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Abstract

Parameter-dependent models arise in many contexts such as un-
certainty quantification, sensitivity analysis, inverse problems or op-
timization. Parametric or uncertainty analyses usually require the
evaluation of an output of a model for many instances of the input
parameters, which may be intractable for complex numerical models.
A possible remedy consists in replacing the model by an approximate
model with reduced complexity (a so called reduced order model) al-
lowing a fast evaluation of output variables of interest. This chapter
provides an overview of low-rank methods for the approximation of
functions that are identified either with order-two tensors (for vector-
valued functions) or higher-order tensors (for multivariate functions).
Different approaches are presented for the computation of low-rank ap-
proximations, either based on samples of the function or on the equa-
tions that are satisfied by the function, the latter approaches includ-
ing projection-based model order reduction methods. For multivariate
functions, different notions of ranks and the corresponding low-rank
approximation formats are introduced.
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Introduction

Parameter-dependent models arise in many contexts such as uncertainty
quantification, sensitivity analysis, inverse problems and optimization. These
models are typically given under the form of a parameter-dependent equa-
tion

R(u(ξ); ξ) = 0, (0.1)

where ξ are parameters taking values in some set Ξ, and where the solution
u(ξ) is in some vector space V , say R

M . Parametric or uncertainty analy-
ses usually require the evaluation of the solution for many instances of the
parameters, which may be intractable for complex numerical models (with
large M) for which one single solution requires hours or days of computa-
tion time. Therefore, one usually relies on approximations of the solution
map u : Ξ → V allowing for a rapid evaluation of output quantities of in-
terest. These approximations take on different names such as meta-model,
surrogate model or reduced order model. They are usually of the form

um(ξ) =

m
∑

i=1

visi(ξ), (0.2)

where the vi are elements in V and the si are elements of some space S of
functions defined on Ξ. Standard linear approximation methods rely on the
introduction of generic bases (e.g. polynomials, wavelets, etc) allowing an
accurate approximation of a large class of models to be constructed but at
the price of requiring expansions with a high number of terms m. These
generic approaches usually result in a very high computational complexity.

Model order reduction methods aim at finding an approximation um with
a small number of terms (m≪M) that are adapted to the particular func-
tion u. One can distinguish approaches relying (i) on the construction of a
reduced basis {v1, . . . , vm} in V , (ii) on the construction of a reduced basis
{s1, . . . , sm} in S or (iii) directly on the construction of an approximation
under the form (0.2). These approaches are closely related. They all result
in a low-rank approximation um, which can be interpreted as a rank-m ele-
ment of the tensor space V ⊗ S. Approaches of type (i) are usually named
Projection-based model order reduction methods since they define um(ξ) as
a certain projection of u(ξ) onto a low-dimensional subspace of V . They in-
clude Reduced Basis, Proper Orthognonal Decomposition, Krylov subspace,
Balanced truncation methods, and also subspace-based variants of Proper
Generalized Decomposition methods. Corresponding reduced order models
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usually take the form of a small system of equations which defines the projec-
tion um(ξ) for each instance of ξ. Approaches (i) and (ii) are in some sense
dual to each other. Approaches (ii) include sparse approximation methods
which consist in selecting {s1, . . . , sm} in a certain dictionary of functions
(e.g. a polynomial basis), based on prior information on u or based on a
posteriori error estimates (adaptive selection). They also include methods
for the construction of reduced bases in S that exploit some prior informa-
tion on u. Low-rank tensor methods enter the family of approaches (iii),
where approximations of the form (0.2) directly result from an optimization
on low-rank manifolds.

When one is interested not only in evaluating the solution u(ξ) at a fi-
nite number of samples of ξ but in obtaining an explicit representation of
the solution map u : Ξ → V , approximations of functions of multiple pa-
rameters ξ = (ξ1, . . . , ξd) are required. This constitutes a challenging issue
for high-dimensional problems. Naive approximation methods which con-
sist in using tensorized bases yield an exponential increase in storage or
computational complexity when the dimension d increases, which is the so-
called curse of dimensionality. Specific structures of the functions have to be
exploited in order to reduce the complexity. Standard structured approx-
imations include additive approximations u1(ξ1) + . . . + ud(ξd), separated
approximations u1(ξ1) . . . ud(ξd), sparse approximations, or rank-structured
approximations. Rank-structured approximation methods include several
types of approximation depending on the notion of rank.

The present chapter provides an overview of model order reduction meth-
ods based on low-rank tensor approximation methods. In a first section, we
recall some basic notions about low-rank approximations of an order-two
tensor u ∈ V ⊗ S are recalled. In the second section, which is devoted to
projection-based model reduction methods, we present different definitions
of projections onto subspaces and different possible constructions of these
subspaces. In the third section, we introduce the basic concepts of low-rank
tensor methods for the approximation of a multivariate function, which is
identified with a high-order tensor. The last two sections present different
methods for the computation of low-rank approximations, either based on
samples of the function (fourth section) or on the equations satisfied by the
function (fifth section).
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1 Low-rank approximation of order-two tensors

Let us assume that u : Ξ → V with V a Hilbert space equipped with a
norm ‖ · ‖V and inner product (·, ·)V . For the sake of simplicity, let us
consider that V = R

M . Let us further assume that u is in the Bochner
space Lp

µ(Ξ;V ) for some p ≥ 1, where µ is a probability measure supported
on Ξ. The space Lp

µ(Ξ;V ) can be identified with the algebraic tensor space
V ⊗ Lp

µ(Ξ) (or the completion of this space when V is infinite dimensional,
see e.g. [17]) which is the space of functions w that can be written under the
form w(ξ) =

∑m
i=1 visi(ξ) for some vi ∈ V and si ∈ L

p
µ(Ξ), and some m ∈ N.

The rank of an element w, denoted rank(w), is the minimal integer m such
that w admits such an m-term representation. A rank-m approximation of
u then takes the form

um(ξ) =

m
∑

i=1

visi(ξ), (1.1)

and can be interpreted as a certain projection of u(ξ) onto an m-dimensional
subspace Vm in V , where {v1, . . . , vm} constitutes a basis of Vm.

1.1 Best rank-m approximation and optimal subspaces

The set of elements in V ⊗Lp
µ(Ξ) with a rank bounded bym is denoted Rm =

{w ∈ V ⊗ Lp
µ(Ξ) : rank(w) ≤ m}. The definition of a best approximation of

u from Rm requires the introduction of a measure of error. The best rank-m
approximation with respect to the Bochner norm ‖ · ‖p in Lp

µ(Ξ;V ) is the
solution of

min
v∈Rm

‖u− v‖p = min
v∈Rm

‖‖u(ξ) − v(ξ)‖V ‖Lp
µ(Ξ) := d(p)m (Ξ). (1.2)

The set Rm admits the subspace-based parametrization Rm = {w ∈ Vm ⊗
Lp
µ(Ξ) : Vm ⊂ V,dim(Vm) = m}. Then the best rank-m approximation

problem can be reformulated as an optimization problem over the set of
m-dimensional spaces:

d(p)m (u) = min
dim(Vm)=m

min
v∈Vm⊗Lp

µ

‖u− v‖p = min
dim(Vm)=m

‖u− PVmu‖p, (1.3)

where PVm is the orthogonal projection from V to Vm which provides the
best approximation PVmu(ξ) of u(ξ) from Vm, defined by

‖u(ξ) − PVmu(ξ)‖V = min
v∈Vm

‖u(ξ)− v‖V . (1.4)
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That means that the best rank-m approximation problem is equivalent to
the problem of finding an optimal subspace of dimensionm for the projection
of the solution.

1.2 Characterization of optimal subspaces

The numbers d
(p)
m (u), which are the best rank-m approximation errors with

respect to norms ‖ · ‖p, are so-called linear widths of the solution manifold

K := u(Ξ) = {u(ξ) : ξ ∈ Ξ},

and measure how well the set of solutions K can be approximated by m-
dimensional subspaces. They provide a quantification of the ideal perfor-
mance of model order reduction methods.

For p = ∞, assuming that K is compact, the number

d(∞)
m (u) = min

dim(Vm)=m
sup
ξ∈Ξ

‖u(ξ)− PVmu(ξ)‖V = min
dim(Vm)=m

sup
v∈K

‖v − PVmv‖V

(1.5)
corresponds to the Kolmogorov m-width dm(K)V of K. This measure of error
is particularly pertinent if one is interested in computing approximations
that are uniformly accurate over the whole parameter set Ξ. For p < ∞,
the numbers

d(p)m (u) = min
dim(Vm)=m

(
∫

Ξ
‖u(ξ)− PVmu(ξ)‖

p
V µ(dξ)

)1/p

(1.6)

provide measures of the error that take into account the measure µ on the
parameter set. This is particularly relevant for uncertainty quantification,

where these numbers d
(p)
m (u) directly control the error on the moments of

the solution map u (such as mean, variance or higher order moments).
Some general results on the convergence of linear widths are available

in approximation theory (see e.g. [52]). More interesting results which are
specific to some classes of parameter-dependent equations have been recently
obtained [40, 16]. These results usually exploit smoothness and anisotropy
of the solution map u : Ξ → V and are typically upper bounds deduced from

results on polynomial approximation. Even if a priori estimates for d
(p)
m (u)

are usually not available, a challenging problem is to propose numerical
methods that provide approximations um of the form (1.1) with an error

‖u− um‖p of the order of the best achievable accuracy d
(p)
m (u).
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1.3 Singular value decomposition

Of particular importance is the case p = 2 where u is in the Hilbert space
L2
µ(Ξ;V ) = V ⊗ L2

µ(Ξ) and can be identified with a compact operator U :
v ∈ V 7→ (u(·), v)V ∈ L2

µ(Ξ) which admits a singular value decomposition

U =
∑

i≥1

σivi ⊗ si,

where the σi are the singular values and where vi and si are the correspond-
ing normalized right and left singular vectors respectively. Denoting by U∗

the adjoint operator of U , defined by U∗ : s ∈ L2
µ(Ξ) 7→

∫

Ξ u(ξ)s(ξ)dµ(ξ) ∈
V , the operator

U∗U := C(u) : v ∈ V 7→

∫

Ξ
u(ξ)(u(ξ), v)V dµ(ξ) ∈ V (1.7)

is the correlation operator of u, with eigenvectors vi and corresponding eigen-
values σ2i . Assuming that singular values are sorted in decreasing order,
Vm = span{v1, . . . , vm} is a solution of (1.2) (which means an optimal sub-
space) and a best approximation of the form (0.2) is given by a rank-m
truncated singular value decomposition um(ξ) =

∑m
i=1 σivisi(ξ) which sat-

isfies ‖u− um‖2 = d
(2)
m (u) =

(
∑

i>m σ
2
i

)1/2
.

2 Projection-based model order reduction meth-

ods

Here we adopt a subspace point of view for the low-rank approximation of
the solution map u : Ξ → V . We first describe how to define projections onto
a given subspace. Then we present methods for the practical construction
of subspaces.

2.1 Projections on a given subspace

Here, we consider that a finite-dimensional subspace Vm is given to us. The
best approximation of u(ξ) from Vm is given by the projection PVmu(ξ)
defined by (1.4). However, in practice, projections of the solution u(ξ) onto
a given subspace Vm must be defined using computable information.
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2.1.1 Interpolation

When the subspace Vm is the linear span of evaluations (samples) of the
solution u at m given points {ξ1, . . . , ξm} in Ξ, i.e.

Vm = span{u(ξ1), . . . , u(ξm)}, (2.1)

projections um(ξ) of u(ξ) onto Vm can be obtained by interpolation. An
interpolation of u can be written in the form

um(ξ) =
m
∑

i=1

u(ξi)si(ξ),

where functions si satisfy the interpolation conditions si(ξ
j) = δij , 1 ≤ i, j ≤

m. The best approximation PVmu(ξ) is a particular case of interpolation.
However, its computation is not of practical interest since it requires the
knowledge of u(ξ). Standard polynomial interpolations can be used when
Ξ is an interval in R. In higher dimensions, polynomial interpolation can
still be constructed for structured interpolation grids. For arbitrary sets of
points, other interpolation formulae can be used, such as Kriging, nearest
neighbor, Shepard or Radial Basis interpolations. These standard interpola-
tion formulae provide approximations um(ξ) that only depend on the value
of u at points {ξ1, . . . , ξm}.

Generalized interpolation formulae that take into account the function
over the whole parameter set can be defined by

um(ξ) =

m
∑

i=1

u(ξi)ϕi(u(ξ)), (2.2)

with {ϕi} a dual system to {u(ξi)} such that ϕi(u(ξ
j)) = δij for 1 ≤ i, j ≤ m.

This yields an interpolation um(ξ) depending not only on the value of u
at the points {ξ1, . . . , ξm} but also on u(ξ). This is of practical interest
if ϕi(u(ξ)) can be efficiently computed without a complete knowledge of
u(ξ). For example, if the coefficients of u(ξ) on some basis of V can be
estimated without computing u(ξ), then a possible choice consists in taking
for {ϕ1, . . . , ϕm} a set of functions that associate to an element of V a set
of m of its coefficients. This is the idea behind the Empirical Interpolation
Method [43] and its generalization [42].

2.1.2 Galerkin projections

For models described by an equation of type (0.1), the most prominent
methods are Galerkin projections which define the approximation um(ξ)
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from the residual R(um(ξ); ξ), e.g. by imposing orthogonality of the residual
with respect to an m-dimensional space or by minimizing some residual
norm. Galerkin projections do not provide the best approximation but under
some usual assumptions, they can provide quasi-best approximations um(ξ)
satisfying

‖u(ξ)− um(ξ)‖V ≤ c(ξ) min
v∈Vm

‖u(ξ)− v‖V , (2.3)

where c(ξ) ≥ 1. As an example, let us consider the case of a linear problem
where

R(v; ξ) = A(ξ)v − b(ξ), (2.4)

with A(ξ) a linear operator from V into some Hilbert space W , and let us
consider a Galerkin projection defined by minimizing some residual norm,
that means

‖A(ξ)um(ξ)− b(ξ)‖W = min
v∈Vm

‖A(ξ)v − b(ξ)‖W . (2.5)

Assuming
α(ξ)‖v‖V ≤ ‖A(ξ)v‖W ≤ β(ξ)‖v‖V , (2.6)

the resulting projection um(ξ) satisfies (2.3) with a constant c(ξ) = β(ξ)
α(ξ)

which can be interpreted as the condition number of the operator A(ξ).
This reveals the interest of introducing efficient preconditioners in order to
better exploit the approximation power of the subspace Vm (see e.g. [13, 59]
for the construction of parameter-dependent preconditioners). The resulting
approximation can be written

um(ξ) = PG
Vm

(ξ)u(ξ),

where PG
Vm

(ξ) is a parameter-dependent projection from V onto Vm. Note
that if Vm is generated by samples of the solution, as in (2.1), then the
Galerkin projection is also an interpolation which can be written under
the form (2.2) with parameter-dependent functions ϕi that depend on the
operator.

Some technical assumptions on the residual are required for a prac-
tical computation of Galerkin projections. More precisely, for um(ξ) =
∑m

i=1 visi(ξ), the residual should admit a low-rank representation

R(um; ξ) =
∑

j

Rjγj(s(ξ); ξ),

where the Rj are independent of s(ξ) = (s1(ξ), . . . , sm(ξ)) and where the γj
can be computed with a complexity depending on m (the dimension of the
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reduced order model) but not on the dimension of V . This allows Galerkin
projections to be computed by solving a reduced system of m equations on
the unknown coefficients s(ξ), with a computational complexity independent
of the dimension of the full order model. For linear problems, such a property
is obtained when the operator A(ξ) and the right-hand side b(ξ) admit low-
rank representations (so-called affine representations)

A(ξ) =

L
∑

i=1

Aiαi(ξ), b(ξ) =

R
∑

i=1

biβi(ξ). (2.7)

If A(ξ) and b(ξ) are not explicitly given under the form (2.7), then a prelimi-
nary approximation step is needed. Such expressions can be obtained by the
Empirical Interpolation Method [5, 11] or other low-rank truncation meth-
ods. Note that preconditioners for parameter-dependent operators should
also have such representations in order to preserve a reduced order model
with a complexity independent of the dimension of the full order model.

2.2 Construction of subspaces

The computation of an optimal m-dimensional subspace Vm with respect to
the natural norm in Lp

µ(Ξ;V ), defined by (1.3), is not feasible in practice
since it requires the knowledge of u. Practical constructions of subspaces
must rely on computable information on u, which can be samples of the
solution or the model equations (when available).

2.2.1 From samples of the function

Here, we present constructions of subspaces Vm which are based on evalua-
tions of the function u at a set of points ΞK = {ξ1, . . . , ξK} in Ξ. Of course,
Vm can be chosen as the span of evaluations of u at m points chosen inde-
pendently of u, e.g. through random sampling. Here, we present methods
for obtaining subspaces Vm that are closer to the optimal m-dimensional
spaces, with K ≥ m.

L2 optimality. When one is interested in optimal subspaces with respect
to the norm ‖ · ‖2, the definition (1.3) of optimal subspaces can be replaced
by

min
dim(Vm)=m

1

K

K
∑

k=1

‖u(ξk)− PVmu(ξ
k)‖2V = min

v∈Rm

1

K

K
∑

k=1

‖u(ξk)− v(ξk)‖2V ,

(2.8)
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where ξ1, . . . , ξK are K independent random samples drawn according the
probability measure µ. The resulting subspace Vm is the dominant eigenspace
of the empirical correlation operator

CK(u) =
1

K

K
∑

k=1

u(ξk)(u(ξk), ·)V , (2.9)

which is a statistical estimate of the correlation operator C(u) defined by
(1.7). This approach, which requires the computation of K evaluations
of the solution u, corresponds to the classical Principal Component Anal-
ysis. It is at the basis of Proper Orthogonal Decomposition methods for
parameter-dependent equations [35]. A straightforward generalization con-
sists in defining the subspace Vm by

min
dim(Vm)=m

K
∑

k=1

ωk‖u(ξ
k)− PVmu(ξ

k)‖2V = min
v∈Rm

K
∑

k=1

ωk‖u(ξ
k)− v(ξk)‖2V ,

(2.10)
using a suitable quadrature rule for the integration over Ξ, e.g. exploiting
the smoothness of the solution map u : Ξ → V in order to improve the
convergence with K and therefore decrease the number of evaluations of u
for a given accuracy. The resulting subspace Vm is obtained as the dominant
eigenspace of the operator

CK(u) =

K
∑

k=1

ωku(ξk)(u(ξk), ·)V . (2.11)

L∞ optimality. If one is interested in optimality with respect to the norm
‖ · ‖∞, the definition (1.3) of optimal spaces can be replaced by

min
dim(Vm)=m

sup
ξ∈ΞK

‖u(ξ) − PVmu(ξ)‖V = min
v∈Rm

sup
ξ∈ΞK

‖u(ξ) − v(ξ)‖V , (2.12)

with ΞK = {ξ1, . . . , ξK} a set of K points in Ξ. A computationally tractable
definition of subspaces can be obtained by adding the constraint that sub-
spaces Vm are generated from m samples of the solution, that means Vm =
span{u(ξ1∗), . . . , u(ξ

m
∗ )}. Therefore, problem (2.12) becomes

min
ξ1∗,...,ξ

m
∗ ∈ΞK

max
ξ∈ΞK

‖u(ξ)− PVmu(ξ)‖V ,

where the m points are selected in the finite set of points ΞK. In practice,
this combinatorial problem can be replaced by a greedy algorithm, which
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consists in selecting the points adaptively: given the first m points and the
corresponding subspace Vm, a new interpolation point ξm+1

∗ is defined such
that

‖u(ξm+1
∗ )− PVmu(ξ

m+1
∗ )‖V = max

ξ∈ΞK

‖u(ξ)− PVmu(ξ)‖V . (2.13)

This algorithm corresponds to the Empirical Interpolation Method [5, 43, 6].

2.2.2 From approximations of the correlation operator

An optimal m-dimensional space Vm for the approximation of u in L2
µ(Ξ;V )

is given by a dominant eigenspace of the correlation operator C(u) of u. Ap-
proximations of optimal subspaces can then be obtained by computing dom-
inant eigenspaces of an approximate correlation operator. These approxi-
mations can be obtained by using numerical integration in the definition
of the correlation operator, yielding approximations (2.9) or (2.11) which
require evaluations of u. Another approach consists in using the correlation
operator C(uK) (or the singular value decomposition) of an approximation
uK of u which can be obtained by a projection of u onto a low-dimensional
subspace V ⊗ SK in V ⊗ L2

µ(Ξ). For example, an approximation can be

sought after in the form uK(ξ) =
∑K

k=1 vkψk(ξ) where {ψk(ξ)}
K
k=1 is a poly-

nomial basis. Let us note that the statistical estimate CK(u) in (2.9) can
be interpreted as the correlation operator C(uK) of a piecewise constant in-
terpolation uK(ξ) =

∑K
k=1 u(ξ

k)1ξ∈Ok
of u(ξ), where the sets {O1, . . . , OK}

form a partition of Ξ such that ξk ∈ Ok and µ(Ok) = 1/K for all k.

Remark 2.1 Let us mention that the optimal rank-m singular value de-
composition of u can be equivalently obtained by computing the dominant
eigenspace of the operator Ĉ(u) = UU∗ : L2

µ(Ξ) → L2
µ(Ξ). Then, a dual

approach for model order reduction consists in defining a subspace Sm in
L2
µ(Ξ) as the dominant eigenspace of Ĉ(uK), where uK is an approximation

of u. An approximation of u can then be obtained by a Galerkin projec-
tion onto the subspace V ⊗ Sm (see e.g. [20] where an approximation uK
of the solution of a parameter-dependent partial differential equation is first
computed using a coarse finite element approximation).

2.2.3 From the model equations

In the definition (1.3) of optimal spaces, ‖u(ξ)− v(ξ)‖ can be replaced by a
function ∆(v(ξ); ξ) which is computable without having u(ξ) and such that
v 7→ ∆(v; ξ) has u(ξ) as a minimizer over V . The choice for ∆ is natural for
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problems where u(ξ) is the minimizer of a functional ∆(·; ξ) : V → R. When
u(ξ) is solution of an equation of the form (0.1), a typical choice consists in
taking for ∆(v(ξ); ξ) a certain norm of the residual R(v(ξ); ξ).

L2 optimality (Proper Generalized Decomposition methods). When
one is interested in optimality in the norm ‖·‖2, an m-dimensional subspace
Vm can be defined as the solution of the following optimization problem over
the Grassmann manifold of subspaces of dimension m:

min
dim(Vm)=m

min
v∈Vm⊗L2

µ(Ξ)

∫

Ξ
∆(v(ξ); ξ)2dµ(ξ), (2.14)

which can be equivalently written as an optimization problem over the set
of m-dimensional bases in V :

min
v1,...,vm∈V

min
s1,...,sm∈L2

µ(Ξ)

∫

Ξ
∆(

m
∑

i=1

visi(ξ); ξ)
2dµ(ξ). (2.15)

This problem is an optimization problem over the set Rm of rank-m tensors
which can be solved using optimization algorithms on low-rank manifolds
such as an alternating minimization algorithm which consists in successively
minimizing over the vi and over the si. Assuming that ∆(·; ξ) defines a
distance to the solution u(ξ) which is uniformly equivalent to the one induced
by the norm ‖ · ‖V , i.e.

α∆‖u(ξ) − v‖V ≤ ∆(v; ξ) ≤ β∆‖u(ξ)− v‖V , (2.16)

the resulting subspace Vm is quasi-optimal in the sense that

‖u− PVmu‖2 ≤ c∆ min
dim(Vm)=m

‖u− PVmu‖2 = c∆d
(2)
m (u),

with c∆ = β∆

α∆
. For linear problems where R(v; ξ) = A(ξ)v − b(ξ) ∈ W and

∆(v(ξ); ξ) = ‖R(v(ξ); ξ)‖W , (2.16) results from the property (2.6) of the
operator A(ξ). A suboptimal but constructive variant of algorithm (2.15) is
defined by

min
vm∈V

min
s1,...,sm∈L2

µ(Ξ)

∫

Ξ
∆(

m
∑

i=1

visi(ξ); ξ)
2dµ(ξ), (2.17)

which is a greedy construction of the reduced basis {v1, . . . , vm}. It yields
a nested sequence of subspaces Vm. This is one of the variants of Proper
Generalized Decomposition methods (see [46, 47, 48]).
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Note that in practice, for solving (2.15) or (2.17) when Ξ is not a finite
set, one has either to approximate functions si in a finite-dimensional sub-
space of L2

µ(Ξ) [47, 46], or to approximate the integral over Ξ by using a
suitable quadrature [27].

L∞ optimality (Reduced Basis methods). When one is interested in
optimality in the norm ‖ · ‖∞, a subspace Vm could be defined by

min
dim(Vm)=m

max
ξ∈Ξ

∆(um(ξ); ξ),

where um(ξ) is some projection of u(ξ) onto Vm (typically a Galerkin pro-
jection). A modification of the above definition consists in searching for
spaces Vm that are generated from evaluations of the solution at m points
selected in a subset ΞK of K points in Ξ (a training set). In practice, this
combinatorial optimization problem can be replaced by a greedy algorithm
for the selection of points: given a set of interpolation points {ξ1∗ , . . . , ξ

m
∗ }

and an approximation um(ξ) in Vm = span{u(ξ1∗), . . . , u(ξ
m
∗ )}, a new point

ξm+1
∗ is selected such that

∆(um(ξm+1
∗ ); ξm+1

∗ ) = max
ξ∈ΞK

∆(um(ξ); ξ). (2.18)

This results in an adaptive interpolation algorithm which was first intro-
duced in [53]. It is the basic idea behind the so-called Reduced Basis methods
(see e.g. [51, 54]).
Assuming that ∆ satisfies (2.16) and that the projection um(ξ) verifies the
quasi-optimality condition (2.3), the selection of interpolation points defined
by (2.18) is quasi-optimal in the sense that

‖u(ξm+1
∗ )− PVmu(ξ

m+1
∗ )‖V ≥ γ max

ξ∈ΞK

‖u(ξ)− PVmu(ξ)‖V ,

with γ = c−1
∆ infξ∈Ξ c(ξ)

−1. That makes (2.18) a suboptimal version of the
greedy algorithm (2.13) (so-called weak greedy algorithm). Convergence re-
sults for this algorithm can be found in [9, 8, 18], where the authors provide
explicit comparisons between the resulting error ‖u(ξ) − um(ξ)‖V and the
Kolmogorov m-width of u(ΞK) which is the best achievable error by projec-
tions onto m-dimensional spaces.
The above definitions of interpolation points, and therefore of the resulting
subspaces Vm, do not take into account explicitly the probability measure µ.
However, this measure is taken into account implicitly when working with
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a sample set ΞK drawn according the probability measure µ. A construc-
tion that takes into account the measure explicitly has been proposed in
[12], where ∆(v; ξ) is replaced by ω(ξ)∆(v; ξ), with ω(ξ) a weight function
depending on the probability measure µ.

3 Low-rank approximation of multivariate func-
tions

For the approximation of high-dimensional functions u(ξ1, . . . , ξd), a stan-
dard approximation tool consists in searching for an expansion on a multi-
dimensional basis obtained by tensorizing univariate bases:

u(ξ1, . . . , ξd) ≈
n1
∑

ν1=1

. . .

nd
∑

νd=1

aν1,...,νdφ
1
ν1(ξ1) . . . φ

d
νd
(ξd). (3.1)

This results in an exponential growth of storage and computational com-
plexities with the dimension d. Low-rank tensor methods aim at reducing
the complexity by exploiting high-order low-rank structures of multivariate
functions, considered as elements of tensor product spaces. This section
presents basic notions about low-rank approximations of high-order tensors.
The reader is referred to the textbook [30] and the surveys [38, 36, 29] for
further details on the subject. For simplicity, we consider the case of a real-
valued function u : Ξ → R. The presentation naturally extends to the case
u : Ξ → V by the addition of a new dimension.

Here, we assume that Ξ = Ξ1× . . .×Ξd, and that µ is a product measure
µ1 ⊗ . . .⊗ µd. Let Sν denote a space of univariate functions defined on Ξν ,
1 ≤ ν ≤ d. The elementary tensor product of functions vν ∈ Sν is defined
by (v1 ⊗ . . . ⊗ vd)(ξ1, . . . , ξd) = v1(ξ1) . . . v

d(ξd). The algebraic tensor space
S = S1 ⊗ . . .⊗ Sd is defined as the set of elements that can be written as a
finite sum of elementary tensors, which means

v(ξ1, . . . , ξd) =

r
∑

i=1

aiv
1
i (ξ1) . . . v

d
i (ξd), (3.2)

for some vνi ∈ Sν , ai ∈ R and r ∈ N. For the sake of simplicity, we consider
that Sν is a finite-dimensional approximation space in L2

µν
(Ξν) (e.g. a space

of polynomials, wavelets, splines...), with dim(Sν) = nν ≤ n, so that S is
a subspace of the algebraic tensor space L2

µ1
(Ξ1) ⊗ . . . ⊗ L2

µd
(Ξd) (whose

completion is L2
µ(Ξ)).

14



3.1 Tensor ranks and corresponding low-rank formats

The canonical rank of a tensor v in S is the minimal integer m such that v
can be written under the form (3.2). An approximation of the form (3.2) is
called an approximation in canonical tensor format. It has a storage com-
plexity in O(rnd). For order-two tensors, this is the standard and unique
notion of rank. For higher-order tensors, other notions of rank can be intro-
duced, therefore yielding different types of rank-structured approximations.
First, for a certain subset of dimensions α ⊂ D := {1, . . . , d} and its com-
plementary subset αc = D\α, S can be identified with the space Sα⊗Sαc of
order-two tensors, where Sα =

⊗

ν∈α Sν . The α-rank of a tensor v, denoted
rankα(v), is then defined as the minimal integer rα such that

v(ξ1, . . . , ξd) =

rα
∑

i=1

vαi (ξα)v
αc

i (ξαc),

where vαi ∈ Sα and vα
c

i ∈ Sαc (here ξα denotes the collection of variables
{ξν : ν ∈ α}), which is the standard and unique notion of rank for order-two
tensors. Low-rank Tucker formats are then defined by imposing the α-rank
for a collection of subsets α ⊂ D. The Tucker rank (or multilinear rank)
of a tensor is the tuple (rank{1}(v), . . . , rank{d}(v)) in N

d. A tensor with
Tucker rank bounded by (r1, . . . , rd) can be written

v(ξ1, . . . , ξd) =

r1
∑

i1=1

. . .

rd
∑

id=1

ai1...idv
1
i1(ξ1) . . . v

d
id
(ξd), (3.3)

where vνiν ∈ Sν and where a ∈ R
r1×...×rd is a tensor of order d, called the

core tensor. An approximation of the form (3.3) is called an approximation
in Tucker format. It can be seen as an approximation in a tensor space
U1⊗ . . .⊗Ud, where Uν = span{vνiν}

rν
iν=1 is a rν-dimensional subspace of Sν .

The storage complexity of this format is in O(rnd+ rd) (with r = maxν rν)
and grows exponentially with the dimension d. Additional constraints on
the ranks of v (or of the core tensor a) have to be imposed in order to
reduce this complexity. Tree-based (or Hierarchical) Tucker formats [32, 25]
are based on a notion of rank associated with a dimension partition tree
T which is a tree-structured collection of subsets α in D, with D as the
root of the tree and the singletons {1}, . . . , {d} as the leaves of the tree
(see Figure 1). The tree-based (or Hierarchical) Tucker rank associated
with T is then defined as the tuple (rankα(v))α∈T . A particular case of
interest is the Tensor Train (TT) format [49] which is associated with a
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{1, 2, 3, 4}

{3, 4}

{4}{3}

{1, 2}

{2}{1}

(a) Balanced tree

{1, 2, 3, 4}

{2, 3, 4}

{3, 4}

{4}{3}

{2}

{1}

(b) Unbalanced tree

Figure 1: Examples of dimension partition trees over D = {1, . . . , 4}.
.

simple rooted tree T with interior nodes I = {{ν, . . . , d}, 1 ≤ ν ≤ d}
(represented on Figure 1(b)). The TT -rank of a tensor v is defined as the
tuple of ranks (rank{ν+1,...,d}(v))1≤ν≤d−1. A tensor v with TT-rank bounded
by (r1, . . . , rd−1) can be written under the form

v(ξ1, . . . , ξd) =

r1
∑

i1=1

. . .

rd−1
∑

id−1=1

v11,i1(ξ1)v
2
i1,i2(ξ2) . . . v

d
id−1,1

(ξd), (3.4)

with vνiν−1,iν
∈ Sν , which is very convenient in practice (for storage, eval-

uations and algebraic manipulations). The storage complexity for the TT
format is in O(dr2n) (with r = maxν rν).

3.2 Relation with other structured approximations

Sparse tensor methods consist in searching for approximations of the form
(3.1) with only a few non-zero terms, that means approximations v(ξ) =
∑m

i=1 aisi(ξ) where the m functions si are selected (with either adaptive
or non-adaptive methods) in the collection (dictionary) of functions D =
{φ1k1(ξ1) . . . φ

d
kd
(ξd) : 1 ≤ kν ≤ nν , 1 ≤ ν ≤ d}. A typical choice consists in

taking forD a basis of multivariate polynomials. Recently, theoretical results
have been obtained on the convergence of sparse polynomial approximations
of the solution of parameter-dependent equations (see [15]). Also, algorithms
have been proposed that can achieve convergence rates comparable to the
best m-term approximations. For such a dictionary D containing rank-one
functions, a sparse m-term approximation is a tensor with canonical rank
bounded by m (usually lower than m, see [30, Section 7.6.5]). Therefore,
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an approximation in canonical tensor format (3.2) can be seen as a sparse
m-term approximation where the m functions are selected in the dictionary
of all rank-one (separated) functions R1 = {s(ξ) = s1(ξ1) . . . s

d(ξd) : sν ∈
Sν}. Convergence results for best rank-m approximations can therefore be
deduced from convergence results for sparse tensor approximation methods.

Let us mention some other standard structured approximations that are
particular cases of low-rank tensor approximations. First, a function v(ξ) =
v(ξν) depending on a single variable ξν is a rank-one (elementary) tensor.
It has an α-rank equal to 1 for any subset α in D. A low-dimensional
function v(ξ) = v(ξα) depending on a subset of variables ξα, α ⊂ D, has a
β-rank equal to 1 for any subset of dimensions β containing α or such that
β ∩ α = ∅. An additive function v(ξ) = v1(ξ1) + . . . + vd(ξd), which is a
sum of d elementary tensors, is a tensor with canonical rank d. Also, such
an additive function has rankα(v) ≤ 2 for any subset α ∈ D, which means
that it admits an exact representation in any Hierarchical Tucker format
(including TT format) with a rank bounded by (2, . . . , 2).

Remark 3.1 Let us note that low-rank structures (as well as other types
of structures) can be revealed only after a suitable change of variables. For
example, let η = (η1, . . . , ηm) be the variables obtained by an affine trans-
formation of variables ξ, with ηi =

∑d
j=1 aijξj + bj , 1 ≤ j ≤ m. Then

the function v(ξ) =
∑m

i=1 vi(ηi) := v̂(η), as a function m variables, can be
seen as a order-m tensor with canonical rank less than m. This type of
approximation corresponds to the projection pursuit regression model.

3.3 Properties of low-rank formats

Low-rank tensor approximation methods consist in searching for approxi-
mations in a subset of tensors

M≤r = {v : rank(v) ≤ r},

where different notions of rank yield different approximation formats. A first
important question is to characterize the approximation power of low-rank
formats, which means to quantify the best approximation error

inf
v∈M≤r

‖u− v‖ := σr

for a given class of functions u and a given low-rank format. A few con-
vergence results have been obtained for functions with standard Sobolev
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regularity (see e.g. [56]). An open and challenging problem is to character-
ize approximation classes of the different low-rank formats, which means the
class of functions u such that σr has a certain (e.g. algebraic or exponential)
decay with r.

The characterization of topological and geometrical properties of sub-
sets M≤r is important for different purposes such as proving the existence
of best approximations in M≤r or deriving algorithms. For d ≥ 3, the
subsets M≤r associated with the notion of canonical rank are not closed
and best approximation problems in M≤r are ill-posed. Subsets of tensors
associated with the notions of tree-based (hierarchical) Tucker ranks have
better properties. Indeed, they are closed sets, which ensures the existence
of best approximations. Also, they are differentiable manifolds [24, 58, 33].
This has useful consequences for optimization [58] or for the projection of
dynamical systems on these manifolds [41].

For the different notions of rank introduced above, an interesting prop-
erty of the corresponding low-rank subsets is that they admit simple parametriza-
tions

M≤r = {v = F (p1, . . . , pℓ) : pk ∈ Pk}, (3.5)

where F is a multilinear map and Pk are vector spaces, and where the
number of parameters ℓ is in O(d). An optimization problem on M≤r can
then be reformulated as an optimization problem on P1× . . .×Pℓ, for which
simple alternating minimization algorithms (block coordinate descent) can
be used [23].

4 Low-rank approximation from samples of the

function

Here we present some strategies for the construction of low-rank approxima-
tions of a multivariate function u(ξ) from point evaluations of the function.

4.1 Least-squares

Let us assume that u ∈ L2
µ(Ξ). Given a set of K samples ξ1, . . . , ξK of ξ

drawn according the probability measure µ, a least-squares approximation
of u in a low-rank subset M≤r is defined by

min
v∈M≤r

1

K

K
∑

k=1

(u(ξk)− v(ξk))2. (4.1)
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Using a multilinear parametrization of low-rank tensor subsets (see (3.5)),
the optimization problem (4.1) can be solved using alternating minimization
algorithms, each iteration corresponding to a standard least-squares mini-
mization for linear approximation [7, 21, 14]. An open question concerns
the analysis of the number of samples which is required for a stable approx-
imation in a given low-rank format. Also, standard regularizations can be
introduced, such as sparsity-inducing regularizations [14]. In this statistical
framework, cross-validation methods can be used for the selection of tensor
formats, ranks and approximation spaces Sk (see [14]).

Remark 4.1 Note that for other objectives in statistical learning (e.g. clas-
sification), (4.1) can be replaced by

min
v∈M≤r

1

K

K
∑

k=1

ℓ(u(ξk), v(ξk)),

where ℓ is a so-called loss function measuring a certain distance between
u(ξk) and the approximation v(ξk).

4.2 Interpolation/Projection

Here we present interpolation and projection methods for the approximation
of u in S = S1 ⊗ . . . ⊗ Sd. Let {φνkν}kν∈Λnν

be a basis of Sν , with Λnν =
{1, . . . , nν}. If {φ

ν
kν
}kν∈Λnν

is a set of interpolation functions associated with

a set of points {ξkνν }kν∈Λnν
in Ξν , then {φk(ξ) = φ1k1(ξ1) . . . φ

d
kd
(ξd)}k∈Λ,

Λ = Λn1
× . . . × Λnd

, is a set of interpolation functions associated with the

tensorized grid {ξk = (ξk11 , . . . , ξ
kd
d )}k∈Λ composed of N =

∏d
ν=1 nν points.

An interpolation uN of u is then given by

uN (ξ) =
∑

k∈Λ

u(ξk)φk(ξ),

so that uN is completely characterized by the order-d tensor U ∈ R
n1 ⊗ . . .⊗

R
nd whose components Uk1,...,kd = u(ξk11 , . . . , ξ

kd
d ) are the evaluations of u

on the interpolation grid. Now, if {φνkν}kν∈Λnν
is an orthonormal basis of

Sν (e.g. orthonormal polynomials) and if {(ξkνν , ων
kν
)}kν∈Λnν

is a quadrature
rule on Ξν (associated with the measure µν), an approximate L2-projection
of u can also be defined by

uN (ξ) =
∑

k∈Λ

ukφk(ξ), uk =
∑

k∈Λ

ωku(ξ
k)φk(ξ

k),
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with ωk = ω1
k1
. . . ωd

kd
. Here again, uN is completely characterized by the

order-d tensor U whose components are the evaluations of u on the d-
dimensional quadrature grid.

Then, low-rank approximation methods can be used in order to obtain
an approximation of U using only a few entries of the tensor (i.e. a few
evaluations of the function u). This is related to the problem of tensor com-
pletion. A possible approach consists in evaluating some entries of the tensor
taken at random and then in reconstructing the tensor by the minimization
of a least-squares functional (this is the algebraic version of the least-squares
approach described in the previous section) or dual approaches using reg-
ularizations of rank minimization problems (see [55]). In this statistical
framework, a challenging question is to determine the number of samples
required for a stable reconstruction of low-rank approximations in different
tensor formats (see [55] for first results). An algorithm has been introduced
in [22] for the approximation in canonical format, using least-squares min-
imization with a structured set of entries selected adaptively. Algorithms
have also been proposed for an adaptive construction of low-rank approxi-
mations of U in Tensor Train format [50] or Hierarchical Tucker format [4].
These algorithms are extensions of Adaptive Cross Approximation (ACA) to
high-order tensors and provide approximations that interpolate the tensor
U at some adaptively chosen entries.

5 Low-rank tensor methods for parameter-dependent

equations

Here, we present numerical methods for the direct computation of low-
rank approximations of the solution u of a parameter-dependent equation
R(u(ξ); ξ) = 0, where u is seen as a two-order tensor in V ⊗ L2

µ(Ξ), or as
a higher-order tensor by exploiting an additional tensor space structure of
L2
µ(Ξ) (for a product measure µ).

Remark 5.1 When exploiting only the order-two tensor structure, the meth-
ods presented here are closely related to projection-based model reduction
methods. Although they provide a directly exploitable low-rank approxima-
tion of u, they can also be used for the construction of a low-dimensional
subspace in V (a candidate for projection-based model reduction) which is
extracted from the obtained low-rank approximation.
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5.1 Tensor-structured equations

Here, we describe how the initial equation can be reformulated as a tensor-
structured equation. In practice, a preliminary discretization of functions
defined on Ξ is required. A possible discretization consists in introducing a
N -dimensional approximation space S in L2

µ(Ξ) (e.g. a polynomial space)
and a standard Galerkin projection of the solution onto V ⊗ S (see e.g.
[44, 48]). The resulting approximation can then be identified with a two-
order tensor u in V ⊗R

N . When S is the tensor product of nν-dimensional
spaces Sν , 1 ≤ ν ≤ d, the resulting approximation can be identified with a
higher-order tensor u in V ⊗ R

n1 ⊗ . . . ⊗ R
nd . Another simple discretiza-

tion consists in considering only a finite (possibly large) set of N points
in Ξ (e.g. an interpolation grid) and the corresponding finite set of equa-
tions R(u(ξk); ξk) = 0, 1 ≤ k ≤ N, on the set of samples of the solution
(u(ξk))Nk=1 ∈ V N , which can be identified with a tensor u ∈ V ⊗ R

N . If the
set of points is obtained by the tensorization of unidimensional grids with
nν points, 1 ≤ ν ≤ d, then (u(ξk))Nk=1 can be identified with a higher-order
tensor u in V ⊗R

n1⊗. . .⊗R
nd. Both types of discretization yield an equation

R(u) = 0, (5.1)

with
u in V ⊗ R

N or V ⊗ R
n1 ⊗ . . .⊗ R

nd .

In order to clarify the structure of equation (5.1), let us consider the case
of a linear problem where R(v; ξ) = A(ξ)v− b(ξ) and assume that A(ξ) and
b(ξ) have low-rank (or affine) representations of the form

A(ξ) =

L
∑

i=1

Aiαi(ξ) and b(ξ) =

R
∑

i=1

biβi(ξ). (5.2)

Then (5.1) takes the form of a tensor-structured equation Au−b = 0, with

A =

L
∑

i=1

Ai ⊗ Ãi and b =

R
∑

i=1

bi ⊗ b̃i, (5.3)

where for the second type of discretization, Ãi ∈ R
N×N is a diagonal matrix

whose diagonal is the vector of evaluations of αi(ξ) at the sample points,
and b̃i ∈ R

N is the vector of evaluations of βi(ξ) at the sample points. If
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A(ξ) and b(ξ) have higher-order low-rank representations of the form

A(ξ) =

L
∑

i=1

Aiα
1
i (ξ1) . . . α

d
i (ξd) and b(ξ) =

R
∑

i=1

biβ
1
i (ξ1) . . . β

d
i (ξd), (5.4)

then (5.1) takes the form of a tensor-structured equation Au− b = 0 on u
in V ⊗ R

n1 ⊗ . . .⊗ R
nd , with

A =
L
∑

i=1

Ai ⊗ Ã1
i ⊗ . . .⊗ Ãd

i and b =
R
∑

i=1

bi ⊗ b̃1i ⊗ . . .⊗ b̃di , (5.5)

where for the second type of discretization (with a tensorized grid in Ξ1 ×
. . .× Ξd), Ã

ν
i ∈ R

nν×nν is a diagonal matrix whose diagonal is the vector of
evaluations of αν

i (ξν) on the unidimensional grid in Ξν , and b̃
ν
i ∈ R

nν is the
vector of evaluations of βνi (ξν) on this grid (for the first type of discretization,
see [48] for the definition of tensors A and b). Note that when A(ξ) and b(ξ)
do not have low-rank representations (5.2) or (5.4) (or any other higher-order
low-rank representation), then a preliminary approximation step is required
in order to obtain such approximate representations (see e.g. [5, 11, 19]).
This is crucial for reducing the computational and storage complexities.

5.2 Iterative solvers and low-rank truncations

A first solution strategy consists in using standard iterative solvers (e.g.
Richardson, conjugate gradient, Newton...) with efficient low-rank trunca-
tion methods of the iterates [3, 39, 37, 45, 2, 1]. A simple iterative algorithm
takes the form uk+1 = M(uk), where M is an iteration map involving sim-
ple algebraic operations between tensors (additions, multiplications) which
requires the implementation of a tensor algebra. Low-rank truncation meth-
ods can be systematically used for limiting the storage complexity and the
computational complexity of algebraic operations. This results in approxi-
mate iterations uk+1 ≈M(uk) and the resulting algorithm can be analyzed
as an inexact version (or perturbation) of the initial algorithm (see e.g. [31]).

As an example, let us consider a linear tensor-structured problem Au−
b = 0. An approximate Richardson algorithm takes the form

uk+1 = Πǫ(u
k + α(b −Auk)),

where Πǫ is a map which associates to a tensor w a low-rank approximation
Πǫ(w) such that ‖w − Πǫ(w)‖p ≤ ǫ‖w‖p, with p = 2 or p = ∞ depend-
ing on the desired control of the error (mean-square or uniform error con-
trol over the parameter set). Provided some standard assumptions on the
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operator A and the parameter α, the generated sequence uk is such that
lim supk→∞ ‖u− uk‖p ≤ C(ǫ) with C(ǫ) → 0 as ǫ → 0. For p = 2, efficient
low-rank truncations of a tensor can be obtained using SVD for an order-two
tensor or generalizations of SVD for higher-order tensor formats [34, 28]. A
selection of the ranks based on the singular values of (matricisations of) the
tensor allows a control of the error. In [2], the authors propose an alternative
truncation strategy based on soft thresholding. For p = ∞, truncations can
be obtained with an Adaptive Cross Approximation algorithm (or Empirical
Interpolation Method) [6] for an order-two tensor or with extensions of this
algorithm for higher-order tensors [50]. Note that low-rank representations
of the form (5.3) or (5.5) for A and b are crucial since they ensure that al-
gebraic operations between tensors can be done with a reduced complexity.
Also, iterative methods usually require good preconditioners. In order to
maintain a low computational complexity, these preconditioners must also
admit low-rank representations.

5.3 Optimization on low-rank manifolds

Another solution strategy consists in directly computing a low-rank approx-
imation by minimizing some functional J whose minimizer on V ⊗ R

N (or
V ⊗ R

n1 ⊗ . . .⊗ R
nd) is the solution of equation (5.1), i.e. by solving

min
v∈M≤r

J (v), (5.6)

whereM≤r is a low-rank manifold. There is a natural choice of functional for
problems where (5.1) corresponds to the stationary condition of a functional
J [27]. Also, J (v) can be taken as a certain norm of the residual R(v).
For linear problems, choosing

J (v) = ‖Av − b‖2

yields a quadratic optimization problem over a low-rank manifold. Op-
timization problems on low-rank manifolds can be solved either by using
algorithms which exploit the manifold structure (e.g. Riemannian opti-
mization) or by using simple alternating minimization algorithms given a
parametrization (3.5) of the low-rank manifold. Under the assumption that
J satisfies α‖u − v‖2 ≤ J (v) ≤ β‖u − v‖2, the solution ur of (5.6) is
quasi-optimal in the sense that

‖u− ur‖2 ≤
β

α
min

v∈M≤r

‖u− v‖2,
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where β/α is the condition number of the operator A. Here again, the use
of preconditioners allows us to better exploit the approximation power of a
given low-rank manifold M≤r.

Constructive algorithms are also possible, the most prominent algorithm
being a greedy algorithm which consists in computing a sequence of low-rank
approximations um obtained by successive rank-one corrections, i.e.

J (um) = min
w∈R1

J (um−1 +w).

This algorithm is a standard greedy algorithm [57] with a dictionary of
rank-one (elementary) tensors R1, which was first introduced in [46] for
the solution of parameter-dependent (stochastic) equations. Its convergence
has been established under standard assumptions for convex optimization
problems [10, 26]. The utility of this algorithm is that it is adaptive and it
only requires the solution of optimization problems on the low-dimensional
manifold R1. However, for many practical problems, greedy constructions
of low-rank approximations in canonical low-rank format are observed to
converge slowly. Improved constructive algorithms which better exploit the
tensor structure of the problem have been proposed [48] and convergence
results are also available for some general convex optimization problems
[26].

Remark 5.2 The above algorithms can also be used within iterative algo-
rithms for which an iteration takes the form

Cku
k+1 = Fk(u

k),

where Fk(u
k) can be computed with a low complexity using low-rank tensor

algebra (with potential low-rank truncations), but where the inverse of the
operator Ck is not known explicitly, so that C−1

k Fk(u
k) cannot be obtained

from simple algebraic operations. Here, a low-rank approximation of uk+1

can be computed using the above algorithms with the residual-based functional
J (v) = ‖Ckv − Fk(u

k)‖2.

Concluding remarks

Low-rank tensor methods have emerged as a very powerful tool for the solu-
tion of high-dimensional problems arising in many contexts, and in particu-
lar in uncertainty quantification. However, there remain many challenging
issues to address for a better understanding of this type of approximation
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and for a diffusion of these methods in a wide class of applications. From
a theoretical point of view, open questions include the characterization of
the approximation classes of a given low-rank tensor format, which means
the class of functions for which a certain type of convergence (e.g. alge-
braic or exponential) can be expected, and also the characterization of the
problems yielding solutions in these approximation classes. Also, quantita-
tive results on the approximation of a low-rank function (or tensor) from
samples of this function (or entries of this tensor) could allow us to answer
some practical issues such as the determination of the number of samples
required for a stable approximation in a given low-rank format or the design
of sampling strategies which are adapted to particular low-rank formats.
From a numerical point of view, challenging issues include the development
of efficient algorithms for global optimization on low-rank manifolds, with
guaranteed convergence properties, and the development of adaptive algo-
rithms for the construction of controlled low-rank approximations, with an
adaptive selection of ranks and potentially of the tensor formats (e.g. based
on tree optimization for tree-based formats). From a practical point of view,
low-rank tensor methods exploiting model equations (Galerkin-type meth-
ods) are often seen as “intrusive methods” in the sense that they require (a
priori) the development of specific softwares. An important issue is then to
develop weakly intrusive implementations of these methods which may al-
low the use of existing computational frameworks and which would therefore
contribute to a large diffusion of these methods.
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