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Abstract

In this paper, we propose a method for the approximation of the solution of high-dimensional
weakly coercive problems formulated in tensor spaces using low-rank approximation formats.
The method can be seen as a perturbation of a minimal residual method with a measure
of the residual corresponding to the error in a specified solution norm. The residual norm
can be designed such that the resulting low-rank approximations are optimal with respect
to particular norms of interest, thus allowing to take into account a particular objective in
the definition of reduced order approximations of high-dimensional problems. We introduce
and analyze an iterative algorithm that is able to provide an approximation of the optimal
approximation of the solution in a given low-rank subset, without any a priori information on
this solution. We also introduce a weak greedy algorithm which uses this perturbed minimal
residual method for the computation of successive greedy corrections in small tensor subsets.
We prove its convergence under some conditions on the parameters of the algorithm. The pro-
posed numerical method is applied to the solution of a stochastic partial differential equation
which is discretized using standard Galerkin methods in tensor product spaces.

Introduction
Low-rank tensor approximation methods are receiving growing attention in computational science
for the numerical solution of high-dimensional problems formulated in tensor spaces (see the
recent surveys [30, 9, 29, 23] and monograph [24]). Typical problems include the solution of high-
dimensional partial differential equations arising in stochastic calculus, or the solution of stochastic
or parametric partial differential equations using functional approaches, where functions of multiple
(random) parameters have to be approximated. These problems take the general form

A(u) = b, u ∈ X = X1 ⊗ . . .⊗Xd, (1)

where A is an operator defined on the tensor space X. Low-rank tensor methods then consist in
searching an approximation of the solution u in a low-dimensional subset SX of elements of X of
the form ∑

i1

. . .
∑
id

αi1...idw
1
i1 ⊗ . . .⊗ w

d
id
, wµiµ ∈ Xµ, (2)

where the set of coefficients (αi1...id) possesses some specific structure. Classical low-rank tensor
subsets include canonical tensors, Tucker tensors, Tensor Train tensors [40, 27], Hierarchical Tucker
tensors [25] or more general tree-based Hierarchical Tucker tensors [18]. In practice, many tensors
∗This work is supported by the ANR (French National Research Agency, grants ANR-2010- COSI-006 and

ANR-2010-BLAN-0904)
†Ecole Centrale de Nantes, GeM UMR CNRS 6183, LUNAM Université, France.
‡Corresponding author (anthony.nouy@ec-nantes.fr).

1

ar
X

iv
:1

30
4.

61
26

v2
  [

m
at

h.
N

A
] 

 2
6 

M
ar

 2
01

4



Tensor approximation based on ideal minimal residual formulations 2

arising in applications are observed to be efficiently approximable by elements of the mentioned
subsets. Low-rank approximation methods are closely related to a priori model reduction methods
in that they provide approximate representations of the solution on low-dimensional reduced bases
{w1

i1
⊗ . . .⊗ wdid} that are not selected a priori.

The best approximation of u ∈ X in a given low-rank tensor subset SX with respect to a
particular norm ‖ · ‖X in X is the solution of

min
v∈SX

‖u− v‖X . (3)

Low-rank tensor subsets are neither linear subspaces nor convex sets. However, they usually satisfy
topological properties that make the above best approximation problem meaningful and allows
the application of standard optimization algorithms [41, 14, 44]. Of course, in the context of the
solution of high-dimensional problems, the solution u of problem (1) is not available, and the
best approximation problem (3) cannot be solved directly. Tensor approximation methods then
typically rely on the definition of approximations based on the residual of equation (1), which
is a computable quantity. Different strategies have been proposed for the construction of low-
rank approximations of the solution of equations in tensor format. The first family of methods
consists in using classical iterative algorithms for linear or nonlinear systems of equations with
low-rank tensor algebra (using low-rank tensor compression) for standard algebraic operations
[31, 28, 34, 4]. The second family of methods consists in directly computing an approximation of
u in SX by minimizing some residual norm [5, 35, 12]:

min
v∈SX

‖Av − b‖?. (4)

In the context of approximation, where one is interested in obtaining an approximation with a
given precision rather than obtaining the best low-rank approximation, constructive greedy algo-
rithms have been proposed that consist in computing successive corrections in a small low-rank
tensor subset, typically the set of rank-one tensors [32, 1, 35]. These greedy algorithms have been
analyzed in several papers [2, 6, 15, 17, 7, 19] and a series of improved algorithms have been
introduced in order to increase the quality of suboptimal greedy constructions [37, 38, 33, 17, 21].

Although minimal residual based approaches are well founded, they generally provide low-rank
approximations that can be very far from optimal approximations with respect to the natural norm
‖ · ‖X , at least when using usual measures of the residual. If we are interested in obtaining an
optimal approximation with respect to the norm ‖ · ‖X , e.g. taking into account some particular
quantity of interest, an ideal approach would be to define the residual norm such that

‖Av − b‖? = ‖u− v‖X ,

where ‖ · ‖X is the desired solution norm, that corresponds to solve an ideally conditioned prob-
lem. Minimizing the residual norm would therefore be equivalent to solving the best approximation
problem (3). However, the computation of such a residual norm is in general equivalent to the
solution of the initial problem (1).

In this paper, we propose a method for the approximation of the ideal approach. This method
applies to a general class of weakly coercive problems. It relies on the use of approximations rδ(v)
of the residual r(v) = Av − b such that ‖rδ(v)‖? approximates the ideal residual norm ‖r(v)‖? =
‖u − v‖X . The resulting method allows for the construction of low-rank tensor approximations
which are quasi-optimal with respect to a norm ‖ · ‖X that can be designed according to some
quantity of interest. We first introduce and analyze an algorithm for minimizing the approximate
residual norm ‖rδ(v)‖? in a given subset SX . This algorithm can be seen as an extension of the
algorithms introduced in [8, 10] to the context of nonlinear approximation in subsets SX . It
consists in a perturbation of a gradient algorithm for minimizing in SX the ideal residual norm
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‖r(v)‖?, using approximations rδ(v) of the residual r(v). An ideal algorithm would consist in
computing an approximation rδ(v) such that

(1− δ)‖u− v‖X ≤ ‖rδ(v)‖? ≤ (1 + δ)‖u− v‖X , (5)

for some precision δ, that requires the use of guaranteed error estimators. In the present paper,
(5) is not exactly satisfied since we only use heuristic error estimates. However, these estimates
seem to provide an acceptable measure of the error for the considered applications. The resulting
algorithm can be interpreted as a preconditioned gradient algorithm with an implicit precondi-
tioner that approximates the ideal preconditioner. Also, we propose a weak greedy algorithm for
the adaptive construction of an approximation of the solution of problem (1), using the perturbed
ideal minimal residual approach for the computation of greedy corrections. A convergence proof
is provided under some conditions on the parameters of the algorithm.

The outline of the paper is as follows. In section 1, we introduce a functional framework for
weakly coercive problems. In section 2, we briefly recall some definitions and basic properties of
tensor spaces and low-rank tensor subsets. In section 3, we present a natural minimal residual
based method for the approximation in a nonlinear subset SX , and we analyze a simple gradient al-
gorithm in SX . We discuss the conditioning issues that restrict the applicability of such algorithms
when usual residual norms are used, and the interest of using an ideal measure of the residual. In
section 4, we introduce the perturbed ideal minimal residual approach. A gradient-type algorithm
is introduced and analyzed and we prove the convergence of this algorithm towards a neighbor-
hood of the best approximation in SX . Practical computational aspects are detailed in section
5. In section 6, we analyze a weak greedy algorithm using the perturbed ideal minimal residual
method for the computation of greedy corrections. In section 7, a detailed numerical example will
illustrate the proposed method. The example is a stochastic reaction-advection-diffusion problem
which is discretized using Galerkin stochastic methods. In particular, this example will illustrate
the possibility to introduce norms that are adapted to some quantities of interest and the ability
of the method to provide (quasi-)best low-rank approximations in that context.

1 Functional framework for weakly coercive problems

1.1 Notations
For a given Hilbert spaceH, we denote by 〈·, ·〉H the inner product inH and by ‖·‖H the associated
norm. We denote by H ′ the topological dual of H and by 〈·, ·〉H′,H the duality pairing between
H and H ′. For v ∈ H and ϕ ∈ H ′, we denote ϕ(v) = 〈ϕ, v〉H′,H . We denote by RH : H → H ′ the
Riesz isomorphism defined by

〈v, w〉H = 〈v,RHw〉H,H′ = 〈RHv, w〉H′,H = 〈RHv,RHw〉H′ ∀v, w ∈ H.

1.2 Weakly coercive problems
We denote by X (resp. Y ) a Hilbert space equipped with inner product 〈·, ·〉X (resp. 〈·, ·〉Y ) and
associated norm ‖ · ‖X (resp. ‖ · ‖Y ). Let a : X × Y → R be a bilinear form and let b ∈ Y ′ be a
continuous linear form on Y . We consider the variational problem: find u ∈ X such that

a(u, v) = b(v) ∀v ∈ Y. (6)

We assume that a is continuous and weakly coercive, that means that there exist constants α and
β such that

sup
v∈X

sup
w∈Y

a(v, w)

‖v‖X‖w‖Y
= β < +∞, (7)

inf
v∈X

sup
w∈Y

a(v, w)

‖v‖X‖w‖Y
= α > 0, (8)
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and

sup
v∈X

a(v, w)

‖v‖X
> 0 ∀w 6= 0 in Y. (9)

We introduce the linear continuous operator A : X → Y ′ such that for all (v, w) ∈ X × Y ,

a(v, w) = 〈Av,w〉Y ′,Y .

We denote by A∗ : Y → X ′ the adjoint of A, defined by

〈Av,w〉Y ′,Y = 〈v,A∗w〉X,X′ ∀(v, w) ∈ X × Y.

Problem (6) is therefore equivalent to find u ∈ X such that

Au = b. (10)

Properties (7),(8) and (9) imply that A is a norm-isomorphism from X to Y ′ such that for all
v ∈ X,

α‖v‖X ≤ ‖Av‖Y ′ ≤ β‖v‖X (11)

ensuring the well-posedness of problem (10)[13]. The norms of A and its inverse A−1 are such
that ‖A‖X→Y ′ = β and ‖A−1‖Y ′→X = α−1. Then, the condition number of the operator A is

κ(A) = ‖A‖X→Y ′‖A−1‖Y ′→X =
β

α
≥ 1.

2 Approximation in low-rank tensor subsets

2.1 Hilbert tensor spaces
We here briefly recall basic definitions on Hilbert tensor spaces (see [24]). We consider Hilbert
spaces Xµ, 1 ≤ µ ≤ d, equipped with norms ‖ · ‖Xµ and associated inner products 〈·, ·〉µ1. We
denote by ⊗dµ=1v

µ = v1 ⊗ . . .⊗ vd, vµ ∈ Xµ, an elementary tensor. We then define the algebraic
tensor product space as the linear span of elementary tensors:

a

d⊗
µ=1

Xµ = span{⊗dµ=1v
µ : vµ ∈ Xµ, 1 ≤ µ ≤ d}.

A Hilbert tensor space X equipped with the norm ‖ · ‖X is then obtained by the completion with
respect to ‖ · ‖X of the algebraic tensor space, i.e.

X = a

d⊗
µ=1

Xµ

‖·‖X

= ‖·‖X

d⊗
µ=1

Xµ.

Note that for finite dimensional tensor spaces, the resulting space X is independent of the choice
of norm and coincides with the normed algebraic tensor space.

A natural inner product on X is induced by inner products 〈·, ·〉µ in Xµ, 1 ≤ µ ≤ d. It is
defined for v = ⊗dµ=1v

µ and w = ⊗dµ=1w
µ by

〈v, w〉X =

d∏
µ=1

〈vµ, wµ〉µ

and extended by linearity on the whole algebraic tensor space. This inner product is called the
induced (or canonical) inner product and the associated norm the induced (or canonical) norm.

1e.g. Xµ = Rnµ equipped with the Euclidian norm, or Xµ = Hk
0 (Ωµ), k ≥ 0, a Sobolev space of functions

defined on a domain Ωµ.
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2.2 Classical low-rank tensor subsets
Low-rank tensor subsets SX of a tensor space X = ‖·‖

⊗d
µ=1Xµ are subsets of the algebraic tensor

space a
⊗d

µ=1Xµ, which means that elements v ∈ SX can be written under the form

v =
∑
i1∈I1

. . .
∑
id∈Id

αi1,...,id

d⊗
µ=1

vµiµ , (12)

where α = (αi)i∈I ∈ RI , with I := I1 × . . . × Id, is a set of real coefficients that possibly satisfy
some constraints, and (vµiµ)iµ∈Iµ ∈ (Xµ)Iµ , for 1 ≤ µ ≤ d, is a set of vectors that also possibly
satisfy some constraints (e.g. orthogonality).

Basic low-rank tensor subsets are the set of tensors with canonical rank bounded by r:

Rr(X) =

{
v =

r∑
i=1

⊗dµ=1v
µ
i : vµi ∈ Xµ

}
,

and the set of Tucker tensors with multilinear rank bounded by r = (r1, . . . , rd):

Tr(X) =

{
v =

r1∑
i1=1

. . .

rd∑
id=1

αi1,...,id ⊗dµ=1 v
µ
iµ

: vµiµ ∈ Xµ, αi1,...,id ∈ R

}

Other low-rank tensor subsets have been recently introduced, such as Tensor Train tensors [40, 27]
or more general tree-based Hierarchical Tucker tensors [25, 18], these tensor subsets corresponding
to a form (12) with a particular structure of tensor α. Note that for the case d = 2, all the above
tensor subsets coincide.

Remark 2.1. From a numerical point of view, the approximate solution of the variational problem
(6) requires an additional discretization which consists in introducing an approximation space
X̃ = ⊗dµ=1X̃µ, where the X̃µ ⊂ Xµ are finite dimensional approximation spaces (e.g. finite element
spaces). Then, approximations are searched in low-rank tensor subsets SX of X̃ (e.g. Rr(X̃) or
Tr(X̃)), thus introducing two levels of discretizations. In the following, we adopt a general point
of view where X can either denote an infinite dimensional space, an approximation space obtained
after the discretization of the variational problem, or even finite dimensional Euclidian spaces for
problems written in an algebraic form.

2.3 Best approximation in tensor subsets
Low-rank tensor approximation methods consist in computing an approximation of a tensor u ∈ X
in a suitable low-rank subset SX of X. The best approximation of u in SX is defined by

min
v∈SX

‖u− v‖X . (13)

The previously mentioned classical tensor subsets are neither linear subspaces nor convex sets.
However, they usually satisfy properties that give sense to the above best approximation problem.
We consider the case that SX satisfies the following properties:

SX is weakly closed (or simply closed in finite dimension), (14)
SX ⊂ γSX for all γ ∈ R. (15)

Property (15) is satisfied by all the classical tensor subsets mentioned above (canonical tensors,
Tucker and tree-based Hierarchical Tucker tensors). Property (14) ensures the existence of solu-
tions to the best approximation problem (13). This property, under some suitable conditions on
the norm ‖ · ‖X (which is naturally satisfied in finite dimension), is verified by most tensor subsets
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used for approximation (e.g. the set of tensors with bounded canonical rank for d = 2, the set of
elementary tensors R1 for d ≥ 2 [15], the sets of Tucker or tree-based Hierarchical Tucker tensors
[16]).

We then introduce the set-valued map ΠSX : X → 2SX that associates to an element u ∈ X
the set of best approximations of u in SX :

ΠSX (u) = arg min
v∈SX

‖u− v‖X . (16)

Note that if SX were a closed linear subspace or a closed convex set of X, then ΠSX (u) would
be a singleton and ΠSX would coincide with the classical definition of the metric projection on
SX . Property (15) still implies the following property of projections: for all v ∈ X and for all
w ∈ ΠSX (v),

‖v − w‖2X = ‖v‖2X − ‖w‖2X with ‖w‖X = σ(v;SX) = max
z∈SX

〈v, z〉X
‖z‖X

. (17)

ΠSX (v) is therefore a subset of the sphere of radius σ(v;SX) in X. In the following, we will use
the following abuse of notation: for a subset S ⊂ X and for w ∈ X, we define

‖S − w‖X := sup
v∈S
‖v − w‖X

With this convention, we have ‖ΠSX (v)‖X = σ(v;SX) and

‖ΠSX (v)− v‖2X = ‖v‖2X − ‖ΠSX (v)‖2X . (18)

3 Minimal residual based approximation

We now consider that problem (10) is formulated in tensor Hilbert spaces X = ‖·‖X
⊗d

µ=1Xµ and
Y = ‖·‖Y

⊗d
µ=1 Yµ. The aim is here to find an approximation of the solution u of problem (10) in

a given tensor subset SX ⊂ X.

3.1 Best approximation with respect to residual norms
Since the solution u of problem (10) is not available, the best approximation problem (13) cannot
be solved directly. However, tensor approximations can be defined using the residual of equation
(10), which is a computable information. An approximation of u in SX is then defined by the
minimization of a residual norm:

min
v∈SX

‖Av − b‖Y ′ = min
v∈SX

‖A(v − u)‖Y ′ . (19)

Assuming that we can define a tangent space Tv(SX) to SX at v ∈ SX , the stationarity condition
of functional J : v 7→ ‖A(v − u)‖2Y ′ at v ∈ SX is

〈J ′(v), δv〉X′,X = 0 ∀δv ∈ Tv(SX),

or equivalently, noting that the gradient of J at v is J ′(v) = A∗R−1
Y (Av − b) ∈ X ′,

〈Av − b, Aδv〉Y ′ = 0 ∀δv ∈ Tv(SX).
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3.2 Ideal choice of the residual norm
When approximating u in SX using (19), the obtained approximation depends on the choice of
the residual norm. If we want to find a best approximation of u with respect to the norm ‖ · ‖X ,
then the residual norm should be chosen [8, 10] such that

‖A(v − u)‖Y ′ = ‖v − u‖X ∀v ∈ X,

or equivalently such that the following relation between inner products holds:

〈v, w〉X = 〈Av,Aw〉Y ′ ∀v, w ∈ X. (20)

This implies

〈v, w〉X = 〈Av,R−1
Y Aw〉Y ′,Y = 〈v,R−1

X A∗R−1
Y Aw〉X ,

for all v, w ∈ X, and therefore, by identification,

IX = R−1
X A∗R−1

Y A⇔ RY = AR−1
X A∗ ⇔ RX = A∗R−1

Y A. (21)

Also, since

〈v, w〉Y = 〈RY v, w〉Y ′,Y = 〈AR−1
X A∗v, w〉Y ′,Y

= 〈R−1
X A∗v,A∗w〉X,X′ = 〈A∗v,A∗w〉X′

for all v, w ∈ Y , we also have that (20) is equivalent to the following relation:

〈v, w〉Y = 〈A∗v,A∗w〉X′ ∀v, w ∈ Y. (22)

Note that (20) and (22) respectively impose

‖v‖X = ‖Av‖Y ′ and ‖w‖Y = ‖A∗w‖X′ . (23)

This choice implies that the weak coercivity and continuity constants are such that α = β = 1,
and therefore

κ(A) = 1,

meaning that problem (10) is ideally conditioned.

In practice, we will first define the inner product 〈·, ·〉X and the other inner product 〈·, ·〉Y will
be deduced from (22).

Example 3.1. Consider that X = Y and let A = B + C with B a symmetric coercive and
continuous operator and C a skew-symmetric operator. We equip X with inner product 〈v, w〉X =
〈Bv,w〉X′,X , which corresponds to RX = B. Therefore,

‖v‖2Y = ‖A∗v‖2X′ = ‖Bv‖2X′ + ‖Cv‖2X′ = ‖v‖2X + ‖Cv‖2X′ .

‖v‖Y corresponds to the graph norm of the skew-symmetric part C of the operator A. When C = 0,
we simply have ‖v‖2Y = ‖v‖2X .

Example 3.2 (Finite dimensional problem). Consider the case of finite dimensional tensor spaces
X = Y = Rn1×...×nd , e.g. after a discretization step for the solution of a high-dimensional partial
differential equation. The duality pairings are induced by the standard canonical inner product. We
can choose for 〈·, ·〉X the canonical inner product on Rn1×...×nd , which corresponds to RX = IX ,
the identity on X. Then, inner product on Y is defined by relation (22), which implies

〈v, w〉Y = 〈A∗v,A∗w〉X and RY = AA∗.
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3.3 Gradient-type algorithm
For solving (19), we consider the following basic gradient-type algorithm: letting u0 = 0, we
construct a sequence {uk}k≥0 in SX and a sequence {yk}k≥0 in Y defined for k ≥ 0 by{

yk = R−1
Y (Auk − b)

uk+1 ∈ ΠSX (uk − ρR−1
X A∗yk)

(24)

with ρ > 0. Equations (24) yield

uk+1 ∈ ΠSX (u+Bρ(u
k − u)),

with Bρ = IX − ρR−1
X A∗R−1

Y A a symmetric operator from X to X. For all v ∈ X,

〈Bρv, v〉X
‖v‖2X

= 1− ρ‖Av‖
2
Y ′

‖v‖2X
.

Here, we assume that ‖ · ‖X and ‖ · ‖Y do not necessarily satisfy the relation (23) (i.e. α
β 6= 1).

From (11), we deduce that the eigenvalues of Bρ are in the interval [1−ρβ2, 1−ρα2]. The spectral
radius of Bρ is therefore bounded by

γ(ρ) = max{|1− ρβ2|, |1− ρα2|}.

Proposition 3.3. Assuming γ(ρ) < 1/2, the sequence {uk}k≥1 defined by (24) is such that

‖uk − u‖X ≤ (2γ)k‖u0 − u‖X +
1

1− 2γ
‖u−ΠSX (u)‖X (25)

and

lim sup
k→∞

‖uk − u‖X ≤
1

1− 2γ
‖u−ΠSX (u)‖X (26)

Proof. Denoting vk = uk − u, we have

‖uk+1 − u‖X ≤ ‖ΠSX (u+Bρv
k)− u‖X

≤ ‖ΠSX (u+Bρv
k)− (u+Bρv

k)‖X + ‖Bρvk‖X
≤ ‖w − (u+Bρv

k)‖X + ‖Bρvk‖X

for all w ∈ SX . In particular, this inequality is true for all w ∈ ΠSX (u), and therefore, taking the
supremum over all w ∈ ΠSX (u), we obtain

‖uk+1 − u‖X ≤ ‖ΠSX (u)− (u+Bρv
k)‖X + ‖Bρvk‖X

≤ ‖ΠSX (u)− u‖X + 2‖Bρvk‖X

Since ‖Bρv‖X ≤ γ‖v‖X for all v ∈ X and since 2γ < 1, we have

‖uk+1 − u‖X ≤ ‖ΠSX (u)− u‖X + 2γ‖u− uk‖X

≤ (2γ)k+1‖u0 − u‖X +
1− (2γ)k+1

1− 2γ
‖u−ΠSX (u)‖X

from which we deduce (25) and (26).

The condition γ(ρ) < 1/2 imposes β
α <

√
3 and ρ ∈ ( 1

2α2 ,
3

2β2 ). The condition β
α <

√
3 is a

very restrictive condition which is in general not satisfied without an excellent preconditioning of
the operator A.

However, with the ideal choice of norms introduced in the previous section (equation (23)), we
have α = β = 1 and Bρ = (1− ρ)IX . That means that the problem is ideally conditioned and we
have convergence for all ρ ∈ [ 1

2 ,
3
2 ] towards a neighborhood of ΠSX (u) of size 2γ

1−2γ ‖u−ΠSX (u)‖X
with γ = |1− ρ|.
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Corollary 3.4. Assume that (23) is satisfied. Then, if ρ ∈ [ 1
2 ,

3
2 ], the sequence {uk}k≥1 defined

by (24) verifies (25) and (26) with γ(ρ) = |1 − ρ|. Moreover, if ρ = 1, then u1 ∈ ΠSX (u), which
means that the algorithm converges in one iteration for any initialization u0.

4 Perturbation of the ideal approximation
We now consider that function spaces X and Y are equipped with norms satisfying the ideal
condition

‖Av‖Y ′ = ‖v‖X ∀v ∈ X. (27)

The solution of problem (19) using this ideal choice of norms is therefore equivalent to the best
approximation problem (13), i.e.

min
v∈SX

‖Av − b‖Y ′ = min
v∈SX

‖v − u‖X . (28)

Unfortunately, the computation of the solution of (28) would require the solution of the initial
problem. We here propose to introduce a computable perturbation of this ideal approach.

4.1 Approximation of the ideal approach
Following the idea of [8], the problem (28) is replaced by the following problem:

min
v∈SX

‖Λδ(R−1
Y (Av − b))‖Y , (29)

where Λδ : Y → Y is a mapping that provides an approximation Λδ(r) of the residual r =
R−1
Y (Av − b) ∈ Y with a controlled relative precision δ > 0, i.e. ‖Λδ(r) − r‖Y ≤ δ‖r‖Y . We will

then assume that the mapping Λδ is such that:

‖Λδ(y)− y‖Y ≤ δ‖y‖Y , ∀y ∈ DY =
{
R−1
Y (Av − b); v ∈ SX

}
. (30)

As we will see in the following algorithm, it is sufficient for Λδ to well approximate residuals that
are in the subset DY whose content depends on the chosen subset SX and on the operator and
right-hand side of the problem.

4.2 Quasi-optimal approximations in SX
Here we consider the case where we are not able to solve the best approximation problem in SX
exactly, because there is no available algorithm for computing a global optimum, or because the
algorithm has been stopped at a finite precision (see section 5.1 for practical comments). We
introduce a set of quasi-optimal approximations Πη

SX (u) ⊂ SX such that

‖u−Πη
SX (u)‖X ≤ η‖u−ΠSX (u)‖X (η ≥ 1). (31)

Remark 4.1. Note that by introducing this new perturbation, we are able to remove the assumption
that SX is closed and to handle the case where the problem (28) does not have a solution, i.e.
ΠSX (u) = ∅. In this case, we have to replace ‖u − ΠSX (u)‖X by infw∈SX ‖u − w‖X in equation
(31).

Remark 4.2. Note that if SX denotes a low-rank subset of an infinite dimensional space X,
additional approximations have to be introduced from a numerical point of view (see remark 2.1).
These additional approximations could be also considered as a perturbation leading to quasi-optimal
approximations, where η takes into account the approximation errors. In numerical examples, we
will not adopt this point of view and we will consider X as the approximation space and the
approximate solution in X of the variational problem will serve as a reference solution.
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4.3 Perturbed gradient-type algorithm
For solving (29), we now introduce an algorithm which can be seen as a perturbation of the ideal
gradient-type algorithm (24) introduced in section 3.3. Letting u0 = 0, we construct a sequence
{uk}k≥0 ⊂ SX and a sequence {yk}k≥0 ⊂ Y defined for k ≥ 0 by{

yk = Λδ(R−1
Y (Auk − b))

uk+1 ∈ Πη
SX (uk −R−1

X A∗yk)
(32)

Proposition 4.3. Assume (27), (30), and (31), with δ(1 + η) < 1. Then, the sequence {uk}k≥1

defined by (32) is such that

‖uk − u‖X ≤ ((1 + η)δ)k‖u0 − u‖X +
η

1− δ(1 + η)
‖u−ΠSX (u)‖X . (33)

Proof. Equation (32) can also be written

uk+1 ∈ Πη
SX (u+Bδ(uk − u))

with Bδ(v) = v − R−1
X A∗Λδ(R−1

Y A(v)). Denoting vk = uk − u, and following the proof of Propo-
sition 3.3, we obtain

‖uk+1 − u‖X ≤ ‖Πη
SX (u+Bδvk)− (u+Bδvk)‖X + ‖Bδvk‖X

≤ η‖ΠSX (u)− (u+Bδvk)‖X + ‖Bδvk‖X
≤ η‖ΠSX (u)− u‖X + (1 + η)‖Bδvk‖X

Moreover, using (27) and (21), we have

‖Bδvk‖X = ‖vk −R−1
X A∗Λδ(R−1

Y Avk)‖X
= ‖Avk −AR−1

X A∗Λδ(R−1
Y Avk)‖Y ′

= ‖R−1
Y Avk − Λδ(R−1

Y Avk)‖Y .

Noting that R−1
Y Avk = R−1

Y (Auk − b) belongs to the subset DY , we deduce from assumption (30)
and equation (27) that

‖Bδvk‖X ≤ δ‖R−1
Y Avk‖Y = δ‖vk‖X .

Denoting δη = δ(1 + η) < 1, we finally have

‖uk+1 − u‖X ≤ η‖ΠSX (u)− u‖X + δη‖uk − u‖X

≤ δk+1
η ‖u0 − u‖X + η

1− δk+1
η

1− δη
‖u−ΠSX (u)‖X ,

from which we deduce (33).

Comments We note the sequence converges towards a neighborhood of ΠSX (u) whose size is
η−1+(1+η)δ

1−(1+η)δ ‖u−ΠSX (u)‖X . Indeed, (33) implies that

‖u−ΠSX (u)‖X ≤ ‖u− uk‖X ≤ (1 + γk)‖u−ΠSX (u)‖X , (34)

with lim supk→∞ γk ≤ η−1+(1+η)δ
1−(1+η)δ . Therefore, the sequence tends to provide a good approximation

of the best approximation of u in SX , and the parameters δ and η control the quality of this
approximation. Moreover, equation (33) indicates that the sequence converges quite rapidly to
this neighborhood. Indeed, in the first iterations, when the error ‖u− uk‖X is dominated by the
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first term ((1 + η)δ)k‖u− u0‖X , the algorithm has at least a linear convergence with convergence
rate (1 + η)δ (note that for η ≈ 1, the convergence rate is very high for small δ). Once both error
terms are balanced, the error stagnates at the value η

1−(1+η)δ‖u − ΠSX (u)‖X . Note that when
δ → 0, we recover an ideal algorithm with a convergence in only one iteration to an element of the
set Πη

SX (u) of quasi-best approximations of u in SX .

Remark 4.4. Even if SX is chosen as a subset of low-rank tensors, the subset DY defined in
(30) possibly contains tensors with high ranks (or even tensors with full rank) that are not easy
to approximate with a small precision δ using low-rank tensor representations. However, the
algorithm only requires to well approximate the sequence of residuals {R−1

Y (Auk − b)}k≥0 ⊂ DY ,
which may be achievable in practical applications.

4.4 Error indicator
Along the iterations of algorithm (32), an estimation of the true error ‖u − uk‖X can be simply
obtained by evaluating the norm ‖yk‖Y of the iterate yk = Λδ(rk) with rk = R−1

Y (Auk − b).
Indeed, from property (30), we have

(1− δ)‖y‖Y ≤ ‖Λδ(y)‖Y ≤ (1 + δ)‖y‖Y , (35)

for all y ∈ DY . Therefore, noting that rk ∈ DY and ‖rk‖Y = ‖A(u − uk)‖Y ′ = ‖u − uk‖X , we
obtain

(1− δ)‖u− uk‖X ≤ ‖yk‖Y ≤ (1 + δ)‖u− uk‖X . (36)

In other words,

εk =
1

1− δ
‖yk‖Y (37)

provides an error indicator of the true error ‖u− uk‖X with an effectivity index τk = εk

‖u−uk‖X ∈
(1, 1+δ

1−δ ), which is very good for small δ.
Moreover, if Λδ is an orthogonal projection onto some subspace Y δ ⊂ Y , we easily obtain the

following improved lower and upper bounds:√
1− δ2‖u− uk‖X ≤ ‖yk‖Y ≤ ‖u− uk‖X , (38)

that means that the following improved error estimator can be chosen:

ε̂k =
1√

1− δ2
‖yk‖Y , (39)

with effectivity index τ̂k = ε̂k

‖u−uk‖X ∈ (1, 1√
1−δ2 ).

5 Computational aspects

5.1 Best approximation in tensor subsets
We here discuss the available algorithms for computing an element in ΠSX (v), that means for
solving

min
w∈SX

‖v − w‖X , (40)

where v is a given tensor in the tensor space X = ‖·‖X
⊗d

µ=1Xµ equipped with norm ‖ · ‖X , and
where SX is a given tensor subset. Note that except for the case where d = 2 and ‖ · ‖X is the
induced (canonical) norm, the computation of a global optimum is still an open problem.



Tensor approximation based on ideal minimal residual formulations 12

Canonical norm, d = 2. For the case d = 2, we first note that all classical low-rank tensor
formats coincide with the canonical format, that means SX = Rm(X) for some rank m. When
the norm ‖ · ‖X is the canonical norm, then um ∈ ΠSX (u) coincides with a rank-m singular value
decomposition (SVD) of u (which is possibly not unique in the case of multiple singular values).
Moreover, σ(u;SX)2 = ‖ΠSX (u)‖2X is the sum of the squares of the m dominant singular values of
u (see e.g. [15]). Efficient algorithms for computing the SVD can therefore be applied to compute
an element in ΠSX (v) (a best approximation). That means that the algorithm (32) can be applied
with η = 1.

Canonical norm, d > 2. For d > 2 and when the norm ‖ · ‖X is the canonical norm, different
algorithms based on optimization methods have been proposed for the different tensor formats
(see e.g. [14, 26] or [24] for a recent review). Very efficient algorithms based on higher order
SVD have also been proposed in [11], [22] and [39], respectively for Tucker, Hierarchical Tucker
and Tensor Train tensors. Note that these algorithms provide quasi-best approximations (but not
necessarily best approximations) satisfying (31) with a η bounded by a function of the dimension
d: η ≤

√
d, η ≤

√
2d− 3 respectively for Tucker and Hierarchical Tucker formats (see [24]). For

a high dimension d, such bounds for η would suggest taking very small values for parameter δ in
order to satisfy the assumption of Proposition 4.3. However, in practice, these a priori bounds
are rather pessimistic. Moreover, quasi-best approximations obtained by higher order SVD can be
used as initializations of optimization algorithms yielding better approximations, i.e. with small
values of η.

General norms, d ≥ 2. For a general norm ‖ · ‖X , the computation of a global optimum to the
best approximation problem is still an open problem for all tensor subsets, and methods based
on SVD cannot be applied anymore. However, classical optimization methods can still be applied
(such as Alternating Minimization Algorithm (AMA)) in order to provide an approximation of
the best approximation [41, 44, 14]. We do not detail further these computational aspects and we
suppose that algorithms are available for providing an approximation of the best approximation
in SX such that (31) holds with a controlled precision η, arbitrarily close to 1.

5.2 Construction of an approximation of Λδ(r)

At each iteration of the algorithm (32), we have to compute yk = Λδ(rk), with rk = R−1
Y (Auk−b) ∈

Y , such that it satisfies

‖yk − rk‖Y ≤ δ‖rk‖Y . (41)

First note that rk is the unique solution of

min
r∈Y
‖r −R−1

Y (Auk − b)‖2Y . (42)

Therefore, computing yk is equivalent to solving the best approximation problem (42) with a
relative precision δ. One can equivalently characterize rk ∈ Y by the variational equation

〈rk, δr〉Y = 〈Auk − b, δr〉Y ′,Y ∀δr ∈ Y,

or in an operator form:

RY r
k = Auk − b, (43)

where the Riesz map RY = AR−1
X A∗ is a positive symmetric definite operator.

Remark 5.1. For A symmetric and positive definite, it is possible to choose RX = RY = A (see
example 3.2) that corresponds to the energy norm on X. For this choice, the auxiliary problem (42)
has the same structure as the initial problem, with an operator A and a right-hand side Auk − b.
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5.2.1 Low-rank tensor methods

For solving (42), we can also use low-rank tensor approximation methods. Note that in general, ‖ ·
‖Y is not an induced (canonical) norm in Y , so that classical tensor algorithms (e.g. based on SVD)
cannot be applied for solving (42) (even approximatively). Different strategies have been proposed
in the literature for constructing tensor approximations of the solution of optimization problems.
We can either use iterative solvers using classical tensor approximations applied to equation (43)
[31, 28, 34, 4], or directly compute an approximation yk of rk in low-rank tensor subsets using
optimization algorithms applied to problem (42). Here, we adopt the latter strategy and rely on
a greedy algorithm which consists in computing successive corrections of the approximation in a
fixed low-rank subset.

5.2.2 A possible (heuristic) algorithm

We use the following algorithm for the construction of a sequence of approximations {ykm}m≥0.

Let yk0 = 0. Then, for each m ≥ 1, we proceed as follows:

1. compute an optimal correction wkm of ykm−1 in SY :

wkm ∈ arg min
w∈SY

‖ykm−1 + w − rk‖Y ,

2. define a linear subspace Zkm such that ykm−1 + wkm ∈ Zkm,

3. compute ykm as the best approximation of rk in Zkm,

ykm = arg min
y∈Zkm

‖y − rk‖Y ,

4. return to step (2) or (1).

Remark 5.2. The convergence proof for this algorithm can be found in [17]. The convergence
ensures that the precision δ can be achieved after a certain number of iterations.2 However, in
practice, best approximation problems at step (1) can not be solved exactly except for particular
situations (see section 5.1), so that the results of [17] do not guaranty anymore the convergence
of the algorithm. If quasi-optimal solutions can be obtained, this algorithm is a modified version
of weak greedy algorithms (see [43]) for which convergence proofs can also be obtained. Available
algorithms for obtaining quasi-optimal solutions of best low-rank approximation problem appearing
at step (1) are still heuristic but seem to be effective.

In this paper, we will only rely on the use of low-rank canonical formats for numerical il-
lustrations. At step (1), we introduce rank-one corrections wkm ∈ SY = R1(Y ), where Y =

‖·‖Y
⊗d

µ=1 Y
µ. The auxiliary variable ykm ∈ Rm(Y ) can be written in the form ykm =

∑m
i=1⊗dµ=1w

k,µ
i .

At step (2), we select a particular dimension µ ∈ {1, . . . , d} and define

Zkm =

{
m∑
i=1

wk,1i ⊗ · · · ⊗ v
µ
i ⊗ · · · ⊗ w

k,d
i , vµi ∈ Y

µ

}
,

where dim(Zkm) = m dim(Y µ). Step (3) therefore consists in updating functions wk,µi , i = 1 . . . d,
in the representation of ykm. Before returning to step (1), the updating steps (2)-(3) can be
performed several times for a set of dimension µ ∈ I ⊂ {1, . . . , d}.

2Note however that a slow convergence of these algorithms may yield to high rank representations of iterates
ykm, even for a low-rank subset SY .
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Remark 5.3. Note that the solution of minimization problems at steps (1) and (3) do not require
to know rk explicitly. Indeed, the stationary conditions associated with these optimization problems
only require the evaluation of 〈rk, δy〉Y = 〈Auk − b, δy〉Y ′,Y , for δY ∈ Y . For step (1), the
stationary equation reads 〈RY wkm, δy〉Y ′,Y = 〈RY ykm−1 +Auk− b, δy〉Y ′,Y for all δy in the tangent
space to SY , while the variational form of step (3) reads 〈RY ykm, δy〉Y ′,Y = 〈Auk − b, δy〉Y ′,Y for
all δy in Zkm.

Finally, as a stopping criterion, we use a heuristic error estimator based on stagnation. The
algorithm is stopped at iteration m if

epm =
‖ykm − ykm+p‖Y
‖ykm+p‖Y

≤ δ, (44)

for some chosen p ≥ 1 (typically p = 1). Note that for p sufficiently large, ykm+p can be considered
as a good estimation of the residual rk and the criterion reads ‖rk − ykm‖Y ≤ δ‖rk‖Y , which is
the desired property. This stopping criterion is quite rudimentary and should be improved for a
real control of the algorithm. Although numerical experiments illustrate that this heuristic error
estimator provides a rather good approximation of the true error, an upper bound of the true
error should be used in order to guarantee that the precision δ is really achieved. However, a tight
error bound should be used in order to avoid a pessimistic overestimation of the true error which
may yield an (unnecessary) increase of the computational costs for the auxiliary problem. This
key issue will be addressed in a future work.

Remark 5.4. Other updating strategies could be introduced at steps (2)-(3). For example, we could
choose Zkm = span{wk1 , . . . , wkm}, thus making the algorithm an orthogonal greedy algorithm with
a dictionary SY [42]. Nevertheless, numerical simulations demonstrate that when using rank-one
corrections (i.e. SY = R1(Y )), this updating strategy do not significantly improve the convergence
of pure greedy constructions. When it is used for obtaining an approximation ykm of rk with a
small relative error δ, it usually requires a very high rank m. A more efficient updating strategy
consists in defining Zkm as the tensor space

⊗d
µ=1 Z

k,µ
m with Zk,µm span{wk,µ1 , . . . , wk,µm }. Since

dim(Zkm) = md, the projection of rk in Zkm can not be computed exactly for high dimensions
d. However, approximations of this projection can be obtained using again low-rank formats (see
[20]).

5.2.3 Remark on the tensor structure of Riesz maps

We consider that operator A and right-hand side b admit low-rank representations

A =

rA∑
i=1

⊗dµ=1A
µ
i and b =

rb∑
i=1

⊗dµ=1b
µ
i .

We suppose that a norm ‖ · ‖X has been selected and corresponds to a Riesz map RX with a
low-rank representation:

RX =

rX∑
i=1

⊗dµ=1R
µ
i .

The ideal choice of norm ‖ · ‖Y then corresponds to the following expression of the Riesz map RY :

RY = AR−1
X A∗ = (

rA∑
i=1

⊗dµ=1A
µ
i )(

rX∑
i=1

⊗dµ=1R
µ
i )−1(

rA∑
i=1

⊗dµ=1A
µ
i
∗
).

Note that the expression of RY cannot be computed explicitly (RY is generally a full rank tensor).
Therefore, in the general case, algorithms for solving problem (43) have to be able to handle an
implicit formula for RY . However, in the particular case where the norm ‖·‖X is a canonical norm
induced by norms ‖ · ‖µ on Xµ, the mapping RX is a rank one tensor RX = ⊗dµ=1RXµ , where RXµ
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is the Riesz map associated with the norm ‖ · ‖µ on Xµ. RY then admits the following explicit
expression:

RY = AR−1
X A∗ =

rA∑
i=1

rA∑
j=1

⊗dµ=1(Aµi R
−1
Xµ
Aµj
∗
).

In the numerical examples, we only consider this simple particular case. Efficient numerical meth-
ods for the general case will be proposed in a subsequent paper.

5.3 Summary of the algorithm
Algorithm 1 provides a step-by-step outline of the overall iterative method for the approximation
of the solution of (28) in a fixed subset SX and with a chosen metric ‖ · ‖X . Given a precision
δ, an approximation of the residual is obtained with a greedy algorithm using a fixed subset SY
for computing successive corrections. We denote by e(ykm, rk) an estimation of the relative error
‖ykm − rk‖Y /‖rk‖Y , where rk = R−1

Y (Auk − b).

Algorithm 1 Gradient-type algorithm
1: Set u0 = 0;
2: for k = 0 to K do
3: Set m = 0 ;
4: while e(ykm, rk) ≤ δ do
5: m = m+ 1 ;
6: Compute a correction wkm ∈ arg min

w∈SY
‖ykm−1 + w − rk‖Y ;

7: Set ykm = ykm−1 + wkm ;
8: Define Zkm containing ykm ;
9: Compute the projection ykm = arg min

y∈Zkm
‖y − rk‖Y ;

10: Return to step 7 or continue ;
11: end while
12: Compute uk+1 ∈ Πη

SX (uk −R−1
X A∗ykm) ;

13: end for

6 Greedy algorithm
In this section, we introduce and analyze a greedy algorithm for the progressive construction of a
sequence {um}m≥0, where um is obtained by computing a correction of um−1 in a given low-rank
tensor subset SX (typically a small subset such as the set of rank-one tensors R1(X)). Here,
we consider that approximations of optimal corrections are available with a certain precision. It
results in an algorithm which can be considered as a modified version of weak greedy algorithms
[43]. This weak greedy algorithm can be applied to solve the best approximation problem (19)
where approximations of optimal corrections are obtained using Algorithm 1 with an updated
right-hand side at each greedy step. The interest of such a global greedy strategy is twofold.
First, an adaptive approximation strategy which would consist in solving approximation problems
in an increasing sequence of low-rank subsets SX is often unpractical since for high dimensional
problems and subspace based tensor formats, computational complexity drastically increases with
the rank. Second, it simplifies the solution of auxiliary problems (i.e. the computation of the
sequence of yk) when solving best low-rank approximation problems using Algorithm 1. Indeed,
if the sequence uk in Algorithm 1 belongs to a low rank tensor subset (typically a rank-one tensor
subset), the residual rk in Algorithm 1 admits a moderate rank or can be obtained by a low-rank
correction of the residual of the previous greedy iteration.

Here, we assume that the subset SX verifies properties (14) and (15), and that span(SX) is
dense in X (which is verified by all classical tensor subsets presented in section 2.2).
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6.1 A weak greedy algorithm
We consider the following greedy algorithm. Given u0 = 0, we construct a sequence {um}m≥1

defined for m ≥ 1 by

um = um−1 + w̃m, (45)

where w̃m ∈ SX is a correction of um−1 satisfying

‖u− um−1 − w̃m‖X ≤ (1 + γm) min
w∈SX

‖u− um−1 − w‖X , (46)

with γm a sequence of small parameters.

Remark 6.1. A w̃m satisfying (46) can be obtained using the gradient type algorithm of section
4 that provides a sequence that satisfies (34). Given the parameter δ = δm in (32), property (46)
can be achieved with any γm > 2δm

1−2δm
.

6.2 Convergence analysis
Here, we provide a convergence result for the above greedy algorithm whose proof follows the lines
of [43] for the convergence proof of weak greedy algorithms3.

In the following, we denote by fm = u−um. For the sake of simplicity, we denote by ‖·‖ = ‖·‖X
and 〈·, ·〉 = 〈·, ·〉X and we let wm ∈ ΠSX (fm−1), for which we have the following useful relations
coming from properties of best approximation problems in tensor subsets (see section 2.2):

‖fm−1 − wm‖2 = ‖fm−1‖2 − ‖wm‖2 and ‖wm‖2 = 〈fm−1, wm〉. (47)

We introduce the sequence {αm}m≥1 defined by

αm =
‖fm−1 − wm‖
‖fm−1‖

∈ [0, 1[. (48)

It can be also useful to introduce the computable sequence {α̃m}m≥1 such that

α̃m =
‖fm−1 − w̃m‖
‖fm−1‖

. (49)

that satisfies for all m ≤ 0
αm ≤ α̃m ≤ (1 + γm)αm. (50)

Lemma 6.2. Assuming that for all m ≥ 1 we have

(1 + γm)αm<1, (51)

the sequence {‖fm‖}m≥1 converges. Furthermore, it is possible to define a positive sequence
{κm}m≥1 as

κ2
m = 2

〈fm−1, w̃m〉
‖w̃m‖2

− 1, (52)

and we have {κm‖w̃m‖}m≥1 ∈ `2.
3Note that the condition (46) on the successive corrections does not allow to directly apply the results on classical

weak greedy algorithms.
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Proof. From (45) and (46), we have

‖fm‖ = ‖fm−1 − w̃m‖ ≤ (1 + γm)‖fm−1 − wm‖ = (1 + γm)αm‖fm−1‖.

Under assumption (51), {‖fm‖}m≥1 is a strictly decreasing and positive sequence and therefore
converges. Moreover, this implies that w̃m 6= 0 and since

‖fm−1 − w̃m‖2 = ‖fm−1‖2 −
(
2〈fm−1, w̃m〉 − ‖w̃m‖2

)
≤ ‖fm−1‖2,

it follows that 2〈fm−1, w̃m〉>‖w̃m‖2. Therefore, κm is positive and can be defined by (52) and we
have

‖fm−1 − w̃m‖2 = ‖fm−1‖2 − κ2
m‖w̃m‖2 = ‖f0‖2 −

m∑
i=1

κ2
i ‖w̃i‖2,

that completes the proof.

We now provide a result giving a relation between ‖wm‖ and ‖w̃m‖.

Lemma 6.3. Assume (51) holds and let µ2
m =

1− (1 + γm)2α2
m

1− α2
m

∈ [0, 1]. Then, we have

µm‖wm‖ ≤ κm‖w̃m‖ ≤ ‖wm‖, (53)

and
µm
2
≤ κm. (54)

Proof. From inequality (46) and from the optimality of wm, it follows that

‖fm−1 − wm‖2 ≤ ‖fm−1 − w̃m‖2 ≤ (1 + γm)2‖fm−1 − wm‖2

⇒ ‖fm−1‖2 − ‖wm‖2 ≤ ‖fm−1‖2 − κ2
m‖w̃m‖2 ≤ (1 + γm)2α2

m‖fm−1‖2

⇒ (1− (1 + γm)2α2
m)‖fm−1‖2 ≤ κ2

m‖w̃m‖2 ≤ ‖wm‖2

Using ‖fm−1‖2 = ‖fm−1−wm‖2 +‖wm‖2 = α2
m‖fm−1‖2 +‖wm‖2, and using the definition of µm,

we obtain (53). In addition, from the optimality of wm, we have 〈 w̃m
‖w̃m‖ , fm−1〉 ≤ 〈 wm

‖wm‖ , fm−1〉 =

‖wm‖, or equivalently κ2
m+1
2 ‖w̃m‖ ≤ ‖wm‖. Combined with (53), it gives κ2

m+1
2 ≤ ‖wm‖

‖w̃m‖ ≤
κm
µm

,
which implies (54).

Proposition 6.4. Assume (51) and that
{
µ2
m

}
m≥1

is such that
∑∞
m=1 µ

2
m =∞. Then, if {fm}m≥1

converges, it converges to zero.

Proof. Let us use a proof by contradiction. Assume that fm → f 6= 0 as m→∞, with f ∈ X. As
span(SX) is dense in X, there exists ε > 0 such that supv∈SX |〈f,

v
‖v‖ 〉| ≥ 2ε. Using the definition

of wm and of f as a limit of fm, we have that there exists N > 0 such that

‖wm‖ = sup
v∈SX

|〈fm−1,
v

‖v‖
〉| ≥ ε, ∀m ≥ N. (55)

Thanks to (53), we have

‖fm‖2 = ‖fm−1‖2 − ‖w̃m‖2κ2
m ≤ ‖fm−1‖2 − ‖wm‖2µ2

m,

≤ ‖fN‖2 −
m∑

i=N+1

µ2
i ‖wi‖2 ≤ ‖fN‖2 − ε2

m∑
i=N+1

µ2
i ,

which implies that {µm}m≥0 ∈ `2, a contradiction to the assumption.



Tensor approximation based on ideal minimal residual formulations 18

Proposition 6.5. Assume (51). Further assume that the sequence µm is non increasing and
verifies

∞∑
m=1

µ2
m

m
=∞. (56)

Then the sequence {um}m≥1 converges to u.

Proof. Let two integers n < m and consider

‖fn − fm‖2 = ‖fn‖2 − ‖fm‖2 − 2〈fn − fm, fm〉.

Defining θn,m = |〈fn − fm, fm〉| and using Lemma 6.3, we obtain

θn,m ≤
m∑

i=n+1

|〈w̃i, fm〉| ≤ ‖wm+1‖
m∑
i=1

‖w̃i‖ ≤ 2
κm+1‖w̃m+1‖

µ2
m+1

m∑
i=1

κi‖w̃i‖.

Lemma 6.2 implies that κm‖w̃m‖ ∈ `2. Together with assumption (56), and using Lemma 2.7
in [42], we obtain that lim infm→∞maxn<m θn,m = 0. Lemma 2.8 in [42] then proves that the
sequence {fm}m≥1 converges. Noting that (56) implies that {µm}∞m=1 /∈ `2, Lemma 6.4 allows to
conclude the proof.

In practice, condition (56) can be satisfied by the following sufficient condition on the sequence
α̃m, which is a computable sequence.

Corollary 6.6. If there exists a constant 0 < ε < 1, independent of m, such that

α̃2
m ≤

1− ε
(1 + γm)2 − ε

, (57)

then the sequence {um}m≥1 converges to u.

Proof. Under assumption (57) and using relation (50), it holds that for all m ≥ 0

α2
m ≤

1− ε
(1 + γm)2 − ε

⇒ (1 + γm)2α2
m ≤ 1− ε(1− α2

m) < 1.

which implies condition (51). Moreover, we have

ε(1− α2
m) ≤ 1− (1 + γm)2α2

m ⇒ ε ≤ 1− (1 + γm)2α2
m

(1− α2
m)

= µ2
m,

which implies condition (56). Proposition 6.5 ends the proof.

Remark 6.7. From a practical point of view, condition (57) provides a sufficient criterion on
γm (or equivalently on δm). Note that α̃m depends on w̃m which depends on the choice of the
precision γm. Therefore, (57) is an implicit condition on γm which suggests an iterative strategy
for the control of the condition. A possible strategy would be to adapt the parameter γm during the
iterations of the gradient type algorithm used to compute the w̃m.

7 Numerical example
In this section, we apply the proposed method to the numerical solution of a stochastic steady
reaction-advection-diffusion problem.



Tensor approximation based on ideal minimal residual formulations 19

7.1 Stochastic reaction-advection-diffusion problem
We consider the following steady reaction-advection-diffusion problem on a two-dimensional unit
square domain Ω = [0, 1]2 (see Figure 1):

−∇ · (κ∇u) + c · ∇u+ au = f in Ω, (58)
u = 0 on ∂Ω.

First, we consider a constant diffusion κ = 1. The advection coefficient c and the reaction
coefficient a are considered as random and are given by c = ξ1c0 and a = exp(ξ2), where
ξ1 ∼ U(−350, 350) and ξ2 ∼ U(log(0.1), log(10)) are independent uniform random variables,
and c0(x) = (x2 − 1/2, 1/2 − x1), x = (x1, x2) ∈ Ω. We denote by Ξ1 =]-350, 350[ and Ξ2 =
] log(0.1), log(10)[, and we denote by (Ξ,B(Ξ), Pξ) the probability space induced by ξ = (ξ1, ξ2),
with Ξ = Ξ1 × Ξ2 and Pξ the probability law of ξ. The external source term f is given by
f(x) = IΩ1

(x)− IΩ2
(x), where Ω1 =]0.45, 0.55[×]0.15, 0.25[ and Ω2 =]0.45, 0.55[×]0.75, 0.85[, and

where IΩk denotes the indicator function of Ωk.

Ω1

Ω2

Figure 1: Example : reaction-advection-diffusion problem.

Let V = H1
0(Ω) and S = L2(Ξ, dPξ). We introduce approximation spaces VN ⊂ V and

SP ⊂ S, with N = dim(VN ) and P = dim(SP ). VN is a Q1 finite element space associated with a
uniform mesh of 1600 elements such that N = 1521. We choose SP = Sξ1p1 ⊗ S

ξ2
p2 , where S

ξ1
p1 is the

space of piecewise polynomials of degree 5 on Ξ1 associated with the partition {]-350, 0[, ]0, 350[}
of Ξ1, and Sξ2p2 is the space of polynomials of degree 5 on Ξ2. This choice results in P = 72. The
Galerkin approximation u ∈ VN ⊗ SP ⊂ V ⊗ S of the solution of (58) is defined by the following
equation4: ∫

Ξ

∫
Ω

(∇u · ∇v + c · ∇uv + auv) dx dPξ =

∫
Ξ

∫
Ω

f v dx dPξ, (59)

for all v ∈ VN ⊗ SP . Letting VN ⊗ SP = span{ϕi ⊗ ψj ; 1 ≤ i ≤ N, 1 ≤ j ≤ P}, the Galerkin
approximation u =

∑N
i=1

∑P
j=1 uijϕi⊗ψj can be identified with its set of coefficients on the chosen

basis, still denoted u, which is a tensor

u ∈ X = RN ⊗ RP such that Au = b, (60)

where b = bx ⊗ bξ, with bxi =
∫

Ω
fϕi and b

ξ
j =

∫
Ξ
ψjdPξ, and where A is a rank-3 operator such

that A = Dx ⊗Mξ + Cx ⊗Hξ1 +Rx ⊗Hξ2 , with Dx
ik =

∫
Ω
∇ϕi · ∇ϕkdx, Cxik =

∫
Ω
ϕic0 · ∇ϕkdx,

Rxik =
∫

Ω
ϕiϕkdx, M

ξ
jl =

∫
Ξ
ψj(y)ψl(y)dPξ(y), Hξn

jl =
∫

Ξ
ynψj(y)ψl(y)dPξ(y), n = 1, 2. Here, we

use orthonormal basis functions {ψj} in SP , so that Mξ = IP , the identity matrix in RP .
4The mesh Péclet number is sufficiently small so that an accurate Galerkin approximation can be obtained

without introducing a stabilized formulation.
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7.2 Comparison of minimal residual methods
In this section, we present numerical results concerning the approximate ideal minimal residual
method (A-IMR) applied to the algebraic system of equations (60) in tensor format. This method
provides an approximation of the best approximation of u with respect to a norm ‖ · ‖X that can
be freely chosen a priori. Here, we consider the application of the method for two different norms.
We first consider the natural canonical norm on X, denoted ‖ · ‖2 and defined by

‖v‖22 =

N∑
i=1

P∑
j=1

(vij)
2. (61)

This choice corresponds to an operator RX = IX = IN ⊗ IP , where IN (resp. IP ) is the identity
in RN (resp. RP ). We also consider a weighted canonical norm, denoted ‖ · ‖w and defined by

‖v‖2w =

N∑
i=1

P∑
j=1

(w(xi)vij)
2
, (62)

where w : Ω→ R is a weight function and the xi are the nodes associated with finite element shape
functions ϕi. This norm allows to give a more important weight to a particular region D ⊂ Ω,
that may be relevant if one is interested in the prediction of a quantity of interest that requires a
good precision of the numerical solution in this particular region (see section 7.2.3). This choice
corresponds to an operator RX = Dw ⊗ IP , with Dw = diag(w(x1)2, . . . , w(xN )2).

The A-IMR provides an approximation ũ ∈ SX of the ‖ · ‖X -best approximation of u in SX
(that means an approximation of an element in ΠSX (u)), where ‖ · ‖X is either ‖ · ‖2 or ‖ · ‖w. The
set SX is taken as the set Rr(X) of rank-r tensors in X = RN ⊗RP . The dimension of X is about
75,000 so that the exact solution u of (60) can be computed and used as a reference solution. We
note that both norms are induced norms in RN ⊗RP (associated with rank one operators RX) so
that the ‖ ·‖X -best approximation of u in SX is a rank-r SVD that can be computed exactly using
classical algorithms (see section 5.1).5 For the construction of an approximation in Rr(X) using
A-IMR, we consider two strategies: the direct approximation in Rr(X) using Algorithm 1 with
SX = Rr(X), and a greedy algorithm that consists in a series of r corrections in R1(X) computed
using Algorithm 1 with SX = R1(X) and with an updated residual b at each correction.

The A-IMR will be compared to a standard approach, denoted CMR, which consists in mini-
mizing the canonical norm of the residual of equation (60), that means in solving

min
v∈SX

‖Av − b‖2. (63)

This latter approach has been introduced and analyzed in different papers, using either direct
minimization or greedy rank-one algorithms [5, 12, 2], and is known to suffer from ill-conditioning
of the operator A. We note that this approach corresponds to choosing RX = A∗A and RY =
IX = IN ⊗ IP .

7.2.1 Natural canonical norm ‖ · ‖2
First, we compare both greedy and direct algorithms for ‖·‖X = ‖·‖2, using either CMR or A-IMR
with different precisions δ. The convergence curves with respect to the rank are shown in Figure
2, where the error is measured in the ‖ · ‖2 norm. Concerning the direct approach, we observe
that the different algorithms have roughly the same rate of convergence. The A-IMR convergence
curves are close to the optimal SVD (corresponding to ũ2) for a wide range of values of δ. One
should note that A-IMR seems to provide good approximations also for the value δ = 0.9 which
is greater than the theoretical bound 0.5 ensuring the convergence of the gradient-type algorithm.
Concerning the greedy approach, we observe a significant difference between A-IMR and CMR.
We note that A-IMR is close to the optimal SVD up to a certain rank (depending on δ) after which

5Note that different truncated SVD are obtained when RN is equipped with different norms.
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the convergence rate decreases but remains better than the one of CMR. Finally, one should note
that using a precision δ = 0.9 for A-IMR yields less accurate approximations than CMR. However,
A-IMR provides better results than CMR once the precision δ is lower than 0.5.
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ũ
|| 2
/
||u
|| 2

Greedy approach

δ = 9.0e− 01
δ = 5.0e− 01
δ = 2.0e− 01
δ = 5.0e− 02
δ = 1.0e− 02
SVD
CMR

0 5 10 15 20

10−4

10−2

100

r

||u
−
ũ
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Figure 2: Comparison of minimal residual methods for SX = Rr(X) and ‖·‖X = ‖·‖2. Convergence
with the rank r of the approximations obtained with CMR or A-IMR with different precisions δ,
and with direct (left) or greedy rank-one (right) approaches.

7.2.2 Weighted norm ‖ · ‖w
Here, we perform the same numerical experiments as previously using the weighted norm ‖ · ‖X =
‖ · ‖w, with w equal to 103 on D = [0.15, 0.25]× [0.45, 0.55] and w = 1 on Ω \D. The convergence
curves with respect to the rank are plotted on Figure 3. The conclusions are similar to the case
‖ ·‖X = ‖ ·‖2, although the use of the weighted norm seems to slightly deteriorate the convergence
properties of A-IMR. However, the direct A-IMR still provides better approximations than the
direct CMR, closer to the reference SVD (denoted by ũw) for different values of precision δ.
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Figure 3: Comparison of minimal residual methods for SX = Rr(X) and ‖ · ‖X = ‖ · ‖w. Conver-
gence with the rank of the approximations obtained with CMR or A-IMR with different precisions
δ, and with direct (left) or greedy rank-one (right) approaches.

7.2.3 Interest of using a weighted norm

Here, we illustrate the interest of using the weighted norm rather than the natural canonical norm
when one is interested in computing a quantity of interest. For the sake of readability, we let ũw
(resp. ũ2) denote the best approximation of u in Rr(X) with respect to the norm ‖ · ‖w (resp.
‖ · ‖2). Figure 4 illustrates the convergence with r of these approximations. We observe that
approximations ũw and ũ2 are of the same quality when the error is measured with the norm ‖·‖2,
while ũw is a far better approximation than ũ2 (almost two orders of magnitude) when the error
is measured with the norm ‖ · ‖w. We observe that ũw converges faster to u with ‖ · ‖w than ũ2
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with ‖ · ‖2. For example, with a rank r = 9, ũw has a ‖ · ‖w-error of 104 while ũ2 has a ‖ · ‖2-error
of 102. On Figure 5, plotted are the spatial modes of the rank-r approximations ũ2 and ũw. These
spatial modes are significantly different and obviously capture different features of the solution.
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Figure 4: Convergence of best rank-r approximations ũ2 and ũw of the solution u measured with
the natural canonical norm ‖ · ‖2 or the weighted norm ‖ · ‖w.

Figure 5: Comparison of the first spatial modes of the rank-r approximations ũ and ũw.

Now, we introduce a quantity of interest Q which is the spatial average of u on subdomain D:

Q(u) =
1

|D|

∫
D

u dx. (64)

Due to the choice of norm, ũw is supposed to be more accurate than ũ2 in the subdomain D, and
therefore, Q(ũw) is supposed to provide a better estimation of Q(u) than Q(ũ2). This is confirmed
by Figure 6, where we have plotted the convergence with the rank of the statistical mean and
variance of Q(ũw) and Q(ũ2). With only a rank r = 5, ũw gives a precision of 10−7 on the
mean, whereas ũ2 gives only a precision of 10−2. In conclusion, we observe that a very low-rank
approximation ũw is able to provide a very good approximation of the quantity of interest.

7.3 Properties of the algorithms
Now, we detail some numerical aspects of the proposed methodology. We first focus on the
gradient-type algorithm, and then on evaluations of the map Λδ for the approximation of residuals.

7.3.1 Analysis of the gradient-type algorithm

The behavior of the gradient-type algorithm for different choices of norms ‖ · ‖X is very similar,
so we only illustrate the case where ‖ · ‖X = ‖ · ‖2. The convergence of this algorithm is plotted
in Figure 7 for the case SX = R10(X). It is in very good agreement with theoretical expectations
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Figure 6: Convergence with the rank of the mean (left) and variance (right) of Q(ũ2) and Q(ũw).
Relative error with respect to the mean and variance of the reference solution Q(u).

(Proposition 4.3): we first observe a linear convergence with a convergence rate that depends
on δ, and then a stagnation within a neighborhood of the solution with an error depending on
δ. The gradient-type algorithm is then applied for subsets SX = Rr(X) with different ranks
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Figure 7: Convergence of the gradient-type algorithm for different values of the relative precision
δ, for SX = R10(X) and ‖ · ‖X = ‖ · ‖2.

r. The estimate of the linear convergence rate ρ is given in Table 1. We observe that for all
values of r, ρ takes values closer to δ than to the theoretical bound 2δ of Proposition 4.3. This
means that the theoretical bound of the convergence rate overestimates the effective one, and the
algorithm converges faster than expected. Now, in order to evaluate the quality of the resulting

δ 0.90 0.50 0.20 0.05 0.01
r = 4 0.78 0.36 ≈ 0 ≈ 0 ≈ 0
r = 6 0.83 0.45 0.165 ≈ 0 ≈ 0
r = 10 0.82 0.42 0.183 ≈ 0 ≈ 0
r = 15 0.84 0.47 0.189 0.047 ≈ 0
r = 20 0.86 0.48 0.197 0.051 0.011

Table 1: Estimation of the convergence rate ρ of the gradient-type algorithm (during the linear
convergence phase) for different subsets SX = Rr(X), and for ‖ · ‖X = ‖ · ‖2.

approximation, we compute the error after the stagnation phase has been reached. More precisely,
we compute the value

γ̃k =
‖uk − u‖X

‖u−ΠSX (u)‖X
− 1,
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for k = 100. Values of γ̃100 are summarized in Table 2 and are compared to the theoretical upper
bound γ = 2δ/(1 − 2δ) given by Proposition 4.3. Once again, one can observe that the effective
error of the resulting approximation is lower than the predicted value regardless of the choice of
Rr(X).

δ 0.90 0.50 0.20 0.05 0.01
2δ/(1− 2δ) - - 6.6e-1 1.1e-1 2.1e-2

r = 4 3.3e-1 5.6e-2 4.9e-3 3.5e-4 3.0e-5
r = 6 3.0e-1 6.8e-2 1.1e-2 8.6e-4 8.0e-5
r = 10 5.2e-1 1.3e-1 1.7e-2 1.8e-3 3.3e-5
r = 15 4.9e-1 1.1e-1 1.5e-2 1.0e-3 7.5e-5
r = 20 6.4e-1 1.5e-1 1.9e-2 1.2e-3 7.3e-5

Table 2: Final approximation errors (estimated by γ̃100) for different subsets SX = Rr(X) and
different precisions δ. Comparison with the theoretical upper bound 2δ/(1− 2δ).

Now, we focus on numerical estimations of the error ‖u − uk‖X . It has been pointed out in
Section 4.4 that ε̂k, defined in Eq. (39), should provide a good error estimator with effectivity
index τ̂k ∈ (1, (1− δ2)−1/2). For δ = 0.2 and SX = R10(X), numerical values taken by τ̂k during
the gradient-type algorithm are plotted on Figure 8 and are compared to the expected theoretical
values of its lower and upper bounds 1 and (1−δ2)−1/2 respectively. We observe that the theoretical
upper bound is strictly satisfied, while the lower bound is almost but not exactly satisfied. This
violation of the theoretical lower bound is explained by the fact that the precision δ is not satisfied
at each iteration of the gradient-type algorithm due to the use of a heuristic convergence criterion
in the computation of residuals (see next section 7.3.2). However, although it does not provide a
controlled error estimation, the error indicator based on the computed residuals is of very good
quality.
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Figure 8: Effectivity index τ̂k of the error estimator ε̂k at different iterations k of the gradient-type
algorithm, with SX = R10(X) and δ = 0.2.

7.3.2 Application of Λδ for the approximation of residuals

We study the behavior of the updated greedy algorithm described in Section 5.2.2 for the com-
putation of an approximation ykm = Λδ(rk) of the residual rk during the gradient-type algorithm.
Here, we use the particular strategy which consists in updating functions associated to each di-
mension µ ∈ I = {1, 2} (steps (2)-(3) are performed two times per iteration). We first validate
the ability of the heuristic stopping criterion (44) to ensure a prescribed relative precision δ. Let
M = M(δ) denote the iteration for which the condition epM ≤ δ is satisfied. The exact relative
error eM = ‖ykM − rk‖Y /‖rk‖Y is computed using a reference computation of rk, and we define
the effectivity index λpM = epM/eM . Figure 9 shows the convergence of this effectivity index with
respect to p, when using the natural canonical norm ‖ ·‖2 or the weighted norm ‖ ·‖w. We observe
that λpM tends to 1 as p → ∞, as it was expected since the sequence {ykm}m≥1 converges to rk.
However, we clearly observe that the quality of the error indicator differs for the two different
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norms. When using the weighted norm, it appears that a large value of p (say p ≥ 20) is necessary
to ensure λpM ∈ [0.9, 1], while p ≤ 10 seems sufficiently large when using the natural canonical
norm. That simply reflects a slower convergence of the greedy algorithm when using the weighted
norm.
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Figure 9: Evolution with p of the effectivity index λpM for different δ at step k = 1 of the gradient-
type algorithm with SX = R10(X) and for the natural canonical norm (left) or the weighted norm
(right).

Remark 7.1. One can prove that at step k of the gradient-type algorithm, when computing an
approximation ykM of rk with a greedy algorithm stopped using the heuristic stopping criterion (44),
the effectivity index τ̂k of the computed error estimator ε̂k is such that

τ̂k ∈

√1− (δ/λpM )2

1− δ2
,

√
1

1− δ2

 .

where λpM is the effectivity index of error indicator epM (supposed such that δ/λpM < 1). That
provides an explanation for the observations made on Figure 8.

Now, we observe in Table 3 the number of iterations of the greedy algorithm for the approxi-
mation of the residual rk with a relative precision δ, with a fixed value p = 20 for the evaluation
of the stopping criterion. The number of iterations corresponds to the rank of the resulting ap-
proximation. We note that the required rank is higher when using the weighted norm. It reflects
the fact that it is more difficult to reach precision δ when using the weighted norm rather than
the natural canonical norm.

7.4 Higher dimensional case
Now, we consider a diffusion coefficient of the form κ(x, ξ) = κ0 +

∑8
i=1 ξiκi(x) where κ0 = 10,

ξi ∼ U(−1, 1) are independent uniform random variables, and the functions κi(x) are given by:

κ1(x) = cos(πx1), κ3(x) = sin(πx1), κ5(x) = cos(πx1) cos(πx2), κ7(x) = cos(πx1) sin(πx2),
κ2(x) = cos(πx2), κ4(x) = sin(πx2), κ6(x) = sin(πx1) sin(πx2), κ8(x) = sin(πx1) cos(πx2).

In addition, the advection coefficient is given by c = ξ0c0, where ξ0 ∼ U(0, 4000) is a uniform
random variable. We denote V = H1

0(Ω) and S = L2(Ξ, dPξ) where (Ξ,B(Ξ), Pξ) is a probability
space with Ξ =] − 1, 1[8×]0, 4000[ and Pξ the uniform measure. Here VN ⊂ V is a Q1 finite
element space associated with a uniform mesh of 3600 elements, with a dimension N = 3481. We
take SP = ⊗8

i=0S
ξi
P ⊂ S, where SξiP are polynomial function spaces of degree 7 on Ξi with P =

dim(SξiP ) = 8. Then, the Galerkin approximation in VN ⊗ SP (solution of (59)) is searched under
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Canonical 2-norm ‖ · ‖2 Weighted 2-norm ‖ · ‖w
k\δ 0.9 0.5 0.2 0.05 0.01 0.9 0.5 0.2 0.05 0.01
1 1 1 3 7 11 8 21 31 35 51
2 1 3 7 16 27 5 22 14 24 42
3 1 5 11 19 24 4 15 24 23 43
4 1 3 11 14 24 8 11 19 37 42
5 1 6 7 15 24 6 19 23 14 38
6 1 8 8 16 24 3 12 47 25 63
7 1 5 7 17 24 7 14 16 29 47
8 1 4 8 16 24 5 12 22 21 40
9 1 4 8 16 24 7 13 18 36 45

Table 3: Computation of Λδ(rk) for different precisions δ and at different steps k of the gradient-
type algorithm, with SX = R10 (direct approach). The table indicates the number of greedy
corrections computed for reaching the precision δ using the heuristic stopping criterion (44) with
p = 20.

the form u =
∑N
i=1

∑P
j0=1 · · ·

∑P
j8=1(ui,j0,··· ,j9)φj ⊗ (⊗8

µ=0ψ
µ
jµ

). This Galerkin approximation can
be identified with its set of coefficients, still denoted by u which is a tensor

u ∈ X = RN ⊗ (⊗8
µ=0RP ) such that Au = b, (65)

where A and b are the algebraic representations on the chosen basis of VN ⊗ SP of the bilinear
and linear forms in (59). The obtained algebraic system of equations has a dimension larger than
1011 and its solution clearly requires the use of model reduction methods.

Here, we compute low rank approximations of the solution of (65) in the canonical tensor
subset Rr(X) with r ≥ 1. Since best approximation problems in Rr(X) are well posed for r = 1
but ill posed for d > 2 and r > 1, we rely on the greedy algorithm presented in section 6 with
successive corrections in SX = R1(X) computed with Algorithm 1.

Remark 7.2. Low-rank approximations could have been computed directly with Algorithm 1 by
choosing for SX other stable low-rank formats adapted to high-dimensional problems, such as
Hierarchical Tucker (or Tensor Train) low-rank formats.

7.4.1 Convergence study

In this section, low rank approximations of the solution u of (65) are computed for the two different
norms ‖ · ‖2 and ‖ · ‖w defined as in section 7.2. Here, we assume that the weighting function w
is equal to 100 in the subdomain D ⊂ Ω, and 1 elsewhere.
Since dim(X) ≥ 1011, the exact Galerkin approximation u in X is no more computable. As a
reference solution, we consider a low-rank approximation uref of u computed using a greedy rank-
one algorithm based on a canonical minimal residual formulation. We introduce an estimation
ÊK of ‖u−uref‖2

‖u‖2 based on Monte-Carlo integrations using K realizations {ξk}Kk=1 of the random
variable ξ, defined by

Ê2
K =

1
K

∑K
k=1 ‖u(ξk)− uref(ξk)‖2V
1
K

∑K
k=1 ‖u(ξk)‖2V

,

with a number of samples K such that the Monte-Carlo estimates has a relative standard deviation
(estimated using the statistical variance of the sample) lower than 10−1. The rank of uref is here
selected such that ÊK < 10−4, which gives a reference solution with a rank of 212.

On Figure 10, we plot the convergence with the rank r of the approximations computed by
both A-IMR and CMR algorithms and of the greedy approximations ũr2 and ũrw of the reference
solution uref for both norms. We observe (as for the lower-dimensional example) that for both
norms, with different values of the parameter δ (up to 0.9), the A-IMR method provides a better
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approximation of the solution in comparison to the CMR method. When decreasing δ, the pro-
posed algorithm seems to provide approximations that tend to present the same convergence as
the greedy approximations ũr2 and ũrw.
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Figure 10: Convergence with the rank of approximations obtained with the greedy CMR or A-IMR
algorithms for different precisions δ. On the left (resp. right) plot, convergence is plotted with
respect to the norm ‖ · ‖2 (resp. ‖ · ‖w) and A-IMR is used with the objective norm ‖ · ‖2 (resp.
‖ · ‖w).

7.4.2 Study of the greedy algorithm for Λδ

Now, we study the behavior of the updated greedy algorithm described in Section 5.2.2 for the
computation of an approximation ykm = Λδ(rk) of the residual rk during the gradient-type algo-
rithm. Here, we use the particular strategy which consists in updating functions associated to each
dimension µ ∈ I = {2, . . . , 10} (steps (2)-(3) are performed 9 times per iteration). The update of
functions associated with the first dimension is not performed since it would involve the expensive
computation of approximations in a space Zkm with a large dimension mN .

In table 4, we summarize the required number of greedy corrections needed at each iteration of
the gradient type algorithm for reaching the precision δ with the heuristic stagnation criterion (44)
with p = 20. As for the previous lower-dimensional test case, the number of corrections increases
as δ decreases and is higher for the weighted norm than for the canonical norm. However, we
observe that this number of corrections remains reasonable even for small δ.

7.4.3 Estimation of a quantity of interest

Finally, we study the quality of the low rank approximations ũ obtained with both CMR and
A-IMR algorithms for the canonical and weighted norms. To this end, we compute the quantity of
interest Q(ũ) defined by (64). Figure 11 illustrates the convergence with the rank of the variance
of the approximate quantities of interest. Note that the algorithm do not guarantee the monotone
convergence of the quantity of interest with respect to the rank, that is confirmed by the numerical
results. However, we observe that the approximations provided by the A-IMR algorithm are
better than the ones given by the CMR, even for large δ. Also, when using the weighted norm
in the A-IMR algorithm, the quantity of interest is estimated with an better precision. Similar
behaviors are observed for the convergence of the mean.
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Canonical 2-norm ‖ · ‖2 Weighted 2-norm ‖ · ‖w
k\δ 0.9 0.5 0.2 0.05 0.01 0.9 0.5 0.2 0.05 0.01
1 1 1 3 6 14 3 12 53 65 91
2 1 3 5 13 24 2 11 49 62 91
3 1 3 5 12 17 3 12 49 62 91
4 1 3 5 13 26 3 12 53 62 91
5 1 3 6 12 24 2 11 47 65 89
6 1 3 5 13 27 3 11 42 63 88
7 1 3 5 12 27 3 10 50 65 88
8 1 3 5 12 26 3 10 49 60 87
9 1 3 6 12 26 3 13 49 65 80

Table 4: Computation of Λδ(rk) for different precisions δ and at different steps k of the gradient-
type algorithm (first iteration r = 1 of the greedy approach with SX = R1). The table indicates
the number of greedy corrections computed for reaching the precision δ using the heuristic stopping
criterion (44) with p = 20.
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Figure 11: Relative error with respect to the variance of the reference solution Q(uref) with the
canonical (left) and weighted (right) norms.

8 Conclusion
In this paper, we have proposed a new algorithm for the construction of low-rank approxima-
tions of the solutions of high-dimensional weakly coercive problems formulated in a tensor space
X. This algorithm is based on the approximate minimization (with a certain precision δ) of a
particular residual norm on given low-rank tensor subsets SX , the residual norm coinciding with
some measure of the error in solution. Therefore, the algorithm is able to provide a quasi-best
low-rank approximation with respect to a norm ‖ · ‖X that can be designed for a certain objec-
tive. A weak greedy algorithm using this minimal residual approach has been introduced and
its convergence has been proved under some conditions. A numerical example dealing with the
solution of a stochastic partial differential equation has illustrated the effectivity of the method
and the properties of the proposed algorithms. Some technical points have to be addressed in
order to apply the method to a more general setting and to improve its efficiency and robustness:
the development of efficient solution methods for the computation of residuals when using general
norms ‖ · ‖X (that are not induced norms in the tensor space X), the introduction of robust error
estimators during the computation of residuals (for the robust control of the precision δ, which
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is the key point for controlling the quality of the obtained approximations), the application of
the method for using tensor formats adapted to high-dimensional problems (such as Hierarchical
formats). Also, a challenging perspective consists in coupling low-rank approximation techniques
with adaptive approximations in infinite-dimensional tensor spaces (as in [3]) in order to provide
approximations of high-dimensional equations (PDEs or stochastic PDEs) with a complete control
on the precision of quantities of interest.
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