
ar
X

iv
:1

30
4.

60
04

v1
 [

m
at

h.
N

A
]

 2
2

A
pr

 2
01

3

Low-rank approximate inverse for preconditioning

tensor-structured linear systems∗

L. Giraldi† A. Nouy†‡ G. Legrain†

Abstract

In this paper, we propose an algorithm for the construction of low-rank approximations

of the inverse of an operator given in low-rank tensor format. The construction relies on an

updated greedy algorithm for the minimization of a suitable distance to the inverse operator.

It provides a sequence of approximations that are defined as the projections of the inverse

operator in an increasing sequence of linear subspaces of operators. These subspaces are

obtained by the tensorization of bases of operators that are constructed from successive rank-

one corrections. In order to handle high-order tensors, approximate projections are computed

in low-rank Hierarchical Tucker subsets of the successive subspaces of operators. Some desired

properties such as symmetry or sparsity can be imposed on the approximate inverse operator

during the correction step, where an optimal rank-one correction is searched as the tensor

product of operators with the desired properties. Numerical examples illustrate the ability

of this algorithm to provide efficient preconditioners for linear systems in tensor format that

improve the convergence of iterative solvers and also the quality of the resulting low-rank

approximations of the solution.

1 Introduction

This paper is concerned with the numerical solution of high-dimensional linear systems of equations
in tensor format

Au = b, u ∈ R
n1 ⊗ . . .⊗ R

nd , (1)

using low-rank approximation methods. These methods consist in approximating the solution
under the form ∑

i1

. . .
∑

id

αi1...idw
1
i1 ⊗ . . .⊗ wd

id ,

with wµ
iµ

∈ R
nµ , 1 ≤ µ ≤ d, and where the set of coefficients (αi1...id) possesses some particular

structure yielding a representation with reduced complexity. When using suitable approximation
formats, low-rank approximation methods result in a complexity of algorithms that grows linearly
with the dimension d, thus allowing the numerical solution of high-dimensional problems (see the
recent surveys [25, 7, 24, 19] and monograph [21]). Different strategies have been proposed for
the construction of low-rank approximations of the solution of equations in tensor format. The
first class of methods consists in defining the approximation as the minimizer in a low-rank tensor
subset of some distance to the solution (e.g. the norm of the residual of equation (1)), see e.g.
[5, 12]. An approximation with prescribed accuracy can be obtained by introducing an adaptive
selection of tensor subsets or by using greedy constructions where corrections of the approximation
are successively computed in fixed low-rank subsets (usually rank-one subsets) [2, 6, 14]. A series
of improved algorithms have been proposed in order to increase the quality of suboptimal pure
greedy constructions (see [32, 33, 35, 34, 30, 17] and [15] for the analysis of a large class of improved

∗This work was supported by the French National Research Agency (Grant ANR-2010-COSI-006).
†Ecole Centrale de Nantes, GeM UMR CNRS 6183, LUNAM Université, France.
‡Corresponding author (anthony.nouy@ec-nantes.fr).

1

http://arxiv.org/abs/1304.6004v1

Low-rank approximate inverse for preconditioning linear systems 2

greedy algorithms). The second class of methods consists in using classical iterative solvers with
low-rank tensor algebra, using efficient algorithms for low-rank tensor compressions [26, 27, 3].

In this paper, we are interested in the construction of low-rank preconditioners for equations
in tensor format, yielding preconditioned equations

PAu = Pb

with a preserved low-rank tensor format. Preconditoning aims at improving the convergence of
iterative methods but also at improving the quality of low-rank approximations defined from the
residual of the equation. Different strategies have been proposed for the construction of low-rank
preconditioners. In the case of equations resulting from a discretization of stochastic equations, a
rank-one preconditioner has been introduced in [16]. It is based on the inverse of the expectation
of the random operator, and it is particularly efficient when the random operator has a small
variance. In [31], a more general rank-one preconditioner has been defined as the inverse of a
rank-one approximation of the operator. This preconditioner has been exploited in [39] for the
solution of equations arising from the discretization of stochastic parametric equations. In the same
context, a rank-one preconditioner has also been defined in [41] as the solution of the minimization
of ‖I − PA‖ over the set of rank-one operators P .

Rank-one preconditioners may be efficient if the operator A only slightly deviates from a
rank-one operator. In order to address more general situations, different strategies have been
proposed for the construction of higher rank preconditioners. In [23], a preconditioner is obtained
by truncating an expansion of the inverse of the operator. In [37], a preconditioner P is defined
as the best approximation of the inverse of the operator with the particular structure P = P 1 ⊗
I ⊗ . . . ⊗ I + . . . + I ⊗ . . . ⊗ I ⊗ P d corresponding to a rank-d preconditioner. More recently,
an algorithm has been proposed in [36] for the construction of a low-rank preconditioner P in
tensor-train format. It relies on the solution of the equation AP = I with a DMRG algorithm,
this algorithm allowing for an automatic selection of the rank. In order to avoid the inversion of
large matrices (large nµ), a quantization technique is introduced.

In the present paper, we propose an algorithm for the computation of a low-rank approximation
P of the inverse operator A−1 using Tucker or Hierarchical Tucker format. This algorithm is an
updated greedy algorithm for the minimization of a suitable distance ‖A−1 − P‖⋆. The norm
‖ · ‖⋆ is chosen such that the approximation can be computed without any a priori approximation
of A−1, and it is chosen according to the properties of A (namely symmetric positive definite
or simply definite operator). Compared to a direct minimization of ‖A−1 − P‖⋆ over a set of
Tucker or Hierarchical Tucker tensors with given rank, the greedy procedure has the advantages
of being adaptive and of considerably reducing the complexity of the construction of a low-rank
approximation, therefore allowing the manipulation of large dimensions nµ. Starting from P0 = 0,
one step of the updated greedy algorithm consists in (i) computing a rank-one correction of the
previously computed approximation Pr−1 by minimizing ‖A−1−Pr−1−Wr‖⋆ over the set of rank-
one operators Wr = W 1

r ⊗ . . . ⊗W d
r , (ii) updating reduced spaces of operators Uµ

r (1 ≤ µ ≤ d)
which are defined as the span of the set of operators {Wµ

1 , . . . ,W
µ
r }, and (iii) computing a new

approximation Pr in the space Ur = U1
r ⊗ . . .⊗Ud

r by minimizing ‖A−1 − Pr‖⋆ in Ur or over a set
of low-rank Hierarchical Tucker tensors in Ur. More precisely, the approximation Pr is searched
under the form

Pr =
r∑

i1=1

. . .
r∑

id=1

αi1,...,idW
1
i1 ⊗ . . .⊗W d

id
,

where the set of coefficients α is optimized in R
r ⊗ . . .⊗ R

r or in a low-rank Hierarchical Tucker
subset of Rr ⊗ . . . ⊗ R

r. For the solution of the minimization problems over the set of rank-one
tensors (step (i)) and the set of Hierarchical Tucker tensors with bounded rank (step (iii)), alter-
nating minimization algorithms are used [28, 40].
Some desired properties such as symmetry and sparsity can be imposed on the approximate in-
verse. This is done in the correction step (i) where the optimal rank-one correction is searched as
the tensor product of operators with the desired properties. During the alternating minimization
algorithm, imposing the symmetry on the matrixWµ

r requires the solution of a Sylvester equation.

Low-rank approximate inverse for preconditioning linear systems 3

For imposing sparsity on Wµ
r , we propose a straightforward generalization of the sparse approxi-

mate inverse algorithm proposed in [20], which is an adaptive algorithm for the determination of
the sparsity pattern.

The outline of the paper is as follows. In Section 2, we briefly recall some useful definitions on
tensor spaces and low-rank tensor approximations. In Section 3, we introduce an algorithm for
computing a rank-one approximation of the inverse operator, with possible imposed properties. In
Section 4, we introduce the algorithm for computing a low-rank approximate inverse in low-rank
Tucker or Hierarchical Tucker formats. In Section 5, the efficiency of the proposed preconditioning
technique is illustrated on numerical problems: a Poisson equation in high dimension (symmetric
problem) and a linear equation resulting from the discretization of a stochastic partial differential
equation using spectral stochastic methods.

2 Tensor spaces and low-rank tensor approximation

2.1 Tensor spaces

Let D = {1, . . . , d}, with d ∈ N
∗. Let Xµ, µ ∈ D, be a finite dimensional space equipped with an

inner product 〈·, ·〉µ and the associated norm ‖·‖µ. We consider the tensor space X = X 1⊗. . .⊗X d.
In the following, the simplified notation

⊗
µ will be used for

⊗
µ∈D, as well as

⊗
µ6=λ for

⊗
µ∈D\{λ},

λ ∈ D. A tensor x ∈ X can be written under the form x =
∑r

i=1

⊗
µ x

µ
i for some r ∈ N and

xµi ∈ Xµ. The minimal integer r which allows to represent x exactly under this form is called the
(canonical) rank of x. X is a Hilbert space for the induced inner product 〈·, ·〉 defined for rank-one
tensors by 〈⊗µ x

µ,
⊗

µ y
µ〉 =

∏
µ∈D〈xµ, yµ〉µ, and extended by linearity to the whole space X .

The associated norm is noted ‖ · ‖.
For Xµ = R

nµ , we use the vector 2-norm ‖·‖µ and the associated canonical inner product 〈·, ·〉µ.
For Xµ = R

nµ×nµ , we take for ‖·‖µ the Frobenius norm and for 〈·, ·〉µ the associated inner product
defined by 〈Aµ, Bµ〉µ = tr((Aµ)TBµ) for Aµ, Bµ ∈ R

nµ×nµ . A matrix Aµ ∈ R
nµ×nµ is identified

with the corresponding operator Aµ : Rnµ → R
nµ , and a tensor A ∈⊗µ R

nµ×nµ is identified with

the corresponding operator A :
⊗

µ R
nµ → ⊗

µ R
nµ . We denote by AT the adjoint of A for the

induced inner product, which for A =
∑r

i=1

⊗
µA

µ
i is obtained by AT =

∑r
i=1

⊗
µ(A

µ
i)

T , where

(Aµ
i)

T denotes the transpose of matrix Aµ
i .

2.2 Low-rank tensor approximation

Let M ⊂ X be a subset of low-rank tensors in X . The best approximation of y in M, if it exists,
is defined by

min
x∈M

‖y − x‖ .

We also define a quasi-best approximation of y in M as an element xγ ∈ M satisfying

‖y − xγ‖ ≤ γ inf
x∈M

‖y − x‖

for some factor γ > 1. Note that a quasi-best approximation exists for any γ > 1.

2.2.1 Canonical format

The subset of rank-r canonical tensors is defined by

Cr(X) =

{
x =

r∑

i=1

⊗

µ

xµi ; x
µ
i ∈ Xµ, ∀µ ∈ D

}
.

This format is simple. However, the set Cr(X) is not closed for d > 2 and r > 1, therefore
the best approximation problem using canonical format is ill-posed in this case [10]. Alternating

Low-rank approximate inverse for preconditioning linear systems 4

minimization algorithm [25] or other optimization algorithms [1, 11] can be used to solve the
approximation problem in Cr(V). However, for d > 2, there is no available algorithm for computing
a quasi-best approximation in Cr(X) with a controlled factor γ.

2.2.2 Tucker format

The subset of Tucker tensors with rank r = (rµ)µ∈D, introduced in [38], is defined by

Tr(X) =

{
x ∈ X ;

there exist linear subspaces Uµ with

dim(Uµ) = rµ, 1 ≤ µ ≤ d, such that x ∈⊗d
µ=1 Uµ

}
. (2)

Letting Ir = Ir1 × . . .× Ird with Irµ = {1, . . . , rµ}, it is equivalently defined by

Tr(X) =

{
x =

∑

i∈Ir

αi

⊗

µ

xµiµ ; α ∈
d⊗

µ=1

R
rµ , xµiµ ∈ Xµ

}
, (3)

where α is the so called core tensor of the Tucker representation. The set Tr(X) is closed [13], so
that a best approximation problem of a tensor in Tr(X) always exists. Moreover, when using the
canonical norm, the Higher Order Singular Value Decomposition (HOSVD) algorithm proposed
in [8] allows the efficient computation of a quasi-best approximation of a tensor with a controlled
factor γ =

√
d. This quasi-best approximation can further be improved using Higher Order

Orthogonal Iterations (HOOI) algorithm [9], which is an alternating minimization algorithm. The
drawback of this format is that the core tensor α is of order d so that this format suffers from the
curse of dimensionality.

2.2.3 Hierarchical Tucker format

The Hierarchical Tucker tensor format has been introduced in [22] and is defined as follows. Let
T be a tree of dimensions, defined as a full binary tree on D with root D. The set of leaves of the
tree is defined by L(T) = {{µ};µ ∈ D} and the set of interior nodes is I(T) = T \ L(T). The set
of successors S(t) of an interior note t ∈ I(T) is composed by two nonempty successors t1 and t2
in T such that t = t1 ∪ t2 and t1 ∩ t2 = ∅. The complement of t ∈ T is denoted by tc = D \ t. We
denote by X t =

⊗
µ∈t Xµ and X tc =

⊗
µ∈tc Xµ. The t-matricization operatorMt : X → X t⊗X tc

is defined for x =
∑r

i=1

⊗
µ x

µ
i by

Mt(x) =
r∑

i=1

(
⊗

µ∈t

xµi

)
⊗
(
⊗

µ∈tc

xµi

)
.

The t-rank of x is then defined as the rank of the 2-order tensor Mt(x) ∈ X t ⊗X tc . Given a tree
of dimensions T and a family of ranks r = (rt)t∈T associated with the tree, the set of Hierarchical
Tucker tensors with bounded rank r is defined by

HT
r (X) = {x ∈ X ; t-rank(x) ≤ rt, ∀t ∈ T } .

We note that the set of Tucker tensors T(r1,...,rd) = {x ∈ X ; µ-rank(x) ≤ rµ, ∀µ ∈ D}, and there-
fore

HT
r (X) ⊂ T(r1,...,rd)(X).

In practice, a tensor x ∈ HT
r (X) can be represented under the form

x =

rt1∑

i=1

rt2∑

j=1

βD
ijx

t1
i ⊗ xt2j , β

D ∈ R
rt1×rt2 , {t1, t2} = S(D),

Low-rank approximate inverse for preconditioning linear systems 5

where for all t ∈ I(T) \ {D},

xtk =

rt1∑

i=1

rt2∑

j=1

βt
ijkx

t1
i ⊗ xt2j , β

t ∈ R
rt1×rt2×rt , {t1, t2} = S(t), k ∈ {1, . . . , rt}.

Therefore, x ∈ HT
r (X) is completely determined by the set of transfer tensors {βt; t ∈ I(T)}

associated with the interior nodes of the tree, and the set of elements {xµi ; i ∈ Irµ , µ ∈ D}
associated with the leaves of the tree. The tensor x can be written

x =
∑

i∈Ir1
×...×Ird

αi

d⊗

µ=1

xµiµ ,

where the tensor α ∈ HT
r (
⊗d

µ=1 R
rµ) is a rank-r Hierarchical Tucker tensor that can be expressed

in terms of the transfer tensors {βt; t ∈ I(T)}.
The set HT

r (X) is closed (see [21], section 11.4.1.1) so that a best approximation of a tensor in
HT

r (X) always exists. Moreover, when using the induced canonical norm, the Hierarchical Singular
Value Decomposition (HSVD) algorithm proposed in [18] allows the efficient computation of a
quasi-best approximation of a tensor in HT

r (X) with a controlled factor γ =
√
2d− 3. Besides,

given that #I(T) = d−1 and #L(T) = d, the Hierarchical Tucker format does not suffer from the
curse of dimensionality since the dimension of the parametrization of a tensor in HT

r (X) depends
linearly on d.

3 Rank-one approximation of an inverse operator

Let consider A in W =
⊗d

µ=1 Wµ, with Wµ = R
nµ×nµ . In this section, we introduce an algorithm

for computing a rank-one approximation of the inverse A−1 of A, considered as an operator
from

⊗d
µ=1 R

nµ to
⊗d

µ=1 R
nµ . The rank-one approximation is searched in a linear subspace

U =
⊗d

µ=1 Uµ of W , with Uµ = Wµ or Uµ ⊂ Wµ, a linear subspace of operators with prescribed
properties such as symmetry or sparsity.

3.1 Best rank-one correction

Let P ∈ W be a first approximation of A−1 (e.g. a known preconditioner of A). C1(U) denotes
the set of rank-one elements of the tensor space U ⊂ W . The best rank-one correction W =⊗d

µ=1W
µ ∈ C1(U) of P is defined by the following problem

min
W∈C1(U)

‖A−1 − (P +W)‖⋆ (4)

where ‖·‖⋆ is a norm on W that has to be chosen such that an approximationW can be computed
without knowing A−1.

3.2 Definition of the norm ‖ · ‖⋆
If A is symmetric positive definite, we choose the norm ‖·‖⋆ = ‖·‖A defined by ‖X‖A = ‖XA1/2‖ =√
〈XA,X〉 and associated with the inner product 〈·, ·〉A defined by 〈X,Y 〉A = 〈XA, Y 〉. We note

that ‖A−1 − (P +W)‖A = ‖I − (P +W)A‖A−1 , so that the minimization problem (4) provides a
left approximate inverse (P +W) of A.1

In the more general case of a definite operator A, we choose the norm ‖ · ‖⋆ = ‖ · ‖AAT defined
by ‖X‖AAT = ‖XA‖ =

√
〈XA,XA〉 =

√
〈XAAT , X〉 and associated with the inner product

1We could also choose ‖ · ‖⋆ = ‖ · ‖A with ‖X‖A = ‖A1/2X‖ =
√

〈AX,X〉, so that the minimization of
‖A−1 − (P +W)‖⋆ = ‖I − A(P +W)‖A−1 provides a right approximate inverse (P +W) of A.

Low-rank approximate inverse for preconditioning linear systems 6

〈·, ·〉AAT defined by 〈X,Y 〉AAT = 〈XA, Y A〉 = 〈XAAT , Y 〉. We note that ‖A−1− (P +W)‖AAT =
‖I−(P+W)A‖, so that the minimization problem (4) provides a left approximate inverse (P+W)
of A.2

From now on, we consider that ‖ · ‖⋆ = ‖ · ‖AB, with B = I if A is symmetric positive definite
or B = AT if A is simply definite, and we denote by 〈·, ·〉⋆ = 〈·, ·〉AB the associated inner product
on W .

3.3 Stationarity conditions

A necessary condition of optimality for a solution W =
⊗d

µ=1W
µ of problem (4) is

〈
A−1 − (P +W), δW

〉
⋆
= 0, ∀δW ∈ TW (C1(U)), (5)

where TW (C1(U)) is the tangent space of C1(U) at W defined by

TW (C1(U)) =
d∑

µ=1

T
(µ)
W (C1(U)) ⊂ Cd(U),

with

T
(µ)
W (C1(U)) =

{
δW =W 1 ⊗ . . .⊗ δWµ ⊗ . . .⊗W d ∈ C1(U); δWµ ∈ Uµ

}
.

Using the definition of inner product 〈·, ·〉⋆ = 〈·, ·〉AB , we have that W satisfies (5) if and only if

〈B − (P +W)AB, δW 〉 = 0, ∀δW ∈ TW (C1(U)). (6)

Let Pµ : Wµ → Uµ, µ ∈ D, denote the orthogonal projector from Wµ into Uµ, such that
PµPµ = Pµ and 〈Pµ(Xµ), Y µ−Pµ(Y µ)〉µ = 0 for allXµ, Y µ ∈ Wµ. The operator P : W → U
defined by P =

⊗d
µ=1 Pµ is the orthogonal projector from W to U such that PP = P and

〈P(X), Y − P(Y)〉 = 0, ∀X,Y ∈ W . (7)

Noting that TW (C1(U)) ⊂ U , we have that for all δW ∈ TW (C1(U)),

〈B − (P +W)AB, δW 〉 = 〈B − (P +W)AB,P(δW)〉
= 〈P(B − (P +W)AB),P(δW)〉
= 〈P(B − (P +W)AB), δW 〉 .

Therefore, using the definition of the tangent space TW (C1(U)), we obtain that W satisfies (6) if
and only if for all λ ∈ D,

〈P(WAB), δW 〉 = 〈P(R(P)), δW 〉 , ∀δW ∈ T
(λ)
W (C1(U)), (8)

with R(P) = B − PAB.

3.4 Alternating minimization algorithm

For solving (4), we use an alternating minimization algorithm. Starting from an arbitrary ini-
tialization W = ⊗µW

µ ∈ C1(U), it consists in solving successively the quadratic optimization
problems

min
Wλ∈Uλ

‖A−1 − P −
d⊗

µ=1

Wµ‖2⋆, (9)

2We could also choose ‖X‖⋆ = ‖AX‖ =
√

〈AX,AX〉, so that the minimization of ‖A−1 − (P + W)‖⋆ =
‖I −A(P +W)‖ provides a right approximate inverse P +W of A.

Low-rank approximate inverse for preconditioning linear systems 7

for λ ∈ {1, . . . , d, 1, . . .}. It is observed that this algorithm converges to an elementW that satisfies
the stationarity condition (5), or equivalently (8) for all λ ∈ D. However, note that it does not
necessarily yield a solution of (4).

The solution of (9) is equivalent to the solution of Equation (8) for givenWµ, µ 6= λ. Therefore,
noting C = AB =

∑rC
i=1 ⊗µC

µ
i and R(P) = B − PAB =

∑
i∈IrR

γi ⊗µ R
µ
iµ
, we obtain that (9) is

equivalent to the following linear problem on Wλ ∈ Wλ:

P
λ(WλQλ) = P

λ(Hλ(P)), (10)

with

Qλ =

rC∑

i=1

Cλ
i

∏

µ6=λ

〈Pµ(WµCµ
i),W

µ〉µ , (11)

Hλ(P) =
∑

i∈IrR

Rλ
iλγi

∏

µ6=λ

〈
P

µ(Rµ
iµ
),Wµ

〉
µ
. (12)

If Uλ = Wλ, that means if we do not impose any particular property to matrices associated
with dimension λ, then Pλ is the identity on Wλ and Equation (10) becomes

WλQλ = Hλ(P), (13)

with Qλ and Hλ(P) defined in Equations (11) and (12) respectively.

3.5 Imposing properties

3.5.1 Imposing symmetries

We noteDsym, Dskew andDc three sets of indices such that they form a partition ofD = {1, . . . , d}.
Then, we consider U =

⊗
µ Uµ such that

Uµ =





{X ∈ Wµ; X = XT} if µ ∈ Dsym,

{X ∈ Wµ; X = −XT} if µ ∈ Dskew ,

Wµ if µ ∈ Dc.

The orthogonal projector Pµ : Wµ → Uµ is such that

P
µ(X) =





1
2 (X +XT) if µ ∈ Dsym,
1
2 (X −XT) if µ ∈ Dskew ,

X if µ ∈ Dc.

Therefore, the linear equation (10) in Wλ ∈ Uλ can be written





WλQλ +
(
Qλ
)T
Wλ = Hλ +

(
Hλ
)T

if λ ∈ Dsym,

WλQλ −
(
Qλ
)T
Wλ = Hλ −

(
Hλ
)T

if λ ∈ Dskew ,

WλQλ = Hλ, otherwise.

We notice that the equations associated with λ in Dsym or Dskew are particular cases of the so
called Sylvester equation which can be solved with the algorithm from [4].

If A and P are symmetric, and if Dsym = D (that means that we search for a symmetric
rank-one approximation), then Qλ is symmetric and (10) is a continuous Lyapunov equation

WλQλ +QλWλ = Hλ + (Hλ)T .

Low-rank approximate inverse for preconditioning linear systems 8

3.5.2 Imposing sparsity

Here, we are interested in using sparse approximation in order to handle large matrices. For λ ∈ D,
let Iλ ⊂ {1, . . . , nλ}2 and let Uλ be the subspace of matrices with sparsity pattern Iλ:

Uλ =
{
X ∈ Wλ; (X)kj = 0, ∀(k, j) /∈ Iλ

}
.

The orthogonal projector from Wλ onto Uλ is defined for Xλ ∈ Wλ by

(Pλ(Xλ))kj =

{
(Xλ)kj if (k, j) ∈ Iλ,

0 if (k, j) /∈ Iλ.

Similarly to the SParse Approximate Inverse (SPAI) method from [20], we reformulate equation
(10) as the following minimization problem:

min
Wλ∈Uλ

∥∥Pλ(WλQλ −Hλ)
∥∥2
λ
. (14)

Noting {wλ
k}1≤k≤nλ

(resp. {hλk}1≤k≤nλ
) the rows of Wλ (resp. Hλ), we have

∥∥Pλ(WλQλ −Hλ)
∥∥2
λ
=

nλ∑

k=1

∥∥wλ
kQ

λPλ
k − hλkP

λ
k

∥∥2
λ
,

where Pλ
k ∈ R

nλ×nλ is a boolean diagonal matrix such that (Pλ
k)jj = 1 if j ∈ Iλk and (Pλ

k)jj = 0 if
j /∈ Iλk , where I

λ
k = {j; (k, j) ∈ Iλ} denotes the pattern of the row k. Therefore, the minimization

problem (14) is equivalent to nλ independent minimization problems (that can be solved in parallel)

min
wλ

k
∈R

nλ

∥∥wλ
kQ

λPλ
k − hλkP

λ
k

∥∥2
λ

submitted to (wλ
k)j = 0 for all j /∈ Iλk . (15)

Each problem (15) can be rewritten as the minimization of ‖ŵλ
k Q̂

λ
k − ĥλk‖2λ over ŵλ

k ∈ R
mλ

k , with

mλ
k = #Iλk , where ŵ

λ
k (resp. ĥλk) denotes the vector of non zero entries of wλ

k (resp. hλkP
λ
k). This

minimization problem on ŵλ
k can be solved using a QR decomposition of the reduced matrix Q̂λ

k

(see [20]).
For the adaptive selection of the pattern Iλ, we use the iterative method proposed in [20]. Let

Pλ,(i) be the projector associated to the set of patterns {Iλ,(i)k }1≤k≤nλ
. We start from an initial

projector Pλ,(0) (e.g. associated with diagonal patterns I
λ,(0)
k = {k}). Then, for i = 0, . . . , imax,

we proceed as follows. We compute

Wλ,(i) = arg min
Wλ∈Uλ

∥∥∥Pλ,(i)(WλQλ −Hλ)
∥∥∥
2

λ
.

Then, for each row k, we compute a new index

j
λ,(i)
k = arg min

1≤j≤nλ

(
min
γ∈R

∥∥∥(wλ,(i)
k + γ(eλj)

T)Qλ − hλk

∥∥∥
2

λ

)
,

where eλj is the j-th canonical basis vector in R
nλ , and we set I

λ,(i+1)
k = I

λ,(i)
k ∪ {jλ,(i)k }.

4 A constructive algorithm using projections in reduced

spaces

Here, we introduce a constructive algorithm for the approximation of the inverseA−1 of an operator
A using Tucker or Hierarchical Tucker tensor format.

Low-rank approximate inverse for preconditioning linear systems 9

The algorithm starts with an initialization P0, such as P0 = 0 or a first approximation of A−1.
Knowing an approximation Pr−1 of A−1, we look for a rank-one correction Wr =

⊗
µW

µ
r which

solves

min
W∈C1(W)

∥∥A−1 − Pr−1 −W
∥∥
⋆
, (16)

where the norm ‖ · ‖⋆ has been defined in Section 3.2. Then, we define the linear subspace

Ur =

d⊗

µ=1

Uµ
r with Uµ

r = span {Wµ
1 , . . . ,W

µ
r } .

The dimension of Ur is
∏

µ rµ, with rµ ≤ r. In practice, we construct orthogonal bases {Qµ
i }1≤i≤rµ

of the subspaces Uµ
r , yielding a basis {

⊗
µQ

µ
i }i∈Ir

of Ur, with Ir =
{
(i1, . . . , id) ∈ N

d; 1 ≤ iµ ≤ rµ
}
.

The approximation Pr is then searched in the subspace Ur under the form

Pr =
∑

i∈Ir

αi

d⊗

µ=1

Qµ
i . (17)

If the dimension Ur is sufficiently small, Pr is defined as the projection of A−1 on the subspace Ur

with respect to the inner product norm ‖ · ‖⋆,

Pr = arg min
P∈Ur

∥∥A−1 − P
∥∥
⋆
,

and Pr is given under the form (17) with α solution of the linear system
∑

i∈Ir

〈Qi, Qj〉⋆ αi =
〈
A−1, Qj

〉
⋆
, ∀j ∈ Ir.

When the dimension of Ur is large (e.g. for large d or large r), the computation of the projection in
Ur may be prohibitive. In this case, we replace the projection in Ur by an approximate projection
using Hierarchical Tucker format. More precisely, given a tree of dimensions T and a set of
ranks (rt)t∈T , we introduce the subset of Hierarchical Tucker tensors HT

r (Ur) in Ur. Then, an
approximation Pr is computed by solving the minimization problem

min
P∈HT

r (Ur)

∥∥A−1 − P
∥∥
⋆
,

which is equivalent to computing an approximation Pr under the form (17) with α in HT
r (
⊗

µ R
rµ)

solution of

min
α∈HT

r (
⊗

µ R
rµ)

∥∥∥∥∥A
−1 −

∑

i∈Ir

αi

⊗

µ

Qµ
i

∥∥∥∥∥
⋆

.

This optimization problem is solved using an alternating minimization algorithm which consists in
successively minimizing over the transfer tensors (βt)t∈I(T) associated with the Hierarchical Tucker
representation of α (see Section 2.2.3). Let α = F ({βt}t∈I(T)) be a parametrization of α, where F
is a multilinear map, and let Ft be the partial application of F associated with the transfer tensor
βt, t ∈ I(T), such that Ft(β

t) = F ({βt}t∈I(T)). For a given t ∈ I(T), the minimization on βt is
equivalent to solving a linear system

N tβt = St,

where N t and St are defined such that for all tensors βt and δβt,

〈
N tβt, δβt

〉
=
∑

i∈Ir

∑

j∈Ir

〈Qi, Qj〉⋆ Ft(β
t)iFt(δβ

t)j ,

〈
St, δβt

〉
=
∑

j∈Ir

〈
A−1, Qj

〉
⋆
Ft(δβ

t)j .

Low-rank approximate inverse for preconditioning linear systems 10

For the practical computation of N t and St, we rely on evaluations of the inner product that
exploits the hierarchical tensor structure (see [28] for technical details). WhenN t is ill-conditioned,
we rather define βt such that

βt ∈ argmin
β̂t

∥∥∥N tβ̂t − St
∥∥∥ .

The algorithm for the construction of Pr is summarized in Algorithm 1.

Algorithm 1: Projection-based algorithm for low-rank approximate inverse construction

Data: A ∈ L(V), R ∈ N
∗, P0

Result: PR ∈ L(V)
for µ = 1, . . . , d do

Uµ
0 = 0 ;

end

for r = 1, . . . , R do

Compute Wr =
⊗

µW
µ
r by solving minW∈C1(W) ‖A−1 − Pr−1 −W‖⋆;

for µ = 1, . . . , d do

Uµ
r = Uµ

r−1 + span{Wµ
r };

end

Ur =
⊗

µ Uµ
r ;

Compute Pr by solving minP∈M ‖A−1 − P‖⋆ with M = Ur or M = HT
r (Ur);

end

return PR;

5 Numerical examples

In this section, we apply the proposed Algorithm 1 for the construction of low-rank approxima-
tions Pr of the inverse of operators arising from discretizations of (stochastic) partial differential
equations. This algorithm is denoted ALG-P. It is compared with a pure greedy rank-one algo-
rithm for which approximations Pr are defined by Pr = Pr−1 +Wr, where the Wr are successive
rank-one corrections obtained by solving (16), and Pr −P0 is a tensor with canonical rank r. This
algorithm is denoted by ALG-G. For the manipulation of hierarchical Tucker format, we have used
the MATLAB R© toolbox presented in [29].

5.1 Poisson equation

5.1.1 Description of the problem

We consider the Poisson equation defined on the d-dimensional domain Ω = ωd ⊂ R
d, with

ω = (0, 1), whose solution v(x), x = (x1, . . . , xd) ∈ Ω, satisfies

−
d∑

ν=1

∂2v

∂x2ν
= 1 on Ω and v = 0 on ∂Ω.

An approximation u of the weak solution v ∈ H1
0 (Ω) =

⊗d
µ=1H

1
0 (ω) is obtained through Galerkin

projection in the finite element space V =
⊗d

µ=1 Vµ ⊂ H1
0 (Ω), where the Vµ ⊂ H1

0 (ω) are uni-
dimensional linear finite element spaces. We let Vµ = span{ϕi; 1 ≤ i ≤ n}, where (ϕi)1≤i≤n is
the linear finite element basis associated with a regular mesh of ω composed by n + 1 elements.
Therefore, V = {u =

∑n
i1=1 . . .

∑n
id=1 αi1...id ⊗d

µ=1 ϕiµ ;α ∈ R
n ⊗ . . . ⊗ R

n} and the Galerkin
approximation u ∈ V is defined by

d∑

ν=1

∫

Ω

∂δu

∂xν

∂u

∂xν
dx =

∫

Ω

δu dx, ∀δu ∈ V . (18)

Low-rank approximate inverse for preconditioning linear systems 11

By identifying u with the d-order tensor of its coefficients, also denoted u ∈ R
n⊗ . . .⊗R

n, equation
(18) is equivalent to the linear system Au = b, with

A =
d∑

ν=1

d⊗

µ=1

(δνµK + (1− δνµ)M) , b =
d⊗

µ=1

c ,

Kij =

∫

ω

ϕ′
i(x)ϕ

′
j(x) dx , Mij =

∫

ω

ϕi(x) ϕj(x) dx , ci =

∫

ω

ϕi(x)dx ,

and where δνµ denotes the Kronecker’s delta. In the following, we use d = 20 and n = 100.

5.1.2 Numerical results

Convergence of the sequence of preconditioners The operator being symmetric positive
definite, the approximate inverse is computed with respect to the norm ‖ · ‖⋆ = ‖ · ‖A. For both
algorithms ALG-P and ALG-G, we start from P0 = 0. In Figure 1 we observe the convergence of
the approximate inverse Pr, by computing the relative error

ǫ(Pr) =
‖I − PrA‖

‖I‖ =

∥∥A−1 − Pr

∥∥
AAT

‖A−1‖AAT

. (19)

The convergence with r of ǫ(Pr) is plotted for both algorithms, with or without imposition of
symmetry in the rank-one corrections. For algorithms without imposition of symmetry, we first
observe the convergence of Pr towards A−1. ALG-P provides a sequence of approximations Pr

which converges very fast compared to the greedy construction. For the same rank r = 10,
ALG-P and ALG-G yield errors of 3.10−9 and 3.10−2 respectively. Algorithms with imposition of
symmetry present almost the same convergence, except for a rank greater than 9 corresponding
to a very small error less than 2.10−8. Let us emphasize that for computing Pr, both algorithms
require the computation of the same number r of rank-one corrections. For large matrices, these
rank-one corrections constitute the most costly step of this algorithm and therefore, for computing
Pr, the two algorithms require almost the same computation times.

0 2 4 6 8 10

10−8

10−6

10−4

10−2

r

ǫ(
P
r
)

ALG-G

ALG-P

ALG-G sym.

ALG-P sym

Figure 1: Convergence with r of the sequence of approximations Pr computed with ALG-P (Al-
gorithm 1) or ALG-G (pure greedy algorithm), with or without imposition of symmetry.

Preconditioned iterative solver The operator A being symmetric positive definite, we solve
the linear system Au = b using a Preconditioned Conjugate Gradient (PCG) with low-rank tensor
compressions of the iterates in hierarchical Tucker format (see the algorithm in [27]). Here, we

Low-rank approximate inverse for preconditioning linear systems 12

use approximations of the iterates in the hierarchical Tucker subset HT
15(V) associated with a

balanced tree T (same rank 15 at each node of the tree). We analyze the convergence of the PCG
using symmetric preconditioners Pr constructed with ALG-P or ALG-G. On Figure 2, we observe
that the convergence rate of the PCG strongly depends on the quality of the preconditioner.
We first note that when using a preconditioner Pr constructed with a pure greedy algorithm,
the convergence of the PCG is not improved when increasing the rank r of the preconditioner.
However, when using ALG-P, we can see that the convergence rate rapidly increases with the rank
r. Moreover, we observe that the relative residual norm stagnates at a certain precision. This
precision depends on two factors: the low-rank subset chosen for the approximation of iterates
(here fixed at HT

15(V)) and the quality of the preconditioner. Figure 2 illustrates the strong
influence of the preconditioner on the resulting precision, and the superiority of the proposed
algorithm over the pure greedy construction. In particular, we observe a difference of 2 (resp. 7)
orders of magnitude between rank-5 (resp. rank-10) preconditioners constructed by ALG-G and
ALG-P.

0 20 40 60 80 100

10−6

10−4

10−2

100

Iterations

R
el
a
ti
v
e
re
si
d
u
a
l
n
o
rm

P1

P5

P10

P̂1

P̂5

P̂10

Figure 2: Convergence of the Preconditioned Conjugate Gradient using approximate iterates in
HT

15(V), and using preconditioners P̂r (resp. Pr) constructed using ALG-P (resp. ALG-G) with
different ranks r ∈ {1, 5, 10}.

5.2 Stochastic elliptic problem

5.2.1 Description of the problem

We consider the stochastic partial differential equation defined on a 2-dimensional domain Ω =
(0, 1)2,

−κ∆v + ηv = f on Ω, v = 0 on ∂Ω,

where κ and η are independent random variables with uniform law over the intervals (1, 10) and
(200, 1000) respectively. f is such that f(x) = 1 if x ∈ [0.6, 0.8]× [0.6, 0.8] and f(x) = 0 otherwise.
κ (resp. η) is expressed as a linear function κ(ξ1) (resp. η(ξ2) of a random variable ξ1 (resp. ξ2)
with uniform law on the interval Ξ1 = (−1, 1) (resp. Ξ2), and the solution is expressed under
the form v(x, ξ1, ξ2), x ∈ Ω, with v : Ω × Ξ1 × Ξ2 → R. A Galerkin approximation u of the
weak solution v ∈ H1

0 (Ω) ⊗ L2(Ξ1) ⊗ L2(Ξ2) is obtained though Galerkin projection in a finite
dimensional space V = V1⊗V2⊗V3, where V1 = span{ϕi; 1 ≤ i ≤ n} ⊂ H1

0 (Ω) is a finite element
space associated with a regular cartesian mesh of Ω, and where V2 ⊂ L2(Ξ1) and V3 ⊂ L2(Ξ2) are
polynomial spaces of degree p−1. We denote by {ϕi, 1 ≤ i ≤ n} the finite element basis of V1. For
V2 and V3, we introduce a basis {ψi; 1 ≤ i ≤ p} where ψi+1 denotes the Legendre polynomial of

Low-rank approximate inverse for preconditioning linear systems 13

degree i. Therefore, V = {u =
∑n

i=1

∑p
j=1

∑p
k=1 αijkϕi ⊗ψj ⊗ψk;α ∈ R

n×p×p} and the Galerkin
approximation u ∈ V is defined by

∫

Ω×Ξ1×Ξ2

(κ(y1)∇δv · ∇v + η(y2)δv v) dxdy1dy2 =

∫

Ω×Ξ1×Ξ2

δv f(x) dxdy1dy2 (20)

for all δv ∈ V . By identifying u with the 3-order tensor of its coefficients, also denoted u ∈
R

n ⊗R
p⊗R

p, equation (20) is equivalent to a linear system Au = b, where A is a rank-2 operator
and b is a rank-one tensor. In the following numerical experiments, we take n = 202 and p = 10.

5.2.2 Numerical results

Convergence of the sequence of preconditioners We construct sequences of low-rank pre-
conditioner Pr using either ALG-P (Algorithm 1) or ALG-G (pure greedy algorithm), with a norm
‖·‖⋆ = ‖·‖A. We impose sparsity only along dimension 1. More precisely, during the computation
of a rank-one correctionWr =W 1

r ⊗W 2
r ⊗W 3

r , we search for a sparse approximationW 1
r using the

adaptive algorithm presented in Section 3.5.2, with a number of nonzero components limited to a
certain percentage, denoted γ, of the total number of components n2. The convergence with r of
the different preconditioners is illustrated in Figure 3, where the error estimator ǫ(Pr) is defined
by equation (19). We observe that all algorithms seem to converge toward the inverse of the
operator A. As we could have expected, the higher γ, the better the approximation is. Compared
to ALG-G, ALG-P significantly improves the quality of the approximation for a low additional
cost. For γ = 30%, ALG-P provides for r = 4 a better approximation than the approximation
provided by ALG-G for r = 10.

2 4 6 8 10

10−7

10−5

10−3

10−1

r

ǫ(
P
r
)

ALG-G, γ = 100%

ALG-G, γ = 10%

ALG-G, γ = 30%

ALG-P, γ = 100%

ALG-P, γ = 10%

ALG-P, γ = 30%

Figure 3: Convergence with r of the sequence of approximations Pr computed with ALG-P (Al-
gorithm 1) or ALG-G (pure greedy rank-one algorithm). Sparsity along dimension 1 is imposed
with a maximum percentage γ of nonzero components, for γ = 10, 30, 100%.

Preconditioned iterative solver Although the operator A is symmetric positive definite, the
resulting preconditioner with imposed sparsity is non symmetric. For the solution of the linear
system, we therefore use a preconditioned GMRES (without restart) with low-rank approximations
of the iterates (see the algorithm in [3]). Approximations of the iterates are here computed in
the subset Tm(V) of rank-(m,m,m) Tucker tensors using the Higher Order Orthogonal Iterations
(HOOI) algorithm [9].

In the following, we consider preconditioners with imposed sparsity with γ = 30%. Precon-
ditioners constructed with ALG-P and ALG-G are compared with mean-based preconditioner
PE which is classically used in the context of stochastic Galerkin methods. PE is the sparse

Low-rank approximate inverse for preconditioning linear systems 14

approximate inverse of the rank-one operator associated with a mean-value of the parameters:
(κ, η) = (5.5, 600). A reference solution uref is computed with the projection algorithm from [17],
which yields a relative residual of 2.40 10−15 after 20 iterations. In Figure 4, we illustrate the
convergence of the preconditioned GMRES for different preconditioners by plotting the relative
error ε(u(k)) between the k-th iterate u(k) of GMRES and the reference solution uref, defined by

ε(u(k)) =

∥∥u(k) − uref
∥∥

‖uref‖
. (21)

0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

Iterations

ε(
u
(k

)
)

PE

P1

P5

P10

P̂1

P̂5

P̂10

0 5 10 15 20 25 30

10−7

10−5

10−3

10−1

Iterations

ε(
u
(k

)
)

PE

P1

P5

P10

P̂1

P̂5

P̂10

Figure 4: Convergence of the Preconditioned GMRES using approximate iterates in T5(V) (top)
or T10(V) (bottom), and using preconditioners P̂r (resp. Pr) constructed using ALG-P (resp.
ALG-G) with different ranks r ∈ {1, 5, 10}. Comparison with the mean based preconditioner PE .

We observe that all the rank-one preconditioners give similar convergences, and that ALG-
P greatly improves the convergence rate of the preconditioned GMRES algorithm. We observe
a stagnation of the relative error at a certain precision. This precision depends on the tensor
subset in which the iterates are approximated (here T10(V) or T5(V)) and also on the conditioning
of the operator. The final precision can first be improved by introducing larger tensor subsets
for the approximation of iterates (compare the precisions obtained using T10(V) or T5(V)). This
was already observed in [27, 3]. Also, the final precision can be improved by using a better
preconditioner. Figures 4 (top and bottom) illustrate that the relative error for an approximation

in T5(V) and a preconditioner P̂10 obtained with ALG-P is 1.4 10−4, while the relative error for

Low-rank approximate inverse for preconditioning linear systems 15

an approximation in T10(V) and a preconditioner P1 is 2.3 10−4. Concerning the case where the
iterates are approximated in T10(V) (Figure 4 bottom), we observe that the final relative error
slightly increases with the rank r of the preconditioner Pr constructed by ALG-G. This reflects the
fact that when using ALG-G, increasing r only slightly improves the quality of the preconditioner
and may result in a deterioration of the final precision measured in solution norm. However,
the convergence rate of GMRES clearly increases with r. In practice, when a preconditioner P
is available, the error can be estimated by computing the norm of the preconditioned relative
residual defined by

ε̃(u(k);P) =

∥∥P (b −Au(k))
∥∥

‖Pb‖ .

For good preconditioners, ε̃(u(k);P) may be a good estimate of the relative error ε(u(k)) in solution
norm. This is illustrated on Figure 5 where we can see that ε̃(u(k);P) gives almost the same error

as ε(u(k)) when the preconditioner P is a good approximation of A−1 (e.g. P = P5, P10, P̂5, P̂10).

Influence of sparsity We consider the preconditioner P̂5 obtained with ALG-P. The conver-
gence of the preconditioned GMRES solver using approximations of iterates in T10(V) for different
levels γ of sparsity is plotted in Figure 6. We observe that the preconditioning greatly improves
the convergence rate of GMRES and also the accuracy of the resulting approximation. As we
could have expected, increasing γ improves the preconditioner and therefore improves the conver-
gence rate and the quality of the resulting approximation. When γ = 100%, that means without
imposed sparsity, the algorithm converges very fast and the error ε(u(k)) stagnates at a very low
value of 3 10−9 after only 4 iterations. When γ = 2%, 10% or 30%, we observe that the error
ε(u(k)) stagnates at about the same value 3 10−6, which is greater than for γ = 100% but also
significantly lower than the final error of 1.7 10−2 obtained when no preconditioner is used.

Low-rank approximate inverse for preconditioning linear systems 16

0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

Iterations

ε̃(
u
(k

)
;I
)

PE

P1

P5

P10

P̂1

P̂5

P̂10

0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

Iterations

ε(
u
(k

)
)

PE

P1

P5

P10

P̂1

P̂5

P̂10

0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

Iterations

ε̃(
u
(k

)
;P

)

PE

P1

P5

P10

P̂1

P̂5

P̂10

Figure 5: Convergence of the Preconditioned GMRES using approximate iterates in T5(V) for
different error estimators: relative residual norm (top), relative error in solution norm (middle) and

preconditioned relative residual norm (bottom). Use of preconditioners P̂r (resp. Pr) constructed
with ALG-P (resp. ALG-G) with different ranks r ∈ {1, 5, 10}. Comparison with the mean based
preconditioner PE .

Low-rank approximate inverse for preconditioning linear systems 17

0 5 10 15 20 25 30

10−8

10−6

10−4

10−2

100

Iterations

ε(
u
(k

)
)

No precond.

γ = 2%

γ = 10%

γ = 30%

γ = 100%

Figure 6: Convergence of Preconditioned GMRES using approximate iterates in T10(V) and using

preconditioner P̂5 constructed using ALG-P with different sparsity levels: γ = 2, 10, 30, 100%.

Low-rank approximate inverse for preconditioning linear systems 18

6 Conclusion

An algorithm has been proposed for the progressive construction of low-rank approximations of the
inverse of an operator given in low-rank tensor format. This construction is based on an updated
greedy algorithm which consists in constructing a sequence of tensor subspaces from successive
rank-one corrections and in computing projections (or approximate projections) in these tensor
subspaces, thus resulting in approximations in low-rank Tucker (or Hierarchical Tucker) format.
Some desired properties can be imposed on the approximate inverse during the correction step,
such as symmetry (requiring the solution of Sylvester equations) or sparsity. For the latter case,
the algorithm relies on a straightforward adaptation of the SParse Approximate Inverse method
with adaptive selection of the pattern. Compared to a direct approximation in low-rank tensor
subsets, the updated greedy algorithm has the advantages of being adaptive and of allowing the
reduction of the complexity of the construction. Also, the projection step significantly improves
the quality of preconditioners which may be obtained with pure greedy rank-one algorithms.
Numerical examples have illustrated the ability of the algorithm to provide good preconditioners
for linear systems of equations with a significant improvement of the convergence properties of
iterative solvers. The final precision which can be obtained in fixed low-rank tensor subsets is
enhanced as well.

Further investigations are needed in order to measure the quality of the approximate inverse as
a preconditioner of a linear system of equations. This measure could provide pertinent stopping
criteria for the updated greedy algorithm, with a necessary balance between the quality of the
preconditioner and the computational complexity (complexity of its construction and of algorithms
for solving the preconditioned system).

References

[1] E. Acar, D. M. Dunlavy, and T. G. Kolda, A scalable optimization approach for fitting
canonical tensor decompositions, Journal of Chemometrics, 25 (2011), pp. 67–86.

[2] A. Ammar, F. Chinesta, and A. Falcó, On the convergence of a greedy rank-one update
algorithm for a class of linear systems, Archives of Computational Methods in Engineering,
17 (2010), pp. 473–486.

[3] J. Ballani and L. Grasedyck, A projection method to solve linear systems in tensor
format, Numerical Linear Algebra with Applications, 20 (2013), pp. 27–43.

[4] R. H. Bartels and G. W. Stewart, Algorithm 432: Solution of the matrix equation AX
+ XB = c, Commun. ACM, 15 (1972), pp. 820–826.

[5] G. Beylkin and M. J. Mohlenkamp, Algorithms for numerical analysis in high dimen-
sions, SIAM Journal on Scientific Computing, 26 (2005), pp. 2133–2159.

[6] E. Cances, V. Ehrlacher, and T. Lelievre, Convergence of a greedy algorithm for
high-dimensional convex nonlinear problems, Mathematical Models & Methods In Applied
Sciences, 21 (2011), pp. 2433–2467.

[7] F. Chinesta, P. Ladeveze, and E. Cueto, A short review on model order reduction based
on proper generalized decomposition, Archives of Computational Methods in Engineering, 18
(2011), pp. 395–404.

[8] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value
decomposition, SIAM Journal on Matrix Analysis and Applications, 21 (2000), pp. 1253–
1278.

[9] , On the Best Rank-1 and Rank-(R 1 , R 2 ,. . ., R N) Approximation of Higher-Order
Tensors, SIAM Journal on Matrix Analysis and Applications, 21 (2000), pp. 1324–1342.

Low-rank approximate inverse for preconditioning linear systems 19

[10] V. de Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank approx-
imation problem, SIAM Journal on Matrix Analysis and Applications, 30 (2008), pp. 1084–
1127.

[11] M. Espig and W. Hackbusch, A regularized newton method for the efficient approximation
of tensors represented in the canonical tensor format, Numerische Mathematik, 122 (2012),
pp. 489–525.

[12] M. Espig, W. Hackbusch, T. Rohwedder, and R. Schneider, Variational calculus with
sums of elementary tensors of fixed rank, Numerische Mathematik, 122 (2012), pp. 469–488.

[13] A. Falcó and W. Hackbusch, On minimal subspaces in tensor representations, Founda-
tions of Computational Mathematics, 12 (2012), pp. 765–803.

[14] A. Falcó and A. Nouy, A Proper Generalized Decomposition for the solution of elliptic
problems in abstract form by using a functional Eckart-Young approach, Journal of Mathe-
matical Analysis and Applications, 376 (2011), pp. 469–480.

[15] , Proper generalized decomposition for nonlinear convex problems in tensor Banach
spaces, Numerische Mathematik, 121 (2012), pp. 503–530.

[16] R. G. Ghanem and R. M. Kruger, Numerical solution of spectral stochastic finite element
systems, Computer Methods in Applied Mechanics and Engineering, 129 (1996), pp. 289–303.

[17] L. Giraldi, A. Nouy, G. Legrain, and P. Cartraud, Tensor-based methods for numer-
ical homogenization from high-resolution images, Computer Methods in Applied Mechanics
and Engineering, 254 (2013), pp. 154–169.

[18] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM Journal on Ma-
trix Analysis and Applications, 31 (2010), pp. 2029–2054.

[19] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor
approximation techniques, GAMM-Mitteilungen, (2013).

[20] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses,
SIAM Journal on Scientific Computing, 18 (1997), pp. 838–853.

[21] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, vol. 42 of Series in Compu-
tational Mathematics, Springer, 2012.

[22] W. Hackbusch and S. Kuhn, A New Scheme for the Tensor Representation, Journal of
Fourier analysis and applications, 15 (2009), pp. 706–722.

[23] B. N. Khoromskij, Tensor-structured preconditioners and approximate inverse of elliptic
operators in R

d, Constructive Approximation, 30 (2009), pp. 599–620.

[24] , Tensors-structured numerical methods in scientific computing: Survey on recent ad-
vances, Chemometrics and Intelligent Laboratory Systems, 110 (2012), pp. 1–19.

[25] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review,
51 (2009), pp. 455–500.

[26] D. Kressner and C. Tobler, Krylov subspace methods for linear systems with tensor
product structure, SIAM Journal on Matrix Analysis and Applications, 31 (2010), pp. 1688–
1714.

[27] , Low-rank tensor krylov subspace methods for parametrized linear systems, SIAM Jour-
nal on Matrix Analysis and Applications, 32 (2011), pp. 1288–1316.

Low-rank approximate inverse for preconditioning linear systems 20

[28] , Preconditioned low-rank methods for high-dimensional elliptic PDE eigenvalue prob-
lems, Computational Methods in Applied Mathematics, 11 (2011), pp. 363–381.

[29] , htucker - a MATLAB toolbox for tensors in hierarchical Tucker format, Preprint, 2012.

[30] P. Ladevèze, J. Passieux, and D. Néron, The LATIN multiscale computational method
and the Proper Generalized Decomposition, Computer Methods in Applied Mechanics and
Engineering, 199 (2010), pp. 1287–1296.

[31] A. N. Langville and W. J. Stewart, A kronecker product approximate preconditioner
for SANs, Numerical Linear Algebra with Applications, 11 (2004), pp. 723–752.

[32] A. Nouy, A generalized spectral decomposition technique to solve a class of linear stochastic
partial differential equations, Computer Methods in Applied Mechanics and Engineering, 196
(2007), pp. 4521–4537.

[33] , Generalized spectral decomposition method for solving stochastic finite element equa-
tions: invariant subspace problem and dedicated algorithms, Computer Methods in Applied
Mechanics and Engineering, 197 (2008), pp. 4718–4736.

[34] , A priori model reduction through proper generalized decomposition for solving time-
dependent partial differential equations, Computer Methods in Applied Mechanics and Engi-
neering, 199 (2010), pp. 1603–1626.

[35] , Proper Generalized Decompositions and separated representations for the numerical
solution of high dimensional stochastic problems, Archives of Computational Methods in En-
gineering, 17 (2010), pp. 403–434.

[36] I. V. Oseledets and S. V. Dolgov, Solution of linear systems and matrix inversion in
the TT-Format, SIAM Journal on Scientific Computing, 34 (2012), pp. A2718–A2739.

[37] A. Touzene, A tensor sum preconditioner for stochastic automata networks, INFORMS
Journal on Computing, 20 (2008), pp. 234–242.

[38] L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31
(1966), pp. 279–311.

[39] E. Ullmann, A kronecker product preconditioner for stochastic galerkin finite element dis-
cretizations, SIAM Journal on Scientific Computing, 32 (2010), pp. 923–946.

[40] A. Uschmajew and B. Vandereycken, The geometry of algorithms using hierarchical
tensors, Linear Algebra and its Applications, 2013.

[41] E. Zander, Tensor Approximation Methods for Stochastic Problems, PhD thesis, TU Braun-
schweig, 2012.

	1 Introduction
	2 Tensor spaces and low-rank tensor approximation
	2.1 Tensor spaces
	2.2 Low-rank tensor approximation
	2.2.1 Canonical format
	2.2.2 Tucker format
	2.2.3 Hierarchical Tucker format

	3 Rank-one approximation of an inverse operator
	3.1 Best rank-one correction
	3.2 Definition of the norm "026B30D "026B30D
	3.3 Stationarity conditions
	3.4 Alternating minimization algorithm
	3.5 Imposing properties
	3.5.1 Imposing symmetries
	3.5.2 Imposing sparsity

	4 A constructive algorithm using projections in reduced spaces
	5 Numerical examples
	5.1 Poisson equation
	5.1.1 Description of the problem
	5.1.2 Numerical results

	5.2 Stochastic elliptic problem
	5.2.1 Description of the problem
	5.2.2 Numerical results

	6 Conclusion

