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Abstract Uncertainty quanti�cation and propagation in physical systems appear as

a critical path for the improvement of the prediction of their response. Galerkin-type

spectral stochastic methods provide a general framework for the numerical simulation

of physical models driven by stochastic partial di�erential equations. The response is

searched in a tensor product space, which is the product of deterministic and stochas-

tic approximation spaces. The computation of the approximate solution requires the

solution of a very high dimensional problem, whose calculation costs are generally

prohibitive. Recently, a model reduction technique, named Generalized Spectral De-

composition method, has been proposed in order to reduce these costs. This method

belongs to the family of Proper Generalized Decomposition methods. It takes part

of the tensor product structure of the solution function space and allows the a pri-

ori construction of a quasi optimal separated representation of the solution, which

has quite the same convergence properties as a posteriori Hilbert Karhunen-Loève

decompositions. The associated algorithms only require the solution of a few determin-

istic problems and a few stochastic problems on deterministic reduced basis (algebraic

stochastic equations), these problems being uncoupled. However, this method does not

circumvent the �curse of dimensionality� which is associated with the dramatic increase

in the dimension of stochastic approximation spaces, when dealing with high stochas-

tic dimension. In this paper, we propose a mariage between the Generalized Spectral

Decomposition algorithms and a separated representation methodology, which exploits

the tensor product structure of stochastic functions spaces. An e�cient algorithm is

proposed for the a priori construction of separated representations of square integrable

vector-valued functions de�ned on a high-dimensional probability space, which are the

solutions of systems of stochastic algebraic equations.
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tion · Proper Generalized Decomposition · Separation of variables · Finite sums

decomposition

1 Introduction

The numerical prediction of the impact of uncertainties on the response of physical

models appears as a crucial issue in many branches of science and engineering. These

last two decades, spectral stochastic methods have been extensively investigated for

the propagation of uncertainties through physical models driven by �nite dimensional

noise (see e.g. [18,50,38,34] and the references therein). These methods rely on a rep-

resentation of the response as a function of basic random variables modeling the input

uncertainties. An approximation of the response is sought on suitable approximation

basis. Several methods have been proposed for the de�nition and computation of the

approximate solution: L2 projection [20,22], interpolation [2,15,52,51,49], regression

[6] or Galerkin projections [19,3,35,17].

Galerkin spectral stochastic methods inherit from nice mathematical results in

functional analysis. They lead to accurate predictions and allow for a better control on

numerical simulations through a posteriori error estimation and adaptive approxima-

tion [23,46,45,33,48]. However, the computation of the approximate solution requires

the solution of a very high dimensional problem, which is generally prohibitive with

traditional techniques. Moreover, it requires a good knowledge of the mathematical

structure of the physical model in order to extend classical deterministic solvers to the

stochastic framework (preconditioners, non linear solvers, . . . ).

In order to circumvent the above mentioned drawbacks of Galerkin spectral stochas-

tic methods, an a priori model reduction technique, named Generalized Spectral De-

composition (GSD) method, has been recently proposed for solving stochastic partial

di�erential equations (SPDEs) [36�38,42]. This method, which takes part of the tensor

product structure of the solution function space, allows the a priori computation of a

quasi optimal separated representation of the solution, which has quite the same con-

vergence properties as classical spectral decompositions (i.e. Hilbert Karhunen-Loève

decompositions). A decomposition of the solution is sought in the form

u(x, ξ) ≈
M∑
i=1

wi(x)λi(ξ), (1)

where the wi(x) are deterministic functions of the physical variables x (e.g. space

and/or time) and where the λi(ξ) are functions of the basic random variables ξ. The

basic principle of the GSD method consists in de�ning optimal reduced basis from a

double orthogonality criterium. Reduced basis functions then appear as the solutions

of a pseudo eigenproblem whose dominant eigenspace is associated with the desired

optimal reduced basis. Dedicated algorithms, inspired from classical algorithms for

solving eigenproblems, have been proposed for the approximation of the optimal de-

composition [37]. The main advantage of these algorithms is that they only ask for the

solution of a few uncoupled deterministic problems for computing functions wi and

stochastic algebraic equations for computing stochastic functions λi. Stochastic alge-

braic equations can be solved with classical spectral stochastic methods, leading to an

approximation of random variables λi(ξ) ≈
∑P

α=1 λi,αHα(ξ), where the Hα(ξ) form

a basis of classical stochastic approximation spaces, such as polynomial or piecewise
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polynomial spaces [11,53,43,31,47]. Deterministic problems being uncoupled, classi-

cal deterministic solution techniques can be used. It then makes the GSD method a

partially non-intrusive Galerkin spectral stochastic approach.

The separation of deterministic problems and stochastic algebraic equations leads

to drastic computational savings, especially for large scale applications. However, this

deterministic/stochastic separation does not circumvent the �curse of dimensionality�

which is associated with the dramatic increase in the dimension P of stochastic approx-

imation spaces, when dealing with a high stochastic dimension, i.e. with a large number

of random variables ξ = (ξ1, . . . , ξr). In this paper, we propose a mariage between GSD

algorithms and a separated variables representation technique which exploits the ten-

sor product structure of stochastic functions space. The separation of variables is used

for the approximate representation of square-integrable vector-valued functions Λ(ξ)

(or second order random vectors) de�ned on a high-dimensional probability space

Λ(ξ) = Λ(ξ1, . . . , ξr) ≈
Z∑

i=1

ϕ0
i ϕ

1
i (ξ1) . . . ϕ

r
i (ξr) (2)

where the ϕj
i (ξj) are real valued functions of basic random variables ξj . A represen-

tation (2) of order Z appears as a classical spectral stochastic expansion of a ran-

dom variable Λ(ξ) on an Z-dimensional approximation basis {Ψi(ξ)}Zi=1, with Ψi(ξ) =∏r
i=1 ϕ

r
i (ξr), which is not selected a priori but chosen such that it gives a quasi opti-

mal approximation for a given dimension Z. A natural extension of the GSD method is

proposed for the a priori construction of separated representation (2). The algorithm

proposed in this paper, which can be applied to many problems de�ned in tensor prod-

uct spaces, yield rather good convergence properties with respect to the order Z of the

decomposition.

The overall methodology proposed in this paper allows computing an approximate

solution of the model in very high dimensional approximation spaces (1020, 1050, ...),

with algorithms having a complexity which is (quasi)linear with the stochastic dimen-

sion r. It then allows to deal with problems which are una�ordable with conventional

spectral stochastic approaches and usually require the use of classical Monte-Carlo

simulations.

Let us note that the overall methodology and algorithms could be naturally ap-

plied to the solution of other types of problems de�ned in tensor product spaces. Some

variants of this methodology have been proposed for the a priori construction of such

separated representations of functions in tensor product spaces [27,28,41,5,1,21,29,

39]. In the context of spectral stochastic methods, a basic methodology has already

been proposed in [14,13]. This kind of methodologies is receiving a growing interest in

many applications where numerical simulations su�er from the curse of dimensionality.

The obtained decompositions have been recently called Proper Generalized Decompo-

sitions (PGD). PGD methods can be seen as a family of methods for the a priori

construction of separated representations of functions which are solutions of problems

de�ned in tensor product spaces (GSD method belongs to this family). For some vari-

ants of algorithms and some very particular frameworks, some mathematical results

are available [7,16]. However, the mathematical bases of these methods are still badly

mastered. Further mathematical investigations will be necessary in order to better

understand this type of decomposition in a general framework and to propose more

e�cient algorithms. Nevertheless, as it will be illustrated in this paper, these types of
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algorithms are already of great practical interest.

The outline of the paper is as follows. In section 2, we brie�y recall the principle of

classical stochastic spectral approaches for solving stochastic partial di�erential equa-

tions. In section 3, we recall the basics of the GSD method and related algorithms for

the construction of decomposition (1). In section 4, we introduce a methodology for the

solution of stochastic algebraic equations de�ned on high dimensional product prob-

ability spaces, which is based on the a priori construction of decomposition (2). The

proposed method belongs to the family of Proper Generalized Decomposition (PGD)

methods. Sections 5 and 6 will illustrate the overall methodology (coupling GSD algo-

rithms and PGD in high dimension) for model stochastic partial di�erential equations,

namely stochastic advection di�usion reaction equations.

2 Stochastic partial di�erential equations and Galerkin spectral stochastic

methods

2.1 Weak formulation of stochastic partial di�erential equations

We consider a stochastic partial di�erential equation (SPDE) de�ned on a physical

domain (e.g. space or space-time domain) whose operator and right-hand side depend

on a �nite set of m real valued random variables ξ = (ξ1, . . . , ξm). We introduce the

associated �nite-dimensional probability space (Ξ,B, Pξ), where Ξ ⊂ Rm is the set

of elementary events, B is a σ-algebra on Ξ and Pξ is the probability measure. We

consider that the solution u of the SPDE is a random variable with values in a Hilbert

space V of functions de�ned on the physical domain. A strong-stochastic formulation

of the SPDE writes: �nd u : Ξ → V such that we have Pξ almost surely

u(ξ) ∈ V, a(u(ξ), v; ξ) = b(v; ξ) ∀v ∈ V, (3)

where a and b and bilinear1 and linear forms on V. We consider the particular class

of SPDEs whose solution u is a second order random variable with values in V, which

is supposed to be independent on the random event ξ2. The solution then belongs to

Hilbert space L2(Ξ,B, Pξ;V), which can be identi�ed with the tensor product space

V ⊗ S, where S := L2(Ξ,B, Pξ) denotes the space of real valued second order ran-

dom variables de�ned on (Ξ,B, Pξ) (or equivalently the space of real-valued functions

de�ned on Ξ which are B-measurable and square integrable). A weak-stochastic for-

mulation of (3) writes:

u ∈ V⊗ S, A(u, v) = B(v) ∀v ∈ V⊗ S, (4)

where bilinear form A and linear form B are de�ned by

A(u, v) := E
(
a(u(ξ), v(ξ); ξ)

)
, (5)

B(v) := E
(
b(v(ξ); ξ)

)
, (6)

1 In this article, we only consider the case of linear SPDEs. Problem (3) can be associated
with a linear physical model but also with one step of a nonlinear iterative strategy for solving
a nonlinear SPDE.
2 For SPDEs de�ned on random domains, a suitable reformulation of the problem on a

deterministic domain allows to work in a deterministic function space V [54,8,40].
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where E is the mathematical expectation de�ned by

E(f(ξ)) =

∫
Ξ

f(y)dPξ(y). (7)

2.2 Product structure of stochastic function space

We suppose that the set of m random variables ξ can be split into r mutually indepen-

dent sets of random variables {ξi}ri=1, i.e. ξ = {ξ1, . . . , ξr}. Let (Ξi,Bi, Pξi
), with

Ξi ⊂ Rmi , denote the probability space associated with the set of random variables

ξi, with m =
∑r

i=1 mi. The probability space (Ξ,B, Pξ) have a product structure:

Ξ = ×r
i=1Ξi, B = ⊗r

i=1Bi, Pξ = ⊗r
i=1Pξi

(8)

Hilbert space S = L2(Ξ,B, Pξ) then have the following tensor product structure:

S ≃ S1 ⊗ . . .⊗ Sr, Si := L2(Ξi,Bi, Pξi
) (9)

If the mi random variables ξi = (ξi,1, . . . , ξi,mi
) are mutually independent, probability

space (Ξi,Bi, Pξi
) has itself a product structure: Ξi = ×mi

j=1Ξi,j , Bi = ⊗mi
j=1Bi,j ,

Pξi
= ⊗mi

j=1Pξi,j . Therefore, Hilbert space Si has the following tensor product struc-

ture: Si = Si,1 ⊗ . . .⊗ Si,mi , with Si,j = L2(Ξi,j ,Bi,j , Pξi,j ).

2.3 Stochastic approximation spaces

Approximation spaces in Hilbert space S = L2(Ξ,B, Pξ) can naturally be built by

tensorization of approximation spaces in Si = L2(Ξi,Bi, Pξi
). Let SiPi

denote a Pi-

dimensional approximation space in Si. A full tensorization leads to a P -dimensional

approximation space SP ⊂ S de�ned by

SP = S1P1
⊗ . . .⊗ SrPr

, P =

r∏
i=1

Pi (10)

Let {hiαi
(ξi)}

Pi
αi=1 denote a basis of SiPi

and let IP = {α = (αj)
r
j=1;αj ∈ {1, . . . , Pj}}

denote a set of multi-indices. A basis {Hα(ξ)}α∈IP of SP is then simply obtained

by letting Hα(ξ) =
∏r

i=1 h
i
αi
(ξi). For simplicity, we introduce a one-to-one mapping

between the set of multi-indices IP and {1, . . . , P} and equivalently denote {Hα}Pα=1

the basis of SP .

The reader can refer to [43] for a general methodology for the construction of

approximation spaces SiPi
in the case of arbitrary probability measures Pξi

. For the

case where ξi is composed bymi independent random variables, classical choices consist

in introducing orthogonal complete polynomial basis [19,53] (classical polynomial chaos

basis), or piecewise polynomial basis [11,46,30]. These constructions are classical and

will not be detailed in this paper (see e.g. [38]).
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2.4 Galerkin spectral stochastic approximation

Galerkin stochastic approaches consist in de�ning an approximate solution of problem

(4) by

u ∈ V⊗ SP , A(u, v) = B(v) ∀v ∈ V⊗ SP , (11)

where SP ⊂ S is a P -dimensional approximation space. Let {Hα}Pα=1 denote a basis of

SP . Equation (11) can be interpreted as a system of P coupled SPDEs: �nd {uα}Pα=1 ∈
(V)P such that ∀β ∈ {1, . . . , P}, ∀vβ ∈ V,

P∑
α=1

E
(
a
(
uα, vβ ; ξ

)
Hα(ξ)Hβ(ξ)

)
= E

(
b(vβ ; ξ)Hβ(ξ)

)

3 Generalized spectral decomposition method

In this section, we recall the basics of the Generalized Spectral Decomposition method

(GSD) [36,37,42], which is a method for the a priori construction of a separated

representation of the solution u of (4):

u ≈ uM =

M∑
i=1

wiλi, wi ∈ V, λi ∈ S (12)

where neither the functions wi nor the functions λi are �xed a priori. Decomposition

(12) is called a separated representation of order M . Functions wi and λi are said to be

optimal reduced basis functions with respect to a given metric if the orderM is minimal

for a given accuracy, measured with this particular metric. The GSD method provides

a methodology and dedicated algorithms for the a priori de�nition and construction

of a decomposition of type (12). In the context of spectral stochastic methods, it can

be seen as a method for the a priori construction of a very low dimensional stochastic

approximation space SM := span({λi})Mi=1 ⊂ S.

Remark 1 - Here, we use a terminology associated with stochastic problems although

the method could be applied to the approximate solution of a large class of problems (4)

de�ned in a tensor product space V⊗ S.

3.1 A posteriori separated representation: classical spectral decomposition

When the solution u is known, an optimal separated representation uM can be naturally

de�ned by introducing an inner product ≪ ·, · ≫V⊗S on tensor product space V ⊗ S,

this inner product being built from inner products < ·, · >V and < ·, · >S on Hilbert

spaces V and S, i.e. such that ∀λ, λ∗ ∈ S and ∀w,w∗ ∈ V

≪ λw, λ∗w∗ ≫V⊗S=< w,w∗ >V < λ, λ∗ >S

The optimal order M separated representation uM is then de�ned as the one which

minimizes ∥u − uM∥V⊗S, where ∥ · ∥V⊗S is the norm associated with ≪ ·, · ≫V⊗S. It

turns out that this optimal decomposition corresponds to the Hilbert Karhunen-Loève
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decomposition, where functions {wi}Mi=1 span the M -dimensional dominant eigenspace

of the following eigenproblem:

Tu(w) = σu(w)w (13)

where operator Tu : V → V and σu : V → R+ are de�ned by

Tu(w) =< u,< u,w >V>S (14)

σu(w) =
< Tu(w), w >V

< w,w >V
(15)

Under regularity assumptions on u, Tu is a symmetric compact operator on V, such

that classical spectral theory applies. When selecting an orthogonal basis {wi}Mi=1 of the

dominant eigenspace of Tu, i.e. such that< wi, wj >V= 0 for i ̸= j, stochastic functions

are de�ned by λi =< wi, wi >−1
V < u,wi >V. For many problems, the a posteriori

computation of such a separated representation reveals that a good accuracy can be

obtained with a low order M . In other words, there often exists a very low-dimensional

reduced basis of deterministic and stochastic functions allowing to accurately represent

the solution.

3.2 A priori separated representation: Generalized Spectral Decomposition

When the solution u is not known, the above classical Hilbert Karhunen-Loève decom-

position can not be obtained. The Generalized Spectral Decomposition method (GSD)

provides a methodology for the a priori construction (i.e. without knowing u) of a

separated representation which has quite the same convergence properties as classical

Hilbert Karhunen-Loève decompositions. This method belongs to the so called family

of Proper Generalized Decomposition methods (PGD).

We here introduce a de�nition of the separated representation (12) based on two

Galerkin orthogonality criteria. Let us denote uM =
∑M

i=1 wiλi := WM · ΛM , where

WM = (wi)
M
i=1 ∈ (V)M and ΛM = (λi)

M
i=1 ∈ (S)M . The set of deterministic functions

WM and stochastic functions ΛM are then de�ned by:

A(WM · ΛM ,WM · Λ∗
M ) = B(WM · Λ∗

M ) ∀Λ∗
M ∈ (S)M (16)

A(WM · ΛM ,W ∗
M · ΛM ) = B(W ∗

M · ΛM ) ∀W ∗
M ∈ (V)M (17)

Let f : WM ∈ (V)M 7→ f(WM ) ∈ (S)M denote the mapping such that for a given WM ,

ΛM = f(WM ) is the unique solution of (16). Let F : ΛM ∈ (S)M 7→ F (ΛM ) ∈ (V)M

denote the mapping such that for a given ΛM , WM = F (ΛM ) is the unique solution of

(17). Equations (16) and (17) are then respectively equivalent to ΛM = f(WM ) and

WM = F (ΛM ). These two equations can be rescasted as follows:

T (WM ) = WM , with T (WM ) := (F ◦ f)(WM ) (18)

ΛM = f(WM ) (19)

Equation (18) can be interpreted as a pseudo eigenproblem where the linear subspace

spanned by WM is interpreted as a M -dimensional generalized eigenspace of operator

T (see [37]).
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Remark 2 - Denoting by VM = span(WM ) and SM = span(ΛM ) the linear subspaces

spanned by (wi)
M
i=1 and (λi)

M
i=1 respectively, the proposed de�nition of the decomposi-

tion can be interpreted as follows: �nd optimal M-dimensional subspaces VM and SM
such that uM ∈ VM ⊗ SM veri�es simultaneously the two following Galerkin orthogo-

nality criteria:

A(uM , v) = B(v) ∀v ∈ VM ⊗ S (20)

A(uM , v) = B(v) ∀v ∈ V⊗ SM (21)

Equation (20) (resp. (21)) de�nes uM as the Galerkin approximation of u in the ap-

proximation space VM ⊗ S (resp. V ⊗ SM ). The proposed GSD de�nition can then be

interpreted as an a priori Galerkin model reduction technique, where none of the reduced

approximation spaces VM and SM are selected a priori (see [38] for the connection with

other model reduction techniques).

3.3 Interpretation of GSD

De�nition (18) appears as a generalization of Hilbert-Karhunen-Loève decomposition

where optimality is de�ned with respect to the bilinear form A of the problem. For the

particular case where bilinear form A de�nes an inner product ≪ ·, · ≫A:= A(·, ·) on
V⊗ S with the following separation property:

≪ wλ,w∗λ∗ ≫A=< w,w∗ >A,V< λ, λ∗ >A,S, (22)

the proposed de�nition exactly coincides with a Hilbert Karhunen-Loève decomposi-

tion. Indeed, in this case, T (w) = σu(w)−1T̃u(w), with

T̃u(w) =< u,< u,w >A,V>A,S (23)

σ̃u(w) =
< T̃u(w), w >A,V

< w,w >A,V
(24)

and equation (18) is equivalent to an eigenproblem on operator T̃u, which is the cor-

relation operator of u based on inner products < ·, · >A,V and < ·, · >A,S. Choosing

WM as a basis of the dominant eigenspace of T̃u and choosing ΛM = f(WM ) leads

to a decomposition uM of order M which is optimal with respect to the norm ∥ · ∥A
associated with ≪ ·, · ≫A.

In the general case, (18) can not be interpreted as a classical eigenproblem. For

problems where (4) are the Euler-Lagrange of a quadratic optimization problem on

V ⊗ S (i.e. if A is a symmetric and coercive bilinear form), the concept of optimal

decomposition associated with a dominant eigenspace can still be derived (see [37]).

However, since it is not a classical eigenproblem, dedicated algorithms must be intro-

duced in order to construct this optimal decomposition. For more general problems,

although optimality properties are no longer available, algorithms inspired from clas-

sical algorithms for the solution of eigenproblems lead in practise to the construction

of separated representations which have good convergence properties with M .

Remark 3 - For non symmetric problems, in order to rigourously de�ne an opti-

mality criterium and to obtain a rigorous de�nition of the dominance of generalized

eigenspaces, the problem could be reformulated as an optimization problem, e.g. by
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introducing a minimal residual formulation. This type of reformulation can be easily

introduced in a �nite dimensional (discretized) framework. However, in the continuous

framework, it requires to manipulate non classical formulations of partial di�erential

equations and induces many computational issues since non standard computation codes

have to be implemented. In section 4.5.3, this type of reformulation will be discussed in

a more general framework.

3.4 GSD algorithms

We here brie�y recall di�erent algorithms that have been proposed for the capture of

quasi optimal decompositions. For a detailed description and in depth study of these

algorithms, see [36,37].

3.4.1 Subspace iterations

A �rst algorithm for capturing the dominant eigenspace of operator T consists in build-

ing the series W
(k+1)
M = T (W

(k)
M ), starting from an arbitrary set of functions W

(0)
M .

This algorithm can be interpreted as a subspace iteration method for capturing the

dominant eigenspace of operator T . In practise, span(W
(k)
M ) often rapidly converges

towards a subspace span(WM ), which de�nes a generalized spectral decomposition

uM = WM · f(WM ) which veri�es the two Galerkin orthogonality criteria (16) and

(17). In the context of the solution of an SPDE, one iteration of this algorithm can

be interpreted as follows: �rst, for a given set of M deterministic functions WM , we

compute ΛM = f(WM ) by solving a system of M stochastic algebraic equations cor-

responding to a Galerkin approximation of the SPDE on the subspace VM ⊗ S, with

VM = span(WM ). In a second time, we compute WM = F (ΛM ) by solving a system

of M coupled PDEs corresponding to a Galerkin approximation of the SPDE on the

subspace V ⊗ SM , with SM = span(ΛM ). From a computational point of view, this

algorithm has two main drawbacks. First, such as classical stochastic Galerkin meth-

ods, it still requires the solution of a coupled system of deterministic PDEs. Secondly,

since we do not know a priori the order M required for a given accuracy, this algo-

rithm has to be repeated for increasing orders M until reaching the desired accuracy,

thus leading to unnecessary intermediate computations. Other algorithms have been

proposed in order to minimize the computational e�orts and in order to only require

the solution of uncoupled deterministic PDEs.

3.4.2 Power algorithm

Power algorithm consists in performing subspace iterations on a one-dimensional sub-

space in order to capture the dominant eigenfunctions wi of successive operators

T i = F i ◦ f i, where mappings f i : V → S and F i : S → V are de�ned such that

λ = f i(w) and w = F i(λ) are respectively the unique solutions of the two following

problems:

A(wλ,wλ∗) = B(wλ∗)−A(ui, wλ∗) ∀λ∗ ∈ S (25)

A(wλ,w∗λ) = B(w∗λ)−A(ui, w
∗λ) ∀w∗ ∈ V (26)
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where ui is the previously computed order i decomposition. This algorithm allows a pro-

gressive construction of the set of deterministic functions WM . The separated decom-

position uM of order M can be de�ned by letting the λi = f i(wi), for i ∈ {1, . . . ,M}.
In the case where the generalized spectral decomposition corresponds to a classical

eigenproblem, this construction leads to the optimal decomposition. However, for the

general case, it only leads to a sub-optimal decomposition. An update of stochastic

functions often signi�cantly improves the accuracy of the decomposition. This update

consists in de�ning the stochastic functions associated with WM by ΛM = f(WM ),

which requires the solution of a system of M stochastic algebraic equations.

3.4.3 Arnoldi algorithm

Another algorithm, inspired from Arnoldi algorithm, has been proposed in [37] in order

to further minimize the computational e�orts. This algorithm leads to a decomposition

which for a given order M is less accurate than with subspace iteration (and sometimes

than power method with update). However, it only requires the solution of M uncou-

pled PDEs in order to build the set of functions WM . An Arnoldi procedure for the

construction of WM is as follows: starting from a function λ ∈ S, we compute an initial

function w1 = F (λ) by solving a simple deterministic PDE. Then, we compute the gen-

eralized Krylov subspace KM (T,w1) = span{wi}Mi=1, de�ned by wi+1 = ΠK⊥
i
T (wi),

where ΠK⊥
i
is a projector onto the orthogonal of the i-dimensional Krylov subspace.

The computation of wi+1 from wi can be decomposed into three steps: in a �rst time,

we compute λ = f(wi) by solving a simple stochastic algebraic equation, which is

equivalent to a Galerkin projection of the initial SPDE on a 1-dimensional determinis-

tic reduced basis span{wi} ⊂ V. In a second time, we compute wi+1 = F (λ) by solving

a simple deterministic PDE, which is equivalent to a stochastic Galerkin projection on

a 1-dimensional stochastic reduced basis span{λ} ⊂ S. In a third time, we orthogo-

nalize wi+1 with respect to Ki = span{wj}ij=1 (orthogonalization with respect to a

chosen inner product on V). A basis WM being obtained, the associated stochastic

functions ΛM = f(WM ) are obtained by solving a system of M stochastic algebraic

equations. This procedure is summarized in the following algorithm.

Algorithm 1 Arnoldi algorithm for GSD

1: Inititialize λ ∈ S

2: for i = 1 . . .M do

3: Compute wi = F (λ) {Deterministic PDE}

4: Orthogonalize w with respect to span(Wi−1)

5: Compute λ = f(wi) {Stochastic algebraic equation}

6: end for

7: Compute ΛM = f(WM ) {System of stochastic algebraic equations}

Remark 4 - In practise, the Arnoldi procedure may break at a given iteration i. If

the associated decomposition ui = Wi · f(Λi) has not reached the desired accuracy, the

algorithm is then restarted on the �de�ated� operator T i, de�ned in section 3.4.2. For

a detailed description and in depth study of the above algorithms, see [37].
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3.5 Computational aspects of GSD algorithms

GSD algorithms have been introduced in a quite abstract setting. Here, we detail

the computational aspects of the algorithms by simply specifying how to apply the

mappings F , f , F i and f i.

3.5.1 Separated representation of bilinear and linear forms

We consider that bilinear form a and linear form b in equation (3) admit the following

separated representations: ∀w,w∗ ∈ V,

a(w,w∗; ξ) =
KA∑
k=1

ak(w,w∗)Ak(ξ), (27)

b(w∗; ξ) =
KB∑
k=1

bk(w
∗)Bk(ξ), (28)

where the ak are deterministic bilinear forms on V, where the bk are deterministic

linear forms on V, and where the Ak and Bk are real-valued random variables de�ned

on (Ξ,B, Pξ).

3.5.2 Application of mappings F and F i

Mapping F : S → V is de�ned such that w = F (λ) is the solution of the following

problem:

aλ(w,w∗) = bλ(w
∗) ∀w∗ ∈ V (29)

where aλ and bλ are deterministic bilinear and linear forms on V de�ned by

aλ(w,w∗) =
KA∑
k=1

E(Akλλ)ak(w,w∗) (30)

bλ(w
∗) =

KB∑
k=1

E(Bkλ)bk(w
∗) (31)

Equation (29) is then a classical deterministic PDE.

Mapping F i : S → V is de�ned such that w = F i(λ) is the solution of (29) with

the following modi�ed right-hand side:

biλ(w
∗) =

KB∑
k=1

E(Bkλ)bk(w
∗)

−
i∑

j=1

KA∑
k=1

E(Akλλj)ak(wj , w
∗) (32)

In practise, problem (29) is solved using classical discretization techniques.
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3.5.3 Application of mappings f and f i

Mapping f : V → S is de�ned such that λ = f(w) is the solution of the following

problem:

αw(λ, λ
∗) = βw(λ

∗) ∀λ∗ ∈ S (33)

where αw and βw are bilinear and linear forms on S de�ned by

αw(λ, λ
∗) = E(λ∗(ξ)A(ξ)λ(ξ)), (34)

A(ξ) =

KA∑
k=1

ak(w,w)Ak(ξ) (35)

βw(λ
∗) = E(λ∗(ξ)B(ξ)), (36)

B(ξ) =

KB∑
k=1

bk(w)Bk(ξ) (37)

Equation (33) corresponds to a weak formulation of the simple stochastic algebraic

equation A(ξ)λ(ξ) = B(ξ).

Mapping f i : V → S is de�ned such that λ = f i(w) is the solution of (33) with the

following modi�ed right-hand side:

βi
w(λ

∗) = E(λ∗(ξ)Bi(ξ)), (38)

where

Bi(ξ) =

KB∑
k=1

bk(w)Bk(ξ)

−
i∑

j=1

KA∑
k=1

Ak(ξ)λj(ξ)ak(wj , w) (39)

Mapping f : (V)M → (S)M is de�ned such that ΛM = f(WM ) is the solution of

the following problem:

αW (ΛM , Λ∗
M ) = βW (Λ∗

M ) ∀Λ∗
M ∈ (S)M (40)

where αW and βW are bilinear and linear forms on (S)M de�ned by

αW (ΛM , Λ∗
M ) = E(Λ∗T (ξ)A(ξ)Λ(ξ)), (41)

βW (Λ∗
M ) = E(Λ∗T (ξ)B(ξ)) (42)

where ΛM ∈ (S)M has been assimilated with a random vectorΛ ∈ L2(Ξ,B, Pξ;RM ) ≃
RM ⊗ S, and where random matrix A and random vector B are de�ned by

(A(ξ))ij =

KA∑
k=1

ak(wj , wi)Ak(ξ), (43)

(B(ξ))i =

KB∑
k=1

bk(wi)Bk(ξ) (44)
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3.5.4 How to solve stochastic algebraic equations ?

Stochastic algebraic equations (33) and (40) can be classically solved using a Galerkin

spectral stochastic method. After the introduction of an approximation space SP , com-

puting the Galerkin projection λ ∈ SP (resp. ΛM ∈ (SP )M ) requires the solution of a

system of P (resp. PM) equations (see appendix A for details on this classical solution

technique).

For high-dimensional stochastic problems (requiring a very large P ), the solution

of these stochastic algebraic equations may be computationally costly or even unaf-

fordable. In the following section, we introduce a methodology based on separation

of variables in order to solve these stochastic algebraic equations in the case of high-

dimensional probability spaces.

4 Proper generalized decomposition for solving equations de�ned on

tensor product spaces

In this section, we introduce a methodology for the a priori construction of a separated

representation of the solution of the following problem de�ned on a multi-dimensional

tensor product space:

u ∈ S0 ⊗ S1 ⊗ . . .⊗ Sr,

α(u, v) = β(v) ∀v ∈ S0 ⊗ S1 ⊗ . . .⊗ Sr (45)

where α and β are bilinear and linear forms. This problem can be associated with the

initial SPDE (4), by letting α := A, β := B and S0 := V. Letting S0 := Rn, equation

(45) can be interpreted as a system of stochastic algebraic equations. For example,

such a system is obtained after a discretization of the SPDE at the deterministic

level (e.g. after introducing a �nite dimensional approximation space Vn ⊂ V). It

is also associated with stochastic algebraic equations (33) and (40) whose solution is

required by GSD algorithms introduced in section (3) (see section 3.5.4). The proposed

methodology can be seen as an extension of GSD method to the case r > 2 and it

belongs to the family of Proper Generalized Decomposition (PGD) methods.

4.1 Separated representation of the solution

An order Z separated representation of the solution of (45) is de�ned by

u(ξ) ≈ uZ(ξ) =

Z∑
i=1

ϕ0
i ϕ

1
i (ξ1) . . . ϕ

r
i (ξr) (46)

where ϕi ∈ Si. The optimality of such a decomposition is clearly related to the metric

which is used for estimating the distance between u and uZ . An optimal separated

representation (46) could be naturally de�ned a posteriori by introducing a classical

norm ∥ · ∥ on ⊗r
j=0S

j and by letting

∥u− uZ∥ = min
{ϕj

1}r
j=0,...,{ϕ

j
Z}r

j=0

∥u−
Z∑

i=1

ϕ0
i . . . ϕ

r
i ∥ (47)
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In the case r = 1, this de�nition corresponds to a classical order M singular value

decomposition, also named Karhunen-Loève decomposition or Proper Orthogonal De-

composition. In the general case r > 1, this appears as a multi-dimensional generaliza-

tion of singular value decomposition which has been extensively studied in the literature

in the �nite dimensional case (see e.g. [9,26,25] and the references therein) and in the

in�nite dimensional case [32]. In this general case, the a posteriori construction of an

optimal decomposition, i.e. leading to the minimal order Z for a given accuracy, is

a non trivial and sometimes ill-posed problem [24,10]. Various algorithms have been

proposed which lead to quasi optimal but not necessarily optimal decompositions.

In this section, we focus on the more complicated problem of the a priori con-

struction of the separated representation uZ , without knowing the solution u a priori.

A basic algorithm is proposed that leads to quite good convergence properties of the

decomposition in many situations.

4.2 Circumvent the curse of dimensionality for spectral stochastic methods

Decomposition (46) can be equivalently rewritten

uZ(ξ) =

Z∑
i=1

ϕ0
iΨi(ξ), Ψi(ξ) := ϕ1

i (ξ1) . . . ϕ
r
i (ξr) (48)

with Ψi(ξ) ∈ ⊗r
j=1S

j ≃ S = L2(Ξ,B, Pξ). It then appears as a spectral stochastic

expansion of a second order random variable u with values in S0 on a basis {Ψi}Zi=1,

de�ning a Z-dimensional approximation space SZ ⊂ S. Here, the di�erence with a

classical spectral stochastic approach is that the stochastic approximation basis is not

selected a priori but is selected in order to accurately approximate the solution with

a very low dimension Z. The following algorithms aim at capturing a priori such an

optimal representation. We will see in the numerical examples that for a given accuracy

of the approximation, several orders of magnitude (10, 1010, 10100, . . . ) may exist

between the optimal Z and the dimension P of classical stochastic approximation spaces

SP de�ned in section 2.3. For high-dimensional stochastic problems, this methodology

can be seen as a way to circumvent the curse of dimensionality associated with the

dramatic increase in the dimension of stochastic approximation spaces, when increasing

the dimension of the underlying probability space.

4.3 Progressive de�nition of the decomposition based on Galerkin orthogonality

criteria

We �rst consider a progressive de�nition of the decomposition (46). We suppose that an

approximate order Z decomposition uZ has been determined. The aim is then to de�ne

a new set of functions (ϕ0, ϕ1, . . . , ϕr) ∈ S0 × S1 × . . . × Sr, leading to the following

Z + 1 decomposition:

uZ+1 = uZ + ϕ0ϕ1 . . . ϕr (49)
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We here propose to de�ne the new set of functions by the following r + 1 Galerkin

orthogonality criteria:

∀(ϕ̃0, . . . , ϕ̃r) ∈ S0 × . . .× Sr,

α(uZ + ϕ0ϕ1 . . . ϕr, ϕ̃0ϕ1 . . . ϕr) = β(ϕ̃0ϕ1 . . . ϕr)

α(uZ + ϕ0ϕ1 . . . ϕr, ϕ0ϕ̃1 . . . ϕr) = β(ϕ0ϕ̃1 . . . ϕr)

. . .

α(uZ + ϕ0ϕ1 . . . ϕr, ϕ0ϕ1 . . . ϕ̃r) = β(ϕ0ϕ1 . . . ϕ̃r)

(50)

We introduce the following mappings

FZ
0 : S1 × S2 × . . .× Sr → S0

FZ
1 : S0 × S2 × . . .× Sr → S1

. . .

FZ
r : S0 × S1 × . . .× Sr−1 → Sr

(51)

such that the set of equations (50) can be equivalently written:

ϕ0 = FZ
0 (ϕ1, ϕ2, . . . , ϕr)

ϕ1 = FZ
1 (ϕ0, ϕ2, . . . , ϕr)

. . .

ϕr = FZ
r (ϕ0, ϕ1, . . . , ϕr−1)

(52)

Let us note that the product
∏r

j=0 ϕ
j is unchanged by the following rescaling of func-

tions:
r∏

j=0

ϕj =

r∏
j=0

γjϕj ,

r∏
j=0

γj = 1, (53)

This de�nes an equivalence class of separated functions. Selecting for the rescaling

factor γj = ∥ϕj∥−1
Sj , for j ∈ {1, . . . , r}, and γ0 =

∏r
j=1 1/γ

j , yields normalized

functions {γjϕj}rj=1. We now introduce the following iterative algorithm 2 for the

construction of the set of functions (ϕ0, ϕ1, . . . , ϕr) having the above normalization

property.

Algorithm 2 Power-type iterations

Require: uZ
1: Initialize (ϕ0, . . . , ϕr)

2: loop

3: for j = 1 . . . r do

4: ϕj = FZ
j ({ϕl}rl=0,l ̸=j)

5: ϕj = ϕj/∥ϕj∥Sj

6: end for

7: ϕ0 = FZ
0 ({ϕl}rl=1)

8: Check convergence of ϕ0 . . . ϕr {tolerance εtol}

9: end loop

In practise, a simple stagnation criterium is used for checking convergence in step

8. The initialization is usually generated randomly. For many types of problems, we

observe that this initialization has only a slight in�uence on the convergence of the

algorithm. The tolerance εtol in algorithm 2 can be relatively coarse (in practise, we

take εtol ≈ 10−2). Also, the maximum number of iterations in the loop is usually taken

relatively small (≈ 4). These choices will be justi�ed in the numerical examples.
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4.4 Global update of functions

In many situations, the above progressive construction of the decomposition may have

a very slow convergence with Z, far slower than the ideal a posteriori separated rep-

resentation de�ned in equation (47). We here propose to perform a global update of

functions, which in practise signi�cantly improves the convergence properties of the

decomposition. Let Φj
Z := {ϕj

1, . . . , ϕ
j
Z} ∈ (Sj)Z . The whole set of functions {Φj

Z}
r
j=0

can be de�ned by the following r + 1 Galerkin orthogonality criteria:

α(
∑Z

i=1 ϕ
0
i ϕ

1
i . . . ϕ

r
i ,
∑Z

i=1 ϕ̃
0
i ϕ

1
i . . . ϕ

r
i ) =

β(
∑Z

i=1 ϕ̃
0
i ϕ

1
i . . . ϕ

r
i ) ∀{ϕ̃0

i }
Z
i=1 ∈ (S0)Z

. . .

α(
∑Z

i=1 ϕ
0
i ϕ

1
i . . . ϕ

r
i ,
∑Z

i=1 ϕ
0
i ϕ

1
i . . . ϕ̃

r
i ) =

β(
∑Z

i=1 ϕ
0
i ϕ

1
i . . . ϕ̃

r
i ) ∀{ϕ̃r

i }
Z
i=1 ∈ (Sr)Z

(54)

We introduce the following mappings:

F0 : (S1)Z × . . .× (Sr)Z → (S0)Z

. . .

Fr : (S0)Z × . . .× (Sr−1)Z → (Sr)Z
(55)

such that the set of equations (54) can be equivalently written:

Φ0
Z = F0(Φ

1
Z , . . . , Φ

r
Z)

. . .

Φr
Z = Fr(Φ

0
Z , . . . , Φ

r−1
Z )

(56)

We now propose the following algorithm for the a priori construction of a separated

representation of the solution of problem (45).

Algorithm 3 Progressive construction with update (multidimensional PGD)

1: Set u0 := 0

2: for Z = 1 . . . Zmax do

3: Compute a new set (ϕ0
Z , . . . , ϕ

r
Z) with algo. 2

4: for n = 1 to Nupdate do

5: for all j ∈ Jupdate do

6: Φj
Z = Fj({Φl

Z}
r
l=0,l ̸=j)

7: end for

8: end for

9: Check convergence of uZ
10: end for

The set Jupdate ⊂ {0, . . . , r} is composed by the dimensions j for which the sets of

functions Φj
Z are updated. One usually observes that the accuracy of the decomposition

is improved when increasing the set Jupdate. In practice, when the updating along a

dimension j is achievable from a computational point of view, this dimension should

be added to the set Jupdate. Repeating the updating step several times (i.e. taking

Nupdate > 1) may improve the quality of the obtained decomposition. However, since

the computational cost of this updating step increases (non linearly) with the order Z,

unnecessary updates should be avoided. There is no general theoretical results about

the e�ciency of this updating step, which is clearly problem dependent. Numerical
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experiences may help deriving guidelines for a speci�c class of problems. From the

experiences of the author, one observes that Nupdate = 1 is su�cient in many situ-

ations, especially for the case of SPDEs dealt with in this article. For the practical

implementation of this algorithm, see appendix B.

4.5 Interpretation of algorithm and comments

4.5.1 The case r = 1: Generalized Spectral Decomposition

The case r = 1 (i.e. when function space S0 ⊗ S1 is a tensor product of two spaces)

corresponds to the case of the generalized spectral decomposition described in section

3, which appears as a generalization of Karhunen-Loève decomposition. We show in

this case that optimal functions ϕ0
i ∈ S0 (resp. ϕ1

i ∈ S1) are associated with the domi-

nant eigenspace of a pseudo eigenproblem on operator F0 ◦ F1 (resp. F1 ◦ F0). Several

algorithms have been proposed and studied for the capture of an approximation of the

dominant eigenspace (see section 3.4). Here, algorithm 2 corresponds to power-type

iterations for �nding the dominant eigenfunction of the de�ated operator (FZ
0 ◦ FZ

1 ).

Algorithm 3 then corresponds to a power-type method with de�ation and update for

capturing an approximate generalized spectral decomposition (see section 3.4.2 and [36,

37]). For classical eigenproblems (i.e. for classical spectral decomposition), it can be

proved that updating has no e�ect [37]. However, in general (for the pseudo eigenprob-

lem), it has been observed that updating can signi�cantly improve the approximation

of dominant eigenspaces and can lead to a better convergence with Z of the generalized

spectral decomposition [36,37,42].

Further mathematical investigations are still necessary for a better understanding

of this pseudo eigenproblem, for which � to the knowledge of the author � there is

no mathematical framework available (see [37] for discussions on this pseudo eigen-

problem). However, the proposed power-type algorithm with update seems to lead to

a rather good approximation of the optimal decomposition in many situations.

4.5.2 The case r > 1

In the case r > 1, there is no straightforward interpretation in terms of an pseudo

eigenproblem. Further investigations will be necessary in order to correctly interpret

the decomposition and propose more e�cient algorithms, possibly still inspired from

algorithms for solving classical eigenproblems, or from other algorithms for the a pos-

teriori construction of separated representations.

For the particular case where α(·, ·) is a symmetric continuous coercive bilinear form

on ⊗r
j=0S

j , the proposed construction can also be interpreted as a nonlinear approx-

imation algorithm. Indeed, for this particular case, problem (45) can be reformulated

as the following minimization problem

u = arg min
v∈S0⊗...⊗Sr

1

2
α(v, v)− b(v) (57)

= arg min
v∈S0⊗...⊗Sr

∥u− v∥2α, (58)

where ∥u∥2α = α(u, u) denotes the norm induced by α. Equations (50) are then as-

sociated with stationarity conditions (or Euler-Lagrange equations) of the following
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optimization problem:

min
ϕ0,...,ϕr

∥u− uZ − ϕ0 . . . ϕr∥2α (59)

while equations (54) are associated with stationarity conditions of the following opti-

mization problem:

min
{ϕ0

i }Z
i=0,...,{ϕr

i }Z
i=1

∥u−
Z∑

i=1

ϕ0
i . . . ϕ

r
i ∥

2
α (60)

The construction of the decomposition can then be interpreted as a nonlinear approx-

imation problem, where the optimal separated representation is de�ned as the one

which minimizes the distance to u with respect to the metric induced by the bilinear

form α. A proof of the convergence of the progressive decomposition uZ , de�ned by

∥u− uZ+1∥2α = min
ϕ0,...,ϕr

∥u− uZ − ϕ0 . . . ϕr∥2α (61)

can be found in [16] in an abstract setting, for problems de�ned in tensor product

spaces. In [7], the progressive construction (without update) has been interpreted as

a Greedy algorithm in nonlinear approximation [12,4], where the �dictionary� is com-

posed by separated functions of type
∏r

j=0 ϕ
j , ϕj ∈ Sj .

Algorithm 2 then corresponds to an alternated minimization procedure, where min-

imization is performed on a function ϕj ∈ Sj while letting �xed the other functions ϕj′ ,

j′ ̸= j. In algorithm 3, the updating step corresponds to the minimization problem (60),

where successive minimizations are performed along dimensions j ∈ Jupdate. It is easy

to prove that iterative algorithm 2 has a monotonic convergence. It is also straightfor-

ward to prove that algorithm 3 leads to a monotone convergence of the decomposition

uZ with Z. Performing several updates in algorithm 3 (Nupdate > 1) corresponds to

performing several iterations of an alternated minimization procedure for solving (60).

In practise, one observes that performing only one iteration (i.e. only one update per

updated dimension, Nupdate = 1) is often su�cient. Additional iterations do not sig-

ni�cantly improve the accuracy. This has been observed on several numerical examples

but since only a few mathematical results are available, it should be con�rmed on a

larger set of examples.

In the opinion of the author, the interpretation as a pseudo eigenproblem seems

more pertinent than an interpretation as a nonlinear approximation problem, and could

lead to the development of more e�cient algorithms to capture an optimal decomposi-

tion or an approximation of it (as it is done in the case r = 1 with the GSD algorithms).

4.5.3 Reformulation as an optimization problem: necessary or not ?

If problem (45) corresponds to stationarity conditions of a quadratic optimization prob-

lem, monotone convergence of algorithm 3 can be proved. It is a property of robustness

of the algorithm and of the proposed construction. In order to recover this robustness

for more general problems (e.g. for non-symmetric bilinear form α), a reformulation of

problem (45) as an optimization problem can be introduced. Let R(u) ∈ S0 ⊗ . . .⊗ Sr

denote the residual of equation (45), de�ned by

< v,R(u) >S0⊗...⊗Sr :=< v, β − α(u) >S0⊗...⊗Sr (62)

:= β(v)− α(u, v) (63)
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where < ·, · >S0⊗...⊗Sr denotes an inner product on Hilbert space ⊗r
j=0S

j and where

β ∈ ⊗r
j=0S

j and α(u) ∈ ⊗r
j=0S

j are associated with linear forms β(·) and a(u, ·)
by Riez representation. Then, denoting by ∥ · ∥ the associated norm, the separated

decomposition can be progressively de�ned as follows

min
ϕ0,...,ϕr

∥R(uZ + ϕ0 . . . ϕr)∥2 (64)

which can be rewritten as (59) by replacing bilinear form α(u, v) and linear form β(v) by

bilinear form < α(v), α(u) > and linear form < α(v), β > respectively. Equations (50)

then have to be interpreted as the stationarity conditions associated with optimization

problem (64). The obtained decomposition uZ then satis�es an optimality criterium

with respect to the residual norm. Under suitable assumptions, the convergence of the

progressive decomposition uZ de�ned by (64) can be proved [16].

However, one observes in practise that it leads to poor convergence properties of

uZ with respect to natural norms in tensor product Hilbert spaces (e.g. L2 norm).

Although monotone convergence is not guaranteed for non-variational problems (non

symmetric problems), in many cases, a construction based on Galerkin orthogonality

criteria appears to yield better convergence properties with respect to usual norms and

should be preferred when one tries to obtain the lowest order of decomposition for a

given precision with respect to a usual norm.

The minimal residual formulation also presents another drawback from the computa-

tional point of view. Indeed, algorithms based on separation of variables take part of

the separated representation of the operator and right-hand side (see appendix B on

computational aspects). In this minimal residual formulation, the initial operator and

right-hand side are multiplied by the adjoint operator, which drastically increase the

separation order of the operator and right-hand side of the new formulation.

Remark 5 - This minimal residual formulation (or least-square formulation) has been

proposed in [5] for the solution of algebraic equations in �nite dimensional tensor prod-

uct spaces and applied to the solution of stochastic algebraic equations in [13]. For

each order Z, the authors proposed an algorithm based on an alternated minimization

procedure for solving

min
{ϕ0

i }Z
i=0,...,{ϕr

i }Z
i=1

∥R(

Z∑
i=1

ϕ0
i . . . ϕ

r
i )∥

2 (65)

For each order Z, iterations are performed until convergence or stagnation. If the resid-

ual does not satisfy a desired accuracy, the algorithm is restarted with order Z+1. In the

case r = 1, this corresponds to the subspace iterations for solving the pseudo eigenprob-

lem (see section 3.4.1). For r > 1, this alternated minimization technique corresponds

to the steps 4 to 8 of algorithm 3 (so called updating steps), with Jupdate = {0, . . . , r}
(all dimensions). Since the required order Z for a given accuracy is not known a priori,

this type of algorithm can lead to high computational costs. In this article, a progressive

construction with updates is then preferred.
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5 Example 1: advection di�usion reaction equation

5.1 Formulation of the problem and discretization

Formulation of the problem. We consider an advection di�usion reaction equation de-

�ned on a spatial domain Ω = (0, 1) × (0, 1) and a time interval I = (0, T ), with

T = 0.03. We denote by ξ ∈ Ξ the random input parameters. The solution �eld

u(x, t, ξ), de�ned on Ω × I ×Ξ veri�es

u̇− µ(ξ)∆u+ c(ξ) · ∇u+ κ(ξ)u = f(ξ) on Ω × I (66a)

u = 0 on ∂Ω × I (66b)

u = 0 on Ω × {0} (66c)

where u̇ ≡ ∂tu, where µ and κ are random di�usion and reaction parameters, where c

is a random advection velocity, and where f is a random source term. We take

µ(ξ) = 1 + 0.2ξ1,

c(ξ) = 250(1 + 0.2ξ2)(x− 1

2
,
1

2
− y),

κ(ξ) = 10(1 + 0.2ξ3)

f(ξ) = 100(1 + 0.2ξ4)IΩ1

where (x, y) = x ∈ Ω, IΩ1
is the indicator function of a subdomain Ω1 = (0.7, 0.8) ×

(0.7, 0.8) ⊂ Ω (see �gure 1) and where ξ = (ξi)
4
i=1 is a set of 4 mutually independent

uniform random variables ξi ∈ U(−1, 1). The set of elementary events is then Ξ =

×4
i=1Ξi, with Ξi = (−1, 1), and is endowed with the uniform probability measure Pξ.

1

2

Fig. 1 Example 1.

On Figure 2, plotted is the solution corresponding to outcome ξ = 0 (mean value

of parameters).

Weak formulation. We introduce the weak formulation (4) of problem (66) with the

following de�nition of function spaces

V = Vx ⊗ Vt, Vx = H1
0 (Ω), Vt = L2(I),

S = L2(Ξ,B, Pξ)
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(a) t = 20
80

T (b) t = 50
80

T (c) t = T

Fig. 2 Example 1. Solution u(ξ) for ξ = 0 (mean values of parameters) at di�erent time steps

and the following de�nitions of bilinear and linear forms:

a(u, v; ξ) =

∫
I

∫
Ω

u̇v dx dt+

∫
Ω

u(0+)v(0+) dx

+

∫
I

∫
Ω

µ(ξ)∇u · ∇v dx dt+

∫
I

∫
Ω

c(ξ) · ∇u v dx dt

+

∫
I

∫
Ω

κ(ξ)u v dx dt (67)

l(v; ξ) =

∫
I

∫
Ω

vf(ξ) dx dt (68)

where u(0+) ≡ limt↓0 u(x, t, ξ). Let us note that with this weak formulation, the initial

condition is veri�ed in a weak sense.

Discretization. At the space level, we introduce a �nite element approximation space

Vx
Nx

⊂ Vx with dimension Nx = 4435. The �nite element mesh composed of 3-nodes

triangles is shown on �gure 3. At the time level, we introduce a piecewise constant

Fig. 3 Example 1. Finite element mesh

approximation space Vt
Nt

⊂ Vt associated with a partition {Ii = (ti−1, ti)}Nt
i=1 of the

time interval I. A time discontinuous Galerkin framework is used by introducing the
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following de�nition of time derivatives:

∫
I

∫
Ω

u̇v dx dt :=

Nt−1∑
i=1

∫
Ω

(
u(t+i )− u(t−i )

)
v(t+i ) dx

where u(t±i ) ≡ limϵ↓0 u(ti ± ϵ). We here introduce a uniform partition with Nt = 80.

Finally, at the stochastic level, we �rst introduce a classical polynomial approximation

space SP = ⊗4
i=1S

i
Pi

⊂ S, where the SiPi
= Pp(Ξi) are unidimensional polynomial

spaces of degree p = 5 (Pi = 6). The dimension of SP is then P = 1296. The classical

Galerkin approximation is de�ned by

u ∈ Vx
Nx

⊗ Vt
Nt

⊗ SP ,

A(u, v) = B(v) ∀v ∈ Vx
Nx

⊗ Vt
Nt

⊗ SP (69)

Remark 6 Let us note that approximation space SP is here de�ned as the full tensoriza-

tion of unidimensional polynomial spaces (polynomial space with partial degree p). It

does not correspond to the classical polynomial chaos approximation space (polynomial

space with total degree p).

5.2 Generalized spectral decomposition

In this section, we apply the GSD algorithm 1 (Arnoldi-type algorithm) for the a priori

construction of a decomposition of the solution

u(x, t, ξ) ≈ uM (x, t, ξ) =

M∑
i=1

wi(x, t)λi(ξ) := WM · ΛM

where the wi(x, t) ∈ Vx
Nx

⊗ Vt
Nt

are deterministic modes (space-time modes) and the

λi ∈ SP are stochastic modes. In this section, we only focus on the properties of the

GSD method introduced in section 3. We do not focus on the solution of stochastic

algebraic equations and we consider that these equations are solved with a very good

accuracy (error less than the error associated with the truncation orderM of the GSD).

The solution of these stochastic algebraic equations with the algorithm proposed in

section 4 will be analyzed in the following section 5.3.

5.2.1 Algorithm and computational aspects of GSD

We recall that for building a decomposition of order M , the Arnoldi-type algorithm

1 requires the solution of M classical deterministic problems (problems wi = F (λ)),

M stochastic algebraic equations (problems λ = f(wi)) and a system of stochastic

algebraic equations (problem ΛM = f(WM )) for the update of stochastic functions.

The set of M deterministic modes wi are computed by solving only M uncoupled

deterministic problems wi = F (λ) for di�erent λ ∈ SP (equation (29)). These problems

correspond to classical advection di�usion reaction problems associated with di�erent

deterministic parameters µλ = E(µλλ), cλ = E(cλλ) and κλ = E(κλλ) (respectively
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for the di�usion, advection and reaction terms) and with a deterministic source term

fλ = E(fλ). Bilinear and linear forms in equation (29) write

aλ(w,w∗) =

∫
I

∫
Ω

E(λλ)ẇw∗ dx dt

+

∫
Ω

E(λλ)w(0+)w∗(0+) dx+

∫
I

∫
Ω

κλw w∗ dx dt

+

∫
I

∫
Ω

µλ∇w · ∇w∗ dx dt+

∫
I

∫
Ω

cλ · ∇w w∗ dx dt (70)

lλ(v) =

∫
I

∫
Ω

w∗fλ dx dt (71)

5.2.2 Illustration of the obtained decomposition

We here illustrate the decomposition u9 = W9 · Λ9 of order M = 9 obtained by the

Arnoldi-type algorithm. Figure 4 shows the �rst 4 deterministic modes {wi}4i=1. These

modes are orthonormalized with respect to the natural inner product in L2(Ω)⊗L2(I).

Figure 5 shows the probability density functions of stochastic modes Λ9. In Table 1,

we indicate the mean m1(λi) := E(λi) and second moment m2(λi) := E(λ2i ) of each

stochastic mode λi.

Table 1 First and second moments of random variables {λi}9i=1

i m1(λi) m2(λi)
1 12.458 157.7
2 0.603 0.8521
3 0.139 0.5362
4 −0.084 0.0467
5 −0.055 0.0073
6 0.035 0.0029
7 0.123 0.0387
8 0.008 0.0002
9 0.050 0.0065

Since the deterministic modes are orthonormalized with respect to the inner prod-

uct in L2(Ω)⊗L2(I), the values m2(λi) re�ect the contribution of the di�erent modes

to the L2 norm of the solution:

∥uM∥2L2(Ω×I×Ξ) = E(< uM , uM >L2(Ω×I)) =

M∑
i=1

m2(λi)

We observe a global decrease in the contribution of the modes to the norm of the

decomposition uM . However, we notice that the convergence is not monotonic.

5.2.3 Convergence of the generalized spectral decomposition

We here study the convergence of the GSD decomposition with respect to the order

M of the decomposition.
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(a) w1, t = 2
8
T (b) w1, t = 5

8
T (c) w1, t = T

(d) w2, t = 2
8
T (e) w2, t = 5

8
T (f) w2, t = T

(g) w3, t = 2
8
T (h) w3, t = 5

8
T (i) w3, t = T

(j) w4, t = 2
8
T (k) w4, t = 5

8
T (l) w4, t = T

Fig. 4 Example 1. First 4 deterministic modes {wi(x, t)}4i=1 of the GSD decomposition built
by algorithm 1 (shown at three di�erent time steps)

Error in solution. We estimate the relative error between uM and the semi-discretized

solution u ∈ Vx
Nx

⊗ Vt
Nt

⊗ S:

ϵMγ =
∥u− uM∥γ

∥u∥γ
(72)
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Fig. 5 Example 1. Probability density functions of stochastic modes Λ9 = {λi}9i=1 = f(W9)
of GSD decomposition u9

We introduce two di�erent norms ∥ · ∥γ de�ned as follows

∥u∥L2(Ξ;L2(Ω×I)) = E
(
∥u(ξ)∥2L2(Ω×I)

)1/2
(73)

∥u∥L∞(Ξ;L2(Ω×I)) = sup
ξ∈Ξ

∥u(ξ)∥L2(Ω×I) (74)

and we denote the corresponding relative errors (72) by ϵM2 and ϵM∞ respectively. These

two norms are estimated by Monte-Carlo simulations:

∥v∥2L2(Ξ;L2(Ω×I)) ≈
1

Q

Q∑
q=1

∥v(ξ(q))∥2L2(Ω×I) (75)

∥v∥L∞(Ξ;L2(Ω×I)) ≈ sup
q∈{1,...,Q}

∥v(ξ(q))∥L2(Ω×I) (76)

where the {ξ(q)}Qq=1 are Q samplings of random variables ξ. The reference values

u(ξ(q)) are obtained by solving the corresponding deterministic problems with a clas-

sical deterministic numerical solution technique. Here, we take Q = 100 , which leads

to a good estimation of error indicators. Figure 6 shows the convergence with M of

error indicators ϵMγ . We observe a good convergence with M in the L2-norm (error less
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than 10−2 for M = 15) and also in the L∞-norm (error 2.10−2 for M = 15). The good

convergence in the L∞-norm indicates that with a low order M , the approximation

uM (ξ) is relatively good for almost every elementary events ξ ∈ Ξ.
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−3

10
−2

10
−1

L2  e
rr

or

M

(a) L2(Ξ;L2(Ω × I))-norm

0 5 10 15
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−2

10
−1

10
0

L∞
 e

rr
or

M

(b) L∞(Ξ;L2(Ω × I))-norm

Fig. 6 Example 1. Convergence with M of uM . Relative errors ϵM2 and ϵM∞ estimated with
Monte-Carlo simulations.

Error on quantities of interest. In order to further analyze the convergence, we focus

on two quantities of interest:

Q1(u)(t, ξ) =

∫
Ω2

u(x, t, ξ) dx

Q2(u)(ξ) =

∫
I

∫
Ω2

u(x, t, ξ) dx dt =

∫
I

Q1(u)(t, ξ) dt

where Ω2 = (0.2, 0.3) × (0.2, 0.3) ⊂ Ω is a subdomain shown on Figure 1. Let us

note that Q2 is a random variable and that Q1 is a stochastic process in time. Figure 7

shows the convergence withM of the probability density function (pdf) ofQ2(uM ). The

reference pdf is computed with a classical Monte-Carlo method with 30, 000 samples

(resolution of 30, 000 advection-di�usion-reaction deterministic problems). On Figure

8, we observe the convergence with M of the mean µM
Q2

and standard deviation σM
Q2

of Q2(uM ). The plots indicate the relative error of these statistical quantities with

respect to reference values obtained with the Monte-Carlo method. We observe a very

quick convergence with M (although non monotonic) of the quantity of interest Q2.

On Figure 9, we observe the convergence with M of the mean µM
Q1

(t) and standard

deviation σM
Q1

(t) of Q1(uM )(t, ξ), which are time functions. The plots indicate the

relative error with respect to reference values obtained with the Monte-Carlo method,

the error being computed in the L2(I)-norm. We observe a very quick convergence with

M of these statistical quantities (relative error less than 10−2 withM = 10). On Figure

10, we observe the convergence with M of the 99.9% quantiles of Q1(uM )(t, ξ). These

quantiles (which are time functions) represent the envelope such that the probability

of Q1(uM )(t, ξ) being inside this envelope is 99.9%. We also observe a very good

approximation of these quantiles with a low order decomposition (M ≈ 12).

Let us recall that only M classical deterministic problems have to be solved in

order to compute an order M generalized spectral decomposition. This low number
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Fig. 7 Example 1. Convergence with M of the probability density function of the quantity of
interest Q2(uM )(ξ). Reference computed with Monte-Carlo.
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Fig. 8 Example 1. Convergence with M of the mean µM
Q2

(a) and standard deviation σM
Q2

(b)
of the quantity of interest Q2(uM )(ξ). Relative error with respect to the reference Monte-Carlo
simulations.

of deterministic problems to be solved must be compared with the huge number of

deterministic simulations required by classical sampling techniques such as Monte-

Carlo.
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Fig. 9 Example 1. Convergence withM of the mean µM
Q1

(t) (a) and standard deviation σM
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(t)

(b) of the quantity of interest Q1(uM )(t, ξ). Relative error (in L2(I)-norm) with respect to
the reference Monte-Carlo simulations.
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(d) M = 8 (e) M = 12

Fig. 10 Example 1. Convergence with M of the 99.9% quantiles of the quantity of interest
Q1(uM )(t, ξ). Reference (in blue) computed by Monte-Carlo simulation.

5.3 Proper generalized decomposition for the solution of stochastic algebraic

equations: separated representation at the stochastic level

We now illustrate the behavior of the Proper Generalized Decomposition (PGD) tech-

nique introduced in section 4 for the solution of the stochastic algebraic equations

required in the construction of the generalized spectral decomposition uM = WM ·ΛM

(steps 5 and 7 of algorithm 1). These stochastic algebraic equations correspond to

problems of type λ = f(wi) and ΛM = f(WM ) (see section 3.5.3 for the de�nition

of these problems). We use the following tensor product structure of the probability

space: Ξ = Ξ1 × . . .× Ξ4, Pξ = Pξ1 ⊗ . . .⊗ Pξ4 , where Pξi is the uniform probability

measure on Ξi. The stochastic function space S has the following tensor product struc-
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ture: S = S1 ⊗ . . . ⊗ S4, with Si = L2(Ξi, dPξi), and we introduce an approximation

space SP = ⊗4
i=1S

i
Pi

as detailed in section 5.1.

5.3.1 Solution of problems λ = f(w)

We �rst analyze the solution of problems λ = f(wi) for the di�erent modes i, corre-

sponding to step 5 of algorithm 1). These problems correspond to the solution of equa-

tion (33) which can be seen as a Galerkin projection of the initial stochastic problem on

the 1-dimensional deterministic basis spanned by wi. Let us denote by A(ξ)λ(ξ) = B(ξ)

the strong-stochastic form of these problems. We use the algorithm 3 for the approx-

imate solution of these problems. For the updating step (steps 5 to 7), we use an

updating along each stochastic dimension, i.e. Jupdate = {1, . . . , r}, and a number of

updates Nupdate which will be indicated later. This algorithm leads to the construction

of the following order Z decomposition of stochastic function λ ∈ S ≃ R⊗S1⊗ . . .⊗S4:

λ(ξ) ≈ λZ(ξ) =

Z∑
i=1

ϕ0
i ϕ

1
i (ξ1) . . . ϕ

4
i (ξ4)

with ϕ0
i ∈ R and ϕj

i ∈ S
j
Pj
. In order to analyze the convergence of the decomposition,

we introduce the following error indicator in L2-norm:

ϵZ =
∥λ− λZ∥L2(Ξ)

∥λ∥L2(Ξ)
, (77)

with ∥λ∥L2(Ξ) = E(λ(ξ)2)1/2. The L2-norm is estimated with Monte-Carlo simula-

tions:

∥λ∥2L2(Ξ) ≈
1

Q

Q∑
q=1

λ(ξ(q))2, (78)

where the {ξ(q)}Qq=1 are Q samplings of random variables ξ. The reference values are

de�ned by λ(ξ(q)) = A(ξ(q))−1B(ξ(q)). Here, we take Q = 100. Let us note that error

indicator ϵZ evaluates the distance between the approximate solution λZ ∈ SP and the

strong stochastic solution λ ∈ S. It then takes into account two contributions of errors:

the approximation error (introduction of SP ⊂ S) and the error due to the separated

representation technique (truncation error). In this example, the approximation error

is negligible compared to the truncation error (su�ciently high polynomial degree used

for SP ). On Figure 11, we illustrate the convergence with Z of λZ for di�erent problems

λZ ≈ f(wi). We plot the convergence for a parameterNupdate = 0 or 1 in the algorithm

3. We observe a very fast convergence in Z = 2 or 3 modes for each mode and we do

not observe any signi�cant in�uence of parameter Nupdate. The error value which is

reached after Z = 2 or 3 corresponds to the lowest numerical precision which can be

reached with separated representation technique (corresponding to an error about 10−8

in algebraic norms). These results indicate that for problems λ = f(wi), a very good

accuracy is obtained with Z only equal to 1 or 2 (i.e. the λ admits a very low order

separated representation).
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Fig. 11 Example 1. Approximate solution of stochastic algebraic equations λ = f(wi) with
algorithm 3. Convergence with Z of λZ , in L2-norm, for Nupdate = 0 (a) and Nupdate = 1 (b)
(Jupdate = {1, . . . , r}).

5.3.2 Solution of problems ΛM = f(WM )

We now focus on the solution of the system of stochastic algebraic equations ΛM =

f(WM ), corresponding to step 7 of algorithm 1 (update of stochastic functions). This

problem is solved with algorithm 3. For the updating step (steps 5 to 7 of algorithm

3), we use an updating along each dimension, i.e. Jupdate = {0, . . . , r}, and a number

of updates Nupdate which will be indicated later. This problem corresponds to the

solution of equation (40) which can be seen as a Galerkin projection of the initial

SPDE on the M -dimensional deterministic basis spanned by WM = {wi}Mi=1 (reduced

basis of space-time functions).

Remark 7 We will test the algorithm 3 for di�erent orders M . However, let us recall

that in practise, when using the Arnoldi-type algorithm 1, problem ΛM = f(WM ) is

solved only one time, after the construction of a set of deterministic functions {wi}Mi=1.

More precisely, if the Arnoldi procedure is restarted, it is solved one time after the

construction of each Krylov subspace.

We assimilate ΛM ∈ (S)M with a random vector Λ ∈ RM ⊗ S and we denote by

A(ξ)Λ(ξ) = B(ξ) the strong-stochastic form of problem ΛM = f(WM ). We use the

algorithm 3 for the approximate solution of this problem. It leads to the construction

of the following order Z decomposition of stochastic functions ΛM ∈ (S)M ≡ Λ ∈
RM ⊗ S1 ⊗ . . .⊗ S4:

Λ(ξ) ≈ ΛZ(ξ) =

Z∑
i=1

ϕ0
i ϕ

1
i (ξ1) . . . ϕ

4
i (ξ4),

with ϕ0
i ∈ RM and ϕj

i ∈ S
j
Pj
. In order to analyze the convergence of the decomposition,

we introduce the following error indicator in L2-norm:

ϵZM =
∥Λ−ΛZ∥RM⊗L2(Ξ)

∥Λ∥RM⊗L2(Ξ)
(79)
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with ∥Λ∥RM⊗L2(Ξ) = E(∥Λ(ξ)∥2RM )1/2. The L2-norm is estimated with Monte-Carlo

simulations

∥Λ∥2RM⊗L2(Ξ) ≈
1

Q

Q∑
q=1

∥Λ(ξ(q))∥2RM (80)

where the {ξ(q)}Qq=1 are Q samplings of random variables ξ. Reference values Λ(ξ(q)) =

A(ξ(q))−1B(ξ(q)) are obtained by solving a simple system of deterministic equations.

Here, we take Q = 100. As mentioned in the previous section, the approximation error,

due to the introduction of SP ⊂ S, is here negligible. Then, ϵZM quanti�es the truncation

error (for a truncation order Z). On Figure 12, we illustrate the convergence with Z of

ΛZ for di�erent problems ΛM,Z ≈ f(WM ). We plot the convergence for a parameter

Nupdate = 0 or 1 in the algorithm 3. We here notice for M > 1 a signi�cant in�uence

of the updating step in algorithm 3. Indeed, for a given order Z, the accuracy of the

decomposition ΛZ obtained with Nupdate = 1 is better than the one obtained without

update (Nupdate = 0).
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Fig. 12 Example 1. Approximate solution of the system of stochastic algebraic equations
ΛM = f(WM ) with algorithm 3. Convergence with Z of ΛM,Z , in L2-norm, for Nupdate = 0
(a) and Nupdate = 1 (b).

On �gure 13, we test the in�uence of the number of updates Nupdate. As men-

tioned in section 4.4, we observe in this example that performing more than 1 update

(Nupdate > 1) does not improve the accuracy of the decomposition obtained with

Nupdate = 1. We observe that when increasing M , a higher order Z is required for

reaching a given accuracy. However, this order Z is always very small compared to the

dimension of the stochastic approximation space P = 1296. A L2 error less than 10−2

is obtained with only Z = 5 whatever the order M .

The overall methodology can be seen as a technique for constructing automatically

a very low dimensional stochastic approximation space SZ = span{Ψi}Zi=1 ⊂ SP , with

Ψi(ξ) =
∏4

j=1 ϕ
j
i (ξj), which is well adapted to the representation of the solution u

of the present stochastic problem. Here, Z ≈ 5 only is su�cient to reach a good

approximation.

Let us �nally note that computational costs associated with the overall numerical

strategy are very low. For example, for the construction of a GSD decomposition uM of
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(d) M = 15

Fig. 13 Example 1. Approximate solution of the system of stochastic algebraic equations
ΛM = f(WM ) with algorithm 3 for di�erent orders M . Convergence with Z of ΛM,Z , in
L2-norm. In�uence of parameter Nupdate of the algorithm.

order M = 15, it took a few seconds on a simple laptop. As illustrated in this example,

u15 provides a very good approximation of u and of the quantities of interest.

6 Example 2: stationary advection di�usion reaction equation

6.1 Formulation of the problem and discretization

Formulation of the problem. We consider a stationary advection di�usion reaction

equation de�ned on a spatial domain Ω = (0, 1) × (0, 1) (see �gure 1). It is a sta-

tionary version of example 1 where the only source of uncertainty comes from the

di�usion coe�cient which is chosen as a random �eld, depending on a set of random

variables ξ ∈ Ξ. The solution �eld u(x, ξ), de�ned on Ω ×Ξ veri�es

−∇ · (µ(x, ξ)∇u) + c · ∇u+ κu = f on Ω (81a)

u = 0 on ∂Ω (81b)

where κ = 10 is a deterministic reaction coe�cient and c = 250(x − 1
2 ,

1
2 − y) is

a deterministic advection velocity. The source term is deterministic and is de�ned by
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f = 100IΩ1
(see �gure 1), where Ω1 = (0.7, 0.8)×(0.7, 0.8) ⊂ Ω, with IΩ1

the indicator

function of Ω1. µ(x, ξ) is a random �eld de�ned by

µ(x, ξ) = µ0 +

40∑
i=1

√
σiµi(x)ξi (82)

where µ0 = 1 is the mean value of µ, where the ξi ∈ U(−1, 1) are mutually independent

uniform random variables and where the µi(ξ) are a set of L2(Ω)-orthonormal spatial

functions. These spatial functions are plotted in �gure 14. The associated amplitudes√
σi are plotted on �gure 15. The m = 40 random parameters ξ = (ξi)

m
i=1 de�ne

a probability space (Ξ,B, Pξ), with Ξ = (−1, 1)m and Pξ the uniform probability

measure on Borel σ-algebra B.

Remark 8 The couples (µi, σi) ∈ L2(Ω)×R+ are chosen as the 40 dominant eigenpairs

of eigenproblem T (µi) = σiµi, where T is the kernel operator

T : v ∈ L2(Ω) 7→
∫
Ω

α(x,y)v(y) dy ∈ L2(Ω),

with α(x,y) = 0.22 exp(−∥x−y∥2

0.32
). The expression (82) for µ(x, ξ) then corresponds

to a truncated version of a homogeneous random �eld with mean 1, standard deviation

0.2/
√
3 and exponential square covariance function with correlation length 0.3.

Fig. 14 Example 2. Spatial modes {µi(x)}40i=1 of the decomposition (82) of random �eld
µ(x, ξ) (modes sorted from left to right and top to bottom)
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Fig. 15 Example 2. Amplitudes
√
σi of the modes of the decomposition (82) of random �eld

µ(x, ξ)

Weak formulation. We introduce the weak formulation (4) of problem (81) with the

following de�nition of function spaces

V = H1
0 (Ω), S = L2(Ξ,B, Pξ) (83)

and the following de�nitions of bilinear and linear forms:

a(u, v; ξ) =

∫
Ω

µ(x, ξ)∇u · ∇v dx

+

∫
Ω

c · ∇u v dx+

∫
Ω

κu v dx (84)

l(v) =

∫
Ω

vf dx (85)

Discretization. At the space level, we introduce a �nite element approximation space

VN ⊂ V with dimension N = 4435. The �nite element mesh composed of 3-nodes trian-

gles is shown on �gure 3. At the stochastic level, we introduce di�erent approximation

strategies, associated with di�erent separations of function space S ≃ S1 ⊗ . . . ⊗ Sr,

where Sj = L2(Ξj ,Bj , Pξj
) and Ξj = (−1, 1)m

∗
, with r × m∗ = m = 40. We intro-

duce complete polynomial approximation spaces SjP∗ = Pp(Ξj) of degree p = 4, with

P ∗ =
(p+m∗)!

p! and de�ne

S ⊃ SP ≃ S1P∗ ⊗ . . .⊗ SrP∗

We will take for the reference computation (r,m∗) = (8, 5). The associated dimension

of SP is then P = (P ∗)r ≈ 6.1016. Let us note that with such a dimension, a direct

computation of the stochastic Galerkin projection is una�ordable in this example. The

overall methodology proposed in this article (sections 3 and 4) allows obtaining an

approximation of this Galerkin projection.
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6.2 Generalized spectral decomposition

In this section, we apply the GSD algorithm 1 (Arnoldi-type algorithm) for the a priori

construction of a decomposition of the solution

u(x, ξ) ≈ uM (x, ξ) =

M∑
i=1

wi(x)λi(ξ) := WM · ΛM

where the wi ∈ VN are spatial modes and the λi ∈ SP are stochastic modes. In this

section, we only focus on the properties of the GSD method introduced in section 3

(for deterministic/stochastic separation). We do not focus on the solution of stochastic

algebraic equations and we consider that these equations are solved with a good accu-

racy (error less than the error associated with the truncation order M of the GSD).

The solution of these stochastic algebraic equations with the algorithm proposed in

section 4 will be analyzed in the following section 6.3.

6.2.1 Algorithm and computational aspects

We recall that for building a decomposition of order M , the Arnoldi-type algorithm

1 requires the solution of M classical deterministic PDEs (problems wi = F (λ)), M

stochastic algebraic equations (problems λ = f(wi)) and a system of stochastic al-

gebraic equations (problem ΛM = f(WM )) for the update of stochastic functions.

The set of M deterministic modes wi are computed by solving only M uncoupled de-

terministic problems wi = F (λ) for di�erent λ ∈ SP (equation (29)). These problems

correspond to classical stationary advection di�usion reaction problems associated with

di�erent deterministic parameters µλ(x) = E(µ(x, ξ)λ(ξ)2), cλ = E(cλ2) = cE(λ2)

and κλ = E(κλ2) = κE(λ2) (respectively for the di�usion, advection and reaction

terms) and with a deterministic source term fλ = E(fλ) = fE(λ). Bilinear and linear

forms in equation (29) write

aλ(w,w∗) =

∫
Ω

µλ(x)∇w · ∇w∗ dx (86)

+ E(λ2)

∫
Ω

c(x) · ∇w w∗ dx+ E(λ2)

∫
Ω

κw w∗ dx (87)

lλ(v) = E(λ)

∫
Ω

w∗f dx (88)

6.2.2 Illustration of the obtained decomposition

We here illustrate the decomposition u9 = W9 ·Λ9 of order 9 obtained by the Arnoldi-

type algorithm. Figure 16 shows the �rst 9 deterministic modes {wi}9i=1. These modes

are orthonormalized with respect to the natural inner product in L2(Ω) (in the con-

struction of generalized Krylov subspace). Figure 17 shows the stochastic modes Λ9. In

Table 2, we indicate the mean m1(λi) := E(λi) and second moment m2(λi) := E(λ2i )

of each stochastic mode λi.

Since the deterministic modes are orthonormalized with respect to the inner prod-

uct in L2(Ω), the values m2(λi) re�ect the contribution of the di�erent modes to the
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(a) w1 (b) w2 (c) w3

(d) w4 (e) w5 (f) w6

(g) w7 (h) w8 (i) w9

Fig. 16 Example 2. Deterministic modes {wi(x)}9i=1 of the GSD decomposition u9

Table 2 First and second moments of random variables {λi}9i=1

i m1(λi) m2(λi)
1 2.4628 6.1
2 0.0307 1.9 10−3

3 −0.0017 9.8 10−4

4 0.0002 2.1 10−4

5 −0.0002 2.4 10−4

6 0.0003 1.2 10−4

7 −0.0003 7.8 10−5

8 0.0006 2.1 10−5

9 −0.0003 2.1 10−5

L2 norm of the solution:

∥uM∥2L2(Ω×Ξ) = E((uM , uM )L2(Ω)) =

M∑
i=1

m2(λi)

We observe a global decrease in the contribution of the modes to the norm of the

decomposition uM .
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Fig. 17 Example 2. Probability density functions of stochastic modes Λ9 = {λi}9i=1 = f(W9)
of GSD decomposition u9

6.2.3 Convergence of the generalized spectral decomposition

We here study the convergence of the GSD decomposition with respect to the order

M of the decomposition.

Error in solution. We estimate the relative error between uM and the semi-discretized

solution u ∈ VN ⊗ S:

ϵMγ =
∥u− uM∥γ

∥u∥γ
(89)

We introduce two di�erent norms ∥ · ∥γ de�ned as follows

∥u∥L2(Ξ;L2(Ω) = E(∥u(ξ)∥2L2(Ω))
1/2 (90)

∥u∥L∞(Ξ;L2(Ω)) = sup
ξ∈Ξ

∥u(ξ)∥L2(Ω) (91)
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and we denote the corresponding relative errors (89) by ϵM2 and ϵM∞ respectively. These

two norms are estimated by Monte-Carlo simulations:

∥v∥2L2(Ξ;L2(Ω)) ≈
1

Q

Q∑
q=1

∥v(ξ(q))∥2L2(Ω) (92)

∥v∥L∞(Ξ;L2(Ω)) ≈ sup
q∈{1,...,Q}

∥v(ξ(q))∥L2(Ω) (93)

where the {ξ(q)}Qq=1 are Q samplings of random variables ξ. The reference values

u(ξ(q)) are obtained by solving the corresponding deterministic problems. Here, we

take Q = 100, which leads to a good estimation of error indicators. Figure 18 shows

the convergence with M of error indicators ϵMγ . We observe a good convergence with

M of the L2-norm (error less than 10−2 for M = 15) and also in the L∞-norm (error

3.10−2 for M = 15). The good convergence in the L∞-norm indicates that with a

low order M , the approximation uM (ξ) is relatively good for almost every elementary

events ξ ∈ Ξ (see �gure 19 for the illustration of this fact).
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Fig. 18 Example 2. Convergence with M of uM . Relative errors ϵM2 and ϵM∞ estimated with
Monte-Carlo simulations.

Convergence of quantities of interest. In order to further analyze the convergence, we

focus on a quantity of interest:

Q(u)(ξ) =

∫
Ω2

u(x, ξ) dx (94)

where Ω2 = (0.2, 0.3) × (0.2, 0.3) ⊂ Ω is a subdomain shown on Figure 1. Let us

note that Q2 is a random variable. Figure 20 shows the convergence with M of the

probability density function (pdf) of Q(uM ). The reference pdf is computed with a

classical Monte-Carlo method with 36, 000 samples (resolution of 36, 000 advection

di�usion reaction deterministic problems). We observe a very good convergence with

M of the quantity of interest Q2.

On �gure 21, we observe the convergence with M of the probability of the event

{Q(uM )(ξ) > q}, i.e. Pξ{Q(uM ) > q} for di�erent values of q. We observe that the
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(a) µ(x, ξ(1)) (b) δu(x, ξ(1)) (c) δu15(x, ξ
(1))

(d) µ(x, ξ(2)) (e) δu(x, ξ(2)) (f) δu15(x, ξ
(2))

(g) µ(x, ξ(3)) (h) δu(x, ξ(3)) (i) δu15(x, ξ
(3))

(j) µ(x, ξ(4)) (k) δu(x, ξ(4)) (l) δu15(x, ξ
(4))

Fig. 19 Example 2. Comparison between GSD approximation u15 and direct computations
u for di�erent outcomes ξ(q) of random variables. Associated outcomes of di�usion coe�cient
µ (�rst column), direct simulation δu (second column), and GSD approximation δu15 (third
column). δu(x, ξ) = u(x, ξ)− u(x, 0), where u(x, 0) is the solution with a mean random �eld
µ = µ0.

number of modes M must be increased in order to accurately predict events with lower

and lower probabilities. However, we observe that a relatively low order decomposition

(M = 20) allows to accurately predict the probability of rare events (events with a

probability lower than of 10−3).
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Fig. 20 Example 2. Convergence with M of the probability density function of the quantity
of interest Q(uM )(ξ). Reference computed with Monte-Carlo.
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Fig. 21 Example 2. Convergence with M of the probability Pξ{Q(uM ) > q} for di�erent
values q. Reference computed with Monte-Carlo.

6.3 Proper Generalized Decomposition for the solution of stochastic algebraic

equations: separated representation at the stochastic level

We now illustrate the behavior of the Proper Generalized Decomposition (PDG) tech-

nique introduced in section 4 for the solution of the stochastic algebraic equations

required in the construction of the generalized spectral decomposition uM = WM ·ΛM .

6.3.1 Solution of problems λ = f(w)

We �rst analyze the solution of problems λ = f(wi) for the di�erent modes i, corre-

sponding to step 5 of algorithm 1. These problems correspond to the solution of equa-
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tion (33) which can be seen as a Galerkin projection of the initial stochastic problem on

the 1-dimensional deterministic basis spanned by wi. Let us denote by A(ξ)λ(ξ) = B(ξ)

the strong-stochastic form of these problems. We use the algorithm 3 for the approx-

imate solution of these problems. For the updating step (steps 5 to 7), we use an

updating along each stochactic dimension, i.e. Jupdate = {1, . . . , r}, and a number of

updates Nupdate which will be indicated later. This algorithm leads to the construction

of the following order Z decomposition of stochastic function λ ∈ S ≃ R⊗S1⊗ . . .⊗Sr:

λ(ξ) ≈ λZ(ξ) =

Z∑
i=1

ϕ0
i ϕ

1
i (ξ1) . . . ϕ

r
i (ξr),

with ϕ0
i ∈ R and ϕj

i ∈ S
j
Pj
. In order to analyze the convergence with Z, we use the

error indicator ϵZ de�ned in (77). The L2-norm is estimated with equation (78) (Monte-

Carlo simulations), where the {ξ(q)}Qq=1 are Q samplings of random variables ξ. The

reference values are de�ned by λ(ξ(q)) = A(ξ(q))−1B(ξ(q)). Here, we take Q = 100.

Let us note that error indicator ϵZ evaluates the distance between the approximate

solution λZ ∈ SP and the strong stochastic solution λ ∈ S. It then takes into account

two contributions of errors: the approximation error (introduction of SP ⊂ S) and the

error due to the separated representation technique. In this example, the approximation

error is still negligible compared to the truncation error (su�ciently high polynomial

degree used for SP ). On Figure 22, we illustrate the convergence with Z of λZ for

di�erent problems λZ ≈ f(wi). We plot the convergence for a parameter Nupdate = 0,

1 or 2 in algorithm 3. For each problem, we observe very low error values for small

orders Z and a relatively good convergence rate with Z. We notice that the convergence

rate with Z is increased when increasing the number Nupdate of updates (for a given

order Z, better approximation when increasing Nupdate). However, performing more

than 2 updates (Nupdate > 2) is not necessary. That means that for a given order

Z and when updating the decomposition, the updating procedure converges very fast

with Nupdate towards the optimal decomposition of order Z. Figure 23 illustrates this

in�uence of Nupdate.

For each problem λ = f(wi), the algorithm allows the capture of a very low di-

mensional stochastic approximation space SZ = span{Ψi}Zi=1 ⊂ SP , with Ψi(ξ) =∏r
j=1 ϕ

j
i (ξj), which is well adapted to the representation of the solution λ of each

stochastic algebraic equation. This order Z must be compared to the dimension of the

underlying approximation space P = 6.1016. In fact, for these problems, an order Z = 1

seems su�cient (error about 10−3). These results indicate that the λ is well approxi-

mated by an order one (rank-one) separated representation and this representation is

well captured by the proposed algorithm.

6.3.2 Solution of problems ΛM = f(WM )

We now focus on the solution of the system of stochastic algebraic equations ΛM =

f(WM ), corresponding to step 7 of algorithm 1 (update of stochastic functions). This

problem is solved with algorithm 3. For the updating step (steps 5 to 7 of algorithm 3),

we use an updating along each dimension, i.e. Jupdate = {0, . . . , r}, and a number of

updatesNupdate which will be indicated later. This problem corresponds to the solution

of equation (40) which can be seen as a Galerkin projection of the initial stochastic

problem on the M -dimensional deterministic basis spanned by WM = {wi}Mi=1.
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Fig. 22 Example 2. Approximate solution of stochastic algebraic equations λ = f(wi) with
algorithm 3. Convergence with Z of λZ , in L2-norm, for Nupdate = 0 (a), Nupdate = 1 (b)
and Nupdate = 2 (c) (Jupdate = {1, . . . , r}).

We assimilate ΛM ∈ (S)M with a random vector Λ ∈ RM ⊗ S and we denote by

A(ξ)Λ(ξ) = B(ξ) the strong-stochastic form of problem ΛM = f(WM ). Algorithm 3

leads to the construction of the following order Z decomposition of stochastic functions

ΛM ∈ (S)M ≡ Λ ∈ RM ⊗ S1 ⊗ . . .⊗ Sr:

Λ(ξ) ≈ ΛZ(ξ) =

Z∑
i=1

ϕ0
i ϕ

1
i (ξ1) . . . ϕ

r
i (ξr),

with ϕ0
i ∈ RM , ϕj

i ∈ S
j
P∗ . In order to analyze the convergence of the decomposition,

we introduce the error indicator ϵZM , de�ned in (79). The L2-norm is estimated with

equation (80) (Monte-Carlo integration), where the {ξ(q)}Qq=1 are Q samplings of ran-

dom variables ξ. Reference values Λ(ξ(q)) = A(ξ(q))−1B(ξ(q)) are obtained by solving

a simple system of equations. Here, we take Q = 100. As mentioned in the previous

section, the approximation error, due to the introduction of SP ⊂ S, is here negligible.

Then, ϵZM quanti�es the truncation error (for truncation order Z).

Figure 24 illustrates the convergence with Z of ΛZ for di�erent problems ΛM,Z ≈
f(WM ). We plot the convergence for a parameter Nupdate = 1 in the algorithm 3.

We observe that when increasing M , a higher order Z is required for reaching a given
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(b) λZ ≈ f(w2)

Fig. 23 Example 2. Approximate solution of stochastic algebraic equations λ = f(wi) with
algorithm 3, for i = 1 (a) and i = 2 (b). Convergence with Z of λZ , in L2-norm. In�uence of
the number of updates Nupdate (Jupdate = {1, . . . , r}).

accuracy. However, the required order seems to stabilize for M > 10. We obtain a good

accuracy with a low order Z (error less than 10−2 for Z = 7).
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Fig. 24 Example 2. Approximate solution of the system of stochastic algebraic equations
ΛM = f(WM ) with algorithm 3. Convergence with Z of ΛM,Z in L2-norm for di�erent orders
M (Nupdate = 1).

From now on, we only focus on the problem ΛM = f(WM ) for M = 15. In �gure

25, we test the in�uence of the number of updates Nupdate. As mentioned in section

4.4, we observe in this example that performing more than 1 update (Nupdate > 1)

does not improve the accuracy of the decomposition for a given order Z.

6.3.3 In�uence of the way to separate function space S

We �nally test the in�uence of the way to separate function space S = ⊗r
i=1S

i, with

Si = L2(Ξi,Bi, Pξi
). The corresponding approximation space is SP = ⊗r

i=1S
i
P∗ , with

SiP∗ = Pp((−1, 1)m
∗
). In the above reference computation, we selected (r,m∗) = (8, 5).

We now consider the alternatives indicated in the following table (for each couple
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Fig. 25 Example 2. Approximate solution of the system of stochastic algebraic equations
ΛM = f(WM ), for M = 15, with algorithm 3. Convergence with Z of ΛM,Z , in L2-norm.
In�uence of parameter Nupdate of the algorithm.

(r,m∗), the dimension of P ∗ and the total dimension P are indicated).

r 40 20 10 8 5

m∗ 1 2 4 5 8

P ∗ 5 15 70 126 495

P ≈ 9.1027 ≈ 3.1023 ≈ 3.1018 ≈ 6.1016 ≈ 3.1013

Let us remark that the change in P comes from the fact that function spaces SiP∗ are

polynomial spaces with total degree p (and not partial degree) in m∗ dimensions. On

Figure 26, we plot for these di�erent alternatives, the convergence with Z for problem

ΛM,Z ≈ f(WM ), with M = 15. We observe that in this example, the way to separate

the function space S does not have a signi�cant in�uence on the convergence with Z.

For all alternatives, an order Z ≈ 7 allows to obtain an error 10−2.
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Fig. 26 Example 2. Approximate solution of the system of stochastic algebraic equations
ΛM = f(WM ), for M = 15, with algorithm 3 (Nupdate = 1). Convergence with Z of ΛM,Z , in
L2-norm. In�uence of the separation of function space S.

For the case (r,m∗) = (40, 1), corresponding to a complete separation of function

space, it turns out that the algorithm allows to construct a very low dimensional

subspace SZ ⊂ SP , which is adapted to the solution of the problem. The solution
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appears to be well represented with Z ≈ 7, to be compared with P = 9.1027. The

proposed methodology can be seen as a method for constructing an adapted �highly

sparse� representation of a solution in tensor product spaces.

6.3.4 Sensitivity analysis

Finally, we perform a sensitivity analysis of the quantity of interest with respect to

random variables ξi. We use �rst order Sobol sensitivity indices de�ned by

Si = V ar(E(Q|B̃i))/V ar(Q) (95)

where V ar(A) = E(A2)−E(A)2 denotes the variance of a random variable A and where

E(Q|B̃i) is the random variable obtained by the projection of Q ∈ L2(Ξ,B, Pξ) onto

the subspace L2(Ξ, B̃i, Pξ), where B̃i := σ−1(ξi) := . . . ⊗ {Ξi−1} ⊗ Bi ⊗ {Ξi+1} ⊗
. . . ⊂ B is the σ-algebra generated by random variable ξi. This projection is the

conditional expectation E(·|B̃i). The reader can refer to [44] for an introduction to

sensitivity analysis in the context of spectral stochastic methods. The computation

of the conditional expectation operation is very simple when we have a separated

representation of the quantity of interest Q under the form Q =
∑Z

k=1 ϕ
0
k

∏m
i=1 ϕ

i
k(ξi).

Indeed, we have

E(Q|B̃i) =

Z∑
k=1

ϕj
k(ξj)α

j
k, α

j
k = ϕ0

k

m∏
i=1,i̸=j

E(ϕi
k(ξi))

where the expectations are simply obtained since the expansion of functions ϕi
k on

polynomial basis is known (simple operations in the context of spectral stochastic

methods). On �gure 27, we plot the sensitivity index of each random variable for

di�erent values of decomposition order M . We observe a fast convergence with M

of sensitivity indices (good estimation with M = 5). This analysis illustrates that

many random variables, and then many modes in the decomposition of the di�usion

parameter, are not important in the prediction of this quantity of interest. The proposed

method allows to characterize accurately the signi�cant random variables among a large

number of random variables. Let us note that in this example, the sensitivity indices of

random variables ξi do not monotically decrease with i, although the random variables

were sorted by decreasing contribution in the representation of the random �eld µ(x, ξ).

Then, the selection of the most signi�cant random variables was not trivial in this

example.

7 Conclusion

A model reduction technique, based on a priori separated representations, has been

proposed for solving high-dimensional stochastic partial di�erential equations with

spectral stochastic approaches. It combines Generalized Spectral Decomposition al-

gorithms, for a quasi optimal deterministic/stochastic separation, and a new Proper

Generalized Decomposition (PGD) algorithm for the solution of systems of stochas-

tic algebraic equations. This PGD algorithm exploits the tensor product structure of

stochastic functions space and allows the a priori construction of a separated repre-

sentation of a random solution de�ned on a very high-dimensional product probability
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(b) M = 2
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(c) M = 5
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Fig. 27 Example 2. First order Sobol sensitivity indices of Q with respect to random variables
ξi, i = 1 . . . 40. Convergence with M .

space. The method can handle with problems with such a dimension that their solu-

tion is unfeasible with standard spectral stochastic techniques. In that sense, the overall

methodology appears as a way to circumvent the curse of dimensionality.

The ability of the proposed algorithms to solve high-dimensional stochastic prob-

lems has been illustrated on numerical examples. Further works will be devoted to the

validation of these algorithms for a larger class of stochastic problems and to other

types of problems formulated in tensor product spaces.

A Computational aspects of Generalized Spectral Decomposition

We here consider the computational aspects associated with the solution of problem:

u ∈ V⊗ S, A(u, v) = B(v) ∀v ∈ V⊗ S (96)

with Generalized Spectral Decomposition algorithms introduced in section 3.
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A.1 Separated representation of bilinear and linear forms

We consider that bilinear form a and linear form b in equation (3) admit the following separated
representation:

a(w, w̃; ξ) =

KA∑
k=1

ak(w, w̃)Ak(ξ), b(w̃; ξ) =

KB∑
k=1

bk(w̃)Bk(ξ) (97)

where the ak are deterministic bilinear forms on V, where the bk are deterministic linear
forms on V, and where the Ak and Bk are real-valued random variables de�ned on probability
space (Ξ,B, Pξ). An approximation space VN = span{φi}Ni=1 ⊂ V is introduced. A function

w ∈ VN is identi�ed with a vector w ∈ RN , such that w =
∑N

i=1 wiφi. Let A : Ξ → RN×N

and b : Ξ → RN denote the random matrix and random vector such that ∀w, w̃ ∈ VN

a(w, w̃; ξ) := w̃TA(ξ)w, b(w̃; ξ) := w̃Tb(ξ) (98)

Random matrix A and random vector b can be decomposed as follows:

A(ξ) =

KA∑
k=1

A0
kAk(ξ), b(ξ) =

KB∑
k=1

b0
kBk(ξ) (99)

where the A0
k ∈ RN×N and b0

k ∈ RN are matrices and vectors associated with bilinear forms
ak and linear forms bk on VN .

A.2 Classical stochastic approximation and tensor product notation

We now introduce an approximation space SP = span{Hα}Pα=1 ⊂ S and introduce matrices
A1

k ∈ RP×P and vectors b1
k ∈ RP such that

(A1
k)αβ = E(Ak(ξ)Hα(ξ)Hβ(ξ)), (b1

k)α = E(Bk(ξ)Hα(ξ)) (100)

A function u ∈ VN ⊗ SP is identi�ed with u =
∑P

α=1 uα ⊗ eα ∈ RN ⊗ RP , where eα ∈ RP is
identi�ed with Hα ∈ SP . Bilinear form A and linear form B on VN ⊗ SP are identi�ed with
A ∈ RN×N ⊗ RP×P and b ∈ RN ⊗ RP de�ned by

A =

KA∑
k=1

A0
k ⊗A1

k, b =

KB∑
k=1

b0
k ⊗ b1

k (101)

and such that

A(u, v) := v · A · u, B(v) := v · b (102)

where operations between tensor products must be interpreted as follows: denoting A0 ∈
RN×N , A1 ∈ RP×P , w ∈ RN , λ ∈ RP

(A0 ⊗A1) · (w ⊗ λ) := (A0w)⊗ (A1λ) (103)

(w ⊗ λ) · (w ⊗ λ) := (wTw)(λTλ) (104)

A separated representation uM of order M is equivalently denoted

uM ≡ uM =
M∑
i=1

wi ⊗ λi, wi ∈ RN , λi ∈ RP
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A.3 Discretized versions of mappings

The residual associated with uM is de�ned by

bM = b− A · uM :=

KBM∑
k=1

b̃0
k ⊗ b̃1

k (105)

Mappings fM : VN → SP , FM : SP → VN , f : (VN )M → (SP )M , F : (SP )M → (VN )M

are identi�ed with mappings fM : RN → RP , FM : RP → RN , f : RN×M → RP×M ,
F : RP×M → RN×M , de�ned by

λ = fM (w) =

KA∑
k=1

(wTA0
kw)A1

k

−1 KBM∑
k=1

(wT b̃0
k)b̃

1
k



w = FM (λ) =

KA∑
k=1

A0
k(λ

TA1
kλ)

−1 KBM∑
k=1

b̃0
k(λ

T b̃1
k)



Λ = f(W) =

KA∑
k=1

(WTA0
kW)⊗A1

k

−1  Kb∑
k=1

(WTb0
k)⊗ b1

k



W = F(Λ) =

KA∑
k=1

A0
k ⊗ (ΛTA1

kΛ)

−1  Kb∑
k=1

b0
k ⊗ (ΛTb1

k)



B Computational aspects of multi-dimensional Proper Generalized

Decomposition

We here consider the computational aspects associated with the solution of problem

u ∈ S0 ⊗ . . .⊗ Sr, α(u, v) = β(v) ∀v ∈ S0 ⊗ . . .⊗ Sr (106)

with the Proper Generalized Decomposition algorithm introduced in section 4.

B.1 Separated representation of bilinear and linear forms

We consider that S0 ≃ Rn and assimilate u ∈ S0 ⊗ . . . ⊗ Sr with a random vector u(ξ). We
consider that bilinear form α and linear form β in equation (106) write:

α(u, v) = E(vTAu), β(v) = E(vTb) (107)

where random matrix A(ξ) ∈ Rn×n and random vector b(ξ) ∈ Rn admit the following sepa-
rated representation:

A(ξ) =

KA∑
k=1

A0
kA

1
k(ξ1) . . . A

r
k(ξr) (108)

b(ξ) =

KB∑
k=1

b0
kB

1
k(ξ1) . . . B

r
k(ξr) (109)

where A0
k ∈ Rn×n, b0

k ∈ Rn, and where Aj
k, B

j
k : Ξj → R are random variables de�ned on

probability space (Ξj ,Bj , Pξj
).



49

B.2 Stochastic approximation and tensor product notation

For each j ∈ {1, . . . , r}, we introduce an approximation space S
j
Pj

= span{hj
α}

Pj

α=1 ⊂ Sj and

introduce matrices Aj
k ∈ RPj×Pj and vectors bj

k ∈ RPj such that

(Aj
k)αβ = E(Aj

k(ξj)h
j
α(ξj)h

j
β(ξj)), (110)

(bj
k)α = E(Bj

k(ξj)h
j
α(ξj)) (111)

A function u ∈ S0⊗S1P1
⊗ . . . SrPr

is identi�ed with u ∈ Rn⊗RP1 ⊗ . . .⊗RPr . For simplicity, let

n := P0. Bilinear form α and linear form β are then identi�ed with A ∈ RP0×P0 ⊗ RP1×P1 ⊗
. . .⊗ RPr×Pr and b ∈ RP0 ⊗ RP1 ⊗ . . .⊗ RPr de�ned by

α(u, v) := v · A · u, B(v) := v · b (112)

with

A =

KA∑
k=1

A0
k ⊗A1

k ⊗ . . .⊗Ar
k (113)

b =

KB∑
k=1

b0
k ⊗ b1

k ⊗ . . .⊗ br
k (114)

and where operations between multi-dimensional tensors must be interpreted as follows: ∀Aj ∈
RPj×Pj and ∀ϕj ∈ RPj ,

(A0 ⊗ . . .⊗Ar) · (ϕ0 ⊗ . . .⊗ ϕr) := (A0ϕ0)⊗ . . .⊗ (Arϕr) (115)

(ϕ0 ⊗ . . .⊗ ϕr) · (ϕ0 ⊗ . . .⊗ ϕr) :=
r∏

j=0

(ϕjT ϕj) (116)

A separated representation uZ ∈ S0 ⊗ . . .⊗ Sr of order Z is equivalently denoted

uZ ≡ uZ =
Z∑

i=1

ϕ0
i ⊗ . . .⊗ ϕr

i , ϕj
i ∈ RPj

B.3 Discretized versions of mappings

B.3.1 Mappings FZ
j

The residual associated with uZ is de�ned by

bZ = b− A · uZ :=

KBZ∑
k=1

b̃0
k ⊗ . . .⊗ b̃r

k (117)

Mappings

FZ
j : . . .⊗ Sj−1 ⊗ Sj+1 ⊗ . . . → Sj (118)

are identi�ed with mappings

FZ
j : . . .⊗ RPj−1 ⊗ RPj+1 ⊗ . . . → RPj (119)
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de�ned by

ϕj = FZ
j (. . . ,ϕj−1,ϕj+1, . . .)

=

KA∑
k=1

∆j
kA

j
k

−1 KBZ∑
k=1

δjkb̃
j
k

 (120)

with

∆j
k =

r∏
l=0
l̸=j

ϕlT Al
kϕ

l, δjk =
r∏

l=0
l̸=j

ϕlT b̃l
k (121)

B.3.2 Mappings Fj

Mappings

Fj : . . .⊗ (Sj−1)Z ⊗ (Sj+1)Z ⊗ . . . → (Sj)Z (122)

are identi�ed with mappings

Fj : . . .⊗ RPj−1×Z ⊗ RPj+1×Z ⊗ . . . → RPj×Z (123)

Denoting Φj = (ϕj
1, . . . ,ϕ

j
Z) ∈ RPj×Z , mapping Fj is de�ned by

Φj = Fj(. . . ,Φ
j−1,Φj+1, . . .)

:=

KA∑
k=1

∆j
k ⊗Aj

k

−1 KBZ∑
k=1

δjk ⊗ bj
k

 (124)

where ∆j
k ∈ RZ×Z and δjk ∈ RZ are de�ned by

(∆j
k)pq =

r∏
l=0
l̸=j

ϕlT

p Al
kϕ

l
q , (δjk)p =

r∏
l=0
l̸=j

ϕlT

p bl
k (125)
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3. I. Babuška, R. Tempone, and G. E. Zouraris. Solving elliptic boundary value problems with
uncertain coe�cients by the �nite element method: the stochastic formulation. Computer

Methods in Applied Mechanics and Engineering, 194:1251�1294, 2005.
4. A.R. Barron, A. Cohen, W. Dahmen, and R.A. DeVore. Approximation and learning by

greedy algorithms. Ann. Statist., 36(1):64�94, 2008.
5. G. Beylkin and M. J. Mohlenkamp. Algorithms for numerical analysis in high dimensions.

SIAM J. Sci. Comput., 26(6):2133�2159, 2005.
6. G. Blatman and B. Sudret. Sparse polynomial chaos expansions and adaptive stochastic

�nite elements using a regression approach. Comptes Rendus Mécanique, 336(6):518�523,
2007.



51

7. C. Le Bris, T. Lelievre, and Y. Maday. Results and questions on a nonlinear approxi-
mation approach for solving high-dimensional partial di�erential equations. Constructive
Approximation, 30(3):621�651, 2009.

8. C. Canuto and T. Kozubek. A �ctitious domain approach to the numerical solution of
pdes in stochastic domains. Numerische Mathematik, 107(2):257�293, 2007.

9. L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decompo-
sition. SIAM J. Matrix Anal. Appl., 21(4):1253�1278, 2000.

10. V. de Silva and L.-H. Lim. Tensor rank and ill-posedness of the best low-rank approxima-
tion problem. SIAM Journal of Matrix Analysis & Appl., 30(3):1084�1127, 2008.
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