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Abstract

We propose a method for the construction of preconditioners of parameter-dependent

matrices for the solution of large systems of parameter-dependent equations. The pro-

posed method is an interpolation of the matrix inverse based on a projection of the

identity matrix with respect to the Frobenius norm. Approximations of the Frobenius

norm using random matrices are introduced in order to handle large matrices. The re-

sulting statistical estimators of the Frobenius norm yield quasi-optimal projections that

are controlled with high probability. Strategies for the adaptive selection of interpola-

tion points are then proposed for different objectives in the context of projection-based

model order reduction methods: the improvement of residual-based error estimators,

the improvement of the projection on a given reduced approximation space, or the

re-use of computations for sampling based model order reduction methods.

1 Introduction

This paper is concerned with the solution of large systems of parameter-dependent equations

of the form

A(ξ)u(ξ) = b(ξ), (1)

where ξ takes values in some parameter set Ξ. Such problems occur in several contexts

such as parametric analyses, optimization, control or uncertainty quantification, where ξ

are random variables that parametrize model or data uncertainties. The efficient solution

of equation (1) generally requires the construction of preconditioners for the operator A(ξ),
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either for improving the performance of iterative solvers or for improving the quality of

residual-based projection methods.

A basic preconditioner can be defined as the inverse (or any preconditioner) of the matrix

A(ξ̄) at some nominal parameter value ξ̄ ∈ Ξ or as the inverse (or any preconditioner) of a

mean value of A(ξ) over Ξ (see e.g. [21, 20]). When the operator only slightly varies over

the parameter set Ξ, these parameter-independent preconditioners behave relatively well.

However, for large variabilities, they are not able to provide a good preconditioning over

the whole parameter set Ξ. A first attempt to construct a parameter-dependent precondi-

tioner can be found in [17], where the authors compute through quadrature a polynomial

expansion of the parameter-dependent factors of a LU factorization of A(ξ). More recently,

a linear Lagrangian interpolation of the matrix inverse has been proposed in [11]. The gen-

eralization to any standard multivariate interpolation method is straightforward. However,

standard approximation or interpolation methods require the evaluation of matrix inverses

(or factorizations) for many instances of ξ on a prescribed structured grid (quadrature or

interpolation), that becomes prohibitive for large matrices and high dimensional parametric

problems.

In this paper, we propose an interpolation method for the inverse of matrix A(ξ). The

interpolation is obtained by a projection of the inverse matrix on a linear span of samples of

A(ξ)−1 and takes the form

Pm(ξ) =
m∑
i=1

λi(ξ)A(ξi)
−1,

where ξ1, . . . , ξm are m arbitrary interpolation points in Ξ. A natural interpolation could

be obtained by minimizing the condition number of Pm(ξ)A(ξ) over the λi(ξ), which is a

Clarke regular strongly pseudoconvex optimization problem [30]. However, the solution of

this non standard optimization problem for many instances of ξ is intractable and proposing

an efficient solution method in a multi-query context remains a challenging issue. Here,

the projection is defined as the minimizer of the Frobenius norm of I − Pm(ξ)A(ξ), that

is a quadratic optimization problem. Approximations of the Frobenius norm using random

matrices are introduced in order to handle large matrices. These statistical estimations of

the Frobenius norm allow to obtain quasi-optimal projections that are controlled with high

probability. Since we are interested in large matrices, A(ξi)
−1 are here considered as implicit

matrices for which only efficient matrix-vector multiplications are available. Typically, a

factorization (e.g. LU) of A(ξi) is computed and stored. Note that when the storage of

factorizations of several samples of the operator is unaffordable or when efficient precondi-

tioners are readily available, one could similarly consider projections of the inverse operator

on the linear span of preconditioners of samples of the operator. However, the resulting

parameter-dependent preconditioner would be no more an interpolation of preconditioners.
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This straightforward extension of the proposed method is not analyzed in the present paper.

The paper then presents several contributions in the context of projection-based model

order reduction methods (e.g. Reduced Basis, Proper Orthogonal Decomposition (POD),

Proper Generalized Decompositon) that rely on the projection of the solution u(ξ) of (1) on

a low-dimensional approximation space. We first show how the proposed preconditioner can

be used to define a Galerkin projection-based on the preconditioned residual, which can be

interpreted as a Petrov-Galerkin projection of the solution with a parameter-dependent test

space. Then, we propose adaptive construction of the preconditioner, based on an adap-

tive selection of interpolation points, for different objectives: (i) the improvement of error

estimators based on preconditioned residuals, (ii) the improvement of the quality of projec-

tions on a given low-dimensional approximation space, or (iii) the re-use of computations for

sample-based model order reduction methods. Starting from a m-point interpolation, these

adaptive strategies consist in choosing a new interpolation point based on different criteria.

In (i), the new point is selected for minimizing the distance between the identity and the

preconditioned operator. In (ii), it is selected for improving the quasi-optimality constant of

Petrov-Galerkin projections which measures how far the projection is from the best approx-

imation on the reduced approximation space. In (iii), the new interpolation point is selected

as a new sample determined for the approximation of the solution and not of the operator.

The interest of the latter approach is that when direct solvers are used to solve equation (1)

at some sample points, the corresponding factorizations of the matrix can be stored and the

preconditioner can be computed with a negligible additional cost.

The paper is organized as follows. In Section 2 we present the method for the interpolation

of the inverse of a parameter-dependent matrix. In Section 3, we show how the preconditioner

can be used for the definition of a Petrov-Galerkin projection of the solution of (1) on a given

reduced approximation space, and we provide an analysis of the quasi-optimality constant

of this projection. Then, different strategies for the selection of interpolation points for the

preconditioner are proposed in Section 4. Finally, in Section 5, numerical experiments will

illustrate the efficiency of the proposed preconditioning strategies for different projection-

based model order reduction methods.

Note that the proposed preconditioner could be also used (a) for improving the quality

of Galerkin projection methods where a projection of the solution u(ξ) is searched on a

subspace of functions of the parameters (e.g. polynomial or piecewise polynomial spaces)

[16, 31, 33], or (b) for preconditioning iterative solvers for (1), in particular solvers based on

low-rank truncations that require a low-rank structure of the preconditioner [28, 32, 22, 23].

These two potential applications are not considered here.
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2 Interpolation of the inverse of a parameter-dependent

matrix using Frobenius norm projection

In this section, we propose a construction of an interpolation of the matrix-valued function

ξ 7→ A(ξ)−1 ∈ Rn×n for given interpolation points ξ1, . . . , ξm in Ξ. We let Pi = A(ξi)
−1,

1 ≤ i ≤ m. For large matrices, the explicit computation of Pi is usually not affordable.

Therefore, Pi is here considered as an implicit matrix and we assume that the product of Pi
with a vector can be computed efficiently. In practice, factorizations of matrices A(ξi) are

stored.

2.1 Projection using Frobenius norm

We introduce the subspace Ym = span{P1, . . . , Pm} of Rn×n. An approximation Pm(ξ) of

A(ξ)−1 in Ym is then defined by

Pm(ξ) = argmin
P∈Ym

‖I − PA(ξ)‖F , (2)

where I denotes the identity matrix of size n, and ‖ · ‖F is the Frobenius norm such that

‖B‖2
F = 〈B,B〉F with 〈B,C〉F = trace(BTC). Since A(ξi)

−1 ∈ Ym, we have the interpolation

property Pm(ξi) = A(ξi)
−1, 1 ≤ i ≤ m. The minimization of ‖I − PA‖F has been first

proposed in [25] for the construction of a preconditioner P in a subspace of matrices with

given sparsity pattern (SPAI method). The following proposition gives some properties of

the operator Pm(ξ)A(ξ) (see Lemma 2.6 and Theorem 3.2 in [24]).

Proposition 2.1 Let Pm(ξ) be defined by (2). We have

(1− αm(ξ))2 ≤ ‖I − Pm(ξ)A(ξ)‖2
F ≤ n(1− α2

m(ξ)), (3)

where αm(ξ) is the lowest singular value of Pm(ξ)A(ξ) verifying 0 ≤ αm(ξ) ≤ 1, with

Pm(ξ)A(ξ) = I if and only if αm(ξ) = 1. Also, the following bound holds for the condi-

tion number of Pm(ξ)A(ξ):

κ(Pm(ξ)A(ξ)) ≤
√
n− (n− 1)α2

m(ξ)

αm(ξ)
. (4)

Under the condition ‖I − Pm(ξ)A(ξ)‖F < 1, equations (3) and (4) imply that

κ(Pm(ξ)A(ξ)) ≤
√
n− (n− 1)(1− ‖I − Pm(ξ)A(ξ)‖F )2

1− ‖I − Pm(ξ)A(ξ)‖F
.
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For all λ ∈ Rm, we have

‖I −
m∑
i=1

λiPiA(ξ)‖2
F = n− 2λTS(ξ) + λTM(ξ)λ,

where the matrix M(ξ) ∈ Rm×m and the vector S(ξ) ∈ Rm are given by

Mi,j(ξ) = trace(AT (ξ)P T
i PjA(ξ)) and Si(ξ) = trace(PiA(ξ)).

Therefore, the solution of problem (2) is Pm(ξ) =
∑m

i=1 λi(ξ)Pi with λ(ξ) the solution of

M(ξ)λ(ξ) = S(ξ). When considering a small number m of interpolation points, the compu-

tation time for solving this system of equations is negligible. However, the computation of

M(ξ) and S(ξ) requires the evaluation of traces of matrices AT (ξ)P T
i PjA(ξ) and PiA(ξ) for

all 1 ≤ i, j ≤ m. Since the Pi are implicit matrices, the computation of such products of

matrices is not affordable for large matrices. Of course, since trace(B) =
∑n

i=1 e
T
i Bei, the

trace of an implicit matrix B could be obtained by computing the product of B with the

canonical vectors e1, . . . , en, but this approach is clearly not affordable for large n.

Hereafter, we propose an approximation of the above construction using an approximation

of the Frobenius norm which requires less computational efforts.

2.2 Projection using a Frobenius semi-norm

Here, we define an approximation Pm(ξ) of A(ξ)−1 in Ym by

Pm(ξ) = argmin
P∈Ym

‖(I − PA(ξ))V ‖F , (5)

where V ∈ Rn×K , with K ≤ n. B 7→ ‖BV ‖F defines a semi-norm on Rn×n. Here, we assume

that the linear map P 7→ PA(ξ)V is injective on Ym so that the solution of (5) is unique.

This requires K ≥ m and is satisfied when rank(V ) ≥ m and Ym is the linear span of linearly

independent invertible matrices. Then, the solution Pm(ξ) =
∑m

i=1 λi(ξ)Pi of (5) is such that

the vector λ(ξ) ∈ Rm satisfies MV (ξ)λ(ξ) = SV (ξ), with

MV
i,j(ξ) = trace(V TAT (ξ)P T

i PjA(ξ)V ) and SVi (ξ) = trace(V TPiA(ξ)V ). (6)

The procedure for the computation of MV (ξ) and SV (ξ) is given in Algorithm 1. Note

that only mK matrix-vector products involving the implicit matrices Pi are required.

Now the question is to choose a matrix V such that ‖(I − PA(ξ))V ‖F provides a good

approximation of ‖I − PA(ξ)‖F for any P ∈ Ym and ξ ∈ Ξ.
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Algorithm 1 Computation of MV (ξ) and SV (ξ)

Require: A(ξ), {P1, . . . , Pm} and V = (v1, . . . , vK)

Ensure: MV (ξ) and SV (ξ)

1: Compute the vectors wi,k = PiA(ξ)vk ∈ Rn, for 1 ≤ k ≤ K and 1 ≤ i ≤ m

2: Set Wi = (wi,1, . . . , wi,K) ∈ Rn×K , 1 ≤ i ≤ m

3: Compute MV
i,j(ξ) = trace(W T

i Wj) for 1 ≤ i, j ≤ m

4: Compute SVi (ξ) = trace(V TWi) for 1 ≤ i ≤ m

2.2.1 Hadamard matrices for the estimation of the Frobenius norm of an im-

plicit matrix

LetB an implicit n-by-nmatrix (considerB = I−PA(ξ), with P ∈ Ym and ξ ∈ Ξ). Following

[3], we show how Hadamard matrices can be used for the estimation of the Frobenius norm of

an implicit matrix. The goal is to find a matrix V such that ‖BV ‖F is a good approximation

of ‖B‖F . The relation ‖BV ‖2
F = trace(BTBV V T ) suggests that V should be such that V V T

is as close as possible to the identity matrix. For example, we would like V to minimize

err(V )2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(V V T )2
i,j =

‖I − V V T‖2
F

n(n− 1)
,

which is the mean square magnitude of the off-diagonal entries of V V T . The bound err(V ) ≥√
(n−K)/((n− 1)K) is known to hold for any V ∈ Rn×K whose rows have unit norm [39].

Hadamard matrices can be used to construct matrices V such that the corresponding error

err(V ) is close to the bound, see [3].

A Hadamard matrix Hs is a s-by-s matrix whose entries are ±1, and which satisfies

HsH
T
s = sI where I is the identity matrix of size s. For example,

H2 =

(
1 1

1 −1

)

is a Hadamard matrix of size s = 2. The Kronecker product (denoted by ⊗) of two Hadamard

matrices is again a Hadamard matrix. Then it is possible to build a Hadamard matrix whose

size s is a power of 2 using a recursive procedure: H2k+1 = H2 ⊗ H2k . The (i, j)-entry of

this matrix is (−1)a
T b, where a and b are the binary vectors such that i =

∑
k≥0 2kak and

j =
∑

k≥0 2kbk. For a sufficiently large s = 2k ≥ max(n,K), we define the rescaled partial

Hadamard matrix V ∈ Rn×K as the first n rows and the first K columns of Hs/
√
K.
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2.2.2 Statistical estimation of the Frobenius norm of an implicit matrix

For the computation of the Frobenius norm of B, we can also use a statistical estimator as

first proposed in [26]. The idea is to define a random matrix V ∈ Rn×K with a suitable

distribution law D such that ‖BV ‖F provides a controlled approximation of ‖B‖F with high

probability.

Definition 2.2 A distribution D over Rn×K satisfies the (ε, δ)-concentration property if for

all B ∈ Rn×n,

P(|‖BV ‖2
F − ‖B‖2

F | ≥ ε‖B‖2
F ) ≤ δ. (7)

Two distributions D will be considered here.

(a) The rescaled Rademacher distribution. Here the entries of V ∈ Rn×K are independent

and identically distributed with Vi,j = ±K−1/2 with probability 1/2. According to Theorem

13 in [2], the rescaled Rademacher distribution satisfies the (ε, δ)-concentration property for

K ≥ 6ε−2 ln(2n/δ). (8)

(b) The subsampled Randomized Hadamard Transform distribution (SRHT), first intro-

duced in [1]. Here we assume that n is a power of 2. It is defined by V = K−1/2(RHnD)T ∈
Rn×K where

• D ∈ Rn×n is a diagonal random matrix where Di,i are independent Rademacher random

variables (i.e. Di,i = ±1 with probability 1/2),

• Hn ∈ Rn×n is a Hadamard matrix of size n (see Section 2.2.1),

• R ∈ RK×n is a subset of K rows from the identity matrix of size n chosen uniformly

at random and without replacement.

In other words, we randomly select K rows of Hn without replacement, and we multiply the

columns by ±K−1/2. We can find in [37, 7] an analysis of the SRHT matrix properties. In the

case where n is not a power of 2, we define the partial SRHT (P-SRHT) matrix V ∈ Rn×K

as the first n rows of a SRHT matrix of size s×K, where s = 2dlog2(n)e is the smallest power

of 2 such that n ≤ s < 2n. The following proposition shows that the (P-SRHT) distribution

satisfies the (ε, δ)-concentration property.

Proposition 2.3 The (P-SRHT) distribution satisfies the (ε, δ)-concentration property for

K ≥ 2(ε2 − ε3/3)−1 ln(4/δ)(1 +
√

8 ln(4n/δ))2. (9)
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Proof: Let B ∈ Rn×n. We define the square matrix B̃ of size s = 2dlog2(n)e, whose first

n × n diagonal block is B, and 0 elsewhere. Then we have ‖B̃‖F = ‖B‖F . The rest of the

proof is similar to the one of Lemma 4.10 in [7]. We consider the events A = {(1−ε)‖B̃‖2
F ≤

‖B̃V ‖2
F ≤ (1 + ε)‖B̃‖2

F} and E = {maxi ‖B̃DHT
s ei‖2

2 ≤ (1 +
√

8 ln(2s/δ))2‖B̃‖2
F}, where ei

is the i-th canonical vector of Rs. The relation P(Ac) ≤ P(Ac|E) + P(Ec) holds. Thanks

to Lemma 4.6 in [7] (with t =
√

8 ln(2s/δ)) we have P(Ec) ≤ δ/2. Now, using the scalar

Chernoff bound (Theorem 2.2 in [37] with k = 1) we have

P(Ac|E) = P(‖B̃V ‖2
F ≤ (1− ε)‖B̃‖2

F |E) + P(‖B̃V ‖2
F ≥ (1 + ε)‖B̃‖2

F |E)

≤ (e−ε(1− ε)−1+ε)K(1+
√

8 ln(2s/δ))−2

+ (eε(1 + ε)−1−ε)K(1+
√

8 ln(2s/δ))−2

≤ 2(eε(1 + ε)−1−ε)K(1+
√

8 ln(2s/δ))−2 ≤ 2eK(−ε2/2+ε3/6)(1+
√

8 ln(2s/δ))−2

.

The condition (9) implies P(Ac|E) ≤ δ/2, and then P(Ac) ≤ δ/2 + δ/2 = δ, which ends the

proof.

Such statistical estimators are particularly interesting for that they provide approxima-

tions of the Frobenius norm of large matrices, with a number of columns K for V which scales

as the logarithm of n, see (8) and (9). However, the concentration property (7) holds only

for a given matrix B. The following proposition 2.4 extends these concentration results for

any matrix B in a given subspace. The proof is inspired from the one of Theorem 6 in [15].

The essential ingredient is the existence of an ε-net for the unit ball of a finite dimensional

space (see [6]).

Proposition 2.4 Let V ∈ Rn×K be a random matrix whose distribution D satisfies the

(ε, δ)-concentration property, with ε ≤ 1. Then, for any L-dimensional subspace of matrices

ML ⊂ Rn×n and for any C > 1, we have

P
(
|‖BV ‖2

F − ‖B‖2
F | ≥ ε(C + 1)/(C − 1)‖B‖2

F ,∀B ∈ML

)
≤ (9C/ε)Lδ. (10)

Proof: We consider the unit ball BL = {B ∈ ML : ‖B‖F ≤ 1} of the subspace ML. It is

shown in [6] that for any ε̃ > 0, there exists a net N ε̃
L ⊂ BL of cardinality lower than (3/ε̃)L

such that

min
Bε̃∈N ε̃L

‖B −Bε̃‖F ≤ ε̃, ∀B ∈ BL.

In other words, any element of the unit ball BL can be approximated by an element of N ε̃
L

with an error less than ε̃. Using the (ε, δ)-concentration property and a union bound, we

obtain

|‖Bε̃V ‖2
F − ‖Bε̃‖2

F | ≤ ε‖Bε̃‖2
F , ∀Bε̃ ∈ N ε̃

L, (11)
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with a probability at least 1 − δ(3/ε̃)L. We now impose the relation ε̃ = ε/(3C), where

C > 1. To prove (10), it remains to show that equation (11) implies

|‖BV ‖2
F − ‖B‖2

F | ≤ ε(C + 1)/(C − 1)‖B‖2
F , ∀B ∈ML. (12)

We define B∗ ∈ arg maxB∈BL |‖BV ‖2
F−‖B‖2

F |. Let Bε̃ ∈ N ε̃
L be such that ‖B∗−Bε̃‖F ≤ ε̃,

and B∗ε̃ = arg minB∈span(Bε̃) ‖B∗ − B‖F . Then we have ‖B∗ − B∗ε̃‖2
F = ‖B∗‖2

F − ‖B∗ε̃‖2
F ≤ ε̃2

and 〈B∗ − B∗ε̃ , B∗ε̃ 〉 = 0, where 〈·, ·〉 is the inner product associated to the Frobenius norm

‖ · ‖F . We have

η := |‖B∗V ‖2
F − ‖B∗‖2

F | = |‖(B∗ −B∗ε̃ )V +B∗ε̃V ‖2
F − ‖B∗ −B∗ε̃ +B∗ε̃‖2

F |
= |‖(B∗ −B∗ε̃ )V ‖2

F + 2〈(B∗ −B∗ε̃ )V,B∗ε̃V 〉+ ‖B∗ε̃V ‖2
F − ‖B∗ −B∗ε̃‖2

F − ‖B∗ε̃‖2
F |

≤ |‖(B∗ −B∗ε̃ )V ‖2
F − ‖B∗ −B∗ε̃‖2

F |+ |‖B∗ε̃V ‖2
F − ‖B∗ε̃‖2

F |+ 2‖(B∗ −B∗ε̃ )V ‖F‖B∗ε̃V ‖F .

We now have to bound the three terms in the previous expression. Firstly, since (B∗ −
B∗ε̃ )/‖B∗ − B∗ε̃‖F ∈ BL, the relation |‖(B∗ − B∗ε̃ )V ‖2

F − ‖B∗ − B∗ε̃‖2
F | ≤ ‖B∗ − B∗ε̃‖2

Fη ≤ ε̃2η

holds. Secondly, (11) gives |‖B∗ε̃V ‖2
F −‖B∗ε̃‖2

F | ≤ ε‖B∗ε̃‖2
F ≤ ε. Thirdly, by definition of η, we

can write ‖(B∗−B∗ε̃ )V ‖2
F ≤ (1 + η)‖B∗−B∗ε̃‖2

F ≤ ε̃2(1 + η) and ‖B∗ε̃V ‖2
F ≤ (1 + ε)‖B∗ε̃‖2

F ≤
1 + ε, so that we obtain 2‖(B∗−B∗ε̃ )V ‖F‖B∗ε̃V ‖F ≤ 2ε̃

√
1 + ε

√
1 + η. Finally, from (11), we

obtain

η ≤ ε̃2η + ε+ 2ε̃
√

1 + ε
√

1 + η (13)

Since ε ≤ 1, we have ε̃ = ε/(3C) < 1/3. Then ε̃2 ≤ ε̃ and
√

1 + ε ≤ 3/2, so that (13) implies

η ≤ ε̃η + ε+ 3ε̃
√

1 + η ≤ ε̃η + ε+ 3ε̃(1 + η/2) ≤ 3ε̃η + ε+ 3ε̃,

and then η ≤ (ε + 3ε̃)/(1 − 3ε̃) ≤ ε(C + 1)/(C − 1). By definition of η, we can write

|‖BV ‖2
F − ‖B‖2

F | ≤ ε(C + 1)/(C − 1) for any B ∈ BL, that implies (12).

Proposition 2.5 Let ξ ∈ Ξ, and let Pm(ξ) ∈ Ym be defined by (5) where V ∈ Rn×K is a

realization of a rescaled Rademacher matrix with

K ≥ 6ε−2 ln(2n(9C/ε)m+1/δ), (14)

or a realization of a P-SRHT matrix with

K ≥ 2(ε2 − ε3/3)−1 ln(4(9C/ε)m+1/δ)(1 +
√

8 ln(4n(9C/ε)m+1/δ))2 (15)

for some δ > 0, ε ≤ 1 and C > 1. Assuming ε′ = ε(C + 1)/(C − 1) < 1,

‖I − Pm(ξ)A(ξ)‖F ≤
√

1 + ε′

1− ε′
min
P∈Ym

‖I − PA(ξ)‖F (16)

holds with a probability higher than 1− δ.
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Proof: Let us introduce the subspace Mm+1 = YmA(ξ) + span(I) of dimension less than

m + 1, such that {I − PA(ξ) : P ∈ Ym} ⊂ Mm+1. Then, we note that with the conditions

(14) or (15), the distribution law D of the random matrix V satisfies the (ε, δ(ε/(9C))m+1)-

concentration property. Thanks to Proposition 2.4, the probability that

|‖(I − PA(ξ))V ‖2
F − ‖I − PA(ξ)‖2

F | ≤ ε′‖I − PA(ξ)‖2
F

holds for any P ∈ Ym is higher than 1− δ. Then, by definition of Pm(ξ) (5), we have with a

probability at least 1− δ that for any P ∈ Ym, it holds

‖I − Pm(ξ)A(ξ)‖F ≤
1√

1− ε′
‖(I − Pm(ξ)A(ξ))V ‖F ,

≤ 1√
1− ε′

‖(I − PA(ξ))V ‖F ≤
√

1 + ε′√
1− ε′

‖I − PA(ξ)‖F .

Then, taking the minimum over P ∈ Ym, we obtain (16).

Similarly to Proposition 2.1, we obtain the following properties for Pm(ξ)A(ξ), with Pm(ξ)

the solution of (5).

Proposition 2.6 Under the assumptions of Proposition 2.5, the inequalities

(1− αm(ξ))2(1− ε′)−1 ≤ ‖(I − Pm(ξ)A(ξ))V ‖2
F ≤ n

(
1− (1− ε′)α2

m(ξ)
)

(17)

and

κ(Pm(ξ)A(ξ)) ≤ αm(ξ)−1
√
n(1− ε′)−1 − (n− 1)α2

m(ξ) (18)

hold with probability 1− δ, where αm(ξ) is the lowest singular value of Pm(ξ)A(ξ).

Proof: The optimality condition for Pm(ξ) yields ‖(I−Pm(ξ)A(ξ))V ‖2
F = ‖V ‖2

F−‖Pm(ξ)A(ξ)V ‖2
F .

Since Pm(ξ)A(ξ) ∈Mm+1 (where Mm+1 is the subspace introduced in the proof of Proposition

(2.5)), we have

‖Pm(ξ)A(ξ)V ‖2
F ≥ (1− ε′)‖Pm(ξ)A(ξ)‖2

F (19)

with a probability higher than 1−δ. Using ‖V ‖2
F = n (which is satisfies for any realization of

the rescaled Rademacher or the P-SRHT distribution), we obtain ‖(I − Pm(ξ)A(ξ))V ‖2
F ≤

n − (1 − ε′)‖Pm(ξ)A(ξ)‖2
F with a probability higher than 1 − δ. Then, ‖Pm(ξ)A(ξ)‖2

F ≥
nαm(ξ)2 yields the right inequality of (17). Following the proof of Lemma 2.6 in [24], we

have (1 − αm(ξ)2) ≤ ‖I − Pm(ξ)A(ξ)‖2
F . Together with (19), it yields the left inequality of

(17). Furthermore, with probability 1 − δ, we have n − (1 − ε′)‖Pm(ξ)A(ξ)‖2
F ≥ 0. Since
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the square of the Frobenius norm of matrix Pm(ξ)A(ξ) is the sum of squares of its singular

values, we deduce

(n− 1)αm(ξ)2 + βm(ξ)2 ≤ ‖Pm(ξ)A(ξ)‖2
F ≤ n(1− ε′)−1

with a probability higher than 1− δ, where βm(ξ) is the largest singular value of Pm(ξ)A(ξ).

Then (18) follows from the definition of κ(Pm(ξ)A(ξ)) = βm(ξ)/αm(ξ).

2.2.3 Comparison and comments

We have presented different possibilities for the definition of V . The rescaled partial Hadamard

matrices introduced in section 2.2.1 have the advantage that the error err(V ) is close to the

theoretical bound
√

(n−K)/((n− 1)K), see Figure 1(a) (note that the rows of V have

unit norm). Furthermore, an interesting property is that V V T has a structured pattern

(see Figure 1(b)). As noticed in [3], when K = 2q the matrix V V T have non-zero entries

only on the 2qk-th upper and lower diagonals, with k ≥ 0. As a consequence, the error on

the estimation of ‖B‖F will be induced only by the non-zero off-diagonal entries of B that

occupy the 2qk-th upper and lower diagonals, with k ≥ 1. If the entries of B vanish away

from the diagonal, the Frobenius norm is expected to be accurately estimated. Note that

the P-SRHT matrices can be interpreted as a “randomized version” of the rescaled partial

Hadamard matrices, and Figure 1(a) shows that the error err(V ) associated to the P-SRHT

matrix behaves almost like the rescaled partial Hadamard matrix. Also, P-SRHT matrices

yield a structured pattern for V V T , see Figure 1(c). The rescaled Rademacher matrices give

higher errors err(V ) and yield matrices V V T with no specific patterns, see Figure 1(d).

The advantage of using rescaled Rademacher matrices or P-SRHT matrices is that the

quality of the resulting projection Pm(ξ) can be controlled with high probability, pro-

vided that V has a sufficiently large number of rows K (see Proposition 2.5). Table 1

shows the theoretical value for K in order to obtain the quasi-optimality result (16) with√
(1 + ε′)/(1− ε′) = 10 and δ = 0.1%. It can be observed that K grows very slowly with

the matrix size n. Also, K depends on m linearly for the rescaled Rademacher matrices and

quadratically for the P-SRHT matrices (see equations (14) and (15)). However, these theo-

retical bounds for K are very pessimistic, especially for the P-SRHT matrices. In practice,

it can be observed that a very small value for K may provide very good results (see Section

5). Also, it is worth mentioning that our numerical experiments do not reveal significant dif-

ferences between the rescaled partial Hadamard, the rescaled Rademacher and the P-SRHT

matrices.

11



0 100 200 300 400 500 600

10−2

10−1

100

K

er
r(
V
)

Rescaled Rademacher
Rescaled partial Hadamard
P-SRHT√

n−K
(n−1)K

(a) err(V ) as function of K.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

0.25 to 0.3 (8416 entries)
0.99 to 1 (2840 entries)

(b) Distribution of the entries of V V T (in

absolute value) where V is the rescaled par-

tial Hadamard matrix with K = 100.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

0.2 to 0.25 (4400 entries)
0.25 to 0.3 (2928 entries)
0.3 to 0.99 (352 entries)
0.99 to 1 (600 entries)

(c) Distribution of the entries of V V T (in

absolute value) where V is a sample of the

P-SRHT matrix with K = 100.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

0.2 to 0.25 (8344 entries)
0.25 to 0.3 (3434 entries)
0.3 to 0.99 (626 entries)
0.99 to 1 (600 entries)

(d) Distribution of the entries of V V T (in

absolute value) where V is a sample of the

rescaled Rademacher matrix with K = 100.

Figure 1: Comparison between the rescaled partial Hadamard, the rescaled Rademacher and

the P-SRHT matrix for the definition of matrix V , with n = 600.

2.3 Ensuring the invertibility of the preconditioner for positive

definite matrix

Here, we propose a modification of the interpolation which ensures that Pm(ξ) is invertible

when A(ξ) is positive definite.

Since A(ξi) is positive definite, Pi = A(ξi)
−1 is positive definite. We introduce the vectors
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(a) Rescaled Rademacher distribution.

m = 2 m = 5 m = 10 m = 20 m = 50

n = 104 239 363 567 972 2 185

n = 106 270 395 599 1 005 2 219

n = 108 301 427 632 1 038 2 253

(b) P-SRHT distribution.

m = 2 m = 5 m = 10 m = 20 m = 50

n = 104 27 059 63 298 155 129 455 851 2 286 645

n = 106 30 597 69 129 164 750 473 011 2 326 301

n = 108 34 112 74 929 174 333 490 126 2 365 914

Table 1: Theoretical number of columns K for the random matrix V in order to ensure (16),

with
√

(1 + ε′)/(1− ε′) = 10 and δ = 0.1%. The constant C has been chosen in order to

minimize K.

γ− ∈ Rm and γ+ ∈ Rm whose components

γ−i = inf
w∈Rn

〈Piw,w〉
‖w‖2

> 0 and γ+
i = sup

w∈Rn

〈Piw,w〉
‖w‖2

<∞

correspond respectively to the lowest and highest eigenvalues of the symmetric part of Pi.

Then, for any P =
∑m

i=1 λiPi ∈ Ym,

inf
w∈Rn

〈Pw,w〉
‖w‖2

≥ 〈λ+, γ−〉 − 〈λ−, γ+〉, (20)

where λ+ ≥ 0 and λ− ≥ 0 are respectively the positive and negative parts of λ = λ+ −
λ− ∈ Rm. As a consequence, if the right hand side of (20) is strictly positive, then P is

invertible. Furthermore, we have ‖P‖ ≤ 〈λ+ + λ−, C〉, where C ∈ Rm is the vector of

component Ci = ‖Pi‖, where ‖Pi‖ denotes the operator norm of Pi. If we assume that

〈λ+, γ−〉 − 〈λ−, γ+〉 > 0, the condition number of P satisfies

κ(P ) = ‖P‖ ‖P−1‖ ≤ ‖P‖
(

inf
w∈Rn

〈Pw,w〉
‖w‖2

)−1

≤ 〈λ+ + λ−, C〉
〈λ+, γ−〉 − 〈λ−, γ+〉

.

It is then possible to bound κ(P ) by κ̄ by imposing

〈λ+ + λ−, C〉 ≤ κ̄(〈λ+, γ−〉 − 〈λ−, γ+〉),

which is a linear inequality constraint on λ+ and λ−. We introduce two convex subsets of
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Ym defined by

Y κ̄
m =


m∑
i=1

λ+
i Pi −

m∑
i=1

λ−i Pi :

λ+
i ≥ 0, λ−i ≥ 0

〈λ+, γ−〉 − 〈λ−, γ+〉 ≥ 0

〈λ+, κ̄γ− − C〉 − 〈λ−, κ̄γ+ + C〉 ≥ 0

 ,

Y +
m =

{
m∑
i=1

λiPi : λi ≥ 0

}
.

From (20), we have that any nonzero element of Y +
m is invertible, while any nonzero

element of Y κ̄
m is invertible and has a condition number lower than κ̄. Under the condition

κ̄ ≥ maxiCi/γ
−
i , we have

Y +
m ⊂ Y κ̄

m ⊂ Ym. (22)

Then definitions (2) and (5) for the approximation Pm(ξ) can be replaced respectively by

Pm(ξ) = argmin
P∈Y +

m or Y κ̄m

‖I − PA(ξ)‖F , (23a)

Pm(ξ) = argmin
P∈Y +

m or Y κ̄m

‖(I − PA(ξ))V ‖F , (23b)

which are quadratic optimization problems with linear inequality constraints. Furthermore,

since Pi ∈ Y +
m for all i, all the resulting projections Pm(ξ) interpolate A(ξ)−1 at the points

ξ1, . . . , ξm.

The following proposition shows that properties (3) and (4) still hold for the precondi-

tioned operator.

Proposition 2.7 The solution Pm(ξ) of (23a) is such that Pm(ξ)A(ξ) satisfies (3) and (4).

Also, under the assumptions of Proposition 2.5, the solution Pm(ξ) of (23b) is such that

Pm(ξ)A(ξ) satisfies (17) and (18) with a probability higher than 1− δ.

Proof: Since Y +
m (or Y κ̄

m) is a closed and convex positive cone, the solution Pm(ξ) of (23a)

is such that trace((I − Pm(ξ)A(ξ))T (Pm(ξ) − P )A(ξ)) ≥ 0 for all P ∈ Y +
m (or Y κ̄

m). Taking

P = 2Pm(ξ) and P = 0, we obtain that trace((I − Pm(ξ)A(ξ))TPm(ξ)A(ξ)) = 0, which im-

plies ‖Pm(ξ)A(ξ)‖2
F = trace(Pm(ξ)A(ξ)). We refer to the proof of Lemma 2.6 and Theorem

3.2 in [24] to deduce (3) and (4). Using the same arguments, we prove that the solution

Pm(ξ) of (23b) satisfies ‖Pm(ξ)A(ξ)V ‖2
F = trace(V TPm(ξ)A(ξ)V ), and then that (17) and

(18) hold with a probability higher than 1− δ.
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2.4 Practical computation of the projection

Here, we detail how to efficiently compute MV (ξ) and SV (ξ) given in equation (6) in a multi-

query context, i.e. for several different values of ξ. The same methodology can be applied

for computing M(ξ) and S(ξ). We assume that the operator A(ξ) has an affine expansion

of the form

A(ξ) =

mA∑
k=1

Φk(ξ)Ak, (24)

where the Ak are matrices in Rn×n and the Φk : Ξ → R are real-valued functions. Then

MV (ξ) and SV (ξ) also have the affine expansions

MV
i,j(ξ) =

mA∑
k=1

mA∑
l=1

Φk(ξ)Φl(ξ) trace(V TATkP
T
i PjAlV ), (25a)

SVi (ξ) =

mA∑
k=1

Φk(ξ) trace(V TPiAkV ), (25b)

respectively. Computing the multiple terms of these expansions would require many com-

putations of traces of implicit matrices and also, it would require the computation of the

affine expansion of A(ξ). Here, we use the methodology introduced in [9] for obtaining affine

decompositions with a lower number of terms. These decompositions only require the knowl-

edge of functions Φk in the affine decomposition (24), and evaluations of MV
i,j(ξ) and SVi (ξ)

(that means evaluations of A(ξ)) at some selected points. We briefly recall this methodology.

Suppose that g : Ξ → X, with X a vector space, has an affine decomposition g(ξ) =∑m
k=1 ζk(ξ)gk, with ζk : Ξ → R and gk ∈ X. We first compute an interpolation of ζ(ξ) =

(ζ1(ξ), . . . , ζm(ξ)) under the form ζ(ξ) =
∑mg

k=1 Ψk(ξ)ζ(ξ∗k), with mg ≤ m, where ξ∗1 , . . . , ξ
∗
mg

are interpolation points and Ψ1(ξ), . . . ,Ψmg(ξ) the associated interpolation functions. Such

an interpolation can be computed with the Empirical Interpolation Method [29] described

in Algorithm 2. Then, we obtain an affine decomposition g(ξ) =
∑mg

k=1 Ψk(ξ)g(ξ∗k) which can

be computed from evaluations of g at interpolation points ξ∗k.

Applying the above procedure to both MV (ξ) and SV (ξ), we obtain

MV (ξ) ≈
mM∑
k=1

Ψk(ξ) M
V (ξ∗k), SV (ξ) ≈

mS∑
k=1

Ψ̃k(ξ) S
V (ξ̃∗k). (26)

The first (so-called offline) step consists in computing the interpolation functions Ψk(ξ)

and Ψ̃k(ξ) and associated interpolation points ξ∗k and ξ̃∗k using Algorithm 2 with input

{ΦiΦj}1≤i,j≤mA and {Φi}1≤i≤mA respectively, and then in computing matrices MV (ξ∗k) and

vectors SV (ξ̃∗k) using Algorithm 1. The second (so-called online) step simply consists in

computing the matrix MV (ξ) and the vector SV (ξ) for a given value of ξ using (26).
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Algorithm 2 Empirical Interpolation Method (EIM).

Require: (ζ1(·), . . . , ζm(·))
Ensure: Ψ1(·), . . . ,Ψk(·) and ξ∗1 , . . . , ξ

∗
k

1: Define R1(i, ξ) = ζi(ξ) for all i, ξ

2: Initialize e = 1, k = 0

3: while e ≥ tolerance (in practice the machine precision) do

4: k = k + 1

5: Find (i∗k, ξ
∗
k) ∈ argmax

i,ξ
|Rk(i, ξ)|

6: Set the error to e = |Rk(i
∗
k, ξ
∗
k)|

7: Actualize Rk+1(i, ξ) = Rk(i, ξ)−Rk(i, ξ
∗
k)Rk(i

∗
k, ξ)/Rk(i

∗
k, ξ
∗
k) for all i, ξ

8: end while

9: Fill in the k-by-k matrix Q : Qi,j = ζi∗i (ξ
∗
j ) for all 1 ≤ i, j ≤ k

10: Compute Ψi(ξ) =
∑k

j=1(Q−1)i,jζi∗j (ξ) for all ξ and 1 ≤ i ≤ k

3 Preconditioners for projection-based model reduc-

tion

We consider a parameter-dependent linear equation

A(ξ)u(ξ) = b(ξ), (27)

with A(ξ) ∈ Rn×n and b(ξ) = Rn. Projection-based model reduction consists in projecting

the solution u(ξ) onto a well chosen approximation space Xr ⊂ X := Rn of low dimension

r � n. Such projections are usually defined by imposing the residual of (27) to be orthogonal

to a so-called test space of dimension r. The quality of the projection on Xr depends on the

choice of the test space. The latter can be defined as the approximation space itself Xr, thus

yielding the classical Galerkin projection. However when the operator A(ξ) is ill-conditioned

(for example when A(ξ) corresponds to the discretization of non coercive or weakly coercive

operators), this choice may lead to projections that are far from optimal. Choosing the test

space as {R−1
X A(ξ)vr : vr ∈ Xr}, where R−1

X A(ξ) is called the “supremizer operator” (see

e.g. [35]), corresponds to a minimal residual approach, which may also results in projections

that are far from optimal. In this section, we show how the preconditioner Pm(ξ) can be

used for the definition of the test space. We also show how it can improve the quality of

residual-based error estimates, which is a key ingredient for the construction of suitable

approximation space Xr in the context of the Reduced Basis method.

X is endowed with the norm ‖ · ‖X defined by ‖ · ‖2
X = 〈RX ·, ·〉, where RX is a symmetric

positive definite matrix and 〈·, ·〉 is the canonical inner product of Rn. We also introduce the
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dual norm ‖ · ‖X′ = ‖R−1
X · ‖X such that for any v, w ∈ X we have |〈v, w〉| ≤ ‖v‖X ‖w‖X′ .

3.1 Projection of the solution on a given reduced subspace

Here, we suppose that the approximation space Xr has been computed by some model order

reduction method. The best approximation of u(ξ) on Xr is u∗r(ξ) = arg minv∈Xr ‖u(ξ)−v‖X
and is characterized by the orthogonality condition

〈u∗r(ξ)− u(ξ), RXvr〉 = 0, ∀vr ∈ Xr, (28)

or equivalently by the Petrov-Galerkin orthogonality condition

〈A(ξ)u∗r(ξ)− b(ξ), A−T (ξ)RXvr〉 = 0, ∀vr ∈ Xr. (29)

Obviously the computation of test functions A−T (ξ)RXvr for basis functions vr of Xr is

prohibitive. By replacing A(ξ)−1 by Pm(ξ), we obtain the feasible Petrov-Galerkin formula-

tion

〈A(ξ)ur(ξ)− b(ξ), P T
m(ξ)RXvr〉 = 0, ∀vr ∈ Xr. (30)

Denoting by U ∈ Rn×r a matrix whose range is Xr, the solution of (30) is ur(ξ) = Ua(ξ)

where the vector a(ξ) ∈ Rr is the solution of(
UTRXPm(ξ)A(ξ)U

)
a(ξ) =

(
UTRXPm(ξ)b(ξ)

)
.

Note that (30) corresponds to the standard Galerkin projection when replacing Pm(ξ)

by R−1
X . Indeed, the orthogonality condition (30) becomes 〈A(ξ)ur(ξ)− b(ξ), vr〉 = 0 for all

vr ∈ Xr.

Remark 3.1 Here, the preconditioner Pm(ξ) is used for the definition of the parameter-

dependent test space {P T
m(ξ)RXvr : vr ∈ Xr} which defines the Petrov-Galerkin projection

(30). However, Pm(ξ) could also be used to construct preconditioners for the solution of the

linear system
(
UTA(ξ)U

)
a(ξ) =

(
UT b(ξ)

)
corresponding to the Galerkin projection on Xr.

Following the idea proposed in [19], such preconditoner can take the form (UTPm(ξ)U), thus

yielding the preconditioned reduced linear system(
UTPm(ξ)U

)(
UTA(ξ)U

)
a(ξ) =

(
UTPm(ξ)U

)(
UT b(ξ)

)
.

Such preconditioning strategy can be used to accelerate the solution of the reduced system of

equations when using iterative methods. However, and contrarily to (30), this strategy does

not change the definition of ur(ξ), which is the standard Galerkin projection.
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We give now a quasi-optimality result for the approximation ur(ξ). This analysis relies

on the notion of δ-proximality introduced in [13].

Proposition 3.2 Let δr,m(ξ) ∈ [0, 1] be defined by

δr,m(ξ) = max
vr∈Xr

min
wr∈Xr

‖vr −R−1
X (Pm(ξ)A(ξ))TRXwr‖X

‖vr‖X
. (31)

The solutions u∗r(ξ) ∈ Xr and ur(ξ) ∈ Xr of (28) and (30) satisfy

‖u∗r(ξ)− ur(ξ)‖X ≤ δr,m(ξ)‖u(ξ)− ur(ξ)‖X . (32)

Moreover, if δr,m(ξ) < 1 holds, then

‖u(ξ)− ur(ξ)‖X ≤ (1− δr,m(ξ)2)−1/2‖u(ξ)− u∗r(ξ)‖X . (33)

Proof: The orthogonality condition (28) yields

〈u∗r(ξ)− ur(ξ), RXvr〉 = 〈u(ξ)− ur(ξ), RXvr〉 = 〈b(ξ)− A(ξ)ur(ξ), A
−T (ξ)RXvr〉

for all vr ∈ Xr. Using (30), we have that for any wr ∈ Xr,

〈u∗r(ξ)− ur(ξ), RXvr〉 = 〈b(ξ)− A(ξ)ur(ξ), A
−T (ξ)RXvr − Pm(ξ)TRXwr〉,

= 〈u(ξ)− ur(ξ), RXvr − (Pm(ξ)A(ξ))TRXwr〉,
≤ ‖u(ξ)− ur(ξ)‖X ‖RXvr − (Pm(ξ)A(ξ))TRXwr‖X′
= ‖u(ξ)− ur(ξ)‖X ‖vr −R−1

X (Pm(ξ)A(ξ))TRXwr‖X .

Taking the infimum over wr ∈ Xr and by the definition of δr,m(ξ), we obtain

〈u∗r(ξ)− ur(ξ), RXvr〉 ≤ δr,m(ξ)‖u(ξ)− ur(ξ)‖X ‖vr‖X .

Then, noting that u∗r(ξ)− ur(ξ) ∈ Xr, we obtain

‖u∗r(ξ)− ur(ξ)‖X = sup
vr∈Xr

〈u∗r(ξ)− ur(ξ), RXvr〉
‖vr‖X

≤ δr,m(ξ)‖u(ξ)− ur(ξ)‖X ,

that is (32). Finally, using orthogonality condition (28), we have that

‖u(ξ)− ur(ξ)‖2
X = ‖u(ξ)− u∗r(ξ)‖2

X + ‖u∗r(ξ)− ur(ξ)‖2
X ,

≤ ‖u(ξ)− u∗r(ξ)‖2
X + δr,m(ξ)2‖u(ξ)− ur(ξ)‖2

X ,

from which we deduce (33) when δr,m(ξ) < 1.

An immediate consequence of Proposition 3.2 is that when δr,m(ξ) = 0, the Petrov-

Galerkin projection ur(ξ) coincides with the orthogonal projection u∗r(ξ). Following [14], we

show in the following proposition that δr,m(ξ) can be computed by solving an eigenvalue

problem of size r.
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Proposition 3.3 We have δr,m(ξ) =
√

1− γ, where γ is the lowest eigenvalue of the gener-

alized eigenvalue problem Cx = γDx, with

C = UTB(BTR−1
X B)−1BTU ∈ Rr×r,

D = UTRXU ∈ Rr×r,

where B = (Pm(ξ)A(ξ))TRXU ∈ Rn×r and where U ∈ Rn×r is a matrix whose range is Xr.

Proof: Since the range of U is Xr, we have

δr,m(ξ)2 = max
a∈Rr

min
b∈Rr
‖Ua−R−1

X Bb‖2
X

‖Ua‖2
X

.

For any a ∈ Rr, the minimizer b∗ of ‖Ua − R−1
X Bb‖2

X over b ∈ Rr is given by b∗ =

(BTR−1
X B)−1BTUa. Therefore, we have ‖Ua−R−1

X Bb∗‖2
X = ‖Ua‖2

X − 〈Ua,Bb∗〉, and

δ2
r,m(ξ) = 1− inf

a∈Rr
〈UTB(BTR−1

X B)−1BTUa, a〉
〈UTRXUa, a〉

,

which concludes the proof.

3.2 Greedy construction of the solution reduced subspace

Following the idea of the Reduced Basis method [36, 38], a sequence of nested approximation

spaces {Xr}r≥1 in X can be constructed by a greedy algorithm such that Xr+1 = Xr +

span(u(ξRBr+1)), where ξRBr+1 is a point where the error of approximation of u(ξ) in Xr is

maximal. An ideal greedy algorithm using the best approximation in Xr and an exact

evaluation of the projection error is such that

u∗r(ξ) is the orthogonal projection of u(ξ) on Xr defined by (28), (34a)

ξRBr+1 ∈ argmax
ξ∈Ξ

‖u(ξ)− u∗r(ξ)‖X . (34b)

This ideal greedy algorithm is not feasible in practice since u(ξ) is not known. Therefore,

we rather rely on a feasible weak greedy algorithm such that

ur(ξ) is the Petrov-Galerkin projection of u(ξ) on Xr defined by (30), (35a)

ξRBr+1 ∈ argmax
ξ∈Ξ

‖Pm(ξ)(A(ξ)ur(ξ)− b(ξ))‖X . (35b)

Assume that

αm ‖u(ξ)− ur(ξ)‖X ≤ ‖Pm(ξ)(A(ξ)ur(ξ)− b(ξ))‖X ≤ β̄m ‖u(ξ)− ur(ξ)‖X
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holds with αm = infξ∈Ξ αm(ξ) > 0 and β̄m = supξ∈Ξ βm(ξ) <∞, where αm(ξ) and βm(ξ) are

respectively the lowest and largest singular values of Pm(ξ)A(ξ) with respect to the norm

‖ · ‖X , respectively defined by the infimum and supremum of ‖Pm(ξ)A(ξ)v‖X over v ∈ X

such that ‖v‖X = 1. Then, we easily prove that algorithm (35) is such that

‖u(ξRBr+1)− ur(ξRBr+1)‖X ≥ γm max
ξ∈Ξ
‖u(ξ)− ur(ξ)‖X , (36)

where γm = αm/ β̄m ≤ 1 measures how far the selection of the new point is from the ideal

greedy selection. Under condition (36), convergence results for this weak greedy algorithm

can be found in [5, 18].

We give now sharper bounds for the preconditoned residual norm that exploits the fact

that the approximation ur(ξ) is the Petrov-Galerkin projection.

Proposition 3.4 Let ur(ξ) be the Petrov-Galerkin projection of u(ξ) on Xr defined by (29).

Then we have

αr,m(ξ) ‖u(ξ)− ur(ξ)‖X ≤ ‖Pm(ξ)(A(ξ)ur(ξ)− b(ξ))‖X ≤ βr,m(ξ) ‖u(ξ)− ur(ξ)‖X ,

with

αr,m(ξ) = inf
v∈X

sup
wr∈Xr

‖(Pm(ξ)A(ξ))TRXv‖X′
‖v − wr‖X

,

βr,m(ξ) = sup
v∈X

inf
wr∈Xr

‖(Pm(ξ)A(ξ))TRX(v − wr)‖X′
‖v‖X

.

Proof: For any v ∈ X and wr ∈ Xr and according to (30), we have

〈u(ξ)− ur(ξ), RXv〉 = 〈b(ξ)− A(ξ)ur(ξ), A
−T (ξ)RXv − P T

m(ξ)RXwr〉
= 〈Pm(ξ)(b(ξ)− A(ξ)ur(ξ)), (Pm(ξ)A(ξ))−TRXv −RXwr〉
≤ ‖R‖X ‖(Pm(ξ)A(ξ))−TRXv −RXwr‖X′ ,

where R(ξ) := Pm(ξ)(b(ξ)−A(ξ)ur(ξ)). Taking the infimum over wr ∈ Xr, dividing by ‖v‖X
and taking the supremum over v ∈ X, we obtain

‖u(ξ)− ur(ξ)‖X ≤ ‖R(ξ)‖X sup
v∈X

inf
wr∈Xr

‖(Pm(ξ)A(ξ))−TRXv −RXwr‖X′
‖v‖X

,

= ‖R(ξ)‖X sup
v∈X

inf
wr∈Xr

‖v − wr‖X
‖(Pm(ξ)A(ξ))TRXv‖X′

,

= ‖R(ξ)‖X
(

inf
v∈X

sup
wr∈Xr

‖(Pm(ξ)A(ξ))TRXv‖X′
‖v − wr‖X

)−1

,
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which proves the first inequality. Furthermore, for any v ∈ X and wr ∈ Xr, we have

〈Pm(ξ)(b(ξ)− A(ξ)ur(ξ)), RXv〉 = 〈b(ξ)− A(ξ)ur(ξ), P
T
m(ξ)RX(v − wr)〉

≤ ‖u(ξ)− ur(ξ)‖X ‖(Pm(ξ)A(ξ))TRX(v − wr)‖X′ .

Taking the infimum over wr ∈ Xr, dividing by ‖v‖X and taking the supremum over v ∈ X,

we obtain the second inequality.

Since Xr ⊂ Xr+1, we have αr+1,m(ξ) ≥ αr,m(ξ) ≥ αm(ξ) and βr+1,m(ξ) ≤ βr,m(ξ) ≤ βm(ξ).

Equation (36) holds with γm replaced by the parameter γr,m = αr,m/ β̄r,m. Since γr,m
increases with r, a reasonable expectation is that the convergence properties of the weak

greedy algorithm will improve when r increases.

Remark 3.5 When replacing Pm(ξ) by R−1
X , the preconditioned residual norm ‖Pm(ξ)(A(ξ)ur(ξ)−

b(ξ))‖X turns out to be the residual norm ‖A(ξ)ur(ξ) − b(ξ)‖X′, which is a standard choice

in the Reduced Basis method for the greedy selection of points (with RX being associated

with the natural norm on X or with a norm associated with the operator at some nom-

inal parameter value). This can be interpreted as a basic preconditioning method with a

parameter-independent preconditioner.

4 Selection of the interpolation points

In this section, we propose strategies for the adaptive selection of the interpolation points.

For a given set of interpolation points ξ1, . . . , ξm, three different methods are proposed for

the selection of a new interpolation point ξm+1. The first method aims at reducing uniformly

the error between the inverse operator and its interpolation. The resulting interpolation of

the inverse is pertinent for preconditioning iterative solvers or estimating errors based on

preconditioned residuals. The second method aims at improving Petrov-Galerkin projections

of the solution of a parameter-dependent equation on a given approximation space. The

third method aims at reducing the cost for the computation of the preconditioner by reusing

operators computed when solving samples of a parameter-dependent equation.

4.1 Greedy approximation of the inverse of a parameter-dependent

matrix

A natural idea is to select a new interpolation point where the preconditioner Pm(ξ) is not

a good approximation of A(ξ)−1. Obviously, an ideal strategy for preconditioning would be
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to choose ξm+1 where the condition number of Pm(ξ)A(ξ) is maximal. The computation of

the condition number for many values of ξ being computationaly expensive, one could use

upper bounds of this condition number, e.g. computed using SCM [27].

Here, we propose the following selection method: given an approximation Pm(ξ) associ-

ated with interpolation points ξ1, . . . , ξm, a new point ξm+1 is selected such that

ξm+1 ∈ argmax
ξ∈Ξ

‖(I − Pm(ξ)A(ξ))V ‖F , (38)

where the matrix V is either the random rescaled Rademacher matrix, or the P-SRHT matrix

(see Section 2.2). This adaptive selection of the interpolation points yields the construction

of an increasingsequence of subspaces Ym+1 = Ym + span(A(ξm+1)−1) in Y = Rn×n. This

algorithm is detailed below.

Algorithm 3 Greedy selection of interpolation points.

Require: A(ξ), V,M .

Ensure: Interpolation points ξ1, . . . , ξM and interpolation PM(ξ).

1: Initialize P0(ξ) = I

2: for m = 0 to M − 1 do

3: Compute the new point ξm+1 according to (38)

4: Compute a factorization of A(ξm+1)

5: Define A(ξm+1)−1 as an implicit operator

6: Update the space Ym+1 = Ym + span(A(ξm+1)−1)

7: Compute Pm+1(ξ) = arg minP∈Ym+1 ‖(I − PA(ξ))V ‖F
8: end for

The following lemma interprets the above construction as a weak greedy algorithm.

Lemma 4.1 Assume that A(ξ) satisfies α0‖ · ‖ ≤ ‖A(ξ) · ‖ ≤ β̄0‖ · ‖ for all ξ ∈ Ξ, and let

Pm(ξ) be defined by (5). Under the assumption that there exists ε ∈ [0, 1[ such that

|‖(I − PA(ξ))V ‖2
F − ‖I − PA(ξ)‖2

F | ≤ ε‖I − PA(ξ)‖2
F (39)

holds for all ξ ∈ Ξ and P ∈ Ym, we have

‖Pm(ξm+1)− A(ξm+1)−1‖F ≥ γε max
ξ∈Ξ

min
P∈Ym

‖P − A(ξ)−1‖F , (40)

with γε = α0

√
1− ε/(β̄0

√
1 + ε), and with ξm+1 defined by (38).

Proof: Since ‖BC‖F ≤ ‖B‖F‖C‖ holds for any matrices B and C, with ‖C‖ the operator

norm of C, we have for all P ∈ Y ,

‖A(ξ)−1 − P‖F ≤ ‖I − PA(ξ)‖F‖A(ξ)−1‖ ≤ α−1
0 ‖I − PA(ξ)‖F ,

‖I − PA(ξ)‖F ≤ ‖A(ξ)−1 − P‖F‖A(ξ)‖ ≤ β̄0‖A(ξ)−1 − P‖F .
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Then, thanks to (39) we have

‖A(ξ)−1 − P‖F ≤ (α0

√
1− ε)−1‖(I − PA(ξ))V ‖F

and ‖(I − PA(ξ))V ‖F ≤ β̄0

√
1 + ε‖A(ξ)−1 − P‖F ,

which implies

1

β̄0

√
1 + ε

‖(I − PA(ξ))V ‖F ≤ ‖A(ξ)−1 − P‖F ≤
1

α0

√
1− ε

‖(I − PA(ξ))V ‖F .

We easily deduce that ξm+1 is such that (40) holds.

Remark 4.2 The assumption (39) of Lemma 4.1 can be proved to hold with high probability

in two cases. A first case is when Ξ is a training set of finite cardinality, where the results of

Proposition 2.5 can be extended to any ξ ∈ Ξ by using a union bound. We then obtain that

(39) holds with a probability higher than 1− δ(#Ξ). A second case is when A(ξ) admits an

affine decomposition (24) with mA terms. Then the space ML = span{I−PA(ξ) : ξ ∈ Ξ, P ∈
Ym} is of dimension L ≤ 1 +mAm and Proposition 2.4 allows to prove that assumption (39)

holds with high probability.

The quality of the resulting spaces Ym have to be compared with the Kolmogorov m-width

of the set A−1(Ξ) := {A(ξ)−1 : ξ ∈ Ξ} ⊂ Y , defined by

dm(A−1(Ξ))Y = min
Ym ⊂ Y

dim(Ym) = m

sup
ξ∈Ξ

min
P∈Ym

‖A(ξ)−1 − P‖F , (41)

which evaluates how well the elements of A−1(Ξ) can be approximated on a m-dimensional

subspace of matrices. (40) implies that the following results holds (see Corollary 3.3 in [18]):

‖A(ξ)−1 − Pm(ξ)‖F =

O(m−a) if dm(A−1(Ξ))Y = O(m−a)

O(e−c̃m
b
) if dm(A−1(Ξ))Y = O(e−cm

b
)
,

where c̃ > 0 is a constant which depends on c and b. That means that if the Kolmogorov

m-width has an algebraic or exponential convergence rate, then the weak greedy algorithm

yields an error ‖Pm(ξ)− A(ξ)−1‖F which has the same type of convergence. Therefore, the

proposed interpolation method will present good convergence properties when dm(A−1(Ξ))Y
rapidly decreases with m.

Remark 4.3 When the parameter set Ξ is [−1, 1]d (or a product of compact intervals), an

exponential decay can be obtained when A(ξ)−1 admits an holomorphic extension to a domain

in Cd containing Ξ (see [10]).
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Remark 4.4 Note that here, there is no constraint on the minimization problem over Ym
(either optimal subspaces or subspaces constructed by the greedy procedure), so that we have

no guaranty that the resulting approximations Ym are invertible (see Section 2.3).

4.2 Selection of points for improving the projection on a reduced

space

We here suppose that we want to find an approximation of the solution u(ξ) of a parameter-

dependent equation (27) onto a low-dimensional approximation space Xr, using a Petrov-

Galerkin orthogonality condition given by (30). The best approximation is considered as

the orthogonal projection defined by (28). The quantity δr,m(ξ) defined by (31) controls

the quality of the Petrov-Galerkin projection on Xr (see Proposition 3.2). As indicated

in Proposition 3.3, δr,m(ξ) can be efficiently computed. Thus, we propose the following

selection strategy which aims at improving the quality of the Petrov-Galerkin projection:

given a preconditioner Pm(ξ) associated with interpolation points ξ1, . . . , ξm, the next point

ξm+1 is selected such that

ξm+1 ∈ argmax
ξ∈Ξ

δr,m(ξ). (42)

The resulting construction is described by Algorithm 3 with the above selection of ξm+1.

Note that this strategy is closely related with [14], where the authors propose a greedy

construction of a parameter-independent test space for Petrov-Galerkin projection, with a

selection of basis functions based on an error indicator similar to δr,m(ξ).

4.3 Re-use of factorizations of operator’s evaluations - Application

to reduced basis method

When using a sample-based approach for solving a parameter-dependent equation (27), the

linear system is solved for many values of the parameter ξ. When using a direct solver for

solving a linear system for a given ξ, a factorization of the operator is usually available and

can be used for improving a preconditioner for the solution of subsequent linear systems.

We here describe this idea in the particular context of greedy algorithms for Reduced

Basis method, where the interpolation points ξ1, . . . , ξr for the interpolation of the inverse

A(ξ)−1 are taken as the evaluation points ξRB1 , . . . , ξRBr for the solution. At iteration r, having

a preconditioner Pr(ξ) and an approximation ur(ξ), a new interpolation point is defined such

that

ξRBr+1 ∈ argmax
ξ∈Ξ

‖Pr(ξ)(A(ξ)ur(ξ)− b(ξ))‖X .

Algorithm 4 describes this strategy.
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Algorithm 4 Reduced Basis method with re-use of operator’s factorizations.

Require: A(ξ), b(ξ), V , and R.

Ensure: Approximation uR(ξ).

1: Initialize u0(ξ) = 0, P0(ξ) = I

2: for r = 0 to R− 1 do

3: Find ξRBr+1 ∈ arg maxξ∈Ξ ‖Pr(ξ)(A(ξ)ur(ξ)− b(ξ))‖X
4: Compute a factorization of A(ξRBr+1)

5: Solve the linear system vr+1 = A(ξRBr+1)−1b(ξRBr+1)

6: Update the approximation subspace Xr+1 = Xr + span(vr+1)

7: Define the implicit operator Pr+1 = A(ξRBr+1)−1

8: Update the space Yr+1 (or Y +
r+1)

9: Compute the preconditioner : Pr+1(ξ) = argmin
P∈Yr+1(or Y +

r+1)

‖(I − PA(ξ))V ‖F

10: Compute the Petrov-Galerkin approximation ur+1(ξ) of u(ξ) on Xr+1 using equation

(30)

11: end for

5 Numerical results

5.1 Illustration on a one parameter-dependent model

In this section we compare the different interpolation methods on the following one parameter-

dependent advection-diffusion-reaction equation:

−∆u+ v(ξ) · ∇u+ u = f (43)

defined over a square domain Ω = [0, 1]2 with periodic boundary conditions. The advection

vector field v(ξ) is spatially constant and depends on the parameter ξ that takes values in

[0, 1]: v(ξ) = D cos(2πξ)e1 + D sin(2πξ)e2, with D = 50 and (e1, e2) the canonical basis

of R2. Ξ denotes a uniform grid of 250 points on [0, 1]. The source term f is represented

in Figure 2(a). We introduce a finite element approximation space of dimension n = 1600

with piecewise linear approximations on a regular mesh of Ω. The mesh Péclet number

takes moderate values (lower than one), so that a standard Galerkin projection without

stabilization is here sufficient. The Galerkin projection yields the linear system of equations

A(ξ)u(ξ) = b, with

A(ξ) = A0 + cos(2πξ)A1 + sin(2πξ)A2,
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where the matrices A0, A1, A2 and the vector b are given by

(A0)i,j =

∫
Ω

∇φi · ∇φj + φiφj , (A1)i,j =

∫
Ω

φi(e1 · ∇φj)

(A2)i,j =

∫
Ω

φi(e2 · ∇φj) , (b)i =

∫
Ω

φif,

where {φi}ni=1 is the basis of the finite element space. Figures 2(b), 2(c) and 2(d) show three

samples of the solution.

(a) f (b) u(0.05) (c) u(0.2) (d) u(0.8)

Figure 2: Plot of the source term f (a) and 3 samples of the solution corresponding to

parameter values ξ = 0.05 (b), ξ = 0.2 (c) and ξ = 0.8 (d) respectively.

5.1.1 Comparison of the interpolation strategies

We first choose arbitrarily 3 interpolation points (ξ1 = 0.05, ξ2 = 0.2 and ξ3 = 0.8) and show

the benefits of using the Frobenius norm projection for the definition of the preconditioner.

For the comparison, we consider the Shepard and the nearest neighbor interpolation strate-

gies. Let ‖ · ‖Ξ denote a norm on the parameter set Ξ. The Shepard interpolation method

is an inverse weighted distance interpolation:

λi(ξ) =


‖ξ − ξi‖−sΞ∑m
j=1 ‖ξ − ξj‖

−s
Ξ

if ξ 6= ξi

1 if ξ = ξi

,

where s > 0 is a parameter. Here we take s = 2. The nearest neighbor interpolation method

consists in choosing the value taken by the nearest interpolation point, that means λi(ξ) = 1

for some i ∈ arg minj ‖ξ − ξj‖Ξ, and λj(ξ) = 0 for all j 6= i.

Concerning the Frobenius norm projection on Ym (or Y +
m ), we first construct the affine

decomposition of M(ξ) and S(ξ) as explained in Section 2.4. The interpolation points ξ∗k
(resp. ξ̃∗k) given by the EIM procedure for M(ξ) (resp. S(ξ)) are {0.0; 0.25; 0.37; 0.56; 0.80}
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(resp. {0.0; 0.25; 0.62}). The number of terms mM = 5 in the resulting affine decomposition

of M(ξ) (see equation (26)) is less than the expected number m2
A = 9 (see equation (25a)).

Considering the functions Φ1(ξ) = 1, Φ2(ξ) = cos(2πξ), Φ3(ξ) = sin(2πξ), and thanks to

relation cos2 = 1− sin2, the space

spani,j{ΦiΦj} = span{1, cos, sin, cos sin, cos2, sin2} = span{1, cos, sin, cos sin, cos2}

is of dimension mM = 5. The EIM procedure automatically detects the redundancy in the

set of functions and reduces the number of terms in the decomposition (26). Then, since the

dimension n of the discretization space is reasonable, we compute the matrices M(ξ∗k) and

the vectors S(ξ̃∗k) using equation (26).

The functions λi(ξ) are plotted on Figure 3 for the proposed interpolation strategies.

It is important to note that contrary to the Shepard or the nearest neighbor method, the

Frobenius norm projection (on Ym or Y +
m ) leads to periodic interpolation functions, i.e.

λi(ξ = 0) = λi(ξ = 1). This is consistent with the fact that the application ξ 7→ A(ξ) is

1-periodic. The Frobenius norm projection automatically detects such a feature.
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0 0.2 0.4 0.6 0.8 1

0

0.5

1

ξ

λ1(ξ)

λ2(ξ)

λ3(ξ)

(c) Projection on Ym

0 0.2 0.4 0.6 0.8 1

0

0.5

1

ξ

λ1(ξ)

λ2(ξ)

λ3(ξ)

(d) Projection on Y +
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(e) Projection on Y κ̄m

Figure 3: Interpolation functions λi(ξ) for different interpolation methods.

Figure 4 shows the condition number κm(ξ) of Pm(ξ)A(ξ) with respect to ξ. We first

note that for the constant preconditioner P1(ξ) = A(ξ2)−1, the resulting condition number

is higher than the one of the non preconditioned matrix A(ξ) for ξ ∈ [0.55; 0.95]. We

also note that the interpolation strategies based on the Frobenius norm projection lead to
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better preconditioners than the Shepard and nearest neighbor interpolation strategies. When

considering the projection on Y +
m and Y κ̄

m (with κ̄ = 5×104 such that (22) holds), the resulting

condition number is roughly the same, so as the interpolation functions of Figures 3(d) and

3(e). Since the projection on Y κ̄
m requires the expensive computation of the constants γ+, γ−

and C (see Section 2.3), we prefer to simply use the projection on Y +
m in order to ensure the

preconditioner to be invertible. Finally, for this example, it is not necessary to impose any

constraint since the projection on Ym leads to the best preconditioner and this preconditioner

appears to be invertible for any ξ ∈ Ξ.
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κ(A(ξ))

P1(ξ) = A−1(ξ2)
Nearest neighbor
Shepard
Projection on Ym
Projection on Y +

m

Projection on Y κ̄m

Figure 4: Condition number of Pm(ξ)A(ξ) for different interpolation strategies. The condi-

tion number of A(ξ) is given as a reference.

5.1.2 Using the Frobenius semi-norm

We analyze now the interpolation method defined by the Frobenius semi-norm projection

on Ym (5) for the different definitions of V ∈ Rn×K proposed in sections 2.2.2 and 2.2.1.

According to Table 2, the error on the interpolation functions decreases slowly with K

(roughly as O(K−1/2)), and the use of the P-SRHT matrix leads to a slightly lower error.

The interpolation functions are plotted on Figure 5(a) in the case where K = 8. Even if we

have an error of 36% to 101% on the interpolation functions, the condition number given on

Figure 5(b) remains close to the one computed with the Frobenius norm. Also, an important

remark is that with K = 8 the computational effort for computing MV (ξ∗k) and SV (ξ̃∗k) is

negligible compared to the one for M(ξ∗k) and S(ξ̃∗k).
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K 8 16 32 64 128 256 512

Rescaled partial Hadamard 0.4131 0.3918 0.3221 0.1010 0.0573 0.0181 0.0255

Rescaled Rademacher (1) 0.5518 0.0973 0.2031 0.1046 0.1224 0.1111 0.0596

Rescaled Rademacher (2) 1.0120 0.6480 0.1683 0.1239 0.0597 0.0989 0.0514

Rescaled Rademacher (3) 0.7193 0.2014 0.1241 0.1051 0.1235 0.1369 0.0519

P-SRHT (1) 0.4343 0.2081 0.2297 0.0741 0.0723 0.0669 0.0114

P-SRHT (2) 0.3624 0.2753 0.0931 0.1285 0.0622 0.0619 0.0249

P-SRHT (3) 0.8133 0.4227 0.1138 0.0741 0.0824 0.0469 0.0197

Table 2: Relative error supξ ‖λ(ξ)− λV (ξ)‖R3/ supξ ‖λ(ξ)‖R3 : λV (ξ) (resp. λ(ξ)) are the in-

terpolation functions associated to the Frobenius semi-norm projection (resp. the Frobenius

norm projection) on Ym, with V either the rescaled partial Hadamard matrix, the random

rescaled Rademacher matrix or the P-SRHT matrix (3 different samples for random matri-

ces).
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(a) Interpolation functions.
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(b) Condition number of P3(ξ)A(ξ).

Figure 5: Comparison between the Frobenius norm projection on Y3 (black lines) and

the Frobenius semi-norm projection on Y3, using for V either a sample of the rescaled

Rademacher matrix (blue lines), the rescaled partial Hadamard matrix (red lines) or a sample

of the P-SRHT matrix (green lines) with K = 8.

5.1.3 Greedy selection of the interpolation points

We now consider the greedy selection of the interpolation points presented in Section 4. We

start with an initial point ξ1 = 0 and the next points are defined by (38), where matrix V

is a realization of the P-SRHT matrix with K = 128 columns. Pm(ξ) is the projection on

Ym using the Frobenius semi-norm defined by (5). The first 3 steps of the algorithm are

illustrated on Figure 6. We observe that at each iteration, the new interpolation point ξm+1

is close to the point where the condition number of Pm(ξ)A(ξ) is maximal. Table 3 presents
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the maximal value over ξ ∈ Ξ of the residual, and of the condition number of Pm(ξ)A(ξ).

Both quantities are rapidly decreasing with m. This shows that this algorithm, initially

designed to minimize ‖(I − Pm(ξ)A(ξ))V ‖F , seems to be also efficient for the construction

of preconditioners, in the sense that the condition number decreases rapidly.
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Figure 6: Greedy selection of the interpolation points: the first row is the residual ‖(I −
Pk(ξ)A(ξ))V ‖F (the blue points correspond to the maximum of the residual) with V a

realization of the P-SRHT matrix with K = 128 columns, and the second row is the condition

number of Pm(ξ)A(ξ).

iteration m 0 1 2 5 10 20 30

supξ κ(Pm(ξ)A(ξ)) 10001 6501 3037 165,7 51,6 16,7 7,3

supξ ‖(I − Pm(ξ)A(ξ))V ‖F - 300 265 80,5 35,4 10,0 7,6

Table 3: Convergence of the greedy algorithm: supremum over ξ ∈ Ξ of the condition number

(first row) and of the Frobenius semi-norm residual (second row).

5.2 Multi-parameter-dependent equation

We introduce a benchmark proposed within the OPUS project (see http://www.opus-project.fr).

Two electronic components ΩIC (see Figure 7) submitted to a cooling air flow in the do-

main ΩAir are fixed on a printed circuit board ΩPCB. The temperature field defined over
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Ω = ΩIC ∪ ΩPBC ∪ ΩAir ⊂ R2 satisfies the advection-diffusion equation:

−∇ · (κ(ξ)∇u) +D(ξ)v · ∇u = f. (44)

The diffusion coefficient κ(ξ) is equal to κPCB on ΩPCB, κAir on ΩAir and κIC on ΩIC .

The right hand side f is equal to Q = 106 on ΩIC and 0 elsewhere. The boundary conditions

are u = 0 on Γd, e2 · ∇u = 0 on Γu (e1, e2 are the canonical vectors of R2), and u|Γl = u|Γr
(periodic boundary condition). At the interface ΓC = ∂ΩIC ∩ ∂ΩPCB there is a thermal

contact conductance, meaning that the temperature field u admits a jump over ΓC which

satisfies

κIC(e1 · ∇u|ΩIC ) = κPCB(e1 · ∇u|ΩPCB) = r(u|ΩIC − u|ΩPCB) on ΓC .

The advection field v is given by v(x, y) = e2g(x), where g(x) = 0 if x ≤ ePCB + eIC and

g(x) =
3

2(e− eIC)

(
1−

(
2x− (e+ eIC + 2ePCB)

e− eIC

)2
)

otherwise. We have 4 parameters: the width e := ξ1 of the domain ΩAir, the thermal

conductance parameter r := ξ2, the diffusion coefficient κIC := ξ3 of the components and

the amplitude of the advection field D := ξ4. Since the domain Ω = Ω(e) depends on the

parameter ξ1 ∈ [emin, emax], we introduce a geometric transformation (x, y) = φξ1(x0, y0)

that maps a reference domain Ω0 = Ω(emax) to Ω(ξ1):

φξ1(x0, y0) =


{

x0 if x0 ≤ e0

e0 + (x0 − e0) ξ1−eIC
emax−eIC

otherwise.

}
y0

 ,

with e0 = ePCB + eIC . This method is described in [36]: since the geometric transforma-

tion φξ1 satisfies the so-called Affine Geometry Precondition, the operator of equation (44)

formulated on the reference domain admits an affine representation.

For the spatial discretization we use a finite element approximation with n = 2.8 · 104

degrees of freedom (piecewise linear approximation). We rely on a Galerkin method with

SUPG stabilization (see [8]). Ξ is a set of 104 independent samples drawn according the

loguniform probability laws of the parameters given on Figure 7.

5.2.1 Preconditioner for the projection on a given reduced space

We consider here a POD basis Xr of dimension r = 50 computed with 100 snapshots of

the solution (a basis of Xr is obtained by the first 50 dominant singular vectors of a matrix
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Geometry (m)
e = ξ1 ∼ logU(2.5× 10−3, 5× 10−2)
ePCB 2× 10−3

eIC 2× 10−3

hIC 2× 10−2

h1 3× 10−2

h2 2× 10−2

h3 4× 10−2

Thermal conductance (Wm−2K−1)
r = ξ2 ∼ logU(1× 10−1, 1× 102)

Diffusion coefficients (Wm−1K−1)
κPCB 2× 10−1

κAir 3× 10−2

κIC = ξ3 ∼ logU(2× 10−1, 1.5× 102)

Advection field (Wm−2K−1)
D = ξ4 ∼ logU(5× 10−4, 1× 10−2)

Figure 7: Geometry and parameters of the benchmark OPUS.

of 100 random snapshots of u(ξ)). Then we compute the Petrov-Galerkin projection as

presented in Section 3.1. The efficiency of the preconditioner can be measured with the

quantity δr,m(ξ): the associated quasi-optimality constant (1 − δr,m(ξ)2)−1/2 should be as

close to one as possible (see equation (33)). We introduce the quantile qp of probability p

associated to the quasi-optimality constant (1 − δr,m(ξ)2)−1/2 defined as the smallest value

qp ≥ 1 satisfying

P
(
{ξ ∈ Ξ : (1− δr,m(ξ)2)−1/2 ≤ qp}

)
≥ p,

where P(A) = #A/#Ξ for A ⊂ Ξ. Table 4 shows the evolution of the quantile with respect

to the number of interpolation points for the preconditioner. Here the goal is to compare

the different strategies for the selection of the interpolation points:

(a) the greedy selection (42) based on the quantity δr,m(ξ),

(b) the greedy selection (38) based on the Frobenius semi-norm residual, with V a P-SRHT

matrix with K = 256 columns, and

(c) a random Latin Hypercube sample (LHS).

The projection on Ym (or Y +
m ) is then defined with the Frobenius semi-norm using for V a

P-SRHT matrix with K = 330 columns.

When considering a small number of interpolation points m ≤ 3, the projection on Y +
m

provides lower quantiles for the quasi-optimality constant compared to the projection on Ym.

The positivity constraint is useful for small m. But for high values of m (see m = 15) the

positivity constraint is no longer necessary and the projection on Ym provides lower quantiles.

Concerning the choice of the interpolation points, the strategy (a) shows the faster decay

of the quantiles qp, especially for p = 50%. The strategy (b) shows also good results, but the
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quantile qp for p = 100% are still high compared to (a). These results show the benefits of

the greedy selection based on the quasi-optimality constant. Finally the strategy (c) shows

bad results (high values of the quantiles), especially for small m.

Projection on Ym
Greedy selection based on (c) Latin Hypercube

(a) δr,m(ξ) (b) Frob. residual sampling

50% 90% 100% 50% 90% 100% 50% 90% 100%

m = 0 21.3 64.1 94.1 21.3 64.1 94.1 21.3 64.1 94.1

m = 1 18.3 74.1 286.7 10.2 36.1 161.6 18.3 104.1 231.8

m = 2 11.9 22.6 42.1 9.8 53.3 374.0 11.5 113.0 533.9

m = 3 11.1 49.2 200.4 7.8 31.2 60.2 18.3 138.7 738.5

m = 5 5.2 10.8 18.4 6.8 18.6 24.5 8.7 121.1 651.4

m = 10 3.1 9.0 13.2 5.3 22.3 62.1 4.0 21.6 345.7

m = 15 2.2 6.3 10.4 3.5 6.5 11.5 2.7 7.8 48.6

Projection on Y +
m

Greedy selection based on (c) Latin Hypercube

(a) δr,m(ξ) (b) Frob. residual sampling

50% 90% 100% 50% 90% 100% 50% 90% 100%

m = 0 21.3 64.1 94.1 21.3 64.1 94.1 21.3 64.1 94.1

m = 1 18.3 74.1 286.7 10.2 36.1 161.6 18.3 104.1 231.8

m = 2 11.9 22.6 42.1 8.9 35.5 78.6 10.4 41.5 112.5

m = 3 9.7 24.4 48.0 7.9 27.7 57.9 12.1 48.8 114.1

m = 5 6.4 15.0 25.5 6.9 26.8 65.1 5.7 11.6 17.5

m = 10 4.6 9.5 16.8 7.3 18.9 38.0 4.3 10.0 18.5

m = 15 4.3 7.1 11.2 6.4 10.1 18.0 4.2 9.0 19.3

Table 4: Quantiles qp of the quasi-optimality constant associated to the Petrov-Galerkin

projection on the POD subspace Xr for p = 50%, 90% and 100%. The row m = 0 corresponds

to P0(ξ) = R−1
X , that is the standard Galerkin projection.

5.2.2 Preconditioner for Reduced Basis method

We now consider the preconditioned Reduced Basis method for the construction of the ap-

proximation space Xr, as presented in Section 3.2. Figures 9 and 10 show the convergence of

the error with respect to the rank r of ur(ξ) for different constructions of the preconditioner

Pm(ξ). Two measures of the error are given: supξ∈Ξ ‖u(ξ)−ur(ξ)‖X/‖u(ξ)‖X , and the quan-

tile of probability 0.97 for ‖u(ξ)− ur(ξ)‖X/‖u(ξ)‖X . The curve “Ideal greedy” corresponds

to the algorithm defined by (34) which provides a reference for the ideally conditioned algo-

rithm, i.e. with κm(ξ) = 1. Figure 8 shows the corresponding first interpolation points for

the solution.
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The greedy selection of the interpolation points based on (38) (see Figure 9) allows to

almost recover the convergence curve of the ideal greedy algorithm when using the projection

on Ym with m = 15. For the strategy of re-using the operators factorizations, the approxi-

mation is rather bad for r = m ≤ 10 meaning that the space Yr (or Y +
r ) is not really adapted

for the construction of a good preconditioner over the whole parametric domain. However,

for higher values of r, the preconditioner is getting better and better. For r ≥ 20, we al-

most reach the convergence of the ideal greedy algorithm. We conclude that this strategy of

re-using the operator factorization, which has a computational cost comparable to the stan-

dard non preconditioned Reduced Basis greedy algorithm, allows obtaining asymptotically

the performance of the ideal greedy algorithm. Note that the positivity constraint yields a

better preconditioner for small values of r but is no longer necessary for large r.

(a) (b) (c) (d) (e) (f)

(a) r = 1 (b) r = 2 (c) r = 3 (d) r = 4 (e) r = 5 (f) r = 6

e 7.1 · 10−3 6.1 · 10−3 5.0 · 10−3 5.0 · 10−2 5.1 · 10−3 4.4 · 10−2

r 9.9 · 101 2.3 · 100 4.1 · 10−1 2.8 · 100 8.6 · 10−1 4.8 · 101

κIC 1.1 · 102 2.1 · 10−1 3.2 · 101 6.0 · 100 1.1 · 102 3.2 · 10−1

D 1.7 · 10−3 7.4 · 10−4 6.2 · 10−4 9.9 · 10−3 8.6 · 10−3 6.0 · 10−4

Figure 8: First six interpolation points of the ideal reduced basis method and corresponding

reduced basis functions.

Let us finally consider the effectivity index

ηr(ξ) = ‖Pr(ξ)(A(ξ)ur(ξ)− b(ξ))‖X/‖u(ξ)− ur(ξ)‖X ,

which evaluates the quality of the preconditioned residual norm for error estimation. We

introduce the confidence interval Ir(p) defined as the smallest interval which satisfies

P({ξ ∈ Ξ : ηr(ξ) ∈ Ir(p)}) ≥ p.

On Figure 11 we see that the confidence intervals are shrinking around 1 when r increases,

meaning that the preconditioned residual norm becomes a better and better error estimator
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Figure 9: Convergence of the preconditioned reduced basis method using the greedy selection

of interpolation points for the preconditioner. Supremum over Ξ (top) and quantile of

probability 97% (bottom) of the relative error ‖u(ξ) − ur(ξ)‖X/‖u(ξ)‖X with respect to

r. Comparison of preconditioned reduced basis algorithms with ideal and standard greedy

algorithms.

when r increases. Again, the positivity constraint is needed for small values of r, but

we obtain a better error estimation without imposing this constraint for r ≥ 20. On the

contrary, the standard residual norm leads to effectivity indices that spread from 10−1 to

101 with no improvement as r increases, meaning that we can have a factor 102 between the
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Figure 10: Preconditioned Reduced basis methods with re-use of operators. Supremum over

Ξ (left) and quantile of probability 97% (right) of the relative error ‖u(ξ)−ur(ξ)‖X/‖u(ξ)‖X
with respect to r. Comparison of preconditioned reduced basis algorithms with ideal and

standard greedy algorithms.

error estimator ‖A(ξ)ur(ξ)− b(ξ)‖X′ and the true error ‖ur(ξ)− u(ξ)‖X .
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(c) Dual residual norm.

Figure 11: Confidence intervals of the effectivity index during the iterations of the Reduced

Basis greedy construction. Comparison between preconditioned algorithms with re-use of

operators factorizations (a,b) and the non preconditioned greedy algorithm (c).
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6 Conclusion

We have proposed a method for the interpolation of the inverse of a parameter-dependent

matrix. The interpolation is defined by the projection of the identity in the sense of the

Frobenius norm. Approximations of the Frobenius norm have been introduced to make com-

putationally feasible the projection in the case of large matrices. Then, we have proposed

preconditioned versions of projection-based model reduction methods. The preconditioner

can be used to define Petrov-Galerkin projections on a given approximation space with bet-

ter quasi-optimality constants by introducing a parameter-dependent test space depending

on the preconditioner. Also, the preconditioner can be used to improve residual-based er-

ror estimates that are used for assessing the quality of a given approximation, which is

required in any adaptive approximation strategy. Different strategies have been proposed

for the selection of interpolation points depending on the objective: (i) the construction of

an optimal approximation of the inverse operator for preconditioning iterative solvers or for

improving error estimators based on preconditioned residuals, (ii) the improvement of the

quality of Petrov-Galerkin projections of the solution of a parameter-dependent equation

on a given reduced approximation space, or (iii) the re-use of operators factorizations when

solving a parameter-dependent equation with a sample-based approach. The performance

of the obtained parameter-dependent preconditioners has been illustrated in the context of

projection-based model reduction techniques such as the Proper Orthogonal Decomposition

and the Reduced Basis method.

The proposed preconditioner has been used to define Petrov-Galerkin projections with

better stability constants. For the solution of PDEs, the Petrov-Galerkin projection has

been defined at the discrete (algebraic) level for obtaining a better approximation (in a

reduced space) of the finite element Galerkin approximation of the PDE. Therefore, for

convection-dominated problems, the proposed approach does not avoid using stabilized finite

element formulations. Similar observations can be found in [34]. However, a Petrov-Galerkin

method could be defined at the continuous level with a preconditioner being the interpolation

of inverse partial differential operators. In this continuous framework, the preconditioner

would improve the stability constant for the finite element Galerkin projection and may

avoid the use of stabilized finite element formulations. Such Petrov-Galerkin methods have

been proposed in [12, 13] for convection-dominated problems (as an alternative to standard

stabilization methods), which can be interpreted as an implicit preconditioning method

defined at the continuous level.

In the present paper, the parameter-dependent preconditioner is obtained by a projection

onto the space generated by snapshots of the inverse operator. When the storage of many

inverse operators (even as implicit matrices) is not feasible, a parameter-dependent precon-
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ditioner could be obtained by a projection into the linear span of preconditioners, such as

incomplete factorizations, sparse approximate inverses, H-matrices or other preconditoners

that are readily available for a considered application. Also, we have restricted the presenta-

tion to the case of real matrices but the methodology can be naturally extended to the case

of complex matrices.
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