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Abstract
A numerical method is proposed to compute a low-rank Galerkin approxim-

ation to the solution of a parametric or stochastic equation in a non-intrusive
fashion. The considered nonlinear problems are associated with the minimization
of a parameterized differentiable convex functional. We first introduce a bilinear
parameterization of fixed-rank tensors and employ an alternating minimization
scheme for computing the low-rank approximation. In keeping with the idea of
non-intrusiveness, at each step of the algorithm the minimizations are carried out
with a quasi-Newton method to avoid the computation of the Hessian. The al-
gorithm is made non-intrusive through the use of numerical integration. It only
requires the evaluation of residuals at specific parameter values. The algorithm is
then applied to two numerical examples.
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1 Introduction
We are interested in computing the solution of a stochastic parametric equation. In
the literature, methods are said to be non-intrusive when they require simple calls to
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the deterministic solver to compute samples of the solution. We can cite for instance
approaches based on Monte-Carlo, collocation, or L2-projection methods [15]. On the
other hand, Galerkin-type methods [12] are often considered as intrusive, as the Galerkin
conditions lead to a coupled system of equations [8, 12] implying that the original soft-
ware for the fixed parameter case can not be used and requires modification. However,
in [8] it was shown that — in analogy to the partitioned solution of coupled problems
— it is possible to solve the usual Galerkin equations non-intrusively in the parametric
case by making use of the “deterministic” solver, i.e. the solver for a fixed value of the
parameters. Recent methods to compute a low-rank approximation [4, 6] to such para-
metric or stochastic problems also lead to Galerkin-type procedures. Here we want to
show that these methods too can be executed in a non-intrusive manner.

We want to represent the parametric solution u(p) by an approximation of the form

u(p) ≈
r∑
i=1

λi(p)vi,

where the vi ∈ U are fixed vectors and the λi(p) are real-valued functions of p, and
hopefully the rank r is sufficiently small. An obvious advantage of such a decomposition
is the reduction of the number of terms for the representation of the solution. We also
hope to reduce the computational time for large parametric problems.

The Singular Value Decomposition (SVD) is the best known technique for construct-
ing a low-rank approximation. If the solution u belongs to the tensor product of Hilbert
spaces, the best low-rank approximation with respect to the canonical norm is the trun-
cated SVD. Unfortunately, straightforward computation of the SVD requires to know
the solution of the equation, and thus is not directly applicable.

An alternative is to use an iterative solver coupled with a low-rank approximation or
truncation technique, leading to approximate iterations. These methods [9] have already
been used [1, 11, 14] in linear problems, and could be extended to the iterative solver
presented in [8] in a straightforward manner.

Another technique called Proper Generalized Decomposition (PGD) [4, 6] computes
a low-rank approximation of the solution, relying on a Galerkin-type projection. We
distinguish a progressive and a direct computation of the approximation. The first one
consists in building the approximation in a greedy fashion, with the computation of a
rank one approximation at each iteration, while the direct approach directly computes
a fixed rank approximation in one go. Such fixed rank approximation can be computed
with an alternating minimization algorithm in an optimization context [10].

Since the PGD relies on Galerkin-type projections, this method is usually classified
as intrusive. In the present paper, it is shown that low-rank approximations can be com-
puted in a non-intrusive fashion by just evaluating residuals. A low-rank approximation
is found by alternating minimization of a convex functional. These minimizations are
carried out with a quasi-Newton technique — we choose the quasi-Newton BFGS al-
gorithm here [5, 12] — which avoids the computation of the Hessian. As a consequence,
the proposed algorithm only requires evaluations of residuals — the negative gradient of
the functional — to compute the low-rank approximation of the solution. The efficiency
of the proposed approach is essentially related to the number of residual evaluations,
which could be reduced by introducing structured approximations of the parameter-
dependent residuals. The aim of the present paper is simply to show the feasibility
of computing low-rank Galerkin approximation of the solution in a non-intrusive fash-
ion, based on simple evaluations of the residual for some parameter values. Efficient
implementations will be proposed in a future work.

The outline of the paper is as follows. In Section 2 the parametric problem is intro-
duced with a special emphasis on the link between parametric-strong and parametric-
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weak formulations. We give necessary conditions for these problems to be well-posed.
Section 3 introduces the different ingredients for computing a low-rank approximation
of the solution with a basic PGD method in a non-intrusive fashion via numerical integ-
ration and the use of a BFGS technique. An improved algorithm is presented in Section
4. In Section 5, the method is illustrated with two numerical examples.

2 Parametric problems
We consider the parametric problem of finding u(p) ∈ U such that

A(u(p); p) = b(p), p ∈ P , (1)

where U is a Hilbert space and P is a parameter set equipped with a finite measure
µ (e.g. probability measure), A(·; p) : U → U and b(p) ∈ U . We identify U with its
dual and we denote by 〈·, ·〉U the inner product on U and ‖ · ‖U the associated norm.
A Galerkin approximation of the solution map could be computed in a non intrusive
manner as in [8]. In this work, we are interested in finding a low-rank approximation of
the solution. To do so, we assume that Problem (1) derives from the minimization of a
functional J(·; p) : U 3 v 7→ J(v; p) ∈ R. A suitable framework is established with the
following theorem.

Theorem 2.1. Assume that

(a) The map v 7→ J(v; p) is strongly convex uniformly in p, meaning that there exists a
constant α > 0 independent of p such that for all v, w ∈ U and for all t ∈ [0, 1] we
have

J(tv + (1− t)w; p) ≤ tJ(v; p) + (1− t)J(w; p)− α

2 t(1− t) ‖v − w‖
2
U ,

(b) v 7→ J(v; p) is Fréchet differentiable with gradient

∇J(v; p) = A(v; p)− b(p),

(c) p 7→ A(0; p)− b(p) is square µ-integrable,

(d) p 7→ J(v; p) is µ-integrable and v 7→ A(v; p) − b(p) is Lipschitz uniformly in p on
bounded sets, meaning that for all bounded sets S ⊂ U , there exists a constant K > 0
independent of p such that

‖A(v; p)− A(w; p)‖U ≤ K ‖v − w‖U , ∀v, w ∈ S.

Then a solution of (1) exists and is unique for all parameters p such that we can define
a solution map u : P → U . Moreover, u is in L2(P ;U), u is the unique minimizer in
L2(P ;U) of the functional

JP : u 7→
∫
P
J(u(p); p)µ(dp), (2)

and is equivalently characterized by∫
P
〈A(u(p); p)− b(p), δu(p)〉U µ(dp) = 0, ∀δu ∈ L2(P ;U). (3)

Proof. See Appendix A.
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It is additionally assumed [8] that an iterative solver for (1) is available,

u(k+1)(p)← u(k)(p) + P−1(R(u(k)(p); p)),

convergent for all fixed values of p, where

R(u(k)(p); p) := b(p)− A(u(k)(p); p)

is the standard residual of (1). The linear map P is a preconditioner, which may depend
on p and on the current iterate u(k); e.g. in Newton’s method P (u(k); p) = ∇A(u(k); p) —
the Fréchet derivative or gradient of A(·; p). Usually P is such that P (u(k); p)(∆u(k)) =
R(u(k); p) is “easy to solve” for ∆u(k) := u(k+1)−u(k). In any case, we assume that for all
arguments p and u the map v 7→ P (v; p) is linear in ∆u and non-singular. One should
stress the fact that P or P−1 are never needed explicitly, only their action onto a vector.
We assume that the software interface to the solver for (1) is such that one may access
the residual R(u; p) without any modification of the software, i.e. non-intrusively.

In a standard Galerkin method we introduce a finite dimensional space in L2(P ;U)
where we look for an approximation of the solution map. Its non-intrusive computation
was treated in [8]. Here we are interested in computing a low-rank approximation of the
solution of the form

u ≈ ur =
r∑
i=1

λi ⊗ vi, λi ∈ Q, vi ∈ U , (4)

in a non-intrusive manner, whereQ = L2(P) is the space of square µ-integrable functions
equipped with its natural inner product 〈·, ·〉Q and associated norm ‖ · ‖Q. The search
for a low-rank approximation is justified by the tensor product structure of L2(P ;U)
which is identified isomorphically with the tensor Hilbert space Q ⊗ U equipped with
the induced canonical norm.

3 Basic Proper Generalized Decomposition

3.1 Computation of the approximation
The basic PGD technique consists in using a greedy rank one approximation [6] for
computing an approximation of the solution of the form (4). Assume that we already
have computed ur = ∑r

i=1 λi ⊗ vi and we want to find an approximation ur + λ ⊗ v of
the solution. The couple (λ, v) is computed by solving the minimization problem

min
(λ,v)∈Q×U

JP(ur + λ⊗ v).

The solution is computed using an alternating minimization algorithm. For λ fixed, v is
computed solving the Euler-Lagrange equation related to the minimization with respect
to v: ∫

P
〈A(ur(p) + λ(p)v; p)− b(p), λ(p)δv〉U µ(dp) = 0, ∀δv ∈ U ,

or equivalently
〈Rλ(v), δv〉U = 0, ∀δv ∈ U , (5)

with Rλ(v) =
∫
P (b(p)− A(ur(p) + λ(p)v; p)))λ(p)µ(dp). Similarly, for v fixed, the min-

imization on λ requires the solution of the nonlinear equation:∫
P
〈A(ur(p) + λ(p)v; p)− b(p), δλ(p)v〉U µ(dp) = 0, ∀δλ ∈ Q,
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or equivalently,

〈Rv(λ), δλ〉Q =
∫
P
Rv(λ)(p)δλ(p)µ(dp) = 0, ∀δλ ∈ Q, (6)

with Rv(λ) : p 7→ 〈b(p)− A(ur(p) + λ(p)v; p), v〉U . Problems (5) and (6) are well-defined
since they correspond to the Euler-Lagrange equation related to the minimization of
the strongly convex functionals Jλ : v 7→ JP(ur + λ ⊗ v) and Jv : λ 7→ JP(ur + λ ⊗ v)
respectively. Moreover, the approximations {ur}r∈N are guaranteed to converge to the
solution (see [3]).

The equations (5) and (6) can be solved by any suitable method. For example,
Newton’s method for (5) is iterating vk+1 ← vk − [∇Rλ(vk)]−1Rλ(vk) until convergence,
and correspondingly for (6): λk+1 ← λk − [∇Rv(λk)]−1Rv(λk). Newton’s method can
be seen as a prototype algorithm for solving (5) and (6). The basic PGD algorithm is
summarized in Algorithm 1.

Algorithm 1 Basic PGD
Initialization u0.
r ← 0
while no convergence of ur do

Initialize v, λ
while no convergence of λ⊗ v do

λ← λ/‖λ‖Q
Solve Equation (5) for v
v ← v/‖v‖U
Solve Equation (6) for λ

end while
ur+1 ← ur + λ⊗ v
r ← r + 1

end while

3.2 Non-intrusive implementation
3.2.1 Computation of the projected residuals

To drive to zero the residuals in Rλ(v) = −∇Jλ(v) in (5) and Rv(λ) = −∇Jv(λ) in
(6) in the basic PGD Algorithm 1 (e.g. by Newton’s method as indicated above in the
solutions steps in Algorithm 1), those residuals have to be evaluated. The non-intrusive
evaluation will only use the usual residual R(v; p) of (1) as introduced in Section 2.

Let {wz} and {pz} be the weights and points associated with a quadrature formula
on P for the measure µ. The residual Rλ(v) in expression (5) then becomes

Rλ(v) =
∫
P
λ(p)R(ur(p) + λ(p)v; p) µ(dp) ≈

∑
z

wz λ(pz)R(ur(pz) + λ(pz)v; pz).

Similarly, the expression in (6) becomes for all δλ ∈ Q

〈Rv(λ), δλ〉Q =
∫
P
〈R(ur(p) + λ(p)v; p), v〉U δλ(p) µ(dp)

≈
∑
z

wz 〈R(ur(pz) + λ(pz)v; pz), v〉U δλ(pz).
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One may observe from these relations that the computation of the residuals in (5) and
(6) requires only the evaluation of standard residuals at the quadrature points pz of the
parametric space with state vector ur(pz) + λ(pz)v, that is

R(ur(pz) + λ(pz)v; pz) = b(pz)− A(ur(pz) + λ(pz)v; pz).

3.2.2 Introduction of a quasi-Newton method

If one were to use Newton’s method for solving (5) resp. (6) in Algorithm 1, one would
not only have to evaluate residuals, but one would also have to evaluate the Hessians of
the functionals (gradients of the residuals). The first Hessian is equal to

∇2Jλ(v) = −∇Rλ(v) =
∫
P
λ(p)2∇A(ur(p) + λ(p)v; p) µ(dp) (7)

and could be called a “weighted tangent matrix”, and for the other residual we have for
all δλ1, δλ2 ∈ Q:

∇2Jv(λ)(δλ1, δλ2) = −〈∇Rv(λ)δλ1, δλ2〉Q

:=
∫
P
〈∇A(ur(p) + λ(p)v; p) v, v〉U δλ1(p)δλ2(p) µ(dp). (8)

Again this would mean accessing the “tangent matrix” ∇A(·; p), and hence Newton’s
method cannot be really carried out non-intrusively. We therefore propose to use a
quasi-Newton method, which only requires evaluation of residuals. This can be done in
a non-intrusive fashion as demonstrated in Subsection 3.2.1.

In the following, the symbol x can stand for λ (resp. v), y for v (resp. λ) and X for
the space Q (resp. U). The inner product on X is denoted by 〈·, ·〉X . A quasi-Newton
method [5] defines the iterations by

x(`+1) = x(`) + ρ`C`Ry(x(`)),

where ρ` is a scalar factor to be defined through a linesearch procedure to be described
later, and C` is an approximation of the inverse of the negative gradient of Ry(x(`))
computed with the different iterates of the algorithm such that the so called quasi-
Newton equation C`+1z` = t` is satisfied — see below for z` and t` — and the correction
of C` in each iteration is of low rank.

Given that we are minimizing a functional, we use here a BFGS method [13] where
at iteration `+ 1, C`+1 is defined recursively by

C`+1 = C` + 〈z`, t`〉X + 〈z`, s`〉X
〈z`, t`〉2X

(t` ⊗ t`)−
1

〈z`, t`〉X
(s` ⊗ t` + t` ⊗ s`) . (9)

where z` = −(Ry(x(`+1))−Ry(x(`))), t` = x(`+1) − x(`), s` = C`z` and C0 is taken as the
formal inverse of a convenient preconditioner to be defined later.

It should be noted that the algorithm can be performed in a ‘matrix-free’ formulation,
as the matrices C` are only needed through their action on a vector. Hence they have not
to be stored explicitely [13]. The application of C` to a vector is described recursively
by (9), the action of a typical term, e.g. s`⊗ t`, on a vector x being given by 〈t`, x〉X s`.
The choice of C0 will be described later. In that way only the vectors t` and s` plus the
scalar factors have to be stored for each update. The application of C` to a vector thus
needs two inner products and a linear combination of three vectors per update. Most
often, BFGS is used in a limited memory form [13], with the number of updates limited
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to L. Once the counter reaches ` ≥ L, either all updates are ‘forgotten’ — a restart —
or the vectors t` and s` plus scalar factors are put in a queue of length L, and when the
queue is full the first update is popped out and the last one enqueued; for details see
[13].

With the notations Jv : λ 7→ JP(ur + λ⊗ v) and Jλ : v 7→ JP(ur + λ⊗ v), this yields
the Algorithm 2 for computing the solution of Ry(x) = 0.

Algorithm 2 BFGS for computing the solution of Ry(x) = 0
Initialization of x(0)

C0 ← P−1
y (symbolically, inverse of preconditioner Py)

`← 0
d0 ← C`Ry(x(0))
while no convergence do

ρ` ← coarse root of ρ 7→ σ(ρ)
t` ← ρ`d`
x(`+1) ← x(`) + t`
d`+1 ← C`Ry(x(`+1))
s` ← d` − d`+1
Store update information t`, s` and scalar factors
`← `+ 1

end while

One should bear in mind that this algorithm relies on evaluations of Ry(x(`)), that is
evaluations of standard residuals according to Section 3.2.1, which makes this algorithm
non-intrusive. The scalar ρ` is computed with a coarse linesearch, which picks ρ` such
as to minimize ρ 7→ ς(ρ) := Jy(x(`) + ρ d`). At the minimum we will have σ(ρ) :=
dς(ρ)/dρ = 0, which means σ(ρ) = 〈d`, Ry(x(`) + ρ d`)〉X = 0. The linesearch can thus
be carried out by finding a zero or root of the one-dimensional equation σ(ρ) = 0, which
involves only evaluation of residuals and hence can be performed non-intrusively. In [13]
a variant of regula falsi was used for this. The linesearch can be very coarse, it is in
effect an ‘insurance policy’ to avoid divergence in early iterations. It can be used with
Newton’s method to increase the domain of convergence. One may show (see [5, 13]
and the references therein) that as the method converges, one may choose ρ` = 1 so
that the linesearch does not have to be carried out later in the iteration; for details
see [13]. Given that Ry(x) can be evaluated in a non-intrusive fashion with numerical
integration, the whole technique is non-intrusive. The BFGS method is summarized in
Algorithm 2, and the non-intrusive implementation of the basic PGD method now uses
the BFGS algorithm as described in Algorithm 2 for the two tasks:

• Solve equation (5) for v.

• Solve equation (6) for λ.

It remains to specify the matrix C0 = P−1
y . The matrix is only needed when applied

to a vector, thus P−1
y is not needed explicitly. The preconditioner is best if it is a good

approximation of the Hessian ∇2Jy. Relation (7) suggest some very simple choices,
e.g. for x = v and y = λ when we solve for v (solving equation (5)), we may use the
original “deterministic” preconditioner P = P (v; p) described in Section 2 to obtain
an approximation for ∇2Jλ(v). As λ is normalized, a very crude approximation is
Pλ := P (ur(pa); pa), where pa ∈ P is a (possibly well chosen) sample. This way the
preconditioner is accessible in a non-intrusive fashion.
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Remark 3.1. Another possibility is to directly replace C0Ry(x(`)) ↔ C0Rλ(v(`)) (the
only context where C0 is needed) by

P−1
λ Rλ(v(`)) = C0Rλ(v(`)) :=∑

z

wz(λ(`)(pz))2 P−1(ur(pz) + λ(`)(pz) v(`); pz)
(
R(ur(pz) + λ(`)(pz) v(`); pz)

)
,

where each evaluation at a sampling point pz corresponds to one ‘iteration’ of the original
deterministic system, a non-intrusive computation.

On the other hand for x = λ and y = v when we solve for λ (solving equation
(6)), we see from Equation (8) that the action of ∇2Jv(λ) is fully diagonalized, it is
multiplication by the positive scalar function p 7→ 〈∇A(ur(p) + λ(p)v; p) v, v〉U . A very
simple choice is replacing that function by a constant Pv ∈ R+ which one may take —
as v is normalised — inside the convex hull of the spectra of the symmetric positive
definite operators ∇A(v; p), a crude approximation is the constant function

p 7→ Pv := 〈P (ur(pa) + λ(pa)v; pa)v, v〉U ≈ 〈∇A(ur(pa) + λ(pa)v; pa) v, v〉U > 0,

where pa ∈ P is again a random (or well chosen) element. The application to a function
λ ∈ Q is then the multiplication by the constant P−1

v ∈ R+ defined by

P−1
v = (〈P (ur(pa); pa)v, v〉U)−1 .

That is certainly a non-intrusive computation.

Remark 3.2. Another possibility is to directly replace C0Ry(x(`)) = C0Rv(λ(`))(p) (the
only context where C0 is needed) for each pz of the integration rule (the only points in
P where it is needed) by

P−1
v Rv(λ(`))(pz) = C0Rv(λ(`))(pz) :=

〈P−1(ur(pz) + λ(`)(pz) v(`); pz)
(
R(ur(pz) + λ(`)(pz) v(`); pz)

)
, v(`)〉U ,

where each evaluation at a sampling point pz corresponds to one ‘iteration’ of the original
deterministic system at parameter value pz with starting point ur(pz) + λ(`)(pz) v(`),that
is a non-intrusive computation.

4 Improved PGD algorithm
In the following, we consider that the cost of the evaluations of {ur(pz)} is negligible
compared to the cost of the evaluations of {A(ur(pz); pz) − b(pz)}. This hypothesis
suggests that the cost of the optimization of all the (λi)ri=1, or of all the (vi)ri=1, should be
almost independent of the rank r. We thus propose an improved strategy for computing
an approximation of the solution.

4.1 Low-rank approximation of the solution
The set of canonical tensors Cr of rank at most r, defined by

Cr =
{

r∑
i=1

λi ⊗ vi; λi ∈ Q, vi ∈ U
}
⊂ Q⊗ U ,
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is weakly closed, and the best approximation of a tensor in Cr with respect to the
canonical norm is given by the truncated singular value decomposition (SVD).

A direct low-rank approximation ur ∈ Cr of the solution u is defined by

min
v∈Cr

JP(v), with JP(v) =
∫
P
J(v(p); p)µ(dp), (10)

where J is defined in Theorem 2.1.
The set Cr is not a vector space, nor a convex set, so that the computation of the

solution to (10) requires specific algorithms. We introduce a parameterization Fr : Qr×
U r → Q⊗U such that Fr(Qr,U r) = Cr. Let λ = (λi)1≤i≤r ∈ Qr and v = (vi)1≤i≤r ∈ U r.
The map Fr is defined by

Fr(λ,v) =
r∑
i=1

λi ⊗ vi. (11)

Thanks to this parameterization, the problem (10) consists in solving

min
λ∈Qr,v∈Ur

JP ◦ Fr(λ,v), (12)

Lemma 4.1. The map Fr is bilinear and continuous, such that Fr and its partial maps
are Fréchet differentiable.

Proof. The continuity of Fr comes from the continuity of the tensor product ⊗ : Q×U 7→
Q⊗U with respect to the norm ‖ · ‖Q⊗U . As a consequence, Fr and its partial maps are
Fréchet differentiable.

Remark 4.2. The representation (11) is not unique. For T ∈ GLr(R), we denote
Tλ = {∑r

j=1 Tijλj}ri=1 ∈ Qr and Tv = {∑r
j=1 Tijvj}ri=1 ∈ U r. For all (λ,v, T ) ∈

Qr×U r×GLr(R), we have Fr(λ,v) = Fr(Tλ, T−1v). The principal consequence is that
there exists an infinite number of solutions to the problem (10), and that these solutions
are not isolated. Hence, we can not directly apply a Newton method since the Hessian
will become ill-conditioned near a critical point.

4.2 Adaptive alternating minimization algorithm
We solve the problem (12) with an alternating minimization algorithm, which means
that we alternatively solve the problems

min
v∈Ur

∫
P
J(Fr(λ,v)(p); p)µ(dp) and min

λ∈Qr

∫
P
J(Fr(λ,v)(p); p)µ(dp)

until convergence of Fr(λ,v). The existence and the characterization of the solutions of
these problems are given in the following theorem.

Theorem 4.3. Under the assumptions of Theorem 2.1, if λ is a set of linearly inde-
pendent functions, there exists a unique solution v ∈ U r to the minimization problem

min
v∈Ur

∫
P
J(Fr(λ,v)(p); p)µ(dp),

characterized by the equation∫
P
〈R(Fr(λ,v)(p); p), Fr(λ, δv)(p)〉U µ(dp) = 0, ∀δv ∈ U r. (13)

9



Similarly, if v is a set of linearly independent vectors, there exists a unique solution
λ ∈ Qr to the minimization problem

min
λ∈Qr

∫
P
J(Fr(λ,v)(p); p)µ(dp),

characterized by the equation∫
P
〈R(Fr(λ,v)(p); p), Fr(δλ,v)(p)〉U µ(dp) = 0, ∀δλ ∈ Qr. (14)

Proof. See Appendix B.

We equip the product space U r with the natural inner product 〈·, ·〉Ur defined by

〈w,v〉Ur =
r∑
i=1
〈wi, vi〉U , ∀w = (wi)ri=1 ∈ U r, ∀v = (vi)ri=1 ∈ U r,

and we equip the product space Qr with the natural inner product 〈·, ·〉Qr defined by

〈λ,γ〉Qr =
r∑
i=1
〈λi, γi〉Q , ∀λ = (λi)ri=1 ∈ Qr, ∀γ = (γi)ri=1 ∈ Qr.

We have to solve the nonlinear Equations (13) and (14) that are related to the
minimization of some functionals. Given that∫

P
〈R(Fr(λ,v)(p); p), Fr(λ, δv)(p)〉U µ(dp)

=
r∑
i=1

〈∫
P
R(Fr(λ,v)(p); p)λi(p)µ(dp), δvi

〉
U

= 〈Rλ(v), δv〉Ur ,

finding the solution to Equation (13) is equivalent to finding v, solution to

〈Rλ(v), δv〉Ur = 0, ∀δv ∈ U r, (15)

with Rλ(v) = (Rλi
(v))ri=1 ∈ U r and

Rλi
(v) =

∫
P
R(Fr(λ,v)(p); p)λi(p)µ(dp), i ∈ {1, . . . , r}.

It is only necessary to computeRλi
(v)(p) at the integration points pz. Once the residuum

R(Fr(λ,v)(pz); pz) has been evaluated it can be used for all i ∈ {1, . . . , r}.
Similarly, using that∫
P
〈R(Fr(λ,v)(p); p), Fr(δλ,v)(p)〉U µ(dp)

=
r∑
i=1

∫
P
〈R(Fr(λ,v)(p); p), vi〉U δλi(p)µ(dp) = 〈Rv(λ), δλ〉Qr ,

finding the solution to Equation (14) is equivalent to finding λ, solution to

〈Rv(λ), δλ〉Qr = 0, ∀δλ ∈ Qr, (16)

with Rv(λ) = (Rvi
(λ))ri=1 ∈ Qr and

Rvi
(λ) : p 7→ 〈R(Fr(λ,v)(p); p), vi〉U , i ∈ {1, . . . , r},
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approximated again by standard residuum evaluations; and R(Fr(λ,v)(pz); pz) has to
be evaluated only once for all i ∈ {1, . . . , r}.

We can thus use once again a BFGS method to solve Problems (15) and (16).
Moreover, the algorithm can be made non-intrusive using numerical integration given
that

〈Rvi
(λ), δλi〉Q ≈

∑
z

wz 〈R(Fr(λ,v)(pz); pz), viδλi(pz)〉U

and
Rλi

(v) ≈
∑
z

wzR(Fr(λ,v)(pz); pz)λi(pz).

With ur = Fr(λ,v), we insist on the fact that a BFGS technique will require the
evaluations of the residual R(ur(pz); pz) = b(pz)− A(ur(pz); pz).

In order to avoid any degeneracy and obtain well-conditioned problems, we intro-
duce two orthogonalization steps. We denote by orth : X r → X r, X = Q or U , an
operator such that with x′ = orth(x), we have spanx ⊂ spanx′, and x′ = (x′i)ri=1 is an
orthonormal set. Such a set can be obtained by taking the first r left singular vectors
of x considered as a tensor in X ⊗ Rr for instance.

Finally, the rank is adapted by choosing a good initial guess at each step. Except
for the rank one approximation, the initial guess for the computation of the rank r
approximation is chosen to be the rank r − 1 approximation of the solution computed
at the previous iteration plus a rank one term. The whole approach is summarized in
Algorithm 3.

Algorithm 3 Non-intrusive implementation of the improved PGD
Initialization of u0.
r ← 1
while no convergence of ur do

Initialize vr, λr
λ← (λi)ri=1
v ← (vi)ri=1
while no convergence of Fr(λ,v) do
λ← orth(λ)
Solve Equation (15) using Algorithm 2
v ← orth(v)
Solve Equation (16) using Algorithm 2

end while
ur ← Fr(λ,v)
r ← r + 1

end while

The operator C0 has now to be defined. Again, we propose a priori good approxim-
ations C−1

0 of the Hessian of the functional in order to improve the performance of the
BFGS method. We observe that the Hessian Hλ(v) of JP ◦Fr(λ,v) where the derivative
is taken with respect to v is

〈Hλ(v)δv, δv′〉Ur =
r∑
i=1

r∑
j=1

〈(∫
P
λi(p)λj(p)∇A(ur(p); p)µ(dp)

)
δvi, δv

′
j

〉
U
.

Given that λ is a family of orthonormal vectors, this suggests that C−1
0 could be ap-

proximated by a block-diagonal version of the preconditioner proposed in Section 3.2.2,
each block being defined by P (ur(pa); pa).

11



Remark 4.4. Similarly, the Hessian Hv(λ) of JP ◦ Fr(λ,v) where the derivative is
taken with respect to λ is

〈Hv(λ)δλ, δλ′〉Qr =
r∑
i=1

r∑
j=1

∫
P
〈∇A(ur(p); p)vi, vj〉U δλi(p)δλ

′
jµ(dp).

Again, a simple approximation of the Hessian is a block diagonal version of the pre-
conditioner proposed in Section 3.2.2, the ith block being defined by αiIdU with αi =
〈P (ur(pa); pa)vi, vi〉U . Note that all proposed approximations of the Hessian require the
computation of only one preconditioner at the parameter pa.

4.3 Finite dimensional case - Algebraic form
We assume that U is a finite dimensional vector space. Let {ei}ni=1 be a basis of U . We
denote by Qm = span{ψj}mj=1 ⊂ Q, where {ψj}mj=1 is a basis of Qm. We introduce thus
a finite dimensional space Qm ⊗ U ⊂ Q⊗ U for approximating the solution.

A tensor u ∈ Qm ⊗ U can thus be written

u =
m∑
i=1

n∑
j=1

uijψi ⊗ ej,

and a low-rank tensor is given as

ur = Fr(λ,v) =
r∑

k=1
λk ⊗ vk =

m∑
i=1

n∑
j=1

(
r∑

k=1
λikvjk

)
ψi ⊗ ej.

We denote by Λ ∈ Rm×r, V ∈ Rn×r and Fr(Λ,V) ∈ Rm×n matrices such that

Λik = λik, Vjk = vjk and Fr(Λ,V) = ΛVT .

With these notations, a low-rank tensor can be expressed under the different forms

ur = Fr(λ,v) =
r∑

k=1
λk ⊗ vk =

m∑
i=1

n∑
j=1

Fr(Λ,V)ijψi ⊗ ej,

thus allowing the identification of Fr with Fr : Rm×r × Rn×r → Rm×n. Denoting by
JP : Rm×n → R the functional such that JP ◦Fr(λ,v) = JP ◦Fr(Λ,V), we can consider
the minimization problem, equivalent to Problem (12), defined by

min
Λ∈Rm×r,V∈Rn×r

JP ◦ Fr(Λ,V),

and directly use all the algorithms described in Section 3 and 4 in the general setting.
We denote by ψz the vector of evaluations of the basis functions of Qm ⊂ Q = L2(P)

at the parameter value pz ∈ P , defined by ψz = (ψi(pz))mi=1 ∈ Rm.
We set ur(pz) = Fr(λ,v)(pz) and denote by R(ur(pz); pz) ∈ Rn the vector defined

by

(R(ur(pz); pz))j = 〈R(ur(pz); pz), ej〉U = 〈b(pz)− A(ur(pz); pz), ej〉U , ∀j ∈ {1, . . . , n}.

We deduce the algebraic form of (15) and (16), that is

〈Rλ(v), δv〉Ur ≈
∑
z

wzψ
T
z ΛδVTR(ur(pz); pz),

=
〈(∑

z

wzR(ur(pz); pz)ψT
z

)
Λ, δV

〉
Rn×r

,

12



and

〈Rv(λ), δλ〉Qr ≈
∑
z

wzψ
T
z δΛVTR(ur(pz); pz),

=
〈(∑

z

wzψzR(ur(pz); pz)T
)

V, δΛ
〉

Rm×r

where 〈X,Y〉Rs×t = trace(XYT ) is the canonical inner product in the matrix space Rs×t.
This clearly shows that Rλ(v) and Rv(λ) can be evaluated in a non-intrusive fashion
thanks to simple evaluations of the original residual R(ur(pz); pz) = b(pz)−A(ur(pz); pz)
defined in Section 2 and hence is a non-intrusive computation.

5 Numerical examples

5.1 Electronic network
In this section, we use the example introduced in [8]. It is a simple electronic network.
The original equation to be solved is

Bu(p) + (p1 + 2)(u(p)Tu(p))u(p) = (p2 + 25)f,

with

B = 1
R


3 −1 −1 0 −1
−1 3 −1 −1 0
−1 −1 4 −1 −1

0 −1 −1 3 −1
−1 0 −1 −1 4

 , f =


1
0
0
0
0

 and R = 100,

where the matrix B represents the network from Figure 1, and p = (p1, p2) where p1 and
p2 are uniform random variables on [−1, 1]. The matrix has this simple form as we have
chosen all resistors equal. The problem is related to the minimization of the functional

2

3

4

51

RR

R

R

R

R

R

R

R

6

Figure 1: Electronic network.

defined by
J(v; p) = 1

2v
TBv + 1

4(p1 + 2)(vTv)2 − (p2 + 25)vTf.

The residual R(u(p); p) = −∇J(u(p); p) is thus given by

R(u(p); p) = (p2 + 25)f −
(
Bu(p) + (p1 + 2)(u(p)Tu(p))u(p)

)
.

Proposition 5.1. The assumptions of Theorem 2.1 are satisfied.

13



Proof. See Appendix C.

The basis of the finite dimensional stochastic space Qm ⊂ Q used for the approxima-
tion is chosen to be the multidimensional Legendre polynomials {ψj}mj=1 of total degree
d which are orthogonal for the measure µ. For the quadrature rule, we have chosen
a full tensorization of unidimensional Gauss-Legendre quadrature with (d + 1) points,
such that the total number of quadrature points is (d+ 1)2.

We can now directly apply the basic PGD procedure shown in Algorithm 1 and the
improved algorithm described in Algorithm 3 in order to find a low-rank approximation
of the solution map u. The convergence of the algorithms is controlled by a stagnation
criterion.

Concerning the basic PGD, the stagnation criterion is set to 10−2 with a maximum
of 10 iterations for each alternating minimization algorithm. The tolerance of the BFGS
method is set to 10−10. For Problem (6), the initialization of the preconditioner for the
BFGS algorithm is the identity, and B for Problem (5). Moreover λ is initialized with a
vector full of ones and v with a vector full of 10−8. Being close to 0 is beneficial for later
iterations, as the corrections will only slightly improve the approximation. However
we observed that initializing v to 0 may induce that the next problem on λ becomes
ill-conditioned due to the equality λ ⊗ 0 = 0 for all λ. For the improved PGD, the
stagnation criterion is set to max(10−(r+1), 10−8) with a maximum of 20 iterations for
the alternating minimization algorithm. Both algorithms are initialized with u0 = 0.

The relative error is measured with respect to the norm

ε(ur) =
‖u− ur‖Q⊗U
‖u‖Q⊗U

=

√√√√∫P ‖u(p)− ur(p)‖2
U µ(dp)∫

P ‖u(p)‖2
U µ(dp)

(17)

≈

√√√√∑z wz ‖u(pz)− ur(pz)‖2
U∑

z wz ‖u(pz)‖2
U

,

with u the exact solution, ur the low-rank approximation and using a fully tensorized
Gauss-Legendre quadrature with a number of points 202 = 400. The deterministic
solutions {u(pz)} are computed using a modified Newton algorithm where the tangent
matrix is chosen to be the linear part B of the Hessian of the functional J . The low-rank
approximations are also compared to the full-rank Galerkin approximation computed
with the block-Jacobi algorithm introduced in [8], with a stagnation criterion of 10−10.
The comparison is made in Table 1 for total degrees d = 2,3,4,5 and ranks 1,2,3,4,5 for
the approximations.

We can observe from Table 1 that the low-rank approximation gives a good approx-
imation of the solution, even with a rank one approximation. Moreover, for a rank
greater than 3, the low-rank approximation always gives results as good as the one of
the full-rank Galerkin approximation. Besides, in this example, we can see that the
greedy approximation gives satisfying results, even if the result is not optimal compared
to the approximation resulting from a direct optimization in low-rank subsets.

For the rest of this section, we focus on d = 5 and we measure the efficiency of
the different algorithms by counting the number of calls to the residual R(ur(pz); pz) =
b(pz)− A(u(pz); pz). The results are reported in Table 2.

Both algorithms are similar at the beginning until r = 2. When r = 3, Algorithm 3
becomes more efficient for computing the low-rank approximation. However, if we com-
pare with the block-Jacobi solver, the latter one only requires 540 calls to the residual.
This suggests that the classical algorithms for computing the low-rank approximation
of the solution of nonlinear equations must be reconsidered in terms of efficiency and
intrusivity and different approaches must be proposed.

14



d = 2 d = 3 d = 4 d = 5
Block-Jacobi solver [8]

5.14× 10−5 3.31× 10−6 2.31× 10−7 1.70× 10−8

Basic PGD (Algorithm 1)
r = 1 2.34× 10−3 2.34× 10−3 2.34× 10−3 2.34× 10−3

r = 2 9.67× 10−5 8.22× 10−5 8.22× 10−5 8.22× 10−5

r = 3 5.14× 10−5 3.39× 10−6 8.03× 10−7 7.78× 10−7

r = 4 5.14× 10−5 3.31× 10−6 2.34× 10−7 3.63× 10−8

r = 5 5.14× 10−5 3.31× 10−6 2.31× 10−7 1.71× 10−8

Improved PGD (Algorithm 3)
r = 1 2.34× 10−3 2.34× 10−3 2.34× 10−3 2.34× 10−3

r = 2 5.14× 10−5 3.31× 10−6 2.85× 10−7 1.95× 10−7

r = 3 5.14× 10−5 3.31× 10−6 2.31× 10−7 1.79× 10−8

r = 4 5.14× 10−5 3.31× 10−6 2.31× 10−7 1.79× 10−8

r = 5 5.14× 10−5 3.31× 10−6 2.31× 10−7 1.76× 10−8

Table 1: Relative error for the approximation resulting from the block-Jacobi solver,
the basic PGD and the improved algorithm for different total degrees d and different r.

r = 1 r = 2 r = 3 r = 4 r = 5
Basic PGD (Algorithm 1)

Relative error 2.34× 10−3 8.22× 10−5 7.78× 10−7 3.63× 10−8 1.71× 10−8

Residual calls 1044 2160 3096 3816 4464
Improved algorithm (Algorithm 3)

Relative error 2.34× 10−3 1.95× 10−7 1.79× 10−8 1.79× 10−8 1.79× 10−8

Residual calls 1044 2304 2700 2844 3024

Table 2: Number of calls to the residual and corresponding relative error for different
ranks r for the basic PGD and the improved algorithm.
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5.2 Obstacle problem
We consider the obstacle problem introduced in [3]. A rope is clamped at its extremities
over an obstacle modeled by a function g, and a force f is applied to the rope. Noting
Ω = (0, 1), the vertical displacement of the rope is modeled by the function v : Ω×P →
R. The force is set to be constant f ≡ 1, and the obstacle is defined by

g(p;x) = p[sin(3πx)]+ + (p− 1)[sin(3πx)]−, ∀(x, p) ∈ Ω× P ,

where p is uniformly distributed in P = (0, 1). The non penetration condition (i.e.
v ≥ g) is taken into account with a penalty formulation, with the penalty coefficient
ρ = 103. The reference solution u can be found by solving

min
v∈L2(P)⊗H1

0 (Ω)
JP(v),

with

JP(v) =
∫
P
J(v(p); p) µ(dp)

and

J(v; p) =
∫

Ω

1
2

(
∂

∂x
v(x)

)2

− f(p;x)v(x) + ρ

2[v(x)− g(p;x)]2+ dx.

Following the proofs in [3], we can show that the assumptions of Theorem 2.1 are
satisfied. The domain Ω is discretized with 40 P1 finite elements, while we use piecewise
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(a) Obstacle: g(p; x).
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(b) Solution: u(p; x).

Figure 2: Obstacle and solution as functions of x and p [3].

polynomials of degree 1 on P . The reference solution denoted by uL2 is computed via a
L2-projection, where a BFGS method has been applied at each quadrature point.

We use the relative error introduced in Equation (17) as an error estimate, where
the solution u has been replaced with its L2-projection uL2 . In Figure 3, the relative
error with respect to the rank is shown. Three approximations are illustrated, the
truncated SVD of the L2-projection, the basic PGD (Algorithm 1), and the improved
algorithm (Algorithm 3). We used the same parameters as in Section 5.1 for the different
algorithms, except for C0 which is now constructed based on (∇J(ur(0); 0))−1. It is
directly used in the basic PGD case, and a block-diagonal version is constructed for the
improved PGD algorithm.

The basic PGD was the technique considered in Cancès et al. [3], asserting in Section
6.2 that “this procedure is intrusive in general”, while we have shown in this work that
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Figure 3: Relative error with respect to the rank of the approximation for different
algorithms.

we can use a Galerkin approach in a non-intrusive fashion for constructing a low-rank
approximation of the solution. Concerning the stopping criterion, we used the same as
the one used in Section 5.1.

The SVD supplies the best rank r approximation of the reference solution with
respect to the canonical norm ‖ ·‖Q⊗U . The basic PGD seems to slowly converge toward
the solution of the problem with respect to the canonical norm, while the improved
PGD has a similar convergence as the truncated SVD, and finally yields a relative error
of 10−8 with a rank 10 approximation.
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Figure 4: Relative error with respect to the number of calls to the residual for different
algorithms.

The number of calls to the residual is shown in Figure 4 for Algorithms 1 and
3. We observe similar speeds of convergence for both algorithms, while the intrusive
implementation of Algorithm 3 is usually slower when J is quadratric as it has been
observed in [7]. Note that in this case, the basic PGD requires the construction of
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the computation of 80 deterministic Hessians, to be compared to the 10 deterministic
Hessians required by the improved PGD. Moreover, the L2-projection of the solution
only requires 3304 calls to the residual, which is much less than the number of calls
required for the rank one approximation of the solution.

This example illustrates that accurate low rank approximation of the solution of
nonlinear problems can be directly obtained in a non-intrusive fashion. However, the
proposed construction is clearly not efficient regarding the computational complexity
and new algorithms that are adapted to this non-intrusive setting are clearly required.

6 Conclusion
In this work, algorithms for the non-intrusive computation of low-rank approximations
of the solution of a nonlinear stochastic-parametric problem associated with the minim-
ization of a convex functional have been proposed. The proposed approach relies on an
alternating minimization algorithm and the BFGS method for minimizing the partial
maps. The techniques are implemented in a non-intrusive way thanks to the use of nu-
merical integration, and only require the evaluations of the standard residuum at some
parameter values. The method has finally been applied to two model examples.

The goal of this paper was to revisit standard techniques for computing a low-rank
approximation of the solution of a parametric equation. The novelty lies in the non-
intrusive implementation of these algorithms. It results that the performance of the
classical methods for computing the low-rank approximation is modified due to the ex-
pensive evaluation of samples (evaluations) of the residual for the numerical integration.

In order to reduce computational complexity, the number of iterations of the solver
should be reduced to the minimum using more efficient algorithms than an alternating
minimization method plus a BFGS algorithm. Indeed, one iteration of the solver corres-
ponds to one integration of the residual. Thus, at each iteration and for each quadrature
point, one sample of the residual must be evaluated.

Also, an adapted integration method could be used in order to further reduce the
number of evaluations of the residual for high dimensional parametric problems. A
first solution is to use an adaptive sparse grid quadrature technique [2] in order to
reduce the number of quadrature points. Another solution is to build an approximation
of the residual at each iteration. The costly integration of the residual could then be
replaced by a cheaper approximation of this residual exploiting structured approximation
techniques.

This work is a first step toward Galerkin-based methods for the low-rank approx-
imation of the solution of parametric nonlinear equations in a non-intrusive manner,
offering new opportunities for the development of efficient non-intrusive solvers.

A Proof of Theorem 2.1
Existence and uniqueness of the solution. Given that v 7→ J(v; p) is strongly
convex for all p and continuous, there exists a unique solution to (1). As a consequence,
we can define the solution map by u : p 7→ u(p) = arg minv∈U J(v; p).

Regularity of the solution. v 7→ J(v; p) is Fréchet differentiable and strongly convex
uniformly in p. As a consequence, there exists α > 0 independent of p such that

〈∇J(u(p); p)−∇J(v; p), u(p)− v〉U ≥ α ‖u(p)− v‖2
U , ∀p ∈ P , ∀v ∈ U .
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Given that ∇J(u(p); p) = 0, and taking v = 0 we obtain

−〈∇J(0; p), u(p)〉U = −〈A(0; p)− b(p), u(p)〉U ≥ α ‖u(p)‖2
U .

The Cauchy-Schwarz inequality gives

‖u(p)‖2
U ≤

1
α
‖A(0; p)− b(p)‖U ‖u(p)‖U ,

then
‖u(p)‖2

U ≤
1
α2 ‖A(0; p)− b(p)‖2

U

which yields u ∈ L2(P ;U) using (c). In the following, the set L2(P ;U) is identified to
the Hilbert space Q⊗ U equipped with the induced product norm.

Characterization of the solution. Given that p 7→ J(v; p) is µ-integrable, we can
define the functional JP : Q⊗ U → R such that

JP(u) =
∫
P
J(u(p); p)µ(dp).

Lemma A.1. JP is strongly convex.

Proof. According to the assumptions of Theorem 2.1, v 7→ J(v; p) is strongly convex
uniformly in p. We conclude that, for all v, w in Q⊗ U ,

JP(tv + (1− t)w) =
∫
P
J(tv(p) + (1− t)w(p); p)µ(dp)

≤
∫
P

(
tJ(v(p); p) + (1− t)J(w(p); p)− α

2 t(1− t) ‖v(p)− w(p)‖2
U

)
µ(dp)

≤ tJP(v) + (1− t)JP(w)− α

2 t(1− t) ‖v − w‖
2
L2(P;U) ,

and JP is strongly convex.

Lemma A.2. JP is Gâteaux differentiable with Gâteaux derivative δJP(u)(δu) at u ∈
L2(P ;U) = Q⊗ U in the direction δu ∈ Q⊗ U given by

δJP(u)(δu) =
∫
P
〈∇J(u(p); p), δu(p)〉U µ(dp).

Proof. Let t ∈ (−1, 1) \ {0} and ft(p) being defined by

ft(p) = 1
t

(J(u(p) + tδu(p); p)− J(u(p); p)) .

Thanks to the fundamental theorem of calculus and Cauchy-Schwarz inequality we have

ft(p) =
∫ 1

0
〈∇J(u(p) + βtδu(p); p), δu(p)〉U dβ

≤
∫ 1

0
‖∇J(u(p) + βtδu(p); p)‖U ‖δu(p)‖U dβ.

Given that v 7→ ∇J(v; p) = A(v; p)− b(p) is Lipschitz on bounded set S uniformly in p,
with S being the ball centered in 0 of radius ‖u(p) + δu(p)‖U , there exists K > 0 such
that

‖∇J(u(p) + βtδu(p); p)‖U − ‖∇J(0; p)‖U ≤ ‖∇J(u(p) + βtδu(p); p)−∇J(0; p)‖U
≤ K ‖u(p) + βtδu(p)‖U
≤ K(‖u(p)‖U + ‖δu(p)‖U),
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and finally

ft(p) ≤
∫ 1

0
(K(‖u(p)‖U + ‖δu(p)‖U) + ‖∇J(0; p)‖U) ‖δu(p)‖U dβ

≤ (K(‖u(p)‖U + ‖δu(p)‖U) + ‖A(0; p)− b(p)‖U) ‖δu(p)‖U = g(p).

With u, δu and p 7→ A(0; p) − b(p) being in L2(P ;U), g is in L1(P ;U). We can thus
applied the dominated convergence theorem and state that the limit δJP(u)(δu) =
limt→0

∫
P ft(p)µ(dp) exists and that

δJP(u)(δu) =
∫
P
〈∇J(u(p); p), δu(p)〉U µ(dp).

Lemma A.3. JP is Fréchet differentiable and, for all u, δu in L2(P ;U), we have

〈∇JP(u), δu〉L2(P;U) =
∫
P
〈∇J(u(p); p), δu(p)〉U µ(dp).

Proof. The application δJP : L2(P ;U) 3 u 7→ δJP(u) ∈ L2(P ;U)∗ is linear. Let u
and δu in L2(P ;U). Let S ⊂ Q ⊗ U , be a bounded set containing u and u + δu. Let
v ∈ L2(P ;U). There exists K > 0 such that

|(δJP(u+ δu)− δJP(u)) (v)| =
∣∣∣∣∫
P
〈∇J(u(p) + δu(p); p)−∇J(u(p); p), v(p)〉U µ(dp)

∣∣∣∣
≤
∫
P
‖∇J(u(p) + δu(p); p)−∇J(u(p); p)‖U ‖v(p)‖U µ(dp)

≤
∫
P
K ‖δu(p)‖U ‖v(p)‖U µ(dp)

≤ K ‖δu‖L2(P;U) ‖v‖L2(P;U) .

It follows that δJP : L2(P ;U) → L2(P ;U)∗ is continuous. As a consequence, JP is
Fréchet differentiable with Fréchet derivative

〈∇JP(u), δu〉L2(P;U) = δJP(u)(δu) =
∫
P
〈∇J(u(p); p), δu(p)〉U µ(dp).

According to Lemma A.1, there exists an unique minimizer to JP . The combination
of Lemmas A.1 and A.3 ensures that the minimizer is equivalently characterized by

〈∇JP(u), δu〉L2(P;U) =
∫
P
〈A(u(p); p)− b(p), δu(p)〉U µ(dp) = 0, ∀δu ∈ L2(P ;U).

Given that the map u : p 7→ arg minv∈U J(v; p) is in L2(P ;U) and satisfies A(u(p); p)−
b(p) = 0 for all p, it is the unique minimizer of JP .

B Proof of Theorem 4.3
Existence and uniqueness of the solutions. According to Lemma A.1, JP is
strongly convex. Let JvP and JλP denote λ 7→ JvP(λ) = JP ◦ Fr(λ,v) and v 7→ JλP(v) =
JP ◦ Fr(λ,v). For t ∈ (0, 1), given that Fr is bilinear (Lemma 4.1) we have

JλP(tv + (1− t)w) = JP(tFr(λ,v) + (1− t)Fr(λ,w))

≤ tJλP(v) + (1− t)JλP(w)− α

2 t(1− t) ‖Fr(λ,v −w)‖2
Q⊗U .
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We have

‖Fr(λ,v −w)‖2
Q⊗U =

r∑
i=1

r∑
j=1
〈λi, λj〉Q 〈vi − wi, vj − wj〉U

=
r∑
i=1

〈
vi − wi,

r∑
j=1
〈λi, λj〉Q (vj − wj)

〉
U

= 〈v −w, Gλ(v −w)〉Ur ,

Gλ ∈ Rr×r being the Gram matrix associated to λ and its application to v −w being
detailed in Section 4.1. If λ is a set of linearly independent functions, then Gλ is
symmetric positive definite. It defines then an induced norm such that ‖Fr(λ,v −
w)‖2

Q⊗U = ‖v − w‖2
Gλ

yielding that JλP is strongly convex. Note that when λ is an
orthonormal set, we have ‖Fr(λ,v−w)‖2

Q⊗U = ‖v−w‖2
Ur and JλP has the same convexity

constant than J(·; p). Similarly, if v is a set of linearly independent vectors, JvP is strongly
convex. As a consequence, there exists a unique solution to the minimization problems

min
λ∈Qr

JvP(λ) and min
v∈Ur

JλP(v).

Characterization of the solutions. JP and Fr being Fréchet differentiable, JvP and
JλP are Fréchet differentiable. Given that JvP and JλP are strongly convex, we know that
the solution to the minimization problems are uniquely characterized by the equations

〈∇JvP(λ), δλ〉Qr = 0, ∀δλ ∈ Qr and
〈
∇JλP(v), δv

〉
Ur

= 0, ∀δv ∈ U r.

In Appendix A, we established that

〈∇JP(u), δu〉L2(P;U) =
∫
P
〈A(u(p); p)− b(p), δu(p)〉U µ(dp), ∀u, δu ∈ Q⊗ U .

Using the chain rule, we find that

〈∇JvP(λ), δλ〉Qr =
∫
P
〈A(Fr(λ,v)(p); p)− b(p), Fr(δλ,v)(p)〉U µ(dp)

and
〈
∇JλP(v), δv

〉
Ur

=
∫
P
〈A(Fr(λ,v)(p); p)− b(p), Fr(λ, δv)(p)〉U µ(dp).

C Proof of Proposition 5.1
(a) SinceB is symmetric positive definite, the functional J is given by J(v; p) = 1

2v
TBv+

1
4(p1 + 2)(vTv)2 − (p2 + 25)vTf .

(b) v 7→ J(v; p) is clearly Fréchet differentiable. Moreover, the Hessian of v 7→ J(v; p)
is given by v 7→ H(v; p) = B + (p1 + 2)(vTvI + v ⊗ v). We have δvTH(v; p)δv ≥
δvTBδv ≥ α‖δv‖2

U , α being the smallest eigenvalue of B which is independent of p.

(c) p 7→ −(p2 + 25)f is integrable on P .

(d) p 7→ J(v; p) is clearly integrable on P . Concerning the Lipschitz continuity property,
given a bounded set S ⊂ U , and given that p1 ≤ 1, we have

‖∇J(v; p)−∇J(w; p)‖U =
∥∥∥B(v − w) + (p1 + 2)(‖v‖2

U v − ‖w‖
2
U w)

∥∥∥
U

≤ ‖B‖ ‖v − w‖U + 3
∥∥∥‖v‖2

U v − ‖w‖
2
U w

∥∥∥
U
,
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for all v, w ∈ S, where ‖B‖ is the operator norm. We introduce the operator
C = (v⊗ v+ v⊗w+w⊗ v+w⊗w). It is bounded since S is bounded and we can
define ‖C‖. We notice then∥∥∥‖v‖2

U v − ‖w‖
2
U w

∥∥∥
U

=
∥∥∥C(v − w) + ‖v‖2

U (v − w)− (‖v‖U − ‖w‖U)(‖v‖U + ‖w‖U)v
∥∥∥
U
,

≤
(
‖C‖+ ‖v‖2

U

)
‖v − w‖U + | ‖v‖U − ‖w‖U |(‖v‖U + ‖w‖U) ‖v‖U ,

≤
(
‖C‖+ ‖v‖2

U + (‖v‖U + ‖w‖U) ‖v‖U
)
‖v − w‖U ,

using the inequality | ‖v‖U − ‖w‖U | ≤ ‖v − w‖U . For a given bounded set S ⊂ U ,
we denote by D = supv∈S ‖v‖U . With K = ‖B‖ + 3 ‖C‖ + 9D2 > 0, we finally
deduce

‖∇J(v; p)−∇J(w; p)‖U ≤ K ‖v − w‖U , ∀v, w ∈ S,

with K independent of p.
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