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Abstract

We propose and compare goal-oriented projection based model order reduction

methods for the estimation of vector-valued functionals of the solution of parameter-

dependent equations. The first projection method is a generalization of the classical

primal-dual method to the case of vector-valued variables of interest. We highlight

the role played by three reduced spaces: the approximation space and the test space

associated to the primal variable, and the approximation space associated to the dual

variable. Then we propose a Petrov-Galerkin projection method based on a saddle

point problem involving an approximation space for the primal variable and an ap-

proximation space for an auxiliary variable. A goal-oriented choice of the latter space,

defined as the sum of two spaces, allows us to improve the approximation of the vari-

able of interest compared to a primal-dual method using the same reduced spaces.

Then, for both approaches, we derive computable error estimates for the approxima-

tions of the variable of interest and we propose greedy algorithms for the goal-oriented

construction of reduced spaces. The performance of the algorithms are illustrated on

numerical examples and compared to standard (non goal-oriented) algorithms.
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1 Introduction

This paper is concerned with the numerical solution of linear equations of the form

A(ξ)u(ξ) = b(ξ), (1)

where the operator A(ξ) and right-hand side b(ξ) depend on a parameter ξ which takes

values in some parameter set Ξ. Such equations arise in many contexts such as uncertainty

quantification, optimization or control, where the solution of (1) have to be evaluated with

many instances of the parameters (multi-query context). For large systems of equations

(e.g. arising from a fine discretization of a parameter-dependent partial differential equation),

solving (1) for one instance of the parameter can be very expensive, which leads to intractable

computations in a multi-query context. Model order reduction methods aim at constructing

an approximation of the solution map u : Ξ→ V whose evaluation for a certain value of ξ is

cheaper than solving (1). Standard approaches rely on Galerkin-type projections of u(ξ) on a

low-dimensional subspace Vr of the solution space V , a so-called reduced space. The reduced

space can be generated from evaluations (snapshots) of the solution u(ξ) at some selected

(or randomly chosen) values of the parameter ξ, see [5, 14, 17, 19]. The Proper Orthogonal

Decomposition method aims at constructing an optimal subspace for the approximation of

the set of solutions M = {u(ξ) : ξ ∈ Ξ} in a mean-square sense (see [14]). Reduced Basis

(RB) methods (see [11] for a survey) aim at controlling the approximation uniformly over

the parameter set. In this context, reduced spaces are usually constructed using greedy

algorithms.

In many applications one is not interested in the solution u(ξ) itself, but only in a vari-

able of interest s(ξ) which is a functional of u(ξ). Here we assume that s(ξ) depends linearly

on u(ξ). Efficient goal-oriented methods have been proposed for the estimation of a scalar-

valued variable of interest s(ξ). A standard method consists in computing an approximation

of the solution of the so-called dual problem associated to (1) which is used to correct the

estimation of s(ξ). We refer to [16] for a general survey on primal-dual methods and to

[6, 10, 11, 17] for the application in the context of RB methods.

In this paper, we propose projection based model order reduction methods for the es-

timation of a variable of interest s(ξ) taking values in a vector space of finite or infinite

dimension. We consider the case where

s(ξ) = L(ξ)u(ξ),

with L(ξ) a parameter-dependent linear operator. For example, for boundary value prob-

lems, L(ξ) can be defined as the trace operator providing the restriction of the solution
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to the boundary of the domain. In this case the variable of interest belongs to an infinite

dimensional space or, after discretization, to a finite but possibly high dimensional space.

The standard approach, which consists in treating s(ξ) as a collection of scalar-valued vari-

ables of interest and in building one reduced dual space for each of them, has a complexity

which grows proportionally to the dimension of s(ξ). Our approach circumvents this issue by

constructing a single reduced dual space, thus allowing to handle variables of interest with

high and potentially infinite dimension. A similar approach can be found for parametric

dynamical systems, see the monograph [3] for a general introduction. In this framework,

projection-based model order reduction methods are used for the approximation of s(ξ)

which is an output of the dynamical system. Petrov-Galerkin methods have been proposed

with different ways of constructing the reduced basis for the test and trial space, such as

the balanced truncation methods, (balanced) Proper Orthogonal Decomposition method,

moment matching methods, etc. We refer to [4] for a recent review on these methods. In the

present paper, we aim at exploring other possibilities than the Petrov-Galerkin projection.

In a first part, we introduce and analyze different methods for computing projections

of the solution and approximations of the variable of interest. We first present a non goal-

oriented Petrov-Galerkin approach to compute an approximation of u(ξ) from which an esti-

mation of s(ξ) is deduced. Then, we introduce a generalization of the standard primal-dual

method to the case of a vector-valued variable of interest, which relies on the approximation

of the primal variable u(ξ) and of the solution Q(ξ) of the dual problem

A(ξ)∗Q(ξ) = L(ξ)∗,

where A(ξ)∗ and L(ξ)∗ are the adjoints of operators A(ξ) and L(ξ) respectively. We show

that the error on the variable of interest depends on three reduced spaces: the approximation

space Vr for the primal variable u(ξ), the test space Wr which is used for the Petrov-Galerkin

projection of u(ξ), and an approximation space WQ
k for the dual variable Q(ξ) which is

projected on the space of WQ
k -valued linear operators. Finally, we present a Petrov-Galerkin

method where the projection is obtained by solving a saddle point problem which involves

an approximation space Vr for u(ξ) and an approximation space Tp for an auxiliary variable.

We show that if Tp is defined by Tp = Wr+WQ
k , then error bounds for both the projection of

the primal variable on Vr and the approximation of the variable of interest can be improved

compared to error bounds of a primal-dual approach using the same spaces Vr, Wr and WQ
k .

The proposed approach is a goal-oriented extension of the method proposed in [8].

In a second part, we derive (for both approaches) computable error estimates for the ap-

proximation of the variable of interest. Then, we propose greedy algorithms based on these
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error estimates for the construction of the reduced spaces Vr and WQ
k . We discuss different

choices for the reduced space Wr. In particular, we introduce a parameter-dependent space

depending on a preconditioner obtained by means of an interpolation of the inverse of the

operator A(ξ) proposed in [22].

This paper is organized as follows. In Section 2, we introduce and analyze the different

projection methods for the estimation of vector-valued variables of interest for general linear

equations of the form (1) formulated in a Hilbert setting. Then, in Section 3, we derive

error estimates for the approximation of the variable of interest and we propose practical

greedy algorithms for the construction of reduced spaces. Finally, in Section 4, numerical

experiments illustrate the properties of the projection methods and of the greedy algorithms.

In particular, we provide a simplified complexity analysis for the so-called offline phase (i.e.

the construction of the reduced spaces) and for the online phase (i.e. the evaluation of s(ξ)

for a particular instance of ξ).

2 Projection methods for the estimation of a variable

of interest

Let V , W and Z be three Hilbert spaces. For a Hilbert space H equipped with a norm ‖·‖H ,

we denote by H ′ the topological dual space of H. We consider the linear equation

Au = b (2)

with A ∈ L(V,W ′) and b ∈ W ′, and a variable of interest

s = Lu,

where L ∈ L(V, Z). We assume that A is a norm-isomorphism1 such that for all u ∈ V ,

α‖u‖V ≤ ‖Au‖W ′ ≤ β‖u‖V ,

where

inf
06=v∈V

sup
06=w∈W

〈Av,w〉
‖v‖V ‖w‖W

:= α > 0 (3a)

sup
06=v∈V

sup
06=w∈W

〈Av,w〉
‖v‖V ‖w‖W

:= β <∞, (3b)

1A is a norm-isomorphism if it is a continuous and weakly coercive operator satisfying the assumptions

of the Nečas’ theorem [9, Chapter 2].
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which ensures the well-posedness of (2). In this section, we present different methods for

constructing an approximation s̃ of s. First, in Section 2.1, we present a standard approach

which consists in estimating the variable of interest from a Petrov-Galerkin projection of u.

In Section 2.2, we present an extension of the primal-dual approach to the case of vector-

valued variables of interest, where the variable of interest is estimated from a standard

Petrov-Galerkin projection of the primal variable and a projection of the solution of a dual

problem. Finally, in Section 2.3, we introduce a goal-oriented projection method based on a

saddle-point formulation.

Before going further, let us introduce some additional notations. For a Hilbert space

H, we denote by RH ∈ L(H,H ′) the Riesz map such that ‖v‖2
H = 〈RHv, v〉, where 〈·, ·〉

denotes the duality pairing. The dual norm ‖ · ‖H′ on H ′ is such that RH′ = R−1
H . Then

‖v‖H = ‖RHv‖H′ and |〈v, w〉| ≤ ‖v‖H‖w‖H′ hold for any v ∈ H and w ∈ H ′. For any

operator C ∈ L(H1, H
′
2), with H1 and H2 two Hilbert spaces, C∗ ∈ L(H2, H

′
1) denotes the

adjoint of C, such that 〈Cv1, v2〉 = 〈v1, C
∗v2〉 for any v1 ∈ H1 and v2 ∈ H2.

2.1 Petrov-Galerkin projection

Suppose that we are given a subspace Vr ⊂ V of finite dimension r in which we seek an

approximation of u. The orthogonal projection u⊥r of u on Vr, given by ‖u − u⊥r ‖V =

minv∈Vr ‖u− v‖V , is characterized by

〈u− u⊥r , RV v〉 = 0, ∀v ∈ Vr. (4)

In practice, an approximation ur ∈ Vr can be defined as a Petrov-Galerkin projection of u

characterized by

〈Aur − b, y〉 = 0, ∀y ∈ Wr, (5)

where Wr ⊂ W is a test space of dimension r. Under the assumption that

αVr,Wr = inf
06=v∈Vr

sup
0 6=y∈Wr

〈Av, y〉
‖v‖V ‖y‖W

> 0, (6)

the next proposition provides a quasi-optimality result for ur and gives an error bound for

the approximation of the variable of interest. In what follows, notation min (resp. max) is

used in place of inf (resp. sup) when the minimum (resp. the maximum) is reached.

Proposition 2.1. Under assumption (6), the solution ur of equation (5) satisfies

‖u− ur‖V ≤
1√

1− (δVr,Wr)
2

min
v∈Vr
‖u− v‖V . (7)

5



where

δVr,Wr = max
06=v∈Vr

min
y∈Wr

‖v −R−1
V A∗y‖V
‖v‖V

< 1. (8)

Furthermore,

‖s− Lur‖Z ≤
δLWr√

1− (δVr,Wr)
2

min
v∈Vr
‖u− v‖V , (9)

with

δLWr
= sup

06=z′∈Z′
min
y∈Wr

‖L∗z′ − A∗y‖V ′

‖z′‖Z′
. (10)

Proof. With u⊥r the orthogonal projection of u on Vr, for any v ∈ Vr \ {0} and y ∈ Wr, we

have

〈u⊥r − ur, RV v〉
(4)
= 〈u− ur, RV v〉 = 〈b− Aur, A−∗RV v〉
(5)
= 〈b− Aur, A−∗RV v − y〉 = 〈u− ur, RV v − A∗y〉
≤ ‖u− ur‖V ‖RV v − A∗y‖V ′ .

Taking the minimum over y ∈ Wr, dividing by ‖v‖V and taking the maximum over v ∈
Vr \ {0}, we obtain ‖u⊥r −ur‖V ≤ δVr,Wr‖u−ur‖V , where δVr,Wr is defined by (8). Thanks to

the orthogonality condition (4) we have ‖u− ur‖2
V = ‖u− u⊥r ‖2

V + ‖u⊥r − ur‖2
V , from which

we deduce that (1− δ2
Vr,Wr

)‖u− ur‖2
V ≤ ‖u− u⊥r ‖2

V . To prove (7), it remains to prove that

δVr,Wr < 1. Noting that

min
y∈Wr

‖v −R−1
V A∗y‖2

V = min
06=y∈Wr

min
λ∈R
‖v − λR−1

V A∗y‖2
V = min

06=y∈Wr

‖v‖2
V −
〈v, A∗y〉2

‖A∗y‖2
V ′
,

we obtain

δ2
Vr,Wr

= 1− min
06=v∈Vr

max
06=y∈Wr

〈Av, y〉2

‖v‖2
V ‖A∗y‖2

V ′
. (11)

Let introduce βWr = sup06=yr∈Wr
‖A∗y‖V ′/‖y‖W which, from assumption (3b), satifies βWr ≤

β. Then using assumption (6) we obtain

δ2
Vr,Wr

≤ 1−
α2
Vr,Wr

β2
Wr

≤ 1−
α2
Vr,Wr

β2
< 1. (12)

Furthermore for any z′ ∈ Z ′ \ {0} and y ∈ Wr, we have

〈s− Lur, z′〉 = 〈b− Aur, A−∗L∗z′〉
(5)
= 〈b− Aur, A−∗L∗z′ − y〉

≤ ‖u− ur‖V ‖L∗z′ − A∗y‖V ′ .
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Taking the infimum over y ∈ Wr, dividing by ‖z′‖Z′ and taking the supremum over z′ ∈
Z ′ \ {0}, we obtain (9) thanks to (7).

The error bound (9) for the approximation of the variable of interest s is the product of

three terms:

(a) infv∈Vr ‖u − v‖V , which suggests that the approximation space Vr should be defined

such that u can be well approximated in Vr,

(b) (1− (δVr,Wr)
2)−1/2, which suggests that the test space Wr should be chosen such that

any element of Vr can be well approximated by an element of R−1
V A∗Wr, and

(c) δLWr
, which suggests that any element of range(L∗) should be well approximated by an

element of A∗Wr.

As already noticed in [19, Section 11.1], Wr plays a double role: a test space for the definition

of ur (point (b)) and an approximation space for the range of A−∗L∗ (point (c)).

Remark 2.2. The proposed Petrov-Galerkin projection method coincides with the interpo-

latory projection method used in the context of parametric dynamical systems (see [2, 4]).

Our analysis provides quasi-optimality results on s(ξ) for any parameter value ξ. Also, the

condition δVr,Wr(ξ) > 0 ensures the invertibility of the reduced operator Ar(ξ) : Vr → W ′
r

defined by 〈Ar(ξ)v, y〉 = 〈A(ξ)ur, y〉 for all v ∈ Vr and y ∈ Wr. In [2], the invertibility of

Ar(ξ) is not discussed in the time-independent case.

Remark 2.3 (Comparison with the Céa’s Lemma). Under assumption (6), the classical

Céa’s lemma states that

‖u− ur‖V ≤ (1 +
β

αVr,Wr

) min
v∈Vr
‖u− v‖V . (13)

It has been shown in [21] that this can be improved to

‖u− ur‖V ≤
β

αVr,Wr

min
v∈Vr
‖u− v‖V . (14)

Noting that Equation (12) yields

1√
1− (δVr,Wr)

2
≤ βWr

αVr,Wr

≤ β

αVr,Wr

,

we observe that (7) provides a sharper bound than in (14), where the constants differ by a

factor βWr/β.
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Remark 2.4 (Symmetric coercive case and compliant case). We suppose that A is a sym-

metric coercive operator, with V = W and ‖ · ‖V = ‖ · ‖W the norm induced by the operator

A such that RV = A. Then δVr,Wr defined by (8) admits the following simple expression

δVr,Wr = min
06=v∈Vr

max
y∈Wr

‖v − y‖V
‖v‖V

.

If the test space Wr is defined by Wr = Vr, we obtain δVr,Wr = 0, and from (7), we obtain

ur = u⊥r . In other words, the standard Galerkin projection coincides with the orthogonal

projection.

In the case where the variable of interest s is scalar-valued, we have Z = R and L(V, Z) =

V ′. The so-called compliant case corresponds to Lv = 〈b, v〉 for any v ∈ V . Then, by

definition (10), we have

δLWr
= min

v∈Vr
‖b− Av‖V ′ = min

v∈Vr
‖u− v‖V = ‖u− ur‖V ,

and thanks to (9), we recover the so-called “squared effect”

|s− Lur| = ‖s− Lur‖Z ≤ ‖u− ur‖2
V .

2.2 Primal-dual approach

We now extend the classical primal-dual approach [16] for the estimation of a vector-valued

variable of interest.

Let us introduce the dual variable Q ∈ L(Z ′,W ) defined by A∗Q = L∗. The relation

s = Lu = Q∗Au = Q∗b

shows that the variable of interest can be exactly determined if either the primal variable u

or the dual variable Q is known.

Now, for given approximations ũ of u and Q̃ of Q, we define the approximation s̃ of s by

s̃ = Lũ+ Q̃∗(b− Aũ), (15)

where Lũ is the standard estimation of the variable of interest and where Q̃∗(b − Aũ) is a

correction using the approximation of the dual variable. The following proposition provides

an error bound on the variable of interest, which is a generalization of the classical error

bound for scalar-valued variables of interest (see [16]) to vector-valued variables of interest.
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Proposition 2.5. The approximation s̃ of s defined by (15) satisfies

‖s− s̃‖Z ≤ ‖u− ũ‖V ‖L∗ − A∗Q̃‖Z′→V ′ , (16)

where

‖L∗ − A∗Q̃‖Z′→V ′ = sup
0 6=z′∈Z′

‖(L∗ − A∗Q̃)z′‖V ′

‖z′‖Z′
. (17)

Proof. For any z′ ∈ Z ′, we have

〈s− s̃, z′〉 = 〈Lu− Lũ− Q̃∗(b− Aũ), z′〉 = 〈(L− Q̃∗A)(u− ũ), z′〉

= 〈u− ũ, (L∗ − A∗Q̃)z′〉 ≤ ‖u− ũ‖V ‖(L∗ − A∗Q̃)z′‖V ′ .

Dividing by ‖z′‖Z′ and taking the supremum over z′ ∈ Z ′ \ {0}, we obtain (16).

In practice, the approximation ũ can be defined as the Petrov-Galerkin projection ur of u

on a given approximation space Vr with a given test space Wr, see equation (5). For the

approximation Q̃ of Q ∈ L(Z ′,W ), the bound (16) suggests that ‖L∗ − A∗Q̃‖Z′→V ′ should

be small. We then propose to choose Q̃ as a solution of

min
Q̃∈L(Z′,WQ

k )

‖L∗ − A∗Q̃‖Z′→V ′ , (18)

where WQ
k ⊂ W is a given approximation space (different from Wr). The next proposition

shows how to construct a solution of (18).

Proposition 2.6. The operator Qk : Z ′ → WQ
k defined for z′ ∈ Z ′ by

Qkz
′ = arg min

yk∈WQ
k

‖L∗z′ − A∗yk‖V ′ (19)

is linear and is a solution of (18). Moreover Qkz
′ ∈ WQ

k is characterized by

〈L∗z′ − A∗Qkz
′, R−1

V A∗yk〉 = 0, ∀yk ∈ WQ
k . (20)

Proof. We easily prove that the optimization problem (19) admits a unique solution which

depends linearly and continuously on z′, so that Qk defined by (19) is a linear operator in

L(Z ′,WQ
k ). Equation (20) is the Euler equation associated to the minimization problem

(19). Furthermore for any Q̃ ∈ L(Z ′,WQ
k ) and z′ ∈ Z ′ \ {0}, we have

‖L∗z′ − A∗Qkz
′‖V ′

‖z′‖Z′

(19)

≤ ‖L
∗z′ − A∗Q̃z′‖V ′

‖z′‖Z′
≤ ‖L∗ − A∗Q̃‖Z′→V ′ .
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Taking the supremum over z′ ∈ Z ′\{0} and then the infimum over Q̃ ∈ L(Z ′,WQ
k ), we obtain

that ‖L∗−A∗Qk‖Z′→V ′ ≤ infQ̃∈L(Z′,WQ
k ) ‖L

∗−A∗Q̃‖Z′→V ′ , which means that Qk ∈ L(Z ′,WQ
k )

is a solution of (18).

In practice, for computing the approximation of the variable of interest (15) with Q̃ = Qk, we

only need to compute Q∗k(b− Aur). The following lemma shows how this can be performed

without computing the operator Qk.

Lemma 2.7. Let Qk be defined by (19). Then for r = b− Aur ∈ W ′,

Q∗kr = LR−1
V A∗y⊥k , (21)

where y⊥k ∈ W
Q
k is defined by

〈AR−1
V A∗y⊥k , yk〉 = 〈r, yk〉, ∀yk ∈ WQ

k . (22)

Proof. For any z′ ∈ Z ′, since Qkz
′ ∈ WQ

k , we have

〈Qkz
′, AR−1

V A∗y⊥k 〉
(22)
= 〈Qkz

′, r〉. (23)

Furthermore, by definition of Qk we have

〈Qkz
′, AR−1

V A∗y⊥k 〉
(20)
= 〈L∗z′, R−1

V A∗y⊥k 〉. (24)

Combining (23) and (24), we obtain 〈z′, Q∗kr〉 = 〈z′, LR−1
V A∗y⊥k 〉 for all z′ ∈ Z ′, which con-

cludes the proof.

We give now a new bound of the error on the variable of interest.

Proposition 2.8. Let ũ = ur be the Petrov-Galerkin projection defined by (5) and let Q̃ = Qk

be defined by (20). Then the approximation s̃ defined by (15) satisfies

‖s− s̃‖Z ≤ δL
WQ

k

min
yk∈WQ

k

‖u− ur −R−1
V A∗yk‖V , (25)

where

δL
WQ

k

= sup
06=z′∈Z′

min
y∈WQ

k

‖L∗z′ − A∗y‖V ′

‖z′‖Z′
. (26)

10



Moreover,

‖s− s̃‖Z ≤
δL
WQ

k√
1− (δVr,Wr)

2
min
v∈Vr
‖u− v‖V . (27)

Proof. For any z′ ∈ Z ′, and for any yk ∈ WQ
k we have

〈s− s̃, z′〉 (15)
= 〈u− ur, (L∗ − A∗Qk)z

′〉
(20)
= 〈u− ur −R−1

V A∗yk, (L
∗ − A∗Qk)z

′〉
≤ ‖u− ur −R−1

V A∗yk‖V ‖(L∗ − A∗Qk)z
′‖V ′ . (28)

From (19), we have

‖(L∗ − A∗Qk)z
′‖V ′ = min

yk∈WQ
k

‖L∗z′ − A∗yk‖V ′ .

Dividing by ‖z′‖Z′ and taking the supremum over z′ ∈ Z ′ \ {0} in (28), we obtain

‖s− s̃‖Z ≤ δL
WQ

k

‖u− ur −R−1
V A∗yk‖V

Then, taking the minimum over yk ∈ WQ
k , we obtain (25). Finally, taking yk = 0 in (25), we

obtain (27) from (7).

Remark 2.9. Observing that δL
WQ

k

≤ ‖L∗−A∗Qk‖V ′ and minyk∈WQ
k
‖u− ur −R−1

V A∗yk‖V ≤
‖u− ur‖V , Proposition 2.8 provides a sharper bound of the error on the variable of interest

by taking advantage of the orthogonality property (20).

2.3 Projection based on a saddle point problem

In this section we extend the method proposed in [8] for the approximation of (vector-valued)

variables of interest. The idea is to define the projection of u on the reduced space Vr by

means of a saddle point problem. We first define and analyze this saddle point problem.

Then we use the solution of this problem for the estimation of the variable of interest. ” Let

us equip W with a norm ‖ · ‖W such that the relation ‖y‖W = ‖A∗y‖V ′ holds for any y ∈ W ,

which is equivalent to the following relation between the Riesz maps RW and RV :

RW = AR−1
V A∗. (29)
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The orthogonal projection u⊥r of u on Vr satisfies

‖u− u⊥r ‖V = min
v∈Vr
‖u− v‖V = min

v∈Vr
sup

06=w∈V

〈u− v,RVw〉
‖w‖V

= min
v∈Vr

max
06=w∈V

〈Av − b, A−∗RVw〉
‖w‖V

= min
v∈Vr

max
06=y∈W

〈Av − b, y〉
‖R−1

V A∗y‖V

= min
v∈Vr

max
06=y∈W

〈Av − b, y〉
‖y‖W

.

Starting from this observation, we introduce a subspace Tp ⊂ W of dimension p and we

define the projection ur,p in Vr as the solution of the saddle point problem

min
v∈Vr

max
w∈Tp
‖w‖W =1

〈Av − b, w〉. (30)

In the following proposition, we prove the well-posedness of (30) under the condition (discrete

inf-sup condition)

inf
06=v∈Vr

sup
06=y∈Tp

〈Av, y〉
‖v‖V ‖y‖W

=: αVr,Tp > 0, (31)

and we provide a practical characterization of ur,p.

Proposition 2.10. Under assumption (31), there exists a unique solution (ur,p, yr,p) in Vr×
Tp to

〈RWyr,p, y〉+ 〈Aur,p, y〉 = 〈b, y〉 ∀y ∈ Tp, (32a)

〈A∗yr,p, v〉 = 0 ∀v ∈ Vr, (32b)

and (ur,p,
yr,p
‖yr,p‖W

) is the unique solution of (30).

Proof. Since the Riesz map RW defined by (29) is coercive and under the discrete inf-sup

condition (31) on operator A, Theorem 2.34 of [9] gives that (32) is a well-posed problem

whose solution (ur,p, yr,p) is the unique solution of the saddle-point problem

min
v∈Vr

max
y∈Tp
−1

2
〈RWy, y〉+ 〈b, y〉 − 〈Av, y〉.

Denoting y = λw with ‖w‖W = 1, this saddle point problem is equivalent to

min
v∈Vr

max
w∈Tp
‖w‖W =1

max
λ∈R
−1

2
λ2 + λ〈b− Av,w〉 = min

v∈Vr
max
w∈Tp
‖w‖W =1

1

2
〈Av − b, w〉2,

which coincides with problem (30).
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The following proposition provides a quasi-optimality result for the projection ur,p ∈ Vr
of u onto Vr.

Proposition 2.11. Under assumption (31), the solution ur,p of (32) is such that

‖u− ur,p‖V ≤
1√

1− δ2
Vr,Tp

min
v∈Vr
‖u− v‖V , (33)

where

δVr,Tp = max
06=v∈Vr

min
y∈Tp

‖v −R−1
V A∗y‖V
‖v‖V

(34)

is such that

δ2
Vr,Tp = 1− α2

Vr,Tp < 1. (35)

Proof. Let (ur,p, yr,p) be the solution of (32). For any v ∈ Vr and y ∈ Tp, we have

〈u⊥r − ur,p, RV v〉
(4)
= 〈u− ur,p, RV v〉 = 〈b− Aur,p, A−∗RV v〉
(32a)
= 〈b− Aur,p, A−∗RV v − y〉+ 〈RWyr,p, y〉

(32b)
= 〈b− Aur,p, A−∗RV v − y〉 − 〈RWyr,p, A

−∗RV v − y〉
(29)
= 〈u− ur,p −R−1

V A∗yr,p, RV v − A∗y〉
≤ ‖u− ur,p −R−1

V A∗yr,p‖V ‖RV v − A∗y‖V ′ . (36)

Equation (32a) implies that

yr,p = arg min
y∈W
‖R−1

W (b− Aur,p)− y‖W ,

so that ‖R−1
W (b− Aur,p)− yr,p‖W ≤ ‖R−1

W (b− Aur,p)‖W . Using (29), it follows

‖u− ur,p −R−1
V A∗yr,p‖V ≤ ‖u− ur,p‖V , (37)

Using (37) in (36), taking the infimum over y ∈ Tp, dividing by ‖v‖V and taking the supre-

mum over v ∈ Vr \ {0}, we obtain

‖u⊥r − ur,p‖V ≤ δVr,Tp‖u− ur,p‖.

From (11) (with Wr replaced by Tp) and (29) (which implies ‖A∗y‖V ′ = ‖y‖W ), we obtain

(35). Then, from the definition of u⊥r , we have

‖u− ur,p‖2 = ‖u− u∗r‖2 + ‖u∗r − ur,p‖2 ≤ ‖u− u∗r‖2 + δ2
Vr,Tp‖u− ur,p‖

2,

13



from which we deduce (33).

From the definition (34) of δVr,Tp , we easily deduce the following corollary.

Corollary 2.12. If Tp is such that R−1
W AVr ⊂ Tp (or equivalently Vr ⊂ R−1

V A∗Tp) then

δVr,Tp = 0 and ur,p coincides with the best approximation u⊥r of u in Vr.

Remark 2.13. Note that (33) and (35) give

‖u− ur,p‖V ≤
1

αVr,Tp
min
v∈Vr
‖u− v‖V ,

which is sharper than the classical error bound obtained by the Cea’s lemma

‖u− ur,p‖V ≤ (1 +
1

αVr,Tp
) min
v∈Vr
‖u− v‖V .

Now, we consider the approximation s̃ of s defined by

s̃ = Lur,p + LR−1
V A∗yr,p, (38)

where (ur,p, yr,p) ∈ Vr × Tp is the solution of the saddle point problem (32). The following

proposition provides an error bound for the approximation of the variable of interest.

Proposition 2.14. The approximation s̃ defined by (38) satisfies

‖s− s̃‖Z ≤ δLTp‖u− ur,p −R
−1
V A∗yr,p‖V , (39)

with

δLTp = sup
06=z′∈Z′

min
y∈Tp

‖L∗z′ − A∗y‖V ′

‖z′‖Z′
, (40)

and

‖s− s̃‖Z ≤
δLTp√

1− (δVr,Tp)2
min
v∈Vr
‖u− v‖V . (41)

Proof. For any z′ ∈ Z ′ and y ∈ Tp, we have

〈s− s̃, z′〉 (38)
= 〈u− ur,p −R−1

V A∗yr,p, L
∗z′〉

(32a)&(29)
= 〈u− ur,p −R−1

V A∗yr,p, L
∗z′ − A∗y〉

≤ ‖u− ur,p −R−1
V A∗yr,p‖V ‖L∗z′ − A∗y‖V ′ .
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Taking the minimum over y ∈ Tp, dividing by ‖z′‖Z′ and taking the supremum over z′ ∈
Z ′ \ {0}, we obtain (39). Finally, thanks to (39), (37) and (33), we obtain (41).

We observe that Tp impacts both the quality of the projection of u (via the constant

δVr,Tp in (33)) and the quality of the approximation of the variable of interest (via constants

δVr,Tp and δLTp in (41)). Then, we will consider for Tp spaces of the form

Tp = Wr +WQ
k , (42)

with dim(Wr) = r. This implies

δLTp ≤ δL
WQ

k

and δVr,Tp ≤ δVr,Wr ,

so that the error bound (41) for the variable of interest is better than the error bound (27) of

the primal-dual method with primal approximation space Vr, primal test space Wr and dual

approximation space WQ
k . Therefore, we expect the approximation ur,p to be closer to the

solution u than the Petrov-Galerkin projection ur. Also, the approximation of the quantity

of interest is expected to be improved.

Remark 2.15 (Symmetric coercive case). Let us consider the case where A is symmetric

and coercive, RV = RW = A and Wr = Vr. The choice (42) implies that Vr ⊂ Tp, so that

Tp admits the orthogonal decomposition Tp = Vr ⊕ (Tp ∩ V ⊥r ). Equation (32b) implies that

yr,p ∈ Tp ∩ V ⊥r . Let tr,p = yr,p + ur,p ∈ Tp. Equation (32a) gives 〈RV tr,p, y〉 = 〈RV u, y〉 for

all y ∈ Tp, which implies that tr,p is the orthogonal projection of u on Tp, where ur,p and

yr,p are the orthogonal projections of u on Vr and Tp ∩ V ⊥r respectively. Furthermore, the

approximation of the variable of interest (38) is given by s̃ = Ltr,p. We conclude that in

this particular setting, the saddle point approach can be simply interpreted as an orthogonal

projection of u on the enriched space Tp = Vr + WQ
k , followed by a standard estimation of

the variable of interest.

3 Goal-oriented projections for parameter-dependent

equations

We now consider a parameter-dependent equation A(ξ)u(ξ) = b(ξ) where ξ denotes a pa-

rameter taking values in a set Ξ ⊂ Rd, A(ξ) ∈ L(V,W ′) and b(ξ) ∈ W ′. The variable of

interest is defined by s(ξ) = L(ξ)u(ξ), with L(ξ) ∈ L(V, Z).
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In Section 2, we have presented different projection methods for the estimation of the

variable of interest which rely on the introduction of three spaces: the primal approxima-

tion space Vr, the primal test space Wr and the dual approximation space WQ
k . We recall

that for the saddle point approach, we introduce the space Tp = Wr + WQ
k . We adopt an

offline/online strategy. Reduced (low-dimensional) spaces Vr, Wr and WQ
k are constructed

during the offline phase. Then, the projections on these reduced spaces and the evaluations

of the variable of interest are rapidly computed for any parameter value ξ ∈ Ξ during the

online phase.

In Section 3.1, we will first consider the construction of the test space Wr. For scalar-

valued variables of interest, reduced spaces Vr and WQ
k are classically defined as the span of

snapshots of the primal and dual solutions u(ξ) and Q(ξ). These snapshots can be selected

at random, using samples drawn according a certain probability measure over Ξ, see e.g.

[17]. Another popular method is to select the snapshots in a greedy way [7, 11, 19], with

a uniform control of the error ‖s(ξ) − s̃(ξ)‖Z over Ξ. This method requires an estimation

of the error on the variable of interest. In the same lines, we introduce error estimates for

vector-valued variables of interest in Section 3.2, and we propose greedy algorithms for the

construction of Vr and WQ
k in Section 3.3.

3.1 Construction of the test space Wr

Assuming that the primal approximation space Vr is given, we know from the previous section

that Wr should be chosen such that δVr,Wr is as close to zero as possible (see Propositions

2.1, 2.8, 2.11 and 2.14). In the literature, Wr = Vr is a common choice (standard Galerkin

projection). When the operator A(ξ) is symmetric and coercive, we can choose Wr = Vr
which is the optimal test space with respect to the norm induced by A(ξ) (see Remark 2.4).

However, this choice may lead to an inaccurate projection of the primal variable when the

operator is ill-conditioned (i.e. β
α
� 1). In the case of non coercive operators, a parameter-

dependent test space is generally defined by Wr = Wr(ξ) = R−1
W A(ξ)Vr, where R−1

W A(ξ)

is called the “supremizer operator” (see e.g. [20, 15] ). This approach is no more than

a minimal residual method since the resulting Petrov-Galerkin projection defined by (5) is

ur(ξ) = arg minvr∈Vr ‖A(ξ)vr−b(ξ)‖W ′ . In Section 2.1, we have seen that the Petrov-Galerkin

projection with an ideal test space

Wr(ξ) = A(ξ)−∗RV Vr (43)

coincides with the best approximation. Having a basis v1, . . . , vr of Vr, the computation

of this ideal parameter-dependent test space would require the computation of A−∗(ξ)RV vi
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for all 1 ≤ i ≤ r for each parameter’s value ξ, which is unfeasible in practice. Up to

our knowledge, the only attempt to construct quasi-optimal test spaces for non symmetric

and weakly coercive operators can be found in [8], where the authors proposed a greedy

algorithm for the construction of a (parameter independent) test space which ensures the

quasi-optimality constant to be uniformly bounded by an arbitrarily small constant. Here,

we adopt an alternative approach where the (parameter-dependent) test space is defined by

Wr(ξ) = Pm(ξ)∗RV Vr, (44)

where Pm(ξ) is an interpolation of the inverse of A(ξ) using m interpolation points in the

parameter set Ξ. In practice, when A(ξ) is a matrix, algorithms developed in [22] can be

used. This will be detailed later on. The underlying idea is to obtain a test space as close as

possible to the ideal test space A−∗(ξ)RV Vr defined in (43). For m = 0, with P0(ξ) = R−1
V

by convention, we have Wr = Vr, which yields the standard Galerkin projection.

3.2 Error estimates for vector-valued variables of interest

In this section, we propose practical error estimates for the variable of interest, first for the

primal-dual approach and then for the saddle point method.

3.2.1 Primal-dual approach

Given approximations ũ and Q̃ of the primal solution u and the dual solution Q respectively,

a standard approach is to start from the error bound

‖s(ξ)− s̃(ξ)‖Z ≤ ‖u(ξ)− ũ(ξ)‖V ‖L(ξ)∗ − A(ξ)∗Q̃(ξ)‖Z′→V ′ ,

which is provided by Proposition 2.5. This suggests to measure the norm of the residuals

associated to the primal and dual variables. In practice, we distinguish two cases.

In the case where the operator A(ξ) is symmetric and coercive, it is natural to choose the

parameter-dependent norm ‖ · ‖V as the one induced by the operator, i.e. RV = RV (ξ) =

A(ξ). However, neither the primal error ‖u(ξ) − ũ(ξ)‖V = 〈b(ξ) − A(ξ)ũ(ξ), u(ξ) − ũ(ξ)〉
nor the dual residual norm ‖L(ξ)∗−A(ξ)∗Q̃(ξ)‖Z′→V ′ = sup‖z‖Z=1 ‖Q(ξ)z− Q̃(ξ)z‖Z can be

computed without computing the primal and dual solutions u(ξ) and Q(ξ). The classical

way to circumvent this issue is to introduce a parameter-independent norm ‖ · ‖V0 , which is

in general the “natural” norm associated to the space V , and to measure residuals with the

associated dual norm ‖ · ‖V ′
0
. Here we assume that the operator A(ξ) satisfies

α(ξ)‖v‖V0 ≤ ‖A(ξ)v‖V ′
0

(45)
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for all v ∈ V , where α(ξ) > 0. By definition of the norm ‖ · ‖V , we can write

‖v‖2
V = 〈A(ξ)v, v〉 ≤ ‖A(ξ)v‖V ′

0
‖v‖V0 ≤ α(ξ)−1‖A(ξ)v‖2

V ′
0

∀v ∈ V.

Then we have ‖u(ξ)− ũ(ξ)‖V ≤ α(ξ)−1/2‖A(ξ)ũ(ξ)− b(ξ)‖V ′
0
. In the same way, we can prove

that ‖L(ξ)∗ − A(ξ)∗Q̃(ξ)‖Z′→V ′ ≤ α(ξ)−1/2‖L(ξ)∗ − A(ξ)∗Q̃(ξ)‖Z′→V ′
0
. Finally, we obtain

‖s(ξ)− s̃(ξ)‖Z ≤
‖A(ξ)ũ(ξ)− b(ξ)‖V ′

0
‖L(ξ)∗ − A(ξ)∗Q̃(ξ)‖Z′→V ′

0

α(ξ)
:= ∆(ξ), (46)

where ∆(ξ) is a certified error bound for the variable of interest, which involves computable

primal and dual residual norms.

In the general case, we consider for ‖ · ‖V the natural norm on V , i.e. ‖ · ‖V = ‖ · ‖V0 .
As a consequence, the norm of the dual residual is computable, but the computation of the

error ‖u(ξ) − ũ(ξ)‖V0 requires the primal solution u(ξ) which is not available in practice.

Once again, we assume that the operator satisfies the property (45) so that we can write

‖u(ξ) − ũ(ξ)‖V0 ≤ α(ξ)−1‖A(ξ)ũ(ξ) − b(ξ)‖V ′
0
. Then we end up with the same error bound

(46) for the variable of interest.

3.2.2 Saddle point method

We now derive new error bounds in the case where the approximation s̃(ξ) is obtained by

the saddle point method introduced in Section 2.3. Let us start from the error bound

‖s(ξ)− s̃(ξ)‖Z

≤ sup
0 6=z′∈Z′

min
y∈Tp

‖L(ξ)∗z′ − A(ξ)∗y‖V ′

‖z′‖Z′
‖u(ξ)− ur,p(ξ)−R−1

V A(ξ)∗yr,p(ξ)‖V (47)

provided by Proposition 2.14. Once again, we distinguish two cases.

For the case where the operator A(ξ) is symmetric and coercive, we consider for ‖·‖V the

norm induced by the operator, i.e. RV = A. According to Remark 2.15, the quantity tr,p(ξ) =

ur,p(ξ) − R−1
V (ξ)A(ξ)∗yr,p(ξ) = ur,p(ξ) + yr,p(ξ) is nothing but the orthogonal projection of

u(ξ) onto Tp = Wr +WQ
k , with Wr = Vr. Then for any t̃r,p ∈ Tp we have

‖u(ξ)− tr,p(ξ)‖2
V ≤ ‖u(ξ)− t̃r,p‖2

V ≤ α(ξ)−1‖b(ξ)− A(ξ)t̃r,p‖2
V ′
0
,

where the norm ‖ · ‖V0 is the natural norm on V such that (45) holds. Then, taking the

infimum over t̃r,p ∈ Tp we obtain

‖u(ξ)− tr,p(ξ)‖V ≤ α(ξ)−1/2 inf
t̃r,p∈Tp

‖A(ξ)t̃r,p − b(ξ)‖V ′
0
.
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Finally, we obtain that

‖s(ξ)− s̃(ξ)‖Z

≤ 1

α(ξ)
sup

06=z′∈Z′
min
y∈Tp

‖L(ξ)∗z′ − A(ξ)∗y‖V ′
0

‖z′‖Z′
min
t̃r,p∈Tp

‖A(ξ)t̃r,p − b(ξ)‖V ′
0

:= ∆(ξ). (48)

Note that the main difference between this error estimate and the previous one (46) is the

minimization problem over Tp in both primal and dual residuals. The solution of those min-

imization problems lead to additional computational costs, but sharper error bounds will be

obtained, as illustrated by the numerical examples in the next section.

For the general case, we consider ‖·‖V = ‖·‖V0 . Starting from (47) and using the relation

(45) to bound the primal error by the primal residual norm, we obtain the following error

estimate

‖s(ξ)− s̃(ξ)‖Z (49)

≤ 1

α(ξ)
sup

06=z′∈Z′
min
y∈Tp

‖L(ξ)∗z′ − A(ξ)∗y‖V ′
0

‖z′‖Z′
‖A(ξ)tr,p(ξ)− b(ξ)‖V ′

0
:= ∆(ξ),

where tr,p(ξ) = ur,p(ξ) +R−1
V0
A(ξ)∗yr,p(ξ).

Remark 3.1. All the proposed error estimates rely on the knowledge of α(ξ). In the case

where α(ξ) can not be easily computed, we can replace it by a lower bound αLB(ξ) ≤ α(ξ),

e.g. provided by a SCM procedure [13]. This option will not be considered here. Another

option is to remove α(ξ) from the definitions of ∆(ξ), therefore leading to error estimates

which are no more certified error bounds.

3.3 Greedy construction of the reduced spaces

Here, we propose different greedy algorithms for the construction of the reduced spaces Vr
and WQ

k . At each iteration, we search for a parameter value ξ∗ ∈ Ξ where the error estimate

∆(ξ) is maximum, i.e.

ξ∗ ∈ arg max
ξ∈Ξ

∆(ξ). (50)

A first strategy is to simultaneously enrich both the primal approximation space

Vr+1 = Vr + span(u(ξ∗)) (51)

and the dual approximation space

WQ
k+l = WQ

k + range(Q(ξ∗)) (52)
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at each iteration. This strategy is referred as the simultaneous construction, as opposed to

the alternate construction which consists in enriching WQ
k (resp. Vr) if Vr (resp. WQ

k ) were

enriched at the previous greedy iteration step.

Remark 3.2. In the literature, and for scalar-valued variables of interest, the classical ap-

proaches are either a separated construction of Vr and WQ
k (using two independent greedy

algorithms, see for e.g. [10, 19]), or a simultaneous construction (see e.g. [18]). The latter

option can take advantage of a single factorization of the operator A(ξ∗) to compute both

the primal and dual variables. The alternate construction proposed here is not usual. This

possibility is mentioned in remark 2.47 of the tutorial [11].

For vector-valued variables of interest (dim(Z) > 1), the enrichment strategy (52) makes

sense only if dim(range(Q(ξ∗)) < ∞, in which case l = dim(WQ
k+l) − dim(WQ

l ) < ∞. How-

ever, if dim(range(Q(ξ∗)) is finite but very high, the enrichment strategy (52) may lead

to a rapid increase of the dimension of the dual approximation space. Therefore, when

dim(range(Q(ξ∗))) is infinite or very high, we propose to replace the enrichment strategy

(52) by

WQ
k+1 = WQ

k + span(Q(ξ∗)z′), (53)

where the space WQ
k is enriched with a single vector Q(ξ∗)z′, with z′ ∈ Z ′ such that

z′ ∈ arg max
z̃′∈Z′

‖(L(ξ∗)∗ − A(ξ∗)∗Q̃(ξ))z̃′‖V ′
0

‖z̃′‖Z′
(for primal-dual method), or (54)

z′ ∈ arg max
z̃′∈Z′

min
y∈WQ

k

‖L(ξ∗)∗z̃′ − A(ξ∗)∗y‖V ′
0

‖z̃′‖Z′
(for saddle point method). (55)

Contrarily to the full enrichment (52), this partial enrichment does not necessarily lead to a

zero error at the point ξ∗ for the next iterations. Then we expect that (53) will deteriorate

the convergence properties of the algorithm, but for dim(Z) � 1, the space WQ
k+1 defined

by (53) will have a much lower dimension than the space WQ
k+l defined by (52). It is worth

mentioning that in [8], the authors propose a similar partial enrichment strategy for the test

space Tp but not in a goal-oriented framework.

The definition (44) of the test space Wr requires the definition of a preconditioner Pm(ξ)

which is here constructed by interpolation of the inverse of A(ξ). Following the idea of

[22], the interpolation points for the preconditioner are chosen as the points where solutions

(primal and dual) have already been computed, i.e. the points given by (50). The resulting

algorithms are summarized in Algorithm 1 and Algorithm 2 respectively for the simultaneous

and the alternate constructions of Vr and WQ
k .
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Algorithm 1 Simultaneous construction of Vr and WQ
k

Input: Error estimator ∆(·), a samples set Ξ, maximum iteration I

1: Initialize r, k = 0 and the spaces Vr = {0} and WQ
k = {0}

2: for i = 1 to I do

3: Find ξi ∈ arg maxξ∈Ξ ∆(ξ)

4: Compute a factorization of A(ξi) and update the preconditioner if needed

5: Solve u(ξi) = A(ξi)
−1b(ξi)

6: Update Vr+1 = Vr + span(u(ξi)), and r ← r + 1

7: if Full dual enrichment then

8: Solve Q(ξi) = A(ξi)
−∗L(ξi)

∗

9: Update WQ
k+l = WQ

k + range(Q(ξi)), and k ← k + l

10: else if Partial dual enrichment then

11: Find z′ according to (55) or (54)

12: Solve y(ξi) = A(ξi)
−∗(L(ξi)

∗z′)

13: Update WQ
k+1 = WQ

k + span(y(ξi)), and k ← k + 1

14: end if

15: end for

4 Numerical results

In this section, we present numerical applications of the methods proposed in Sections 2

and 3. We first describe the applications in Section 4.1. Then we compare the projection

methods for the estimation of a variable of interest in Section 4.2. Finally, we study the

behavior of the proposed greedy algorithms for the construction of the reduced spaces in

Section 4.3.

4.1 Applications

4.1.1 Application 1 : a symmetric problem

We consider a linear elasticity problem2 div(K(ξ) : ε(u(ξ))) = 0 over a domain Ω (represented

in Figure 1(a)), where u(ξ) : Ω → R3 is the displacement field and ε(u) = 1
2
(∇u +∇uT ) ∈

R3×3 is the strain tensor associated to the displacement field u. The Hooke tensor K(ξ) is

such that

K(ξ) : ε(u(ξ)) =
E(ξ)

1 + ν

(
ε(u(ξ)) +

ν

1− 2ν
trace(ε(u(ξ)))I3

)
,

2The authors thank Mathilde Chevreuil for having proposed this benchmark problem.

21



Algorithm 2 Alternate construction of Vr and WQ
k

Input: Error estimator ∆(·), a samples set Ξ, maximum iteration I

1: Initialize r, k = 0 and the spaces Vr = {0} and WQ
k = {0}

2: for i = 1 to I do

3: Find ξi ∈ arg maxξ∈Ξ ∆(ξ)

4: Compute a factorization of A(ξi) and update the preconditioner if needed

5: if i is even then

6: Solve u(ξi) = A(ξi)
−1b(ξi)

7: Update Vr+1 = Vr + span(u(ξi)), and r ← r + 1

8: else if i is odd then

9: if Full dual enrichment then

10: Solve Q(ξi) = A(ξi)
−∗L(ξi)

∗

11: Update WQ
k+l = WQ

k + range(Q(ξi)), and k ← k + l

12: else if Partial dual enrichment then

13: Find z′ according to (55) or (54)

14: Solve y(ξi) = A(ξi)
−∗(L(ξi)

∗z′)

15: Update WQ
k+1 = WQ

k + span(y(ξi)), and k ← k + 1

16: end if

17: end if

18: end for

where ν = 0.3 is the Poisson coefficient and E(ξ) is the Young modulus defined by E(ξ) =

1Ω0 +
∑6

i=1 ξi1Ωi
, 1Ωi

being the indicator function of the subdomain Ωi, see Figure 1(b). The

components of ξ = (ξ1, . . . , ξ6) are independent and log-uniformly distributed over [10−1, 10].

We impose homogeneous Dirichlet boundary condition u(ξ) = 0 on ΓD (red lines), a unit

vertical surface load on ΓL (green square), and a zero surface load on the complementary part

of the boundary (see Figure 1(a)). We consider the Galerkin approximation uh(ξ) of u(ξ)

on a P1 finite element approximation space Vh = span(φi)
n
i=1 ⊂ {v ∈ H1(Ω)3 : v|ΓD

= 0} of

dimension n = 8916 associated to the mesh plotted in Figure 1(b). The vector u(ξ) ∈ V = Rn

such that uh(ξ) =
∑n

i=1 ui(ξ)φi is the solution of the linear system A(ξ)u(ξ) = b of size n,

with

A(ξ) = A(0) +
6∑

k=1

ξiA
(k) , A

(k)
i,j =

∫
Ωk

∇φi : K0 : ∇φj dΩ, (56)

and bi =
∫

ΓL
−e3 · φi dΓ, where K0 denotes the Hooke tensor with the Young modulus

E = 1. The norm ‖ · ‖V on the space V is chosen such that ‖v‖2
V = 〈A(ξ)v, v〉, that

means RV = A(ξ). We also consider the parameter-independent norm ‖ · ‖V0 defined by
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‖v‖2
V0

= 〈A(ξ0)v, v〉 with ξ0 = (1, . . . , 1). It corresponds to the norm induced by the operator

associated with the Hooke tensor K0 instead of K(ξ).

Let us consider sh(ξ) = uh|Γ(ξ) · e3 which is the vertical displacement of the Galerkin

approximation on the blue line Γ, see Figure 1(a). We can write sh(ξ) =
∑l

j=1 sj(ξ)ψj where

{ψj}lj=1 is a basis of the space {vh|Γ · e3 : vh ∈ Vh} of dimension l = 44. Then there exists

L ∈ Rl×n such that

s(ξ) = Lu(ξ),

where s(ξ) = (s1(ξ), . . . , sl(ξ)) ∈ Z = Rl is the variable of interest. The norm ‖·‖Z is defined

as the canonical norm of Rl.

(a) Geometry, boundary condition and variable of interest.

(b) Realization of a solution and mesh of the domain Ω. The colors corre-

sponds to the different sub-domains Ωi for i = 0, . . . , 6.

Figure 1: Application 1: schematic representation of the problem and a realization of the

solution.
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4.1.2 Application 2: a non symmetric problem

We consider the benchmark problem of the cooling of electronic components proposed in the

OPUS project3. The equation to solve is an advection-diffusion equation over the domain

Ω ⊂ R2

−∇ · (κ(ξ)∇T (ξ)) + c(ξ) · ∇T (ξ) = f, (57)

whose solution T (ξ) : Ω→ R is the temperature field. Here κ and c denote respectively the

diffusion coefficient and the advection field, which are parameter-dependent coefficients of

the operator. The full description of this problem is given in [22]. Here, we only focus on

the resulting algebraic parameter-dependent equation coming from stabilized finite element

discretization of (57), that is A(ξ)u(ξ) = b(ξ), where u(ξ) ∈ Rn are the coefficients of

the finite element approximation T h =
∑n

i=1 uiϕi of T , and where ξ = (ξ1, . . . , ξ4) is a

4-dimensional random vector. The space V = Rn with n = 2.8 × 104 is endowed with

the norm ‖ · ‖V = ‖ · ‖V0 which corresponds to the H1(Ω)-norm4. The variable of interest

s(ξ) = (s1(ξ), s2(ξ)) is the mean temperature of both electronic components, with

s1(ξ) =
1

|ΩIC1 |

∫
ΩIC1

T h(ξ)dΩ , s2(ξ) =
1

|ΩIC2|

∫
ΩIC2

T h(ξ)dΩ, (58)

where ΩICi
(i = 1, 2) are two subdomains of Ω ⊂ R2 (see [22, Fig.7]). Then we can write

s(ξ) = Lu(ξ) for an appropriate L ∈ Rl×n, with l = 2. Here we have Z = R2, which we

equip with the canonical norm on R2.

4.2 Comparison of the projections methods

The goal of this section is to compare the projection methods proposed in Section 2 for the

estimation of s(ξ). Here the approximation spaces Vr, W
Q
k and the test space Wr are given.

We denote by Vr, W
Q
k and Wr the matrices containing the basis vectors of the corresponding

subspaces. In order to improve condition numbers of reduced systems of equations, these

bases are orthogonalized using a Gram-Schmidt procedure.

4.2.1 Application 1

We first detail how we build Vr, W
Q
k and Wr. The matrix Vr contains r = 20 snapshots

of the solution: Vr = (u(ξ1), . . . , u(ξ20)). The test space is Wr = Vr, which corresponds to

a standard Galerkin projection method. The matrix WQ
k contains 2 snapshots of the dual

3See http://www.opus-project.fr
4 It means that ‖v‖V0 = ‖vh‖H1(Ω) for all v ∈ V , where vh =

∑n
i=1 viϕi.
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variable Q(ξ) = A(ξ)−1L∗ ∈ Rn×l. Then k = 2l = 88. Finally, according to (42) the matrix

Tp =
(
Wr,W

Q
k

)
is the concatenation of the matrices Wr and WQ

k .

We consider a samples set Ξt ⊂ Ξ of size t = 104. For each ξ ∈ Ξt we compute the exact

quantity of interest s(ξ) and the approximation s̃(ξ) by the following methods.

• Primal only : solve the linear system
(
VT
r A(ξ)Vr

)
Ur(ξ) =

(
VT
r b
)

of size r and compute

s̃(ξ) =
(
LVr

)
Ur(ξ).

• Dual only : solve the linear system
(
(WQ

k )TA(ξ)WQ
k

)
Yk(ξ) =

(
(WQ

k )T b
)

of size k and

compute s̃(ξ) =
(
LWQ

k

)
Yk(ξ).

5

• Primal-dual : solve the linear system of the Primal only method, solve the linear system(
(WQ

k )TA(ξ)WQ
k

)
Yk(ξ) =

(
(WQ

k )T b
)
−
(
(WQ

k )TA(ξ)Vr

)
Ur(ξ) of size k and compute

s̃(ξ) =
(
LVr

)
Ur(ξ) +

(
LWQ

k

)
Yk(ξ).

• Saddle point : According to Remark 2.15, solve the linear system(
TT
pA(ξ)Tp

)
Yp(ξ) =

(
TT
p b
)

of size p = k + r, and compute s̃(ξ) =
(
LTp

)
Yp(ξ).

The affine decomposition (56) of matrix A(ξ) allows for a rapid solution of the reduced

systems for any parameter ξ.

Figure 2 gives the probability density function (PDF), the L∞ norm and L2 norm of the

error ‖s(ξ)− s̃(ξ)‖Z estimated over the samples set Ξt. We see that the primal-dual method

provides errors for the quantity of interest which correspond to the product of the errors

of the primal only and dual only methods. This reflects the “squared effect”. Moreover

the saddle point method provides errors that are almost 10 times lower than the primal-

dual method. This impressive improvement can be explained by the fact that the proposed

problem is “almost compliant”, in the sense that the primal and dual solutions are similar:

the primal solution is associated to a vertical force on the green square of Figure 1(a), and

the dual solution is associated to a vertical loading on Γ. To illustrate this, let us consider

a “less compliant” application where the variable of interest is defined as the horizontal

displacement (in the direction e2, see figure 1(a)) of the solution on the blue line Γ, i.e.

sh(ξ) = u|Γ(ξ) · e2 (instead of sh(ξ) = u|Γ(ξ) · e3). The results are given in Figure 3. For

this new setting, we can draw similar conclusions but the saddle point method provides a

solution which is “only” 2 times better (instead of 10 times) than the primal-dual method.

5The dual only method corresponds to the primal-dual method where we consider a zero primal approx-

imation, i.e. Vr = Wr = {0}.
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10−4 10−3 10−2 10−1 100 101 102
10−4

10−3

10−2

10−1

100

101

102

Primal only
Dual only
Primal-Dual
Saddle point

(a) PDF of the error.

L∞-norm L2-norm
Primal only 8.16× 100 9.72× 10−1

Dual only 6.73× 101 1.22× 101

Primal-dual 2.60× 100 2.47× 10−1

Saddle point 3.56× 10−1 4.69× 10−2

(b) L∞ and L2 norm of the error.

Figure 2: Application 1: Probability density function, L∞ norm and L2 norm of the error

‖s(ξ)− s̃(ξ)‖Z estimated on a samples set of size 104.

10−4 10−3 10−2 10−1 100
10−2

10−1

100

101

102

103

Primal only
Dual only
Primal-Dual
Saddle point

(a) PDF of the error.

L∞-norm L2-norm
Primal only 3.90× 10−1 9.03× 10−2

Dual only 7.09× 10−1 2.87× 10−1

Primal-dual 9.61× 10−2 1.34× 10−2

Saddle point 4.28× 10−2 7.07× 10−3

(b) L∞ and L2 norm of the error.

Figure 3: Application 1 with a different variable of interest (“less compliant” case): Prob-

ability density function, L∞ norm and L2 norm of the error ‖s(ξ) − s̃(ξ)‖Z estimated on a

samples set of size 104.

Now we consider the effectivity index η(ξ) = ∆(ξ)/‖s(ξ) − s̃(ξ)‖Z associated to the

primal-dual error estimate defined by (46) and to the saddle-point error estimate defined by

(48). For the considered application, the coercivity constant α(ξ) can be obtained by the

min-theta method [11, Proposition 2.35]. Figure 4 presents statistical information on η(ξ):

the PDF, the mean, the max-min ratio and the normalized standard deviation estimated on

a samples set of size 104. We first observe in Figure 4(a) that the effectivity index is always

greater than 1: this illustrates the fact that the error estimates are certified. Moreover, the

error estimate of the saddle point method is much better than the one of the primal-dual

method. The max-min ratio and the standard deviation of the corresponding effectivity index
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are much smaller and the mean value is much closer to one for the saddle point method.

100 101 102 103
10−5

10−4

10−3

10−2

10−1

100

Primal-dual
Saddle point

(a) PDF of η(ξ) for the primal-dual method and

the saddle point method.

Primal-dual Saddle point

E(η(ξ)) 26.9 4.42

max η(ξ)

min η(ξ)
366.7 51.8

Var(η(ξ))1/2

E(η(ξ))
1.34 0.808

(b) Statistics of the effectivity index η(ξ)

for the primal-dual method and saddle

point method.

Figure 4: Application 1: Probability density function, mean, min-max ratio and normalized

standard deviation of the effectivity index η(ξ) = ∆(ξ)/‖s(ξ)−s̃(ξ)‖Z estimated on a samples

set of size 104. Here, ∆(ξ) is defined by (46) for the primal-dual method and by (48) for the

saddle point method.

4.2.2 Application 2

For this second application, Vr = (u(ξ1), . . . , u(ξ50)) contains 50 snapshots of the primal

solution (r = 50), and WQ
k = (Q(ξ1) . . . Q(ξ25)) contains 25 snapshots of the dual solution

so that the dimension of WQ
k is k = 25l = 50. The test space Wr is defined according to

(44), where Pm(ξ) is an interpolation of A(ξ)−1 using m interpolation points selected by a

greedy procedure based on the residual ‖I − Pm(ξ)A(ξ)‖F (where ‖ · ‖F denotes the matrix

Frobenius norm), see [22]. The interpolation is defined by a Frobenius semi-norm projection

(with positivity constraint) using a random matrix with 400 columns. The matrix associated

to the test space is given by Wr(ξ) = P T
m(ξ)RVVr.

Once again, we consider a samples set Ξt of size t = 104. For any ξ ∈ Ξt we compute the

exact quantity of interest s(ξ) and the approximation s̃(ξ) by the following methods.

• Primal only : solve the linear system
(
WT

r (ξ)A(ξ)Vr

)
Ur(ξ) = Wr(ξ)

T b of size r and

compute s̃(ξ) =
(
LVr

)
Ur(ξ).

• Dual only : solve the linear system(
(WQ

k )TA(ξ)R−1
V A(ξ)∗WQ

k

)
Yk(ξ) = (WQ

k )T b
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of size k and compute s̃(ξ) =
(
LR−1

V A(ξ)∗WQ
k

)
Yk(ξ).

• Primal-dual : solve the linear system of the Primal only method, solve the linear system(
(WQ

k )TA(ξ)R−1
V A(ξ)∗WQ

k

)
Yk(ξ) =

(
(WQ

k )T b
)
−
(
(WQ

k )TA(ξ)Vr

)
Ur(ξ)

of size k, and compute s̃(ξ) =
(
LVr

)
Ur(ξ) +

(
LR−1

V A(ξ)∗WQ
k

)
Yk(ξ).

• Saddle point : solve the linear system of size p+ r(
TT
p (ξ)A(ξ)R−1

V A(ξ)∗Tp(ξ) TT
p (ξ)A(ξ)Vr(

TT
p (ξ)A(ξ)Vr

)T
0

)(
Yr,p(ξ)

Ur,p(ξ)

)
=

(
Tp(ξ)

T b

0

)

with Tp(ξ) =
(
Wr(ξ),W

Q
k

)
, and compute

s̃(ξ) =
(
LVr

)
Ur,p(ξ) +

(
LR−1

V A(ξ)∗Tp(ξ)
)
Yr,p(ξ).

The numerical results are given in Figure 5. Once again, the saddle point method leads to the

lowest error on the variable of interest. Also, we see that a good preconditioner (for example

with m = 30) improves the accuracy for the saddle point method, the primal only method

and the primal-dual method. However, this improvement is not really significant for the

considered application: the errors are barely divided by 2 compared to the non preconditioned

Galerkin projection (m = 0). In fact, the preconditioner improves the quality of the test

space, and the choice Wr = Vr (yielding the standard Galerkin projection) is sufficiently

accurate for this example and for the chosen norm on V .

We discuss now the quality of the error estimate ∆(ξ) for the variable of interest. Since

in this application the constant α(ξ) can not be easily computed, we consider surrogates for

(46) and (49) using a preconditoner Pm(ξ). We consider

∆(ξ) = ‖Pm(ξ)(A(ξ)ur(ξ)− b(ξ))‖V0‖L(ξ)∗ − A(ξ)∗Qk(ξ)‖Z′→V ′
0

(59)

for the primal-dual method, and

∆(ξ) = ‖Pm(ξ)(A(ξ)tr,p(ξ)− b(ξ))‖V0 sup
06=z′∈Z′

inf
y∈Tp

‖L(ξ)∗z′ − A(ξ)∗y‖V ′
0

‖z′‖Z′
(60)

for the saddle point method. Figure 6 shows statistics of the effectivity index η(ξ) =

∆(ξ)/‖s(ξ)− s̃(ξ)‖Z for different numbers m of interpolation points for the preconditioner.

We see that the max-min ratio and the normalized standard deviation are decreasing with

m: this indicates an improvement of the error estimate. Furthermore, the mean value of
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Saddle point

(a) PDF of the error. Three different precondi-

tioners Pm(ξ) are used: m = 0 (dotted lines),

m = 10 (dashed lines) and m = 30 (continuous

lines).

Primal only L∞-norm L2-norm
m = 0 1.284× 100 1.245× 10−1

m = 5 1.203× 100 9.637× 10−2

m = 10 1.458× 100 1.064× 10−1

m = 20 1.068× 100 8.386× 10−2

m = 30 1.066× 100 7.955× 10−2

Primal-dual L∞-norm L2-norm
m = 0 2.751× 10−1 1.085× 10−2

m = 5 1.308× 10−1 5.708× 10−3

m = 10 1.333× 10−1 5.807× 10−3

m = 20 1.232× 10−1 5.465× 10−3

m = 30 1.224× 10−1 5.408× 10−3

Saddle point L∞-norm L2-norm
m = 0 1.023× 10−1 4.347× 10−3

m = 5 9.715× 10−2 3.389× 10−3

m = 10 9.573× 10−2 3.867× 10−3

m = 20 6.022× 10−2 2.996× 10−3

m = 30 5.705× 10−2 2.896× 10−3

(b) L∞ and L2 norm of the error.

Figure 5: Application 2: Probability density function, L∞ norm and L2 norm of the error

‖s(ξ)− s̃(ξ)‖Z estimated from a samples set of size 104.

η(ξ) seems to converge (with m) to 19.5 for the primal-dual method, and to 13.8 for the

saddle point method. In fact, with a good preconditioner, ‖Pm(ξ)(A(ξ)ur(ξ) − b(ξ))‖V0 (or

‖Pm(ξ)(A(ξ)tr,p(ξ) − b(ξ))‖V0) is expected to be a good approximation of the primal error

‖u(ξ) − ur(ξ)‖V0 (or ‖u(ξ) − tr,p(ξ)‖V0), but this does not ensure that the effectivity index

η(ξ) will converge to 1.

4.2.3 Partial conclusions and remarks

In both numerical examples, the saddle point method provides the most accurate estimation

for the variable of interest. Let us note that the saddle point problem requires the solution of

a dense linear system of size (r+k) for the symmetric and coercive case, and of size (2r+k)

for the general case. When using Gauss elimination method for the solution of those systems,

the complexity is either in C(r+ k)3 or C(2r+ k)3 (with C = 2/3), which is larger than the

complexity of the primal-dual method C(r3 + k3). However, in the case where the primal

and dual approximation spaces have the same dimension r = k, the saddle point method is

only 4 times (in the symmetric and coercive case) or 13.5 times (in the general case) more

expensive.

For the present applications, we showed that the preconditioner slightly improves the

quality of the estimation s̃(ξ), and of the error estimate ∆(ξ). Since the construction of

the preconditionner yields a significant increase in computational and memory costs (see
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(a) PDF of η(ξ) for the primal-dual methods and

the saddle point methods. Three different precon-

ditioners Pm(ξ) are used: m = 0 (dotted lines),

m = 10 (dashed lines) and m = 30 (continuous

lines)

E(η(ξ))
max η(ξ)

min η(ξ)

Var(η(ξ))1/2

E(η(ξ))
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m
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ua

l m = 0 5.545 3.52× 103 2.246
m = 5 16.03 8.68× 102 1.920
m = 10 18.69 1.01× 103 1.925
m = 20 19.20 5.77× 102 1.504
m = 30 19.59 3.95× 102 1.615

Sa
dd

le
po

in
t m = 0 4.726 6.93× 103 3.597

m = 5 12.61 1.80× 102 1.429
m = 10 13.27 1.72× 102 1.160
m = 20 13.97 1.89× 102 1.090
m = 30 13.84 2.17× 102 1.113

(b) Statistics of the effectivity index η(ξ)

for the primal-dual method and the saddle

point method.

Figure 6: Application 2: PDF, mean, max-min ratio and normalized standard deviation

of the effectivity index η(ξ) = ∆(ξ)/‖s(ξ) − s̃(ξ)‖Z . Here, ∆(ξ) is defined by (59) for the

primal-dual method and by (60) for the saddle point method.

[22]), the preconditioning is not mandatory here. Nevertheless, these results revealed the

important role of the test space Wr(ξ) to reduce the projection error. The preconditioner

used for constructing Wr(ξ) can be improved, for example with a better selection of the

interpolation point for Pm(ξ), see Equation (44). Note also that alternative methods can be

also applied for constructing Wr(ξ), such as the subspace interpolation method proposed in

[1].

4.3 Greedy construction of the reduced spaces

We now consider the greedy construction of the reduced spaces by Algorithms 1 or 2. For the

two considered applications, we show the convergence of the error estimate with respect to the

complexity of the offline and of the online phase. For the sake of simplicity, we measure the

complexity of the offline phase with the number of operator factorizations (this corresponds

to the number of iterations I of Algorithms 1 and 2). Of course exact estimation of the

offline complexity should take into account many other steps (for example, the computation

of ∆(ξ), of the preconditioner, etc), but the operator factorization is considered, for large

scale applications, as the main source of computation cost. For the online complexity, we

only consider the computation cost for the solution of one reduced system, see Section 4.2.3.

Here we do not take into account the complexity for assembling the reduced systems although
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it may be a significant part of the complexity for “not so reduced” systems of equations.

4.3.1 Application 1

Figure 7 shows the convergence of supξ ∆(ξ) with respect to the offline and online complex-

ities (as defined above). In Figure 7(a), we see that the saddle point method (dashed lines)

always provides lower values for the error estimate compared to the primal-dual method

(continuous lines). However, as already mentioned, the saddle point method requires the so-

lution of larger reduced systems during the online phase. Therefore, the primal-dual method

can sometimes provide lower error estimates (see the blue and red curves of Figure 7(b)) for

the same online complexity.

The simultaneous construction of Vr andWQ
k with full dual enrichment (52) (green curves)

yields a very fast convergence of the error estimate during the offline phase, see Figure 7(a)).

But the rapid increase of dim(WQ
k ) leads to high online complexity, so that this strategy

becomes non competitive during the online phase, see Figure 7(b).

We compare now the alternate and the simultaneous construction of Vr and WQ
k with

partial dual enrichment (53) (red and blue curves in Figure 7). The initial idea of the alter-

nate construction is to build reduced spaces of better quality. Indeed, since the evaluation

points of the primal solution are different from the one of the dual solution, the reduced

spaces are expected to contain “complementary information” for the approximation of the

variable of interest. In practice, we observe in Figure 7(a) that the alternate construction is

(two times) more expensive during the offline phase, but the resulting error estimate behaves

very similarly to the simultaneous strategy, see Figure 7(b). We conclude that the alternate

strategy is not relevant for this application.

Furthermore, let us note that after iteration 50 of the greedy algorithm, the rate of con-

vergence of the dashed red curve of Figure 7(a) (i.e. the simultaneous construction with

partial dual enrichment using the saddle point method) rapidly increases. A possible expla-

nation is that the dimension of the dual approximation space is large enough to reproduce

correctly the dual variable, which requires a dimension higher than l = 44. The same obser-

vation can be done for the alternative strategy (the dashed blue curve) after iteration 100

(which corresponds to dim(WQ
k ) ≥ 50). Also, we note that the primal-dual method does not

present this behavior.

4.3.2 Application 2

For the application 2, we first test Algorithms 1 and 2 with the use of a preconditioner

(defined in Section 4.2.2). The interpolation points for the preconditioner are the ones

where the solutions (primal and dual) have been computed, see Algorithms 1 and 2. The
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Figure 7: Application 1: error estimate supξ ∆(ξ) with respect to the offline complexity

(Figure 7(a)) and the online complexity (Figure 7(b)). The continuous lines correspond to

the primal-dual method, and the dashed lines correspond to the saddle point method. The

primal only curves serve as reference.

preconditioner is used for the definition of the test space Wr(ξ), see equation (44), and

for the error estimate ∆(ξ), see equation (59) for the primal-dual method and (60) for the

saddle point method. The numerical results are given in Figure 8. We can draw the same

conclusions as for application 1.

• In the offline phase, the saddle point method provides lower errors (Figure 8(a)). How-

ever, the corresponding reduced systems are larger, and we see that the primal-dual

method provides lower errors for the same online complexity, see Figure 8(b). For

this test case, the benefits (in term of accuracy) of the saddle point method does not

compensate the additional online computational costs.

• The full dual enrichment yields a fast convergence during the offline phase, but the

rapid increase of WQ
k is disadvantageous regarding the online complexity. However,

since the dimension of the variable of interest is “only” l = 2, the full dual enrichment

is still an acceptable strategy (compared to the previous application).

• Here, the alternate strategy (blue curves) seems to yield slightly better reduced spaces

compared to the simultaneous strategy, see Figure 8(b). But this leads to higher offline

costs, see Figure 8(a).

We also run numerical tests without using the preconditioner. In that case, we replace

Pm(ξ) by R−1
V . Figure 9 shows numerical results which are very similar to those of Figure
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8. To illustrate the benefits of using the preconditioner, let us consider the effectivity index

η(ξ) = ∆(ξ)/‖s(ξ) − s̃(ξ)‖Z associated to the error estimate for the variable of interest.

Figure 10 shows the confidence interval I(p) of probability p for η(ξ) defined as the smallest

interval which satisfies

P(ξ ∈ Ξt : η(ξ) ∈ I(p)) ≥ p,

where P(A) = #A/#Ξt for A ⊂ Ξt. When using the preconditioner, we see in Figure 10

that the effectivity index is improved during the greedy iterations in the sense that the

confidence intervals are getting smaller and smaller. Also, we note that after the iteration

15, the effectivity index is always above 1: this indicates that the error estimate tends to

be certified. Furthermore, after iteration 20 we do not observe any further improvement, so

that is seems not useful to continue enriching the preconditioner.

Let us finally note that the use of the preconditioner yields significant computational

costs. Indeed, we have to store operator factorizations (in our current implementation of the

method), and the computation of the interpolation of the inverse operator requires additional

problems to solve (see [22]). For the present application, even if the effectivity index of the

error estimate is improved, the benefits of using the preconditioner remains questionable.
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Figure 8: Application 2 with preconditioner: error estimate supξ ∆(ξ) with respect to the

offline complexity (Figure 8(a)) and the online complexity (Figure 8(b)). The continuous

lines correspond to the primal-dual method, and the dashed lines correspond to the saddle

point method. The primal only curves serve as references.
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Figure 9: Application 2 without preconditioner: error estimate supξ ∆(ξ) with respect to the

offline complexity 9(a) and the online complexity 9(b). The continuous lines correspond to

the primal-dual method, and the dashed lines correspond to the saddle point method. The

primal only curves serve as references.
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Figure 10: Application 2: evolution with respect to the greedy iterations of the confidence

interval I(p) for the effectivity index η(ξ) = ∆(ξ)/‖s(ξ)−s̃(ξ)‖Z for the saddle point method.

5 Conclusion

We have proposed and analyzed projection based methods for the estimation of vector-

valued variables of interest in the context of parameter-dependent equations. This includes

a generalization of the classical primal-dual method to the case of vector-valued variables of
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interest, and also a Petrov-Galerkin method based on a saddle point problem. Numerical

results showed that the saddle point method always improves the quality of the approxi-

mation compared to the primal-dual method using the same reduced spaces. We have also

derived computable error estimates and greedy algorithms for the goal-oriented construction

of the reduced spaces. The performances of these approaches have been compared on numer-

ical examples, with an analysis of both the offline complexity (construction of the reduced

spaces) and the online complexity (evaluation of the reduced order model and estimation of

the variable of interest for one instance of the parameter). This complexity analysis revealed

that the saddle point method is preferable to the primal-dual method regarding the offline

costs. However, in the situation where the reduction of the online costs matter more than the

reduction of offline costs, then the primal-dual method seems to be a better option (at least

for the considered applications). For the considered applications, the use of preconditioners

allows the construction of better reduced test spaces and also better error estimates. Even

if the additional computational costs for building the preconditioner is significant, this has

demonstrated the importance of having a suitable test space and good residual based error

estimates.

The proposed error estimates, which involve the use of Cauchy-Schwarz inequalities, are

clearly not optimal. Extending probabilistic error bounds proposed in [12] to the case of

vector-valued variables could improve these error estimates.
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