we tested the three-scale approach in space: therefore, we discretized the time
interval with only 10 micro subintervals (N = 10) and one macro interval

(N ′ = 1). The functions are of type Z
[0,T ]
0 on the micro grid τh and of type

Z
[0,T ]
2 on the macro grid τh′ .
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Fig. 10. Type-I cell: matrix of Type-1
material with inclusions of Type-2 ma-
terial

Fig. 11. Type-II cell: homogeneous,
Type-1 material

7.2 Presentation of the results

Figures 12 and 13 show the spatial distribution of the micro and macro forces
and displacements on the interface Γ1 at t = 10s.
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Fig. 12. Distribution of the projection on
x of the micro and macro parts of force
F1 along the interface Γ1 at time t = 10s
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Fig. 13. Distribution of the projection on
x of the micro and macro parts of dis-
placement W1 along Γ1 at time t = 10s

Figures 14 and 15 show the time evolution of the micro and macro forces
and displacements at point M1. Let us observe that the macro forces and
displacements represent the “mean” solution quite well, even in high-gradient
zones.
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Fig. 14. Evolution of the projection on
x of the micro and macro parts of force
F1 at point M1
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Fig. 15. Evolution of the projection on
x of the micro and macro parts of dis-
placement W1 at point M1

Remark 11 For this academic example, it is clear that a classical monoscale
approach could be used for the homogeneous part of the structure: it means
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that micro quantities can be taken as zero value.

Remark 12 Figure 17 shows the time evolution of the micro and macro forces
and displacements at point M1 in the case of a more complex traction loading
with time perturbations (figure 16). For this example, the time interval being
considered is [0, 30s] and it is discretized with 150 micro subintervals (N =

150) and three macro intervals (N ′ = 3). The functions are of type Z
[0,T ]
0 on

the micro grid τh and of type Z
[0,T ]
2 on the macro grid τh′.
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Fig. 16. Traction loading with time perturbations
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Fig. 17. Evolution of the projection on x and y of the micro and macro parts of
displacement ans force at point M1

7.3 Performance of the algorithm

Figure 18 shows the evolution of the error with the number of iterations of
the LATIN method. This error is based on the interface quantities F and
W and measures a distance between ŝn+1/2 ∈ Γ and sn ∈ Ad at iteration
n. The algorithm converges towards a good solution very quickly (relative
error less than 1/1,000 after 10 iterations). Figures 19 and 20 show the local
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Fig. 18. Evolution with the number of iterations of an error based on interface
quantities

displacements of the cell groups G1 and G2 and the macro displacements of
the interfaces at time t = 10s and at iteration 1. In the low-gradient zone, the

Fig. 19. Displacement and macro dis-
placement of the interface (×200) of
cell group G1 at time t = 10s and at
iteration 1

Fig. 20. Displacement and macro dis-
placement of the interface (×200) of
cell group G2 at time t = 10s and at
iteration 1

solution is already very good after the first iteration (which can be viewed as
a simple macro calculation on the homogenized structure).

Let us note that the definition of cells is a choice. The total solution at conver-
gence does not depend on this choice. However, the macro part could depend
on it, particularly over high-gradient zones.

7.4 The three-scale computational strategy

Figures 21, 22, 23, 24 et 25 show the different super-macro meshes which were
tested in this section. We considered only 2 time scales.

On Figure 26, we plotted the relative error with respect to a reference solution
vs. the number of iterations for different super-macro meshes. The reference
curve is the error obtained without the third scale, i.e. for a super-macro mesh

identical to the macro mesh. Let us recall that the Lagrange multiplier W̃
M
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Fig. 21. Super-macro mesh MM1
Fig. 22. Super-macro mesh MM2

Fig. 23. Super-macro mesh MM3 Fig. 24. Super-macro mesh MM4

Fig. 25. Super-macro mesh MM5

converges towards zero. Approximating it at each iteration does not change
the solution at convergence but only the convergence rate of the algorithm.
For example, taking for W

[0,T ],M,M
h,ad the null space yields the classical mono-

scale strategy.
Table 1 shows the errors with the different meshes after 10 iterations and the
corresponding sizes of the super-macro problems.

Table 1
Comparison of super-macro meshes: size of the macro problem and error after 10
iterations of the three-scale computational strategy

Super-macro mesh Size of the macro problem Error after 10 iterations

Ref 7560 5.4 × 10−2

MM1 126 5.1 × 10−1

MM2 342 2.3 × 10−1

MM3 576 1.7 × 10−1

MM4 1548 5.8 × 10−2

MM5 2100 5.7 × 10−2

Mesh MM1 is clearly inadequate. Meshes MM2 and MM3 performed quite
similarly with an error of about 20% after 10 iterations. These similar perfor-
mances show that the third scale worked very well in the low-gradient zones
(the zones with Type-II cells). Mesh MM4 differs simply in the refinement at
the corner zones: this intuitive mesh gave very good results (6% error after 10
iterations). Mesh MM5, which is refined in the zone with the Type-I cells, per-
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Fig. 26. Evolution of the error based on interface quantities vs. the number of
iterations for different choices of super-macro meshes

formed much like the previous one. In conclusion, a “good” third-scale mesh
can be coarse in the homogeneous low-gradient zones, a bit more refined in
the heterogeneous zones and further refined in the high-gradient zones. With
these guidelines, one obtains a good homogenized solution without modifying
the convergence rate of the iterative method. In this case, with mesh MM4,
the size of the macro problem is divided by 5. For problems with a much
larger number of cells, the size of the macrocells would still be related to the
macroscopic solution and, therefore, a macrocell could contain 100, 1,000 or
more cells. Thus, one can hope to divide the size of the macro problem by
1,000, 10,000 or more.

Let us note that in a high-gradient zone (notch, ...), the third scale is not
introduced.

Remark 13 We could have formulated the macro problem in terms of macro
forces and approximated it. In this case, the solution at convergence depends
on the choice of the third scale but the convergence rate should not depend on
it. This version has not been tested yet.

8 Approximation of micro problems: Radial loading approximation

At each iteration and for each substructure, we need to solve micro problems
which represent evolution equations defined on ΩE× [0, T ]. The cost of solving
these problems with standard incremental methods can be prohibitive, espe-
cially if the search direction associated with the linearized behavior H(t) is
time-dependent. In this section, we introduce an approximation technique for
the solution of these problems. This technique, commonly used in the LATIN
method [14] (Point P3), defines an approximation based on generalized radial
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functions.

8.1 Rewriting of the linear stage

The linear stage at iteration n is rewritten in terms of the increment ∆s =
sn+1−sn. The initialization must be accurate with respect to the admissibility
of the macro forces and the equilibrium of the substructures. A simple and
sufficient way to fulfill this condition is to perform a linear elastic calculation
for s0. The micro problem on substructure E becomes : Find ∆sE ∈ S

[0,T ]
h,E,0

which verifies the following relations, coming from the search direction:

∀(σ∗,Y∗) ∈ f
[0,T ]
h,E ,

∫

ΩE×[0,T ]








∆ε̇pE

−(∆ẊE)


 − H




∆σE

∆YE


 − ∆̂




·




σ
∗

Y∗


 dΩdt = 0 (27)

∀F∗ ∈ F
[0,T ]
h ,

∫

∂ΩE×[0,T ]

{
h

(
∆FE

)
+

(
∆ẆE

)
− δ̂

}
· F∗

E dSdt = 0 (28)

where ∆̂ and δ̂ are data and where S
[0,T ]
h,E,0 corresponds to the space S

[0,T ]
h,E,ad

with homogeneous conditions.

8.2 Concept of radial loading approximation

Point P3 of the LATIN method consists in seeking an approximate solution to
the previous micro problem as a sum of radial functions which are products
of scalar functions of the time variable by functions of the space variable : for
E ∈ E,

(∆σE, ∆FE)(M, t) =
m∑

k=1

ck(t)(Ck, Gk)(M), ∆YE(M, t) =
m′∑

k=1

dk(t)Dk(M)

(∆εE, ∆WE)(M, t) =
m′′∑

k=1

ek(t)(Ek, Zk)(M)

Radial functions are choosen in the admissibible space S
[0,T ]
h,E,0: ck, dk and ek are

functions of time of type Z[0,T ]
r with zero initial conditions, (Ck, Gk) ∈ Fh,E,0,

(Ek, Zk) ∈ Eh,E,0 and Dk ∈ Yh,E. The state equations yield the following
relations:
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∆εpE =
m′′∑

k=1

ek(t)(Ek, Zk)(M) −
m∑

k=1

ck(t)K−1(Ck, Gk)(M)

∆X =
m′∑

k=1

dk(t)Λ−1Dk(M)

8.3 Seeking the “best” approximation

8.3.1 Definition of the “best” approximation

Relations (27) and (28) can be interpreted as linear constitutive relations. Due
to the properties of operators H and h, the micro problem can be reformulated
as a minimization problem in the admissible space S

[0,T ]
h,E,0 of the constitutive

relation error eCR(∆sE) defined by

e2
CR(∆sE) = ‖




∆ε̇pE

−∆ẊE


 − H




∆σE

∆YE


 − ∆̂‖2

ΩE×[0,T ] +

‖h∆FE + ∆ẆE − δ̂‖2
∂ΩE×[0,T ] (29)

where

‖∆̂‖2
ΩE×[0,T ] =

∫

ΩE×[0,T ]

(1 −
t

T
) ∆̂ · H−1∆̂ dΩdt

and ‖δ̂‖2
ΩE×[0,T ] =

∫

∂ΩE×[0,T ]

(1 −
t

T
) δ̂ · h−1δ̂ dSdt

The best radial functions are simply defined such that they minimize the
constitutive relation error eCR. Formulated in this way, the approximation
“makes sense”. Details will be given in a following paper.
Let us note that the approximation of the solution to the linear stage still
belongs to Ad. Only the search direction of the algorithm is approximated.

8.3.2 The resolution technique

To solve the minization problem on the space of radial functions, we use an
iterative scheme, proposed in [14], which consists in minimizing alternatively
on time functions and space functions. Minimizing on time functions leads to
a simple differential system of equations while minimizing on space functions
leads to a “spatial” problem. In practice, only one function for each variable is
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calculated at the same time, i.e. m = m′ = m′′ = 1, and the iterative scheme
is stopped after two iterations.

Remark 14 Localization operator LE and homogenized operators LF
E and LW

E

can also be calculated with this approximation technique by taking ∆̂ = 0 and
successively, for δ̂, the macro basis functions.

• Cost of the approximation
The advantage of such an approach is that because the spatial problem and
the differential equation are uncoupled the cost of solving the linear stage is
almost independent of the time integration scheme. Therefore, for the same
cost, one can use robust implicit schemes on fine time grids, which would be
unreasonably expensive with standard incremental methods.

Remark 15 Minimizing simultaneously on (C, G,D,E, Z) leads to a “spa-
tial” problem whose size is two times bigger than for the problem on an in-
crement of a classical incremental method. An alternative iterative scheme
consists in decoupling the minimization on (C, G,D) from the minimization
on (E, Z).

• Reuse of functions
The functions of the space variable built using this approximation technique
can be stored and systematically reused in the subsequent iterations of the
LATIN method. The resolution of a micro problem begins with an initializa-
tion step which consists in solving a simple system of differential equations
whose size is the number of spatial functions stored. This initialization step
may yield good solutions to the micro problems directly. Thus, solving the
micro problems becomes less and less costly as the iterations of the LATIN
method proceed. Moreover, in the case of composite structures, the basis built
as mentioned here is common to all identical substructures. Thus, one can
expect that only a few spatial functions need to be calculated to solve the
problem completely.

9 Example 2: Solution of micro problems with the radial loading

approximation

9.1 Description of the problem

Let us consider the 2D problem of a composite structure (Figure 27) fixed on
the left and subjected to tension and bending loads Fd on the right (Figure 28).
The in-plane dimensions are 25 mm × 10 mm and the thickness is 1 mm. We
assume plane strain conditions. The structure is made of 40 identical cells.
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The cells consists of a matrix of Type-1 material and inclusions of Type-2
material. The materials are defined in example 1.

Fd

Cell 1

Fig. 27. Description of the problem:
traction and bending loads on a com-
posite structure composed of 48 cells
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Fig. 28. Loading Fd

Each cell (Figure 29), which is a substructure of the partitioned problem, was
meshed with 444 TRI3. Each interface was meshed with 8 elements.

Fig. 29. Cell description: matrix of Type-1 material with inclusions of Type-2 ma-
terial

The time interval [0, 10s] being considered was discretized with 100 micro
subintervals (N = 100) and one macro interval (N ′ = 1). The functions are of

type Z
[0,T ]
0 on the micro grid τh and of type Z

[0,T ]
2 on the macro grid τh′ .

9.2 Resolution of the micro problems

To solve the micro problems, we used the radial loading approximation. At
each iteration and for each substructure, we performed an initialization step
using the space of the spatial functions previously stored. If this initialization
was not sufficient (as shown by a test on the constitutive relation error), we
solved the minimization problem of the constitutive relation error with the
iterative scheme proposed previously, looking for one additional radial function
for each variable, and performing only two iterations.

9.3 Convergence of the algorithm

Figure 30 shows the evolution of the error with respect to the number of
iterations of the LATIN method. This error is based on the interface quantities
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F and W. We plotted convergence curves of the reference method, for which
micro problems are solved exactly with a classical incremental scheme, and
of the radial approximation, for which only one additional radial function per
variable is calculated for each micro problem and stored in order to initialize
the following ones. Let us note that the use of the approximation technique
does not modify the global convergence of the algorithm and that, in practice,
very few functions are needed to get an approximate solution.
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Fig. 30. Evolution of the error based on interface quantities with the number of
iterations: comparison between the classical algortihm and the algorithm with the
radial loading approximation

More details will be given in a forecoming paper.

9.4 Illustration of the approximation

Let us look at the solution for Cell 1. Figure 31 shows the corresponding stress
field at time t = 10s.

−200 −150 −100 −50 0 50 100 150 200 250 300

Fig. 31. σ in Cell 1 at time t = 10s

To illustrate the radial loading approximation, we solved the micro problem
on cell 1 with data corresponding to the solution, i.e. ∆̂ = ε̇pE − HσE and

δ̂ = hFE + ẆE. Then, the exact solution of the micro problem is the solution
itself. Figure 32 shows the stress field at time t = 10s associated with the
first three radial functions {ck(10)Ck}3

k=1. Functions of the space variable are
normalized.
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Fig. 32. Radial functions {ck(t)Ck(M)}3
k=1 in Cell 1 at time t = 10s

Figure 33 shows the time functions {ck(t)}3
k=1.
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Fig. 33. Time functions ck(t) for Cell 1

We note that a single radial function represents the solution quite well. Table
2 shows the evolution of the error between the solution (σ, F, ε, W) in Cell 1
and the radial loading approximation with the number of radial functions.

Table 2
Relative error errsta (reps. errkin) between the approximation

∑m
k=1 ck(Ck,Gk)

(reps.
∑m

k=1 ek(Ek,Zk)) and σ (reps. ε) on Cell 1 vs. the number of radial functions

m errsta errkin

1 0.0472 0.0121

2 0.0450 0.0025

3 0.0425 0.0009

4 0.0279 0.0008

5 0.0095 0.0006

In conclusion, only a very small number of functions is needed to approximate
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the solution defined over the entire space-time domain and, therefore, the cost
of the linear stage, which is the most costly stage, can be reduced drastically.

10 Conclusion

The improved method presented here led to significant performance gains in
the resolution of the linear stage. The first improvement was the introduction,
for composite structures, of a third scale and the use of an approximation
technique for the macro problem: this approximation is based on an analogy
between the macro homogenized structure and a Cosserat medium. The second
improvement was the introduction of the radial loading approximation to solve
the micro problems. This strategy extends the approximation classically used
in the LATIN method for quasi-static problems [14]. The gain obtained by
these two improvements becomes significant as one has to deal with a large
number of composite cells and needs to calculate a detailed solution in the
time domain. The techniques described here can be used only with global
methods in space and in time, which excludes classical incremental methods.
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