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Abstract

In this paper, we propose a low-rank approximation method based on discrete least-squares
for the approximation of a multivariate function from random, noisy-free observations. Spar-
sity inducing regularization techniques are used within classical algorithms for low-rank ap-
proximation in order to exploit the possible sparsity of low-rank approximations. Sparse
low-rank approximations are constructed with a robust updated greedy algorithm which in-
cludes an optimal selection of regularization parameters and approximation ranks using cross
validation techniques. Numerical examples demonstrate the capability of approximating func-
tions of many variables even when very few function evaluations are available, thus proving
the interest of the proposed algorithm for the propagation of uncertainties through complex
computational models.

1 Introduction

Uncertainty quantification has emerged as a crucial field of investigation for various branches
of science and engineering. Over the last decade, considerable efforts have been made in the
development of new methodologies based on a functional point of view in probability, where random
outputs of simulation codes are approximated with suitable functional expansions. Typically,
when considering a function u(ξ) of input random parameters ξ = (ξ1 . . . ξd), an approximation

is searched under the form u(ξ) ≈
∑P
i=1 uiφi(ξ) where the φi(ξ) constitute a suitable basis of

multiparametric functions (e.g. polynomial chaos basis).
Several methods have been proposed for the evaluation of functional expansions (see [22, 26,

20]). Non intrusive discrete projection methods allow the estimation of expansion coefficients by
using evaluations of the numerical model at certain sample points, thus allowing the simple use
of existing deterministic simulation codes. However the dimension P of classical approximation
spaces has an exponential (or factorial) increase with dimension d and hence the computational
cost becomes prohibitively high as one needs to evaluate the model for a large number of samples
of the order of P . The objective is to construct an approximation of the high dimensional function
u, given the fact that we have only limited information on it. We are particularly interested in
the case where the dimension d is large but the “effective dimensionality” of the function is fairly
small.

In order to handle high-dimensional models, we here propose a low rank tensor approxima-
tion method using a discrete least-squares approach, which exploits the tensor structure of the
stochastic function spaces and the possible sparsity of low rank approximations. The underlying
assumption is that the model output functional can be well approximated using sparse low-rank
tensor approximations.
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‡Department of Applied Mathematics and Modeling, Airbus Group, Suresnes, France
§Corresponding author (anthony.nouy@ec-nantes.fr).

1

ar
X

iv
:1

30
5.

00
30

v2
  [

m
at

h.
N

A
] 

 9
 J

ul
 2

01
4



Least-squares method for sparse low rank approximation 2

Low rank approximation methods have recently been applied to many areas of scientific com-
puting for approximating elements in high dimensional tensor spaces [18, 15, 14, 12, 16], with
several applications in uncertainty propagation [25, 8, 27, 17, 23]. In the context of uncertainty
quantification, for problems involving very high stochastic dimension d, instead of evaluating the
coefficients of an expansion in a given approximation basis (e.g. polynomial chaos), function u is
approximated in suitable low-rank tensor subsets of the form

M =
{
v = FM(p(1), . . . ,p(d)); p(k) ∈ Rnk

}
,

where FM is a multilinear map which constitutes a parametrization of the subsetM and p(k) are
the parameters. Low rank tensor subsets have nice approximation properties in the sense that they
are able to approximate with a good precision a large class of functions that can be encountered
in practical applications. The dimension of the parametrization

∑d
k=1 nk typically grows linearly

with the dimension d, thus making possible approximation in high dimension. Here, we rely on
least-squares methods in order to construct approximations in these tensor subsets, using only
sample evaluations of the function u. Methods based on least-squares have already been proposed
in [2, 28, 10] for the construction of tensor approximations of multivariate functions. Here, we
propose an alternative construction that incorporates sparsity-inducing regularization allowing the
construction of sparse low rank approximations with only a few function evaluations.

The proposed method consists in approximating the model with a m-term representation
um(ξ) =

∑m
i=1 αiwi(ξ) where the αi are real coefficients and where the wi are successively se-

lected in a sparse low-rank (typically rank-one) tensor subset, ideally

Mm-sparse =
{
v = FM(p(1), . . . ,p(d)); p(k) ∈ Rnk , ‖p(k)‖0 ≤ mk

}
,

where ‖ · ‖0 is the “`0-norm” counting the number of non zero coefficients. Although Mm-sparse

may have a very small effective dimension
∑d
k=1mk �

∑d
k=1 nk, the structure of this set makes

optimization inMm-sparse a combinatorial problem. Therefore, we replace the ideal sparse tensor
subset by

Mγ =
{
v = FM(p(1), . . . ,p(d)); p(k) ∈ Rnk , ‖p(k)‖1 ≤ γk

}
,

where we introduce a convex regularization of the constraints using `1-norm. In practice, op-
timal approximations in subset Mγ are computed using an alternating minimization algorithm
that exploits the specific low dimensional parametrization of the subset Mγ and that involves
the solution of successive least-squares problems with sparse `1-regularization. Cross validation
techniques are introduced in order to select optimal regularization parameters γ. The progressive
(greedy) construction of the m-term representation has the advantages of being adaptive and also
of reducing the dimension of successive least-squares problems, thus improving the robustness of
the least-squares method when only few samples are available. As a result, the proposed technique
allows to approximate the response of models with a large number of random inputs even with a
limited number of model evaluations. A sparse regularization technique is also used in order to
retain only the most significant functions wi, which results in an improvement of robustness of the
greedy construction when only a limited number of samples are available. The results of this paper
highlight the interest of exploiting both low-rank and sparse structures of functions for a better use
of the available information on the function. In this paper, we restrict the presentation to the case
where successive corrections are computed in the set M of rank-one tensors. It is well known in
practice that greedy rank-one constructions yield suboptimal low-rank canonical decompositions.
The extension of the methodology to other low-rank tensor subsets is straightforward.

The outline of the paper is as follows. In section 2, we introduce some basic concepts about
functional approaches in uncertainty propagation. We also detail methods based on least-squares
for the computation of approximate functional expansions. In section 3, we introduce the proposed
sparse low rank approximation method based on regularized least-squares. Finally the ability of
the proposed method to detect and exploit low rank and sparsity of functions is illustrated on
numerical applications in section 4.
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2 Functional representation and least squares methods

2.1 Stochastic function spaces and their tensor structure

We here introduce the definitions of stochastic functions spaces and approximation spaces. We
consider a set ξ of d random variables and we denote by (Ξ,B, Pξ) the associated probability
space, where Ξ ⊂ Rd and where Pξ is the probability law of ξ. We suppose that ξ can be split
into r mutually independent sets of random variables {ξk}rk=1, i.e. ξ = {ξ1, . . . , ξr}, where ξk
takes values in Ξk ⊂ Rdk . We have d =

∑r
k=1 dk. We denote by (Ξk,Bk, Pξk) the probability

space associated with ξk, where Pξk is the probability law of ξk. Therefore, the probability
space (Ξ,B, Pξ) associated with ξ = (ξ1, . . . , ξr) has a product structure with Ξ = ×rk=1Ξk and
Pξ = ⊗rk=1Pξk .

We denote by L2
Pξ

(Ξ) the Hilbert space of second order random variables defined on (Ξ,B, Pξ),
defined by

L2
Pξ

(Ξ) =

{
u : y ∈ Ξ 7→ u(y) ∈ R;

∫
Ξ

u(y)2Pξ(dy) <∞
}
,

which is a tensor Hilbert space with the following tensor structure:

L2
Pξ

(Ξ) = L2
Pξ1

(Ξ1)⊗ . . .⊗ L2
Pξr

(Ξr).

We now introduce approximation spaces Sknk ⊂ L2
Pξk

(Ξk) with orthonormal basis {φ(k)
j }

nk
j=1, such

that

Sknk =

v(k)(yk) =

nk∑
j=1

vkj φ
(k)
j (yk); vkj ∈ R

 =
{
v(k)(yk) = φ(k)(yk)Tv(k); v(k) ∈ Rnk

}
,

where v(k) denotes the vector of coefficients of v(k) and where φ(k) = (φ
(k)
1 , . . . , φ

(k)
nk )T denotes the

vector of basis functions. An approximation space Sn ⊂ L2
Pξ

(Ξ) is then obtained by tensorization

of approximation spaces Sknk :

Sn = S1
n1
⊗ . . .⊗ Srnr =

{
v =

∑
i∈In

viφi ; vi ∈ R

}
,

where In = ×rk=1{1 . . . nk} and φi(y) = (φ
(1)
i1
⊗ . . . ⊗ φ(r)

ir
)(y1, . . . , yr) = φ

(1)
i1

(y1) . . . φ
(r)
ir

(yr). An
element v =

∑
i viφi ∈ Sn can be identified with the algebraic tensor v ∈ Rn1⊗ . . .⊗Rnr such that

(v)i = vi. Denoting φ(y) = φ(1)(y1)⊗ . . .⊗φ(r)(yr) ∈ Rn1 ⊗ . . .⊗Rnr , we have the identification
Sn ' Rn1 ⊗ . . .⊗ Rnr with

Sn = {v(y) = 〈φ(y),v〉; v ∈ Rn1 ⊗ . . .⊗ Rnr} ,

where 〈·, ·〉 denotes the canonical inner product in Rn1 ⊗ . . .⊗ Rnr .
Here, we suppose that the approximation space Sn is given and sufficiently rich to allow ac-

curate representations of a large class of functions (e.g. by choosing polynomial spaces with high
degree, wavelets with high resolution...). Then, the aim is to provide a method for the approxima-
tion of functions in Sn for high dimensional applications and using only limited information on the
functions. Note that in the case r = d, approximation space Sn has a dimension

∏d
k=1 nk which

grows exponentially with the dimension d, thus making impossible the numerical representation
and computation of an element v ∈ Sn for high dimensional applications. In order to reduce the
dimensionality, a classical strategy consists in introducing approximation subspaces Sn,p ⊂ Sn
that are constructed using suitable tensorization rules: Sn,p = {v =

∑
i∈In,p viφi ; vi ∈ R}, where

In,p ⊂ In is an index set which can be chosen a priori. For r = d, a typical construction consists

in taking for Sknk the space of degree p polynomials Pp(Ξk), with φ
(k)
j the orthogonal polynomial
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of degree j − 1, and for In,p = {i ∈ In;
∑d
k=1(ik − 1) ≤ p}. Thus, Sn,p appears to be the so called

polynomial chaos composed of multidimensional polynomials with total degree less than p [13, 30].
Other tensorization strategies have been proposed, based on a priori knowledge on the solution
or based on adaptive strategies. In the present work, we are interested in alternative methods
that try to approximate high dimensional functions using low-rank approximations. They will be
introduced in section 3.

2.2 Least-squares methods

We here consider the case of a real-valued model output u : Ξ→ R. We denote by {yq}Qq=1 ⊂ Ξ a

set of Q samples of ξ, and by {u(yq)}Qq=1 ⊂ R the corresponding function evaluations. We suppose

that an approximation space SP = span{φi}Pi=1 is given. Classical least-squares method for the
construction of an approximation uP ∈ SP then consists in solving the following problem:

‖u− uP ‖2Q = min
v∈SP

‖u− v‖2Q with ‖u‖2Q =
1

Q

Q∑
q=1

u(yq)2. (1)

Note that ‖ · ‖Q only defines a semi-norm on L2
Pξ

(Ξ) but it may define a norm on the finite
dimensional subspace SP if we have a sufficient number Q of model evaluations. A necessary
condition is Q ≥ P . However, this condition may be unreachable in practice for high dimensional
stochastic problems and usual a priori (non adapted) construction of approximation spaces SP .
Moreover, classical least-squares method may yield bad results because of ill-conditioning (solution
very sensitive to samples). A way to circumvent these issues is to introduce a regularized least-
squares functional:

J λ(v) = ‖u− v‖2Q + λL(v), (2)

where L is a regularization functional and where λ refers to some regularization parameter. The
regularized least-squares problem then consists in solving

J λ(uλP ) = min
v∈SP

J λ(v). (3)

Denoting by v = (v1, . . . , vP )T ∈ RP the coefficients of an element v =
∑P
i=1 viφi ∈ SP , we can

write

‖u− v‖2Q = ‖z−Φv‖22, (4)

with z = (u(y1), . . . , u(yQ))T ∈ RQ the vector of random evaluations of u(ξ) and Φ ∈ RQ×P
the matrix with components (Φ)q,i = φi(y

q). We can then introduce a function L : RP → R
such that L(

∑
i viφi) = L(v), and a function Jλ : RP → R such that J λ(

∑
i viφi) = Jλ(v) =

‖z − Φv‖22 + λL(v). An algebraic version of least-squares problem (3) can then be written as
follows:

min
v∈RP

‖z−Φv‖22 + λL(v). (5)

Regularization introduces additional information such as smoothness, sparsity, etc. Under some
assumptions on the regularization functional L, problem (3) may have a unique solution. However,
the choice of regularization strongly influences the quality of the obtained approximation. Another
significant component of solving (5) is the choice of regularization parameter λ. In this paper, we
use cross validation for the selection of an optimal value of λ.

2.3 Sparse regularization

Over the last decade, sparse approximation methods have been extensively studied in different
scientific disciplines. A sparse function is one that can be represented using few non zero terms
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when expanded on a suitable basis. In the context of uncertainty quantification, if a stochastic
function is known to be sparse on a particular function basis, e.g. polynomial chaos (or tensor
basis), sparse regularization methods can be used for quasi optimal recovery with only few sample
evaluations. In general, a successful reconstruction of sparse solution vector depends on sufficient
sparsity of the coefficient vector and additional properties (incoherence) depending on the samples
and of the chosen basis (see [4, 7] or [9] in the context of uncertainty quantification). This strategy
has been found to be effective for non-adapted sparse approximation of the solution of some PDEs
[3, 9].

More precisely, an approximation
∑P
i=1 uiφi(ξ) of a function u(ξ) is considered as sparse on a

particular basis {φi(ξ)}Pi=1 if it admits a good approximation with only a few non zero coefficients.
Under certain conditions, a sparse approximation can be computed accurately using only Q� P
random samples of u(ξ) via sparse regularization.

Given the random samples z ∈ RQ of the function u(ξ), a best m-sparse (or m-term) approxi-
mation of u can be ideally obtained by solving the constrained optimization problem

min
v∈RP

‖z−Φv‖22 subject to ‖v‖0 ≤ m, (6)

where ‖v‖0 = #{i ∈ {1, . . . , P} : vi 6= 0} is the so called `0-“norm” of v which gives the number
of non zero components of v. Problem (6) is a combinatorial optimization problem which is
NP hard to solve. Under certain assumptions, problem (6) can be reasonably well approximated
by the following constrained optimization problem which introduces a convex relaxation of the
`0-“norm”:

min
v∈RP

‖z−Φv‖22 subject to ‖v‖1 ≤ δ, (7)

where ‖v‖1 =
∑P
i=1 |vi| is the `1-norm of v. Since the `2 and `1-norms are convex, we can

equivalently consider the following convex optimization problem, known as Lasso [29] or basis
pursuit [6]:

min
v∈RP

‖z−Φv‖22 + λ‖v‖1, (8)

where λ > 0 corresponds to a Lagrange multiplier whose value is related to δ. Problem (8) appears
as a regularized least-squares problem. The `1-norm is a sparsity inducing regularization function
in the sense that the solution v of (8) may contain components which are exactly zero. Several
optimization algorithms have been proposed for solving (8) (see [1]). In this paper, we use the
Lasso modified least angle regression algorithm (see LARS presented in [11]) that provides a set of
Nr solutions, namely the regularization path, with increasing `1-norm. Let vj , with j = 1, . . . , Nr,
denote this set of solutions, Aj ⊂ {1, . . . , P} be the index set corresponding to non zero coefficients

of vj , vjAj ∈ R#Aj the vector of the coefficients Aj of vj , and ΦAj ∈ RQ×#Aj the submatrix of Φ
obtained by extracting the columns of Φ corresponding to indices Aj . The optimal solution v is
then selected using the fast leave-one-out cross validation error estimate [5] which relies on the use
of the Sherman-Morrison-Woodbury formula (see [3] for its implementation within Lasso modified
LARS algorithm). Algorithm 1 briefly outlines the cross validation procedure for the selection of
the optimal solution. In this work, we have used Lasso modified LARS implementation of SPAMS
software [21] for `1-regularization.
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Algorithm 1 Algorithm to determine optimal LARS solution using leave-one-out cross validation.

Input: sample vector z ∈ RQ and matrix Φ ∈ RQ×P
Output: vector of coefficients v ∈ RP

1: Run the Lasso modified LARS procedure to obtain Nr solutions v1, . . . ,vNr of the regular-
ization path, with corresponding sets of non zeros coefficients A1, . . . , ANr .

2: for j = 1, . . . , Nr do
3: Recompute the non zero coefficients vjAj of vj using ordinary least-squares:

vjAj = arg minv∈R#Aj ‖z−ΦAjv‖22
4: Compute hq = (ΦAj (Φ

T
AjΦAj )

−1ΦT
Aj )qq.

5: Compute relative leave-one-out error εj = 1
Q

∑Q
q=1

( (z)q−(ΦAj
vjAj

)q

(1−hq)σ̂(z)

)2

, where σ̂(z) is the

empirical standard deviation of z.
6: end for
7: Return the optimal solution v such that vAj∗ = vj

∗

Aj∗
with j∗ = arg minj εj .

3 Sparse low-rank tensor approximations based on least
squares method

The aim is to find a sparse low rank approximation of a function u(ξ) in the finite dimensional
tensor space Sn = S1

n1
⊗ . . . ⊗ Srnr . The proposed method relies on a greedy algorithm where

successive corrections of the approximation are computed in small low-rank tensor subsets using
least-squares with sparsity inducing regularization. Here, we restrict the presentation to the case
where successive corrections are computed in the elementary set of rank-one tensors R1, thus
resulting in the construction of a low-rank canonical approximation of the solution. However, the
methodology could be naturally extended in order to construct sparse representations in other
tensor formats.

3.1 Sparse canonical tensor subsets

Let R1 denote the set of (elementary) rank-one tensors in Sn = S1
n1
⊗ . . .⊗ Srnr , defined by

R1 =

{
w(y) =

(
⊗rk=1w

(k)
)

(y) =

r∏
k=1

w(k)(yk) ; w(k) ∈ Sknk

}
,

or equivalently by

R1 =
{
w(y) = 〈φ(y),w(1) ⊗ . . .⊗w(r)〉; w(k) ∈ Rnk

}
,

where φ(y) = φ(1)(y1)⊗ . . .⊗φ(r)(yr), with φ(k) = (φ
(k)
1 , . . . , φ

(k)
nk )T the vector of basis functions

of Sknk , and where w(k) = (wk1 , . . . , w
k
nk

)T is the set of coefficients of w(k) in the basis of Sknk , that

means w(k)(yk) =
∑nk
i=1 w

k
i φ

(k)
i (yk).

Approximation in R1 using classical least-squares methods possibly enables to recover a good
approximation of the solution using a reduced number of samples. However, it may not be suf-
ficient in the case where the approximation spaces Sknk have high dimensions nk, thus resulting
in a manifold of rank-one elements R1 with high dimension

∑r
k=1 nk. This difficulty may be

circumvented by introducing approximations in a m-sparse rank-one subset defined as

Rm-sparse
1 =

{
w(y) = 〈φ(y),w(1) ⊗ . . .⊗w(r)〉; w(k) ∈ Rnk , ‖w(k)‖0 ≤ mk

}
with effective dimension

∑r
k=1mk �

∑r
k=1 nk. As mentioned in section 2.3, performing least-

squares approximation in this set may not be computationally tractable. We thus introduce a
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convex relaxation of the `0-“norm” to define the subset Rγ1 of R1 defined as

Rγ1 =
{
w(y) = 〈φ(y),w(1) ⊗ . . .⊗w(r)〉; w(k) ∈ Rnk , ‖w(k)‖1 ≤ γk

}
,

where the set of parameters (w(1), . . . ,w(r)) is now searched in a convex subset of Rn1× . . .×Rnr .
Finally, we introduce the set of canonical rank-m tensors Rm = {v =

∑m
i=1 wi ;wi ∈ R1} and the

corresponding subset

Rγ
1,...,γm

m =

{
v =

m∑
i=1

wi ;wi ∈ Rγ
i

1

}
.

In the following, we propose algorithms for the construction of approximations in tensor subsets
Rγ1 and Rγ1,...,γm

m . These subsets are low-dimensional subsets of the approximation space Sn
but are not linear spaces nor convex sets, thus making more difficult the analysis and practical
resolution of optimization problems in these sets. In practice, we rely on heuristic alternating
minimization algorithms presented in the following sections.

Remark 1 For the construction of a rank-m approximation, we will introduce a progressive con-
struction based on successive rank-one corrections. A direct approximation in Rm would also be
possible, with a straightforward extension of the algorithm presented in Section 3.2. Best approx-
imation problem in Rm for m ≥ 2 is an ill-posed problem since Rm is not closed (see e.g. [15]
lemma 9.11 pg 255). However, using sparsity-inducing regularization (and also other types of reg-
ularizations) makes the best approximation problem well-posed. Indeed, it can be proven that the

subset Rγ1,...,γm

m of canonical tensors with bounded factors is a closed subset.

Remark 2 Other tensor subsets have been introduced that have better approximation properties,
such as Tucker tensor sets or Hierarchical Tucker tensor sets (see [15] for a comprehensive review).
These tensor formats are not considered here.

3.2 Construction of sparse rank-one tensor approximation

The subset Rγ1 can be parametrized with the set of parameters (w(1), . . . ,w(r)) ∈ Rn1 × . . .×Rnr
such that ‖w(k)‖1 ≤ γk (k = 1, . . . , r), this set of parameters corresponding to an element w =
⊗rk=1w

(k) where w(k) denotes the vector of coefficients of an element w(k). With appropriate
choice of bases, a sparse rank-one function w could be well approximated using vectors w(k) with
only a few non zero coefficients.

We compute a rank-one approximation w = ⊗rk=1w
(k) ∈ Rγ1 of v by solving the least-squares

problem

min
w∈Rγ1

‖v − w‖2Q = min
w(1)∈Rn1 ,...,w(r)∈Rnr
‖w(1)‖1≤γ1,...,‖w(r)‖1≤γr

‖v − 〈φ,w(1) ⊗ . . .⊗w(r)〉‖2Q. (9)

Problem (9) can be equivalently written

min
w(1)∈Rn1 ,...,w(r)∈Rnr

‖v − 〈φ,w(1) ⊗ . . .⊗w(r)〉‖2Q +

r∑
k=1

λk‖w(k)‖1, (10)

where the values of the regularization parameters λk > 0 (interpreted as Lagrange multipliers)
are related to γk. In practice, minimization problem (10) is solved using an alternating minimiza-
tion algorithm which consists in successively minimizing over w(j) for fixed values of {w(k)}k 6=j .
Denoting by z ∈ RQ the vector of samples of function v(ξ) and by Φ(j) ∈ RQ×nj the matrix

whose components are (Φ(j))qi = φji (y
q
j )
∏
k 6=j w

(k)(yqk), the minimization problem on w(j) can be
written

min
w(j)∈Rnj

‖z−Φ(j)w(j)‖22 + λj‖w(j)‖1, (11)
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which has a classical form of a least-squares problem with a sparsity inducing `1-regularization.
Problem (11) is solved using the Lasso modified LARS algorithm where the optimal solution is
selected using the leave-one-out cross validation procedure presented in Algorithm 1. Algorithm
2 outlines the construction of a sparse rank one approximation.

Algorithm 2 Algorithm to compute sparse rank one approximation of a function v.

Input: vector of evaluations z = (v(y1), . . . , v(yQ))T ∈ RQ.
Output: rank-one approximation w(y) = 〈φ(y),w(1), . . . ,w(r)〉.

1: Initialize the vectors {w(k)}rk=1 and set l = 0.
2: l← l + 1.
3: for j = 1, . . . , r do
4: Evaluate matrix Φ(j).
5: Solve problem (11) using Algorithm 1 for input z ∈ RQ and Φ(j) ∈ RQ×nj to obtain w(j).
6: end for
7: Compute ẑ = (w(y1), . . . , w(yQ))T .
8: if ‖z− ẑ‖2 > ε and l ≤ lmax then
9: Go to Step 2.

10: end if
11: Return the solution parameters w(1), . . . ,w(r).

Remark 3 (Other types of regularization) Different rank-one approximations can be defined
by changing the type of regularization and constructed by replacing step 5 of Algorithm 2. First,
one can consider a simple least-squares without regularization, namely Ordinary Least Squares
(OLS), by replacing step 5 by the solution of

min
w(j)∈Rnj

‖z−Φ(j)w(j)‖22. (12)

Also, one can consider a regularization using `2-norm (ridge regression) by replacing step 5 by the
solution of

min
w(j)∈Rnj

‖z−Φ(j)w(j)‖22 + λj‖w(j)‖22 (13)

with a selection of optimal parameter λj using standard cross-validation (typically k-fold cross-
validation). The approximations obtained with these different variants will be compared in the
numerical examples of section 4.

3.3 Updated greedy construction of sparse rank-M approximation

We now wish to construct a sparse rank-M approximation uM ∈ RM of u of the form uM =∑M
m=1 αmwm by successive computations of sparse rank-one approximations wm = ⊗rk=1w

(k)
m .

Remark 4 This construction yields a suboptimal rank-M approximation but it has several ad-
vantages: successive minimization problems in R1 are well-posed (without any regularization), it
requires the learning of a small number of parameters at each iteration. However, let us recall that
a direct approximation in sparse canonical tensor format would also be possible (see remark 1).

We start by setting u0 = 0. Then, knowing an approximation um−1 of u, we proceed as follows.

3.3.1 Sparse rank-1 correction step

We first compute a correction wm ∈ R1 of um−1 by solving

min
w∈Rγ1

‖u− um−1 − w‖2Q, (14)
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which can be reformulated as

min
w∈R1

‖u− um−1 − 〈φ,w(1) ⊗ . . .⊗w(r)〉‖2Q +

r∑
k=1

λk‖w(k)‖1. (15)

Problem (15) is solved using an alternating minimization algorithm, which consists in successive
minimization problems of the form (11) where z ∈ RQ is the vector of samples of the residual (u−
um−1)(ξ). Optimal parameters {λk}rk=1 are selected with the fast leave-one-out cross-validation.

3.3.2 Updating step

Once a rank-one correction wm has been computed, it is normalized and the approximation um =∑m
i=1 αiwi is computed by solving a regularized least-squares problem:

min
α=(α1,...,αm)∈Rm

‖u−
m∑
i=1

αiwi‖2Q + λ′‖α‖1. (16)

This updating step allows a selection of significant terms in the canonical decomposition, that
means when some αi are found to be negligible, it yields an approximation um =

∑m
i=1 αiwi

with a lower effective rank representation. The selection of parameter λ′ is also done with a
cross-validation technique.

Remark 5 Note that an improved updating strategy could be introduced as follows. At step m,

denoting by wi = ⊗rk=1w
(k)
i , 1 ≤ i ≤ m, the computed corrections, we can define approximation

spaces Wk
m = span{w(k)

i }mi=1 ⊂ Sknk (with dimension at most m), and look for an approximation

of the form um =
∑m
i1=1 . . .

∑m
ir=1 αi1...ir ⊗rk=1 w

(k)
ik
∈ ⊗rk=1Wk

m (namely Tucker tensor format).
The update problem then consists in solving

min
α=(αi1...ir )∈Rm×...×m

‖u−
∑

i1,...,ir

αi1...ir ⊗rk=1 w
(k)
ik
‖2Q + λ′‖α‖1, (17)

where ‖α‖1 =
∑
i1,...,ir

|αi1...ir |. This updating strategy can yield significant improvements of
convergence. However, it is clearly unpractical for high dimension r since the dimension mr of
the representation grows exponentially with r. For high dimension, other types of representations
should be introduced, such as hierarchical tensor representations.

Algorithm 3 details the updated greedy construction of sparse low rank approximations.

Algorithm 3 Updated greedy algorithm for sparse low rank approximation of a function u.

Input: vector of evaluations z = (u(y1), . . . , u(yQ))T ∈ RQ and maximal rank M .
Output: Sequence of approximations um =

∑m
i=1 αiwi, where wi ∈ R1 and α = (α1, . . . , αm) ∈

Rm.
1: Set u0 = 0
2: for m = 1, . . . ,M do
3: Evaluate the vector zm−1 = (um−1(y1), . . . , um−1(yQ))T ∈ RQ

4: Compute a sparse rank-one approximation wm = ⊗rk=1w
(k)
m using Algorithm 2 for input

vector of evaluations z− zm−1.
5: Evaluate matrix W ∈ RQ×m with components (W )qi = wi(y

q).
6: Compute α ∈ Rm with Algorithm 1 for input vector z ∈ RQ and matrix W ∈ RQ×m.
7: end for



Least-squares method for sparse low rank approximation 10

3.3.3 Rank Selection

Let us note that Algorithm 3 not only generates an approximation of the function but a sequence
of approximations {um}Mm=1 with increasing canonical ranks. To select the best rank, we use a
k-fold cross validation method. The overall procedure is as follows:

• Split sample set S = {1, . . . , Q} into k disjoint subsamples {Vi}ki=1, Vi ⊂ S, of approximately
the same size, and let Si = S \ Vi.

• For each subsample, run Algorithm 3 from the reduced vector of evaluations zSi (test set)
to obtain the sequence of model approximations {uSim}1≤m≤M . Compute the corresponding

mean squared errors {εSi1 , . . . , ε
Si
M} from the validation set of evaluations zVi .

• For m = 1, . . . ,M , compute the k-fold cross validation error ε̄m = 1
k

∑k
i=1 ε

Si
m .

• Select optimal rank mop = argmin1≤m≤M ε̄m.

• Run Algorithm 3 with the whole data set z for computing umop .

Remark 6 (Non greedy approximation) A non greedy variant of Algorithm 3 for computing
a rank-m approximation would consist in performing approximation directly in Rm (as proposed in
[10] without sparsity-inducing regularization). This strategy usually yields better approximations
for the same rank m. However, the set Rm for m ≥ 2 being not closed (see [15] lemma 9.11 pg 255),
minimization in Rm is an ill-posed problem which usually requires regularization. The proposed
construction based on successive rank-one corrections yields a suboptimal low-rank decomposition
but it has several advantages: successive minimization problems in R1 are well-posed, it requires
the learning of a small number of parameters at each iteration.

4 Application examples

In this section, we validate the proposed algorithm on several benchmark problems. The purpose
of the first example on Friedman function in section 4.1 is to highlight the benefit singly of the
greedy low rank approximation by giving some hints on the number of samples needed for a stable
approximation. The three following examples then exhibit the robustness of the l1-regularization
within the low rank approximation:

• by correctly detecting sparsity when appropriate approximation space is introduced as in
the checker board function case presented in section 4.2,

• or just by looking for the simplest representation with respect to the number of samples as
in the examples of sections 4.3 and 4.4.

In all the examples, for the purpose of estimating the approximation errors, we introduce the
relative error ε(um, u) between the function u and a rank-m approximation um, estimated with
Monte Carlo integration with Q′ = 1000 samples:

ε(um, u) =
‖um − u‖Q′
‖u‖Q′

. (18)

Let us also define the sparsity ratio %1 of a rank-1 approximation w = ⊗dk=1w
(k) as:

%1 =

∑d
k=1 β(w(k))∑d

k=1 nk

where β(w(k)) = ‖w(k)‖0 gives the number of non zero coefficients in the vector of coefficients
w(k). In short, %1 is the ratio of total number of non zero parameters to the total number of
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parameters in rank one tensor representation. We also define the total sparsity ratio %m and the

partial sparsity ratio %
(k)
m in the dimension k of a rank-m approximation um =

∑m
i=1⊗dk=1w

(k)
i as:

%m =

∑m
i=1

∑d
k=1 β(w

(k)
i )

m×
∑d
k=1 nk

and %(k)
m =

∑m
i=1 β(w

(k)
i )

m× nk
.

4.1 Analytical model: Friedman function

Let us consider a simple benchmark problem namely the Friedman function of dimension d = 5
also considered in [2]:

u(ξ) = 10 sin(πξ1ξ2) + 20(ξ3 − 0.5)2 + 10ξ4 + 5ξ5,

where ξi, i = 1, . . . , 5, are uniform random variables over [0,1]. In this section, we consider low rank
tensor subsets without any sparsity constraint, that means we do not perform `1 regularization in
the alternating minimization algorithm. The aim is to estimate numerically the number of function
evaluations necessary in order to obtain a stable approximation in low rank tensor format.

The analysis on the number of function evaluations is here based upon results of [24] where
it is proven that, for a stable approximation of a monovariate function with optimal convergence
rate using ordinary least squares on polynomial spaces, the number of random sample evaluations
required scales quadratically with the dimension of the polynomial space, i.e. Q ∼ (p+ 1)2 where
p is the maximal polynomial degree. This result is supported with numerical tests on monovariate
functions and on multivariate functions that show that indeed choosing Q scaling quadratically
with the dimension of the polynomial space P is robust while Q scaling linearly with P may lead
to an ill conditioned problem and hence an unstable approximation, depending on P and the
dimension d.

The following numerical tests aim at bringing out a similar type of rule for choosing the
number of samples Q for a low rank approximation of a multivariate function constructed in a
greedy fashion according to Algorithm 3, but with ordinary least squares in step 5 of Algorithm 2,
and given an isotropic tensor product polynomial approximation space with maximum degree p in
all dimensions. We first consider a rank one approximation of the function in Pp ⊗ · · · ⊗ Pp where
Pp denotes the polynomial approximation space of maximal degree p in each dimension from 1 to
d. Given the features above and considering the algorithm for the construction of the rank one
element of order d, we consider the following rule:

Q = cd(p+ 1)α

where c is a positive constant and α = 1 (linear rule) or 2 (quadratic rule). In the following
analyses of the current section, we plot the mean ε(um, u) over 51 sample set repetitions in order
to eliminate any dependence on the sample set of a given size. In figure 1, we compare the error
of rank one approximation ε(u1, u) with respect to the Legendre polynomial degree p using both
linear rule (left) and quadratic rule (right) for different values of c (ranging from 1 to 20 in the
linear rule and 0.5 to 3 in quadratic rule). As could have been expected, we find that the linear rule
yields a deterioration for small values of c whereas the quadratic rule gives a stable approximation
with polynomial degree.

For higher rank approximations, the total number of samples needed will have a dependence
on the approximation rank m. Thus we modify sample size estimates and consider the rule

Q = cdm(p+ 1)α

with α = 1 (linear rule) or 2 (quadratic rule). In figure 2, we plot approximation error ε(um, u)
using linear rule (left) and quadratic rule (right) for m = 2, 3, 4 and different values of c. We find
again that quadratic rule gives a stable approximation for c ≥ 1.

In order to analyze the accuracy of the rank-m approximation with respect to m, in figure 3
we plot the error ε(um, u) with respect to the polynomial degree p for different values of m using
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Figure 1: Evolution of rank one approximation error ε(u1, u) with respect to polynomial degree p
with (a) Q = cd(p+ 1) and (b) Q = cd(p+ 1)2 samples with several values of c.

Q = dm(p + 1)2, that is c = 1. As the number of samples Q increases with rank m using this
rule, more information on the function is given enabling for higher rank approximations to better
represent the possible local features of the solution. We thus find that the approximation is more
accurate as the rank increases.

From this example, we can draw the following conclusions:

• a heuristic rule to determine the number of samples needed in order to have a stable low
rank approximation grows only linearly with dimension d and rank m and is given by Q =
dm(p+ 1)2,

• better solutions are obtained with high rank approximations, provided that enough model
evaluations are available.

Quite often in practice, we do not have enough model evaluations and hence we may not
be able to achieve good approximations with limited sample size. This is particularly true for
certain classes of non smooth functions. One possible solution is a good choice of bases that are
sufficiently rich (such as piecewise polynomials or wavelets) and that can capture simultaneously
both global and local features of the model function. However, the sample size may not be
sufficient enough to obtain good approximations with ordinary least squares in progressive rank
one corrections due to large number of basis functions. We illustrate in section 4.2 and 4.3
that, in such cases, performing approximation in sparse low rank tensor subsets (i.e. using `1
regularization in alternating minimization algorithm) allows more accurate approximation of the
model function. In addition, we illustrate in section 4.4 that approximation in sparse low rank
tensor subsets leads to a relatively stable approximation with limited number of samples even for
high degree polynomial spaces.

4.2 Analytical model: Checker-board function

4.2.1 Function and approximation spaces

We now test Algorithm 3 on the so-called checker-board function u(ξ1, ξ2) of dimension d = 2
illustrated in figure 4. The purpose of this test is to illustrate that, given appropriate bases, in this
case piecewise polynomials, Algorithm 3 allows the detection of sparsity and hence construction
of a sequence of optimal sparse rank-m approximations with few samples.

Random variables ξ1 and ξ2 are independent and uniformly distributed on [0, 1]. The checker-
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Figure 2: Evolution of approximation error ε(um, u) with respect to polynomial degree p with
Q = cd(p + 1) (left column) and Q = cd(p + 1)2 (right column) with several values of c and for
m = 2, 3, 4.

board function is a rank-2 function

u(ξ1, ξ2) =

2∑
i=1

w
(1)
i (ξ1)w

(2)
i (ξ2)

with w
(1)
1 (ξ1) = c(ξ1), w

(2)
1 (ξ2) = 1− c(ξ2), w

(1)
2 (ξ1) = 1− c(ξ1) and w

(2)
2 (ξ2) = c(ξ2) where c(ξk)
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Figure 3: Evolution of error ε(um, u) with respect to polynomial degree p for different values of
m using sample size given by quadratic rule Q = dm(p+ 1)2.

is the crenel function defined by:

c(ξk) =

{
1 on [0, 1

6 [+2n 1
6 , n = 0, 1, 2

0 on [1
6 ,

2
6 [+2n 1

6 , n = 0, 1, 2
.

Figure 4: Checker-board function.

For approximation spaces Sknk , k ∈ {1, 2}, we introduce piecewise polynomials of degree p
defined on a uniform partition of Ξk composed by s intervals, corresponding to nk = s(p + 1).
We denote by Sknk = Pp,s the corresponding space (for ex. P2,3 denotes piecewise polynomials of
degree 2 defined on the partition {(0, 1

3 ), ( 1
3 ,

2
3 ), ( 2

3 , 1)}). We use an orthonormal basis composed of
functions whose supports are one element of the partition and whose restrictions on these supports
are rescaled Legendre polynomials.

Note that when using a partition into s = 6n intervals, n ∈ N, then the checker-board function
can be exactly represented, that means u ∈ Pp,6n⊗Pp,6n for all p and n. Also, the solution admits
a sparse representation in Pp,6n ⊗ Pp,6n since an exact representation is obtained by only using
piecewise constant basis functions (u ∈ P0,6n⊗P0,6n). The effective dimensionality of the checker-
board function is 2 × 2 × 6 = 24, which corresponds to the number of coefficients required for
storing the rank-2 representation of the function. We expect our algorithm to detect the low-rank
of the function and also to detect its sparsity.

4.2.2 Results

Algorithm 3 allows the construction of a sequence of sparse rank-m approximations um in S1
n1
⊗S2

n2
.

We estimate optimal rank-mop using 3-fold cross validation (see Section 3.3.3).
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In order to illustrate the accuracy of approximations in sparse low rank tensor subsets, we
compare the performance of `1-regularization within the alternating minimization algorithm (step
4 of Algorithm 3) with no regularization (OLS) and the `2-regularization (see Remark 3 for the
description of these alternatives). Table 1 shows the error ε(umop , u) obtained for the selected
optimal rank mop, without and with updating step 6 of Algorithm 3, and for the different types of
regularization during the correction step 4 of Algorithm 3. The results are presented for a sample
size Q = 200 and for different function spaces S1

n1
= S2

n2
= Pp,s. P denotes the dimension of the

space S1
n1
⊗ S2

n2
. We observe that, for P2,3, the solution is not sparse on the corresponding basis

and `1-regularization does not provide a better solution than `2-regularization since the approxi-
mation space is not adapted. However, when we choose function spaces that are sufficiently rich
for the solution to be sparse, we see that `1-regularization within the alternating minimization
algorithm outperforms other types of regularization and yields low rank approximations of the
function almost at the machine precision. This is because `1-regularization is able to select non
zero coefficients corresponding to appropriate basis functions of the piecewise polynomial approx-
imation space. For instance, when P5,6 is used as the approximation space, only 3 (out of 36)
non zero coefficients corresponding to piecewise constant bases are selected by `1 regularization
along each dimension in each rank one element (that is the sparsity ratio is %1 ≈ 0.08 for each
rank-one element), thus yielding an almost exact recovery. We also find that `1-regularization
allows recovering the exact rank-2 approximation of the function.

Table 1: Relative error ε(umop , u) and optimal rank mop estimation of Checker-board function
with various regularizations for Q = 200 samples. P is the dimension of the approximation space.
(‘-’ indicates that none of the rank-one elements were selected during the update step).

Ordinary Least Square `2 `1
No update Update No update Update No update Update

Approximation space Error mop Error mop Error mop Error mop Error mop Error mop

Rm(P2,3 ⊗ P2,3), P = 92 0.527 2 0.527 2 0.508 2 0.508 2 0.507 2 0.507 2
Rm(P2,6 ⊗ P2,6), P = 182 0.664 2 0.664 2 0.061 8 0.061 8 1.96 10−12 4 2.41 10−13 2
Rm(P2,12 ⊗ P2,12), P = 362 20.92 1 - - 0.568 10 0.566 4 1.93 10−12 2 1.1 10−12 2
Rm(P5,6 ⊗ P5,6), P = 362 31.27 1 - - 0.624 10 0.623 3 1.22 10−12 2 7.93 10−13 2
Rm(P10,6 ⊗ P10,6), P = 662 9648.8 1 - - 0.855 10 0.855 10 1.21 10−12 2 7.88 10−13 2

From this analytical example, several conclusions can be drawn:

• `1-regularization in alternating least squares algorithm is able to detect sparsity and hence
gives very accurate approximations using few samples as compared to OLS and `2-regularizations,

• updating step selects the most pertinent rank-one elements and gives an approximation of
the function with a lower effective rank.

4.3 Analytical model: Rastrigin function

For certain classes of non smooth functions, wavelet bases form an appropriate choice as they allow
the simultaneous description of global and local features [19]. In this example, we demonstrate the
use of our algorithm with polynomial wavelet bases by studying 2-dimensional Rastrigin function.
The function is given by

u(ξ) = 20 +

2∑
i=1

(ξ2
i − 10 cos(2πξi))

where ξ1, ξ2 are independent random variables uniformly distributed in [-4,4].
We consider two types of approximation spaces Sknk , k ∈ {1, 2}:

• spaces of polynomials of degree 7, using Legendre polynomial chaos basis, denoted P7,
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• spaces of polynomial wavelets with degree 4 and resolution level 3, denoted W4,3.

We compute a sequence of sparse rank-m approximations um in S1
n1
⊗ S2

n2
using Algorithm

3 and an optimal rank approximation umop is selected using 3-fold cross validation (see the rank
selection strategy in section 3.3.3). Figure 5(a) shows the convergence of this optimal approxi-
mation with respect to the sample size Q for the two different approximation spaces. We find
that the solution obtained with classical polynomial basis functions is inaccurate and does not
improve with increase in sample size. Thus, polynomial basis functions are not a good choice to
obtain a reasonably accurate estimate. On the other hand, when we use wavelet approximation
bases, the approximation error reduces progressively with increase in sample size. Figure 5(b)
shows the convergence of the optimal wavelet approximation with respect to the sample size Q for
different regularizations within the alternated minimization algorithm of the correction step. The
`1 regularization is more accurate when compared to both OLS and `2 regularization, particularly
for few model evaluations. We can thus conclude that a good choice of basis functions is impor-
tant in order to fully realize the potential of sparse `1 regularization in the tensor approximation
algorithm.

(a) (b)

Figure 5: Evolution of error ε(umop , u) with respect to the number of samples Q. Approximations
obtained with Algorithm 3 with optimal rank selection: (a) for the two different approximation
spaces P7⊗P7 (P = 64) and W4,3⊗W4,3 (P = 1600) and (b) for different types of regularizations
with approximation space W4,3 ⊗W4,3.

Figure 6 shows the convergence of the approximation obtained with Algorithm 3 using different
sample sizes. We find that as the sample size increases, we get better approximations with increas-
ing rank. Conversely, if only very few samples are available, then a very low rank approximation,
even rank one, is able to capture the global features. The proposed method provides the simplest
representation of the function with respect to the available information.

We finally analyze the robustness of Algorithm 3 with respect to the sample sets. We use
wavelet bases. An optimal rank approximation umop is selected using 3-fold cross validation as
described in section 3.3.3. We compare this algorithm with a direct sparse least-squares ap-
proximation in the tensorized polynomial wavelet space (no low-rank approximation), using `1-
regularization (use of Algorithm 1). Figure 7 shows the evolution of the relative error with respect
to the sample size Q for these two strategies. The vertical lines represent the scattering of the error
when different sample sets are used. We observe a smaller variance of the obtained approximations
when exploiting low-rank representations. This can be explained by the lower dimensionality of
the representation, which is better estimated with a few number of samples. On this simple exam-
ple, we see the interest of using greedy constructions of sparse low-rank representations when only
a small number of samples is available, indeed the problem is reduced to one where elements of
subsets of small dimension are to be learnt. The interest of using low-rank representations should
also become clear when dealing with higher dimensional problems.
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Figure 6: Evolution of error ε(umop , u) of approximations obtained using Algorithm 3 with respect
to rank m for different sample sizes on wavelet approximation space W4,3 ⊗W4,3 (P = 1600)

Figure 7: Evolution of error ε(umop , u) with respect to sample size Q. (Red line) approximation
obtained with direct least-squares approximation with `1-regularization on the full polynomial
wavelet approximation space W4,3 ⊗W4,3, (blue line) approximation obtained with Algorithm 3
(with `1-regularization) and with optimal rank selection.

4.4 A model problem in structural vibration analysis

4.4.1 Model problem

We consider a forced vibration problem of a slightly damped random linear elastic structure.
The structure composed of two plates is clamped on part Γ1 of the boundary and submitted
to a harmonic load on part Γ2 of the boundary as represented in figure 8(a). A finite element
approximation is introduced at the spatial level using a mesh composed of 1778 DKT plate elements
(see figure 8(b)) and leading to a discrete deterministic model with N = 5556 degrees of freedom.

The resulting discrete problem at frequency ω writes

(−ω2M + iωC + K)u = f,

where u ∈ CN is the vector of coefficients of the approximation of the displacement field and M,
K = EK̃ and C = iωηEK̃ are the mass, stiffness and damping matrices respectively. The non-
dimensional analysis considers a unitary mass density and a circular frequency ω = 0.67 rad.s−1.
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(a) (b)

Figure 8: Elastic plate structure under harmonic bending load. Geometry and boundary conditions
(a) and finite element mesh (b).

The Young modulus E and the damping parameter η are defined by

E =

{
0.975 + 0.025ξ1 on horizontal plate,

0.975 + 0.025ξ2 on vertical plate,

η =

{
0.0075 + 0.0025ξ3 on horizontal plate,

0.0075 + 0.0025ξ4 on vertical plate,

where the ξk ∼ U(−1, 1), k = 1, · · · , 4, are independent uniform random variables (here d = 4).
We define the quantity of interest

I(u)(ξ) = log ‖uc‖,

where uc is the displacement of the top right node of the two plate structure.

4.4.2 Impact of regularization and stochastic polynomial degree

In this example, we illustrate that the approximation in sparse low rank tensor subsets is robust
when increasing the degree of underlying polynomial approximation spaces with a fixed number
of samples Q.

We use Legendre polynomial basis functions with degree p = 1 to 20 and denote by Pp the cor-
responding space of polynomials of maximal degree p in each dimension. A rank-m approximation
is searched in the isotropic tensor space Pp ⊗ · · · ⊗ Pp.

Figure 9(left column) shows the error ε(Im, I) as a function of the polynomial degree p for
different ranks m for three different sizes of the sample set, Q = 80, 200 and 500. The low rank
approximation Im is computed with and without sparsity constraint, i.e. we compare OLS (dashed
lines) and `1 regularization (solid lines) in correction step 4 of Algorithm 3. Figure 10 summarizes
the error ε(Im, I) for different sizes of sample sets for the rank-10 approximation when using `1-
regularization (solid lines) and for the rank-m approximation giving the best approximation when
using OLS (dashed lines). On the one hand, we find that OLS yields a deterioration with higher
polynomial order. This is consistent with the conclusions in section 4.1 and the quadratic rule
according to which convergence is observed for Q ≥ dm(p + 1)2 and a deterioration is expected
otherwise. On the other hand, we see that `1-regularization gives a more stable approximation
with increasing polynomial order and also gives a more accurate best approximation than the
best approximation obtained with OLS. This can be attributed to the selection of pertinent basis
functions obtained by imposing sparsity constraint. Indeed, we clearly see in figure 9(right column)
that the sparsity ratio ρ5 for sparse low rank approximation (solid black line) decreases with

increasing polynomial degree. Along with the total sparsity ratio, the partial sparsity ratios %
(k)
5
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in each dimension k = 1 to 4 are plotted in figure 9(right column). We see that `1-regularization
exploits sparsity especially in dimensions 3 and 4 corresponding to the damping coefficients, indeed
the quantity of interest has smooth dependance on variables ξ3 and ξ4 whereas it has a high non
linear behavior with respect to ξ1 and ξ2. Figure 11 shows the reference quantity of interest and
the rank-3 approximation I3 obtained using `1-regularization and polynomial degree 5 constructed
from Q = 200 samples.

This illustration also points out that a small number of model evaluations, for instance Q = 80,
does not enable to capture correctly local features of the function and a low rank approximation
(m = 3) is selected as the best approximation regarding the available information. As the number
of samples increases, higher rank approximation are selected that capture the local features of the
function more accurately.

5 Conclusion

A non-intrusive least-squares-based sparse low-rank tensor approximation method has been pro-
posed for propagation of uncertainty in high dimensional stochastic models. Greedy algorithms
for low-rank tensor approximation have been combined with sparse least-squares approximation
methods in order to obtain a robust construction of sparse low-rank tensor approximations in
high dimensional approximation spaces when having only very few information on the function.
The ability of the proposed method to detect and exploit low-rank and sparsity was illustrated on
three analytical models and on a partial differential equation with random coefficients. In order
to exploit at best the few samples available in practical applications in uncertainty propagation,
algorithms that are able to automatically detect low-rank structures of a function (e.g. by finding
an optimal tree in hierarchical tensor representations) should be developed. Also, the design of
sampling strategies that are adapted to the construction of low-rank approximations could further
improve the performances of these techniques.
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