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Abstract

We propose a projection-based model order reduction method for the solution of
parameter-dependent dynamical systems. The proposed method relies on the con-
struction of time-dependent reduced spaces generated from evaluations of the solution
of the full-order model at some selected parameters values. The approximation ob-
tained by Galerkin projection is the solution of a reduced dynamical system with a
modified flux which takes into account the time dependency of the reduced spaces.
An a posteriori error estimate is derived and a greedy algorithm using this error
estimate is proposed for the adaptive selection of parameters values. The resulting
method can be interpreted as a dynamical low-rank approximation method with a
subspace point of view and a uniform control of the error over the parameter set.

1 Introduction

Parameter-dependent equations are considered in many problems of scientific computing
such as optimization, control or uncertainty quantification. For complex numerical mod-
els, model order reduction methods are usually required for an efficient estimation of the
solution for many values of the parameters (multi-query context). Classical model order
reduction methods for parameter-dependent equations are the Reduced Basis (RB) method
[20], the Proper Orthogonal Decomposition (POD) method [33] or the Proper Generalized
Decomposition (PGD) method [26]. These methods can be interpreted as low-rank approx-
imation methods with different constructions of the approximation for different controls of
the error over the parameter set (uniform control for RB or control in mean-square sense
for POD and PGD, see, e.g., [27]) .
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†Ecole Centrale de Nantes, GeM, UMR CNRS 6183, France.
‡Corresponding author (marie.billaud-friess@ec-nantes.fr).
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This paper is concerned with the solution of parameter-dependent non-autonomous
dynamical systems of the form {

u′(t, ξ) = f(u(t, ξ), t, ξ),

u(0, ξ) = u0(ξ),
(1)

where the flux f and initial condition depend on some parameters ξ with values in a
parameter set Ξ. The solution u(t, ξ) belongs to the high-dimensional state space X = Rd.
Regarding time-dependent problems, different model order reduction (MOR) methods have
been considered in the literature. In the context of RB methods, an approximation is
obtained by a (Petrov-)Galerkin projection of the solution onto a time-independent low-
dimensional space Xr (so-called reduced space) of X, which results in an approximation
of the form

u(t, ξ) ≈
r∑
i=1

viαi(t, ξ), (2)

where {vi}ri=1 constitutes a basis of Xr. Different methods have been proposed for the
construction of time-independent reduced spaces Xr (see, e.g., [7, 2] for a review of such
methods). In [16], Xr is obtained as the span of snapshots u(tk, ξi) (in both time and
parameter) of the solution of the full-order model. However, for a high-dimensional state
space X, it is not feasible (and far from optimal) to retain a large number of snapshots.
Then, one can rely on a POD of the snapshots matrix in order to extract subspaces which
are optimal in a mean-square sense. A more popular approach has been considered in
[14, 17, 18, 19] for linear evolution problems, with an adaptive construction of the reduced
space by a POD-greedy algorithm using a posteriori error estimates. At each iteration
of this algorithm, the reduced space is enriched by the dominant modes of the POD of
a trajectory u(·, ξi) of the full-order model, where ξi maximizes over the parameters set
an estimate of the current approximation error. This strategy has also been considered
in [28, 12, 21, 34] for the solution of nonlinear problems, including nonlinear dynamical
systems. In [34], it was combined with a discrete variant of the Empirical Interpolation
Method [1, 8] for the approximation of nonlinear terms and for the efficient evaluation of
the error estimate which is required in the greedy algorithm.

PGD method has been considered in [25, 26] for the low-rank approximation of the
solution of stochastic evolution equations, with an approximation of the form

u(t, ξ) ≈
r∑
i=1

vi(t)αi(ξ), (3)

which is seen as a rank-r element in the tensor space X [0,T ]⊗RΞ. This approach adopts a
variational approach in time. The resulting approximation can be seen as a projection of
u(t, ξ) ∈ X onto a time-dependent reduced space

Xr(t) = span{v1(t), . . . ,vr(t)},
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which allows to well capture transient phenomena. However, the projection is obtained with
a global in time variational principle and is not optimal at each instant t. In the context of
parameter dependent equations, reduced basis methods based on Petrov-Galerkin space-
time (PG-ST) formulations have also been introduced, see for example [31, 32]. Such an
approach provides a low-rank approximation of the form (3). At the discrete level, it
differs from usual reduced basis approaches, introduced e.g. in [17], since they do not rely
on time-stepping scheme except in very particular cases. For a detailed comparison with
standard RB method, see the recent review [15] .

Dynamical low-rank approximation methods have been considered in [9, 10, 23, 24, 30],
with different types of constructions but an approximation of the same form

u(t, ξ) ≈
r∑
i=1

vi(t)αi(t, ξ), (4)

which at each instant t can be interpreted as a rank-r approximation in the tensor space
X ⊗ RΞ. Again, the approximation can be seen as a projection onto a time-dependent
reduced space Xr(t) but here, the projection is obtained through principles which are local
in time (e.g., Dirac-Frenkel principle). This results in a reduced order model which takes
the form of a dynamical system.

In this paper, we propose a new model order reduction method for solving general
parameter-dependent dynamical systems of the form (1). This method provides an ap-
proximation of the form (4), so that it can be interpreted as a dynamical low-rank approx-
imation method. However, the proposed method differs from existing dynamical low-rank
approximation methods in that it adopts a subspace point of view and provides a uniform
control of the error over the parameter set. The reduced space Xr(t) ⊂ X is here ob-
tained as the span of some selected trajectories {u(·, ξi)}ri=1 of the full-order model (1).
The approximation is obtained by solving a reduced dynamical system of size r obtained
by Galerkin projection (see, e.g., [4]), which has the form of the initial dynamical sys-
tem with a modified flux which takes into account the time dependency of the subspace.
The resulting approximation (when discarding some necessary numerical approximations)
interpolates the solution map ξ 7→ u(·, ξ) at points {ξ1, . . . , ξr}. An a posteriori error es-
timate ∆r(t, ξ) (local in time) is derived in the lines of [34] using the logarithmic Lipschitz
constant associated to the flux. This error estimate is used in a greedy procedure for the
adaptive selection of interpolation points, where at step r, the next interpolation point
corresponds to a maximizer over the parameters set Ξ of a certain norm of t 7→ ∆r(t, ξ).

The paper is organized as follows. In Lemma 2, we introduce the Galerkin method for
the projection of the dynamical system (1) onto a time-dependent reduced space and we
derive an a posteriori error estimate. In Lemma 3, we present strategies for the construction
of reduced spaces Xr, including the classical POD-greedy strategy for the construction of
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time-independent reduced spaces, and the proposed greedy algorithm for the construction
of time-dependent reduced spaces. In Lemma 4, we detail some practical aspects for
an implementation of the proposed method in a discrete time setting, and for obtaining
online computations (solution of the reduced dynamical system and evaluation of the error
estimate) with a complexity independent of the dimension d of the full-order model. In
Lemma 5, the proposed method is illustrated through numerical experiments on several
test cases and compared to the POD-greedy approach.

2 Reduced dynamical system

In this section, we first propose a Galerkin method for computing a projection of the
solution of the dynamical system (1) onto a time-dependent subspace Xr(t) of X. Then,
we derive an a posteriori error estimate. Here, the reduced space Xr(t) is supposed to be
given.

2.1 Projection

The state space X = Rd is equipped with the canonical inner product 〈x,y〉X := xTy and
associated norm ‖x‖X . We assume that

dimXr(t) = r for all t > 0. (5)

We denote by {v1(t), . . . ,vr(t)} an orthonormal basis of Xr(t) and we introduce the or-
thogonal matrix

Vr(t) = [v1(t), . . . ,vr(t)] ∈ Rd×r,

with VT
r (t)Vr(t) = Ir, where Ir is the identity matrix of size r × r. We denote by

ΠXr(t) = Vr(t)V
T
r (t) ∈ Rd×d the orthogonal projector onto Xr(t).

We define the approximation ur(t, ξ) of u(t, ξ) by projecting the equations of the
dynamical system (1) onto Xr(t){

ΠXr(t)u
′
r(t, ξ) = ΠXr(t)f(ur(t, ξ), t, ξ),

ur(0, ξ) = ΠXr(0)u0
r(ξ).

(6)

Note that for subspaces Xr(t) generated by trajectories of the full-order model, Xr(0)
contains evaluations of the initial condition u0

r(ξ), so that ΠXr(0)u0
r = u0

r in the case of a
parameter-independent initial condition1. We define

ur(t, ξ) = Vr(t)αr(t, ξ),

1Note that the dimension of Xr(0) may be different from the dimension of Xr(t), t > 0, which does not
contradict the assumption (5).
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with αr(t, ξ) = Vr(t)
Tur(t, ξ) ∈ Rr. Let ΠX⊥r

(t) = Id−ΠXr(t) be the orthogonal projector
onto X⊥r (t) which is the orthogonal complement of Xr(t) in X. From the first equation of
(6) and ΠX⊥r

(t)Vr(t) = 0, we deduce

u′r(t, ξ) = ΠXr(t)f(ur(t, ξ), t, ξ) + ΠX⊥r
(t)V′r(t)αr(t, ξ). (7)

A reduced dynamical system of dimension r is then obtained for the components αr:{
α′r(t, ξ) = f r(αr(t, ξ), t, ξ),

αr(0, ξ) = α0
r(ξ),

(8)

with α0
r(ξ) = VT

r (0)u0(ξ) and a reduced flux f r defined by

f r(αr, t, ξ) = Vr(t)
Tf(Vr(t)αr, t, ξ)−Vr(t)

TV′r(t)αr, (9)

where the last term takes into account the time dependency of the reduced basis. For a
time-independent reduced basis, i.e. such that V′r(t) = 0, we recover a classical projected
dynamical system (see, e.g., [18]).

Remark 1. Assuming that for a fixed ξ, v 7→ f(v, t, ξ) is uniformly Lipschitz continuous,
(v, t) 7→ f(v, t, ξ) is continuous, and assuming that Vr is continuously differentiable with
V′r uniformly bounded, then v 7→ f r(v, t, ξ) is uniformly Lipschitz continuous with respect
to v and (v, t) 7→ f r(v, t, ξ) is continuous. Then, the reduced dynamical system (8) admits
a unique solution t 7→ αr(t, ξ) which is continuously differentiable.

2.2 A posteriori error estimate

From equations (1) and (7), we deduce that the error er = u− ur satisfies

e′r(t, ξ) = f(u(t, ξ), t, ξ)− f(ur(t, ξ), t, ξ)︸ ︷︷ ︸
δ1

+ ΠX⊥r
(t)f(ur(t, ξ), t, ξ)︸ ︷︷ ︸

δ2

,

− ΠX⊥r
(t)V′r(t)Vr(t)

Tur(t, ξ)︸ ︷︷ ︸
δ3

,
(10)

with er(0, ξ) = ΠX⊥r
(0)u0(ξ). The time derivative of the error er is the sum of three

contributions: the error δ1 between the flux and its approximation, the error δ2 between
the flux approximation and its projection onto Xr(t), and an additional term δ3 taking
into account the time dependency of the basis.

We first recall the definition of the local logarithmic Lipchitz constant, as defined in [34,
§2.1]. This constant will provide a local information on the flux f around the approximation
ur and will allow to derive an a posteriori error estimate.
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Definition 1 (Local logarithmic Lipschitz constant). For a Lipschitz continuous function
f : X → X, the local logarithmic Lipschitz constant of f at v ∈ X is defined by

LX [f ](v) = sup
u∈X,u 6=v

〈u− v,f(u)− f(v)〉X
‖u− v‖2X

.

For an affine flux, the local logarithmic Lipschitz constant is constant and can be
obtained by solving an eigenvalue problem. Indeed, if f(u) = Au+ g with A ∈ Rd×d and
g ∈ Rd, then

LX [f ](v) = LX [A] = sup
06=u∈X

〈u,Au〉X
‖u‖2X

= λmax

(
A + AT

2

)
, (11)

where λmax(M) denotes the maximum eigenvalue of the matrix M ∈ Rd×d.

Now, we recall a comparison lemma [34] in a form suitable for the derivation of our a
posteriori error estimate.

Lemma 1 (Comparison lemma). Let T > 0 and let u, α, β : [0, T ] → R be integrable
functions. Assume that u is differentiable and u′ ≤ βu+α. Then for all t ∈ [0, T ], it holds
u(t) ≤ v(t), where v(t) is the solution of the differential equation v′ = βv + α with initial
condition v(0) = u(0).

Proof. Denoting γ(t) =
∫ t
0
β(τ)dτ , we have

u(t) = eγ(t)e−γ(t)u(t)− eγ(t)u(0) + eγ(t)u(0),

= eγ(t)
∫ t
0
(e−γ(τ)u(τ))′dτ + eγ(t)v(0),

≤ eγ(t)
(∫ t

0
e−γ(τ)α(τ)dτ + v(0)

)
= v(t),

which ends the proof.

Following [34], we now provide a bound for the error norm ‖er(t, ξ)‖X .

Proposition 1. The error norm ‖er(t, ξ)‖X satisfies

‖er(t, ξ)‖X ≤ ∆r(t, ξ) (12)

for all t ≥ 0, where ∆r(t, ξ) is the solution of the ordinary differential equation{
∆′r(t, ξ) = LX [f ](ur(t, ξ))∆r(t, ξ) + ‖r(t, ξ)‖X ,
∆r(0, ξ) = ‖er(0, ξ)‖X ,

(13)

with r(t, ξ) = ΠX⊥r
(t)(V′r(t)Vr(t)

Tur(t, ξ) − f(ur(t, ξ), t, ξ)) and er(0, ξ) = u0(ξ) −
ΠXr(0)u0(ξ).
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Proof. For the sake of clarity, we omit the dependence on ξ in the proof. Taking the scalar
product of (10) with er(t), it comes

1

2

d

dt
‖er(t)‖2X = 〈er(t), e′r(t)〉X ,

= 〈er(t), (f(u(t), t)− f(ur(t), t)) + r(t)〉X ,
≤ LX [f ](ur(t))‖er(t)‖2X + ‖er(t)‖X‖r(t)‖X ,

where we have used the definition 1 of the local logarithmic Lipschitz constant at ur(t).
We then obtain d

dt
‖er(t)‖X ≤ LX [f ](ur(t))‖er(t)‖X + ‖r(t)‖X , and the result follows from

Lemma 1.

In practice, the error bound ∆r(t) will be estimated by solving approximately the
differential equation (13) using a numerical scheme (see Lemma 4).

Remark 2. Following the proof of Theorem 1, we easily prove that the solution of (13),
with LX [f ](ur) replaced by the local Lipschitz constant

KX [f ](ur) = sup
v∈X,v 6=ur

‖f(v)− f(ur)‖X
‖v − ur‖X

,

also provides an error bound. However, since LX [f ] ≤ KX [f ], a sharper error bound is
obtained when using the local logarithmic Lipschitz constant. Moreover, LX [f ](ur) is easier
to compute than KX [f ](ur) in practice.

Remark 3. The error bound ∆r(t) may grow exponentially with time. However, it is
a certified error bound and a good candidate for piloting adaptive algorithms (see later).
Moreover, if particular information is available on the structure of the problem (e.g. if it
arises from spatial discretization of a PDE), it is possible to improve this error bound using
energy norms [20, §3.3]. In the context of Petrov-Galerkin space-time formulations, better
error estimates can be obtained for particular classes of problems, e.g. [32] for parabolic
equation and [35] for Burgers’ equation. For the general non linear dynamical systems
considered here, a way to improve the effectivity of error bound ∆r is to improve the local
Lipschitz constant, as suggested in [34, §5].

3 Greedy algorithms for the construction of reduced

spaces

In this section, we introduce greedy algorithms for the construction of an increasing se-
quence of reduced spaces {Xr}r>0. These spaces are generated from successive evaluations
of the solution u of the full-order model at parameters values {ξr}r>0 which are selected
adaptively.
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For a given subspace Xr in X, possibly time-dependent, we consider ur(·, ξ) the solution
of (6). We assume that an a posteriori estimate ∆r(t, ξ) of the error ‖er(t, ξ)‖X is available
(see Subsection 2.2). Defining

Xr+1(t) = Xr(t) + span{u(t, ξr+1(t))},

where ξr+1(t) maximizes ξ 7→ ∆r(t, ξ) over Ξ, would result in a standard greedy algorithm
for the approximation of the solution manifold {u(t, ξ) : ξ ∈ Ξ} at time t with a sequence of
subspaces {Xr(t)}r>0 (see [6, 5, 11] for convergence results on greedy algorithms). However,
choosing time-dependent parameters values is infeasible in practice, even when working
with a discretization on a time grid. Indeed, it requires the solution of the full-order model
for too many parameters values.

Therefore, we rely on evaluations of the solution at time-independent parameters values
whose selection requires a global in time error estimate. Here, we introduce an a posteriori
estimate of the L2(0, T )-norm of the error ‖er(·, ξ)‖X defined by

∆(0,T )
r (ξ) := ‖∆r(·, ξ)‖(0,T ),2 =

(∫ T

0

∆r(t, ξ)2dt

)1/2

,

where ‖ · ‖(0,T ),2 denotes the natural norm in L2(0, T ).

Remark 4. Note that other norms of t 7→ ∆r(t, ξ) (e.g., the L∞(0, T )-norm or a weighted

L2(0, T )-norm) could be used for defining the error indicator ∆
(0,T )
r (ξ), depending on how

we want to control the quality of the reduced-order model.

3.1 T-greedy algorithm

We first propose a very natural strategy which consists in defining

Xr+1(t) = Xr(t) + span{u(t, ξr+1)}.

A basic strategy would consist in choosing the sequence of parameters values {ξ1, . . . , ξr, . . .}
at random. In this work, we adopt an adaptive greedy strategy called T-greedy algorithm,
where ξr+1 maximizes over Ξ the error estimate ∆

(0,T )
r (ξ). Note that in practice, param-

eters values are selected in a finite subset Ξtrain in Ξ called a training set. The T-Greedy
algorithm is summarized in Algorithm 1.

In practice, we can fix a desired precision ε and stop the Algorithm 1 after step 2 if
maxξ∈Ξtrain

∆
(0,T )
r (ξ) < ε. At iteration r of the algorithm, the approximation ur(t) takes

the form

ur(t, ξ) =
r∑
i=1

vi(t)αi(t, ξ), (14)
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Algorithm 1 T-Greedy algorithm

1: Set r = 0, X0 = {0}.
2: Compute ur(·, ξ) and ∆r(·, ξ) for all ξ in Ξtrain.
3: Find ξr+1 ∈ arg max

ξ∈Ξtrain

∆(0,T )
r (ξ).

4: Compute t 7→ u(t, ξr+1).
5: Set Xr+1(t) = Xr(t) + span{u(t, ξr+1)}.
6: Set r ← r + 1 and go to step 2.

where {v1(t), . . . ,vr(t)} constitutes a basis of the space Xr(t). The time-dependent sub-
space Xr(t) contains the solution u(t, ξ) of the full-order model for parameters values
ξ1, . . . , ξr. Therefore, by the property of the Galerkin projection, the solution ur of the
reduced dynamical system interpolates the solution u at these parameters values.

Satisfying assumption (5) requires that for all t > 0, the vectors u(t, ξ1), . . . ,u(t, ξr)
are linearly independent. Under this assumption, we can define the basis of Xr(t) by

vi(t) = u(t, ξi) or vi(t) =
(Id −ΠXi−1

(t))u(t, ξi)∥∥(Id −ΠXi−1
(t))u(t, ξi)

∥∥
X

, (15)

the second choice resulting in an orthonormal basis which is more convenient for numerical
stability issues. Moreover, assuming that the flux f(·, ·, ξi) is continuous and uniformly
Lipschitz continuous with respect to its first variable, the trajectories t 7→ u(t, ξi), and
therefore the functions t 7→ vi(t), are continuously differentiable.

3.2 POD-Greedy algorithm

Here, we describe the POD-greedy algorithm introduced in [17] for the adaptive construc-
tion of time-independent reduced spaces Xr. Given an approximation space Xr and the
corresponding solution ur of the reduced dynamical system in Xr, we select a new pa-
rameters value ξr+1 which maximizes the error estimate ξ 7→ ∆

(0,T )
r (ξ), such as for the

T-greedy strategy. Then the trajectory u(·, ξr+1) of the full-order model is computed and
the space Xr is enriched by the `-dimensional subspace generated by the first ` POD modes
POD`(sr(·, ξr+1)) of sr(·, ξr+1) = u(·, ξr+1)−ΠXru(·, ξr+1), such that (see, e.g., [33])

span(POD`(sr(·, ξr+1))) = arg min
dim(V )=`

∫ T

0

‖sr(t, ξr+1)−ΠV sr(t, ξ
r+1)‖2Xdt.

The algorithm is summarized in Algorithm 2.
As for Algorithm 1, we can fix a desired precision ε and stop the Algorithm 2 after

step 2 if arg maxξ∈Ξtrain
∆

(0,T )
r (ξ) < ε. Let us remark that choosing ` = 1 allows to obtain

a slow increase of the dimension of Xr along the iterations. Since the reduced space is

9



Algorithm 2 POD-greedy algorithm

1: Set r = 0, X0 = {0}.
2: Compute ur(·, ξ) and ∆r(·, ξ) for all ξ in Ξtrain.

3: Find ξr+1 ∈ arg maxξ∈Ξtrain
∆

(0,T )
r (ξ).

4: Compute u(·, ξr+1) and sr(·, ξr+1) = u(·, ξr+1)−ΠXru(·, ξr+1).
5: Set Xr+` = Xr + span(POD`

(
sr(·, ξr+1)

)
).

6: Set r ← r + ` and go to step 2.

enriched by only the first modes of the POD of the trajectories t 7→ u(t, ξi), 1 ≤ i ≤ r,
the approximation ur does not in general interpolate the function ξ 7→ u(·, ξ) at points
ξ1, . . . , ξr. As it will be illustrated in the numerical experiments, this enrichment strategy
may yield very high-dimensional reduced spaces for reaching a desired accuracy. A typical
example is the advection problem ∂tu + ξ∂xu = 0 on the torus with initial condition
u0, for which a very high-dimensional time-independent reduced space may be required
to approximate the solution t 7→ u0(x − ξt), even for one instance of the parameters ξ.
More generally, it is well known that POD is not well suited for solving problems with
propagating fronts.

4 Practical implementation

In this section, we provide the practical ingredients for an efficient offline/online imple-
mentation of the proposed model reduction method in a discrete time setting. We first
introduce a time integration scheme for the solution of the full and reduced order dynam-
ical systems, and for the computation of the error estimate. Then, for the model order
reduction method to be efficient, the computation of the approximation ur as well as the
evaluation of the error estimate ∆r have to be performed online with a complexity inde-
pendent of the dimension d of the full-order model. This requires some assumptions on the
dependence of the flux on the parameters and some pre-computations in an offline phase.

4.1 Time integration

Let T = {tk}Kk=0 be a regular discretization of [0, T ] with tk = kδt and δt = T
K

. Given
a : [0, T ] → V , with V a vector space, we denote by ak ≈ a(tk) an approximation of a at
time tk and δak = ak+1 − ak. We assume that the flux f : X × (0, T ) × Ξ → X can be
decomposed as follows:

f(u, t, ξ) = A(t, ξ)u+ h(u, t, ξ) + g(t, ξ),

where A(t, ξ) ∈ Rd×d, h(·, t, ξ) : X → Rd and g(t, ξ) ∈ Rd. For solving (1), we use the
following semi-implicit time integration scheme

(Id − δtAk+1(ξ))uk+1(ξ) = uk(ξ) + δthk(uk(ξ), ξ) + δtgk(ξ), (16)
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The matrix (Id − δtAk+1(ξ)) is assumed to be invertible.

4.1.1 Time integration of the reduced dynamical system

Let Xk
r denote the reduced space at time tk, {vk1, . . . ,vkr} an orthonormal basis of Xk

r ,

Vk
r = [vk1, . . . ,v

k
r ], ΠXk

r
= Vk

r
T
Vk
r the orthogonal projector ontoXk

r , and Π
Xk

r
⊥ = Id−ΠXk

r
.

The approximation ukr at time tk is obtained by projecting the discrete dynamical system
(16) onto Xk+1

r

uk+1
r (ξ) = ΠXk+1

r

(
ukr(ξ) + δt(Ak+1(ξ)uk+1

r (ξ) + hk(ukr(ξ), ξ) + gk(ξ))
)
, (17)

with u0
r(ξ) = ΠX0

r
u0(ξ). Then, we obtain the following discrete reduced dynamical system:(

Ir − δtAk+1
r (ξ)

)
αk+1
r (ξ) = αkr(ξ)+ (18)

δtVk+1
r

T
(
hk(Vk

rα
k
r(ξ), ξ) + gk(ξ)− δVk

r

δt
αkr(ξ)

)
,

with initial condition α0
r(ξ) = V0

r
T
u0(ξ), where

Ak+1
r (ξ) = Vk+1

r

T
Ak+1(ξ)Vk+1

r , (19)

and where δVk
r

δt
takes into account the possible time dependency of the reduced basis (this

term is equal to zero for time-independent reduced spaces). In practice, for an efficient solu-

tion of (18), hk(uk(ξ), ξ) is replaced by an approximation h̃
k
(uk(ξ), ξ) using an empirical

interpolation method (see Subsection 4.2.1).

4.1.2 Time integration for error estimation

We first note that if in (13) the constant LX [f ](ur) is replaced by an upper bound, then
the solution of the ordinary differential equation provides an upper bound for ∆r. Noting
that LX [f ](ur) ≤ LX [A] + LX [h](ur), we introduce estimations L̃X [A] and L̃X [h](ur) of
LX [A] and LX [h](ur) respectively and consider the following ordinary differential equation
whose solution ∆̃r provides an estimation of an upper bound of ∆r:{

∆̃′r(t, ξ) = L̃X [A]∆̃r(t, ξ) + L̃X [h](ur)∆̃r(t, ξ) + ‖r̃(t, ξ)‖X ,
∆̃r(0, ξ) = ‖er(0, ξ)‖X .

(20)

Here, ‖r̃(t, ξ)‖X denotes an approximation of ‖r(t, ξ)‖X where h(ur(t, ξ), t, ξ) is replaced
by an approximation h̃(ur(t, ξ), t, ξ) obtained by an empirical interpolation method (see
Subsection 4.2.1).
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Equation (20) is then solved using the following semi-implicit scheme (consistent with
(16)):

∆̃k+1
r (ξ) = (1− δtL̃X [Ak+1(ξ)])−1

(
∆̃k
r(ξ) + δtL̃X [hk](ukr(ξ)) + δt‖r̃k(ξ)‖X

)
. (21)

with

r̃k(ξ) = Π
Xk+1

r
⊥

(
δVk

r

δt
αkr(ξ)−Ak+1(ξ)uk+1

r − h̃k(ukr(ξ), ξ)− gk(ξ)

)
, (22)

where δVk
r

δt
takes into account the possible time dependency of the reduced basis (this term

is equal to zero for time-independent reduced spaces).

4.2 Offline/Online implementation

A time and parameter-dependent function a(t, ξ) with values in some vector space V is
said to admit a time-dependent affine representation if

a(t, ξ) =

QA∑
i=1

θia(t, ξ)ai(t),

with θai (t, ξ) ∈ R and ai(t) ∈ V . For a function discretized on a time grid {tk}Kk=0, that
means ak(ξ) =

∑QA

i=1 θ
i,k
a (ξ)ai,k, for 0 ≤ k ≤ K. For the sake of presentation, we keep

the notation a(t, ξ) for time-dependent functions, even if t only takes a finite set of values
tk, 0 ≤ k ≤ K. Then, we assume that A(t, ξ) and g(t, ξ) admit time-dependent affine
representations

A(t, ξ) =

QA∑
i=1

θiA(t, ξ)Ai(t), g(t, ξ) =

Qg∑
i=1

θig(t, ξ)gi(t).

4.2.1 Solution of the reduced dynamical system

The solution of the reduced dynamical system (18) requires an efficient evaluation of

Ar(t
k, ξ) = Vr(t

k)TA(tk, ξ)Vr(t
k), gr(t

k, ξ) = Vr(t
k)Tg(tk, ξ),

and
hk+1
r (αr(t

k, ξ), tk, ξ) = Vr(t
k+1)Th(αr(t

k, ξ), tk, ξ).

In the offline phase, after computing the reduced space Xr(t) and associated basis Vr(t),
the reduced matrices Ai

r(t) = Vr(t)
TAi(t)Vr(t) and reduced vectors gir(t) = Vr(t)

Tgir(t)
can be precomputed. Then in the online phase, the reduced matrix Ar(t, ξ) and reduced
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vector gr(t, ξ) can be evaluated for any parameters value and any time with a complexity
independent of d using

Ar(t, ξ) =

QA∑
i=1

θiA(t, ξ)Ai
r(t), gr(t) =

Qg∑
i=1

θig(t, ξ)gir(t).

An efficient way of treating the nonlinear term is to approximate h(ur(t, ξ), t, ξ) using the
Empirical Interpolation Method (EIM). Here, we briefly recall the principle of this method
(see [3] for a detailed presentation). For a given basis {h1, . . . ,hm} in Rd, with m ≤ d, the
EIM approximation h̃(ur(t, ξ), t, ξ) of order m of h(ur(t, ξ), t, ξ) is given by

h̃(ur(t, ξ), t, ξ) = Hm(PT
mHm)−1PT

mh(ur(t, ξ), t, ξ), (23)

where Pm = [ej1 , . . . , ejm ] ∈ Rm×d, with ej the j-th unit vector in Rd, and Hm =
[h1, . . . ,hm] ∈ Rd×m. Here, the vectors h1, . . . ,hm are chosen as linear combinations of
columns (i1, . . . , im) of the matrix of snapshots h(u(tk, ξi), tk, ξi) already computed during
the greedy selection of {ξ1, . . . ξr}. The set of indices Im = {(il, jl), 1 ≤ l ≤ m} is obtained
with a greedy algorithm (see [3, §4.4]) which ensures that the matrix PT

mHm is non singular
and well-conditioned. An approximation of the reduced flux Vr(t

k+1)Th(ur(t
k, ξ), tk, ξ) is

then given by
Vr(t

k+1)TUmPT
mh(ur(t

k, ξ), tk, ξ),

where Um = Hm(PT
mHm)−1 ∈ Rm×d. The matrices Vr(t

k+1)TUm ∈ Rr×m can be pre-
computed during the offline phase and stored to be later multiplied by the vectors PT

mh(ur(t
k, ξ), tk, ξ)

which contains the components (j1, . . . , jm) of the flux h(ur(t
k, ξ), tk, ξ). In practice, the

EIM algorithm is stopped when the precision ε is reached, i.e. when

max
k,i
‖h(ur(t

k, ξi), tk, ξi)− h̃(ur(t
k, ξi), tk, ξi)‖X < ε. (24)

In the following computations, the flux approximation defined by (23) is used for the
solution of the discrete reduced dynamical system (18). Here, we assume that ε is chosen
small enough for the interpolation error between h̃ and h to be neglected in our error
analysis.

Remark 5. As in [34], this method can be reduced to the adaptive selection of the indices
(i1, . . . , im) only, where the set of vectors {h1, . . .hm} is obtained by a POD of the matrix
containing the snapshots of the discrete flux [8].

Remark 6. In the present work, we have applied an EIM to construct an approxima-
tion of the nonlinear flux h(ur(t, ξ), t, ξ) on a time-independent basis {h1, . . . ,hm} in Rd.
An alternative approach, not considered here, would consist in approximating the flux on
a time-dependent basis {h1(t), . . . ,hm(t)} constructed using an algorithm similar to the
proposed T-greedy algorithm, using a global in time error estimate providing indices Im.
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4.2.2 Evaluation of the error estimate

Now we detail practical aspects for the evaluation of the a posteriori error estimate ∆̃r

using the integration scheme (21). For an efficient online computation of the error esti-
mate, we need to evaluate with a complexity independent of d the term ‖r̃k(ξ)‖X and the
estimations L̃X [A] and L̃X [h](ur(t, ξ)) of the logarithmic Lipschitz constants LX [A] and
LX [h](ur(t, ξ)).

We first address the estimation of logarithmic Lipschitz constants. Using the time-
dependent affine representation of A, we have

LX [A] = sup
06=x∈X

QA∑
i=1

θiA(t, ξ)
〈x,Ai(t)x〉X
‖x‖2X

≤
QA∑
i=1

|θiA(t, ξ)||LX [Ai(t)]| := L̃X [A]. (25)

For the local logarithmic constant of h at ur, we consider the first-order linearization of
the flux

h(v, t, ξ) ≈ h(ur(t, ξ), t, ξ) +∇h(ur(t, ξ), t, ξ)(v − ur(t, ξ)),

where ∇h(ur(t, ξ), t, ξ) ∈ Rd×d denotes the gradient of h(·, t, ξ) at ur(t, ξ), and the corre-
sponding approximation

LX [h](ur(t, ξ)) ≈ LX [∇h(ur(t, ξ), t, ξ)].

Then, a first order approximation of LX [h](ur) is obtained by computing the largest eigen-
value of the symmetric part of ∇h(ur(t, ξ), t, ξ), which is a problem with complexity de-
pending on d. In [34], in order to obtain a complexity independent on d, the authors
use a partial similarity transformation of the matrix ∇h based on POD (combined with a
matrix-DEIM approximation) which preserves the largest eigenvalue of the symmetric part
of ∇h. Here, we adopt a simpler strategy which consists in interpolating the Lipschitz con-
stants of the matrices ∇h already computed during the solution of the full-order dynamical
system in the offline step. We introduce a very simple nearest neighbor interpolation

LX [∇h(ur(t, ξ), t, ξ)] ≈
r∑
i=1

γi(ξ)LX [∇h](u(t, ξi), t, ξi) := L̃X [h(ur(t, ξ), t, ξ)], (26)

where the {ξi}ri=1 are the parameters values selected during the greedy procedure, and
where

γi(ξ) =

{
1 if d(ξ, ξi) = min

1≤j≤r
d(ξ, ξj),

0 otherwise,

with d(·, ·) a metric on Ξ (typically the Euclidian metric). Note that when using the inter-
polation method, L̃X [h](ur) is not necessarily an upper bound of LX [h](ur) and therefore,
the solution of (13) with LX [h](ur) replaced by L̃X [h](ur) may not provide a certified
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error bound. However, as it will be seen in the numerical experiments, it provides a very
good error indicator in practice.

Now we detail the computation of ‖r̃k(ξ)‖X in an offline/online strategy, where r̃k(ξ) is
given by (22) with h̃ the approximation of h defined by (23). In what follows, the indices
i and j take values in {1, . . . , QA} or {1, . . . , Qg}. In the offline phase, we pre-compute
the following matrices and vectors required for the online phase:

K1,k
ij = Vk

r

T
Ai,kTΠ

Xk
r
⊥Aj,kVk

r , K2,k
i =

δVk
r

δt

T

ΠXk+1
r ⊥Ai,k+1Vk+1

r ,

K3,k =
δVk

r

δt

T

Π
Xk+1

r
⊥
δVk

r

δt
, K4,k =

δVk
r

δt

T

Π
Xk+1

r
⊥Um,

K5,k
i = Vk

r

T
Ai,kTΠ

Xk
r
⊥Um,

and

b1,ki =
δVk

r

δt

T

Π
Xk+1

r
⊥gi,k, b2,kij = Vk+1

r

T
Ai,k+1TΠ

Xk+1
r
⊥gj,k,

b3,ki = UT
mΠ

Xk+1
r
⊥gi,k.

Then, in the online phase we compute

‖r̃k(ξ)‖2X = 〈αk+1
r (ξ),Mk+1

1 (ξ)αk+1
r (ξ)〉X + 〈αkr(ξ),Mk

2(ξ)αk+1
r (ξ)〉X

+ 〈αkr(ξ),Mk
3(ξ)αkr(ξ)〉X + 〈αkr(ξ),Mk

4(ξ)vk1(ξ)〉X
+ 〈αk+1

r (ξ),Mk+1
5 (ξ)vk1(ξ)〉X + 〈vk1(ξ),Mk

6v
k
1(ξ)〉X

+ 〈vk1(ξ),vk2(ξ)〉X + 〈αkr(ξ),v3(ξ)〉X + 〈αk+1
r (ξ),vk4(ξ)〉X + bk

where the reduced quantities are defined by

Mk
1(ξ) =

QA∑
i,j=1

θi,kA (ξ)θj,kA (ξ)K1,k
ij , Mk

2(ξ) = −2

QA∑
i=1

θi,k+1
A (ξ)K2,k

i , Mk
3(ξ) = K3,k,

Mk
4(ξ) = −2K4,k, Mk

5(ξ) = 2

QA∑
i=1

θi,kA (ξ)K5,k
i , Mk

6 = UT
mΠ

Xk
r
⊥Um,

vk1(ξ) = PT
mh

k(ukr(ξ), ξ), vk2(ξ) = 2

Qg∑
i=1

θi,kg (ξ)b3,ki ,

vk3(ξ) = −2

Qg∑
i=1

θi,kg (ξ)b1,ki , vk4(ξ) = 2

QA∑
i=1

Qg∑
j=1

θi,k+1
A (ξ)θj,kg (ξ)b2,kij ,
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and

bk =

Qg∑
i,j=1

θi,kg (ξ)θi,kg (ξ)〈gi,k, gj,k〉X .

5 Numerical experiments

In this section, we present numerical results where we compare model order reduction
methods using either time-independent or time-dependent reduced spaces. Also, we evalu-
ate the effectiveness of the a posteriori error estimate derived in Subsection 2.2. We denote
by MTI (resp. MTD) the model order reduction method using time-independent (resp.
time-dependent) reduced spaces. If not mentioned, reduced spaces for MTI (resp. MTD)
are constructed with a POD-greedy algorithm (resp. T-greedy algorithm) using a training
set Ξtrain whose size will be specified in each case.

We consider three test cases which are particular cases of the following nonlinear partial
differential equation defined on a domain Ω which is a domain in Rs (with s = 1, 2) and a
time interval I = (0, T ):

∂

∂t
u+∇ · (c(u, ξ)u) + a(x, ξ) · ∇u− µ(ξ)∆u = g(x, t, ξ), on Ω× I, (27)

with appropriate boundary conditions and a parameter-independent initial condition u0(x).
We denote x = (x1, . . . , xs)

T the spatial variable and the corresponding spatial differential
operators ∇ = ( ∂

∂x1
, . . . , ∂

∂xs
)T and ∆ =

∑s
i=1

∂2

∂x2i
. Here ξ = (ξ1, . . . , ξp) denotes a random

vector with values in Ξ and with independent components. The functions c : X ×Ξ→ R
and a : Ω×Ξ→ Rs will be specified in each test case. Finally, µ : Ξ→ R is a parameter-
dependent coefficient and g : Ω × I × Ξ → R is a given source term. We consider an
approximation of u obtained with an appropriate scheme (e.g. finite differences, finite ele-
ment) depending on the test case. This yields a system of d ordinary differential equations
of the form (1). Here, d = d(n) corresponds to the dimension of the discrete problem taking
into account the boundary conditions (e.g. when using finite differences for one-dimensional
problem, d = n− 2 for Dirichlet conditions, or d = n− 1 for periodic conditions). Finally,
we denote the spatial approximation of the solution as follows u(t) = (ui(t))

d
i=1 ∈ Rd, with

approximations of both initial condition u0 ∈ Rd, and source term g(t, ξ) ∈ Rd that will
be specified later. We assume that the time integration scheme is accurate enough for the
error due to this approximation to be neglected.

Numerical experiments were conducted with an in-house code written in Matlab R©.
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5.1 Test case 1

Let Ω = (0, 1) and I = (0, 0.2). We consider an advection equation with µ(ξ) = 0,
g(x, t, ξ) = 0, c(u, ξ) = 0 and a(x, ξ) = a(ξ) = a0 + a1ξ

1, with ξ1 ∼ U(−1, 1), a0 = 1 and

a1 = 0.5. The initial condition is a smooth function given by u0cont(x) = 1√
2π

exp(−
(
x−0.6
0.05

)2
).

We consider an approximation of u obtained with an appropriate finite difference scheme
over a uniform discretization {xi}ni=1 of Ω, where xi = a + iδx, δx = b−a

n−1 . This yields a
system of d ordinary differential equations of the form (1). We impose periodic boundary
conditions and consider a finite difference upwind scheme on a uniform discretization with
n = 2001 points. We use an explicit Euler time integration scheme

uk+1(ξ) = (Id + δtC(ξ))uk(ξ), (28)

with initial condition u0 = (u0(xi))
d
i=1. Here δt = 0.5 δx

c0+c1
, where C(ξ) ∈ Rd×d corresponds

to the discrete advection operator with periodic boundary conditions.

Deterministic case We consider a deterministic problem with a fixed value ξ = ξ0 =
0.65. Here, we compare the approximations obtained by projections on reduced spaces
constructed in two different ways. In the first method (MTI), the reduced space Xr is time-
independent and generated by the first r modes of the POD of the trajectory t 7→ u(t, ξ0),
with r ∈ {1, 2, 5, 10, 20, 50, 100, 200}. In the second method (MTD), we consider the one-
dimensional time-dependent space Xr(t) = span{u(t, ξ0)}, r = 1.
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Figure 1: Test case 1: comparison for discontinuous (left) and continuous (right) initial
conditions at final times of the exact solution u and the approximation ur computed with
MTI for r ∈ {1, 5, 10, 20, 50, 100}.
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Relative errors for u0cont
dim(Xr) E2 E∞

1 0.027831 0.76058
2 0.024075 0.95713
5 0.0078461 0.26984
10 0.00021853 0.0075156
20 4.8616e− 09 1.6719e− 07
50 4.0924e− 17 1.4074e− 15
100 4.4353e− 17 1.5253e− 15
200 4.5623e− 17 1.569e− 15

Relative errors for u0disc
dim(Xr) E2 E∞

1 0.022116 0.76058
2 0.0135 0.46427
5 0.0060424 0.2078
10 0.0040044 0.13771
20 0.002043 0.07026
50 4.7139e− 05 0.0016211
100 1.3891e− 12 4.7771e− 11
200 6.3966e− 17 2.1998e− 15

Table 1: Test case 1: relative errors E2 and E∞ obtained with the MTI with respect to
dim(Xr) for both continuous (left) and discontinuous (right) initial conditions conditions.

As shown onFigure 1, the approximations obtained with MTI are satisfactory when
the dimension of the reduced space Xr is greater than 20. This is confirmed by the values
of the relative errors Eq = ‖ur − u‖I,q/‖u‖I,q given in Table 1 for q = 2 and q = ∞,
where ‖u‖I,q is the natural norm on Lq(I;X). In particular, the relative error in L2-
norm (resp L∞-norm) is of order 10−17 (respectively 10−15) for a space Xr with a reduced
dimension of 50. As expected, MTD, with a reduced space X1(t) of dimension 1 con-
taining the exact solution, gives relative errors at the machine precision (E2 = 5.7 10−17

and E∞ = 1.3 10−15) For obtaining a very accurate precision, the method MTI requires a
reduced space with rather high dimension, thus highlighting the limits of the POD method
for transport equations. Now, we illustrate the impact of the smoothness of the solution.
For this purpose, we consider the same test case with a discontinuous initial condition given
by u0disc(x) = 1[0.1,0.9](x) ·(b3xc+sin(10x)) 2. The approximate solution is plotted onFigure
1 and the relative errors between the reduced approximation and the exact solution are
summarized in the right table of Table 1. Here, we clearly observe that for non smooth
initial condition u0disc a reduced space with higher dimension is needed for well approxi-
mating the solution (e.g. dimension 200 against 50 for reaching the machine precision).
Concerning the MTD, we still obtain relative errors up to the machine precision with a
one-dimensional time dependent reduced space (E2 = 3.9 10−17 and E∞ = 1.3 10−15).

General case We now consider the parameter-dependent problem and compare the ap-
proximations obtained with MTI and MTD for a subspace of dimension r = 20 generated
from a training set of size 30. Figure 2 plots the evolution with time of the approximation
obtained with MTD evaluated at ξ = 0.65. In Figure 3, the exact solution is compared
to the approximations obtained by MTI and MTD, at final time and for ξ = 0.65. The

2 Here, 1A is the characteristic function of a subset A ⊂ Rd and bxc denotes the integer part of x.
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solutions of the reduced order models are very close to the exact solution. Nevertheless,
we notice that the approximation computed with MTI present small oscillations whereas
the one obtained with MTD matches very well the exact solution (see right plot ofFigure 3).

Figure 2: Test case 1: Time evolution of ur computed with MTD for r = 20 and ξ = 0.65.
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Figure 3: Test case 1: Reduced approximations ur provided by MTD and MTI compared to
the exact solution u for both continuous (left) and discontinuous (right) initial conditions,
at final time T = 1 for r = 20 and ξ = 0.65.

Then, we estimate the expectation E(Eq(ξ)) and maximum maxξ∈Ξ(Eq(ξ)) of the rela-
tive errors Eq respectively by the empirical mean and by the maximum of the values of Eq
taken at 50 randomly chosen values of the parameters. These quantities are depicted onFig-
ure 4 for different values of r and for both continuous and discontinuous initial conditions.
For the same dimension of the reduced spaces, MTD clearly provides a more accurate
approximation than MTI in particular when considering discontinuous initial condition.
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Figure 4: Test case 1: Statistical estimations of the expectation and maximum of the
relative errors E2 and E∞ with respect to the reduced dimension r, for MTD (left) and
MTI (right) for both continuous (top) and discontinuous (bottom) initial conditions.

Validation of the error estimate We now investigate the efficiency of the proposed
error estimate ∆̃r.Figure 5 shows the evolution with time of ∆̃r(t, ξ) and the exact error
‖er‖X for MTD and MTI, evaluated at ξ = 0.65. As expected, we observe that the error
estimates have an exponential behavior in time. The error estimate ∆̃r is much sharper
for MTD than for MTI. For MTI, ∆̃r is a very pessimistic upper bound of the error. This
observation is confirmed by computing the effectivity index κ(t, ξ) = ∆̃r(t, ξ)/‖er(t, ξ)‖X .
Figure 11 plots the evolution with time of a statistical estimation of the mean of the
effectivity index E(κ(t, ξ)), which remains close to 1 with MTD and takes high values with
MTI.
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Figure 5: Test case 1: Evolution with time of ∆̃r(t, ξ) and ‖er(t, ξ)‖X for MTD (left) and
MTI (right) for both continuous (top) and discontinuous (bottom) initial conditions, for
r = 20 and ξ = 0.65.
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Figure 6: Test case 1: Evolution with time of a statistical estimation of E(κ(t, ξ)) for MTD
(left) and MTI (right) for both continuous and discontinuous initial conditions.

CPU times Now, we briefly discuss the CPU computational costs of both MTI and
MTD methods with POD-greedy and T-greedy algorithms respectively. We restrict the
presentation to the case of the initial condition u0disc (similar results are observed for u0cont).
The dimension of reduced spaces is fixed to r = 20 for both methods. As summarized
in Table 2, both offline and online costs are roughly of the same order but the MTD
provides a reduced order model which is by 2 orders of magnitude (see Figure 4) better
than the reduced order model provided by MTI. Yet, we notice that for the MTI, CPU-
times are slightly higher. This is probably due to additional computations involved by time-
dependent reduced quantities in MTD. We may guess that the CPU times for both methods
would be similar for non autonomous problems with time affine dependent coefficients.

21



Offline Online

MTD 1955.1 11.24
MTI 1517.5 8.94

Table 2: Test case 1: Offline and online CPU-times for both MTD and MTI, with u0disc.

5.2 Test case 2

We now consider a two-dimensional advection-diffusion equation with source term g = 0,
c(u, ξ) = 0, µ(ξ) = µ0(2+cos(πξ1)2), with µ0 = 0.5, and a(x, ξ) = a(ξ)(x2−0.5, 0.5−x1)T ,
with a(ξ) = a0 sin(πξ2) and a0 = 0.1. Here, we choose ξ1, ξ2 ∼ U(−1, 1) as independent
uniform random variables. The spatial domain is Ω = (0, 1)2 and the time interval I =

(0, 0.2). The initial condition is given by u0(x) = e−(x1−
2
3
)2−(x2− 2

3
)2 sin(2πx1) sin(2πx2) and

we impose homogeneous Dirichlet boundary conditions. We consider a P1-Lagrange finite
element discretization with n = 1681 nodes 3 together with an implicit Euler scheme with
K = 400 time steps, yielding the following scheme

(IX − δtA(ξ))uk+1(ξ) = uk(ξ), (29)

with A(ξ) = µ(ξ)AD + a(ξ)AC ∈ Rd×d (d = 1521), where AC and AD are the product of
the mass matrix inverse with the discrete two dimensional diffusion and convection oper-
ators, obtained by finite element approximation, respectively.

We first present the reduced approximations computed by MTI and MTD with reduced
spaces of dimension r = 30 selected with greedy algorithms using a training set of size 60.
Figure 7 represents the approximation obtained with MTD evaluated for different values
of the parameter ξ ∈ {(0.2,−1), (0.2, 0), (0.2, 0.5)}.

Figure 7: Test case 2: reduced approximation ur computed with MTD for r = 30 at final
time and ξ ∈ {(0.2,−1), (0.2, 0), (0.2, 0.5)}.

For the same parameter values, the absolute distance to the exact solution at final time
is given onFigure 7 for MTI and MTD. It shows that the approximations obtained by both

3The mesh is chosen fine enough to ensure a Péclet number smaller than 1.
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order reduction methods are in good agreement with the exact solution. Once again, we
observe that MTD provides a better approximation with an error of order 10−9 against
10−5 for MTI.

Figure 8: Test case 2: absolute error between the exact solution and reduced approxima-
tions |u − ur| provided by MTD (top) and MTI (bottom) at final time for r = 30 and
ξ ∈ {(0.2,−1), (0.2, 0), (0.2, 0.5)}.

Estimations of the expectations E(Eq(ξ)) and maxima maxξ∈Ξ(Eq(ξ)) of the relative
errors Eq (using a random sample of size 50 in Ξ) are plotted on Figure 9 for different
values of r. For this advection-diffusion problem, we first observe that both order reduc-
tion methods provide accurate approximations with low-dimensional spaces. However, for
the same dimension of the reduced spaces, the approximation obtained by MTD is more
accurate than the approximation obtained by MTI. Indeed, in order to reach a relative
error of 10−8, MTD requires r = 10 while MTI requires r = 30.
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Figure 9: Test case 2: Statistical estimations of the expectation and maximum of the
relative errors E2 and E∞ with respect to the reduced dimension r, for MTD (left) and
MTI (right).

Error estimates Figure 10 represents the evolution with time of the exact error ‖er(t, ξ)‖X
and of the error estimate ∆̃r(t, ξ) for both order reduction methods, for ξ = (0.2, 0.5).
Again, we observe the exponential behavior of the error estimates. The errors obtained by
MTD are several orders of magnitude lower than the errors obtained by MTI.
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Figure 10: Test case 2: Evolution with time of the error estimate ∆̃r and true error ‖er‖X
for MTD (left) and MTI (right), for r = 30 and ξ = (0.2, 0.5).

For the first time indices (i.e. k < 100), ∆̃r provides a sharper error bound for MTD
than for MTI. Also, ∆̃r and the true error have quite similar time evolutions for MTD,
and very different time evolutions for MTI. The superiority of MTD over MTI is confirmed
onFigure 11, where we observe that the expectations of the effectivity index κ(t, ξ) of
MTI and MTD are in a ratio of 10. For longer times, the error estimates present similar
efficiency for both approaches.
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Figure 11: Test case 2: Evolution with time of a statistical estimation of the expected
effectivity index E(κ(t, ξ)) for MTD (left) and MTI (right).

Study of greedy algorithms Now, we study the behavior of the T-greedy and POD-
greedy algorithms used for the construction of reduced spaces for MTD and MTI respec-
tively. For both algorithms, the evolution with the iteration r of the maximum of ∆

(0,T )
r (ξ)

over the training set Ξtrain is plotted onFigure 12. Note that at iteration r, the dimension
of the reduced space is actually r+ 1. We observe that the error decreases faster with r for
the T-greedy algorithm than for the POD-greedy algorithm. For example, at iteration 20 of
the greedy algorithms, the errors for POD-greedy and T-greedy algorithms are respectively
of order 10−1 and 10. When stopping the greedy algorithms at a given precision, the di-
mension of the obtained reduced space is much smaller for T-greedy than for POD-greedy.
We observe on Table 13 that the POD-greedy algorithm can select several times the same
point in Ξ (for example, the value ξ = (−0.3192, 0.9004) is selected 6 times during the 30
iterations). This is due to the fact that at each iteration, only the first term of the POD of
the selected trajectory is added to the reduced space (here ` = 1). Concerning the T-greedy
approach, a point in Ξ can be selected only once. This implies that for a fixed dimension,
the POD-greedy approach requires less solutions of the full order dynamical system (here 5
for POD-greedy against 30 for the T-greedy approach when considering a reduced space of
dimension 30). To illustrate this point, the number of calls to the full order problem with

respect to maxξ∈Ξtrain
∆

(0,T )
r (ξ) is represented on the right curve ofFigure 12. The number

of calls to the full order problem for POD-greedy algorithm remains smaller, which means
that the POD-greedy algorithm uses only the information of snapshots already computed
to enrich Xr whereas the T-greedy algorithm requires new snapshots at each iteration.
In terms of computational costs, the POD-greedy stategy presents lower offline computa-
tional costs since it requires a smaller number of calls to the full order problem, but for
a given precision, it leads to larger reduced systems in the online step. For the T-greedy
algorithm, we have the opposite conclusions. For a given precision, it leads to lower di-
mensional reduced spaces, and therefore to lower online costs, but it requires more calls to
the full-order problem in the offline step. The MTD approach with POD-greedy remains
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a good alternative when treating autonomous linear dynamical systems arising from the
discretization of linear parabolic problems with time independent matrices. Furthermore,
contrarily to MTI, it does not require to store sequences of time dependent reduced quan-
tities. But when considering non-autonomous dynamical systems (which requires handling
time-dependent reduced quantities), the storing costs will be smaller with MTD, since this
latter approach provides smaller reduced spaces for a given precision.
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Figure 12: Test case 2 : Evolution of the maximum of ∆̃
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r (ξ) over Ξtrain with the iteration

r (left), and number of calls to the full order problem with respect to the maximum of

∆̃
(0,T )
r (ξ) over Ξtrain (right), for T-greedy (blue line) and POD-greedy (red line) algorithms.
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Figure 13: Test case 2: Selected points in Ξ for the T-greedy (left) and POD-greedy (right)
algorithms during 30 iterations. For POD-greedy, the size of a point increases with the
number of times it is selected.

CPU times As shown in Table 3, CPU-times for both offline and online phases are again
similar, when the reduced space dimension is fixed to r = 30 for both MTI and MTD. We
still observe a small additional cost for the online phase of MTD due to computations with
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time-dependent reduced quantities, but MTD again provides a better reduced approxima-
tion (see Figure 9). Concerning the POD-greedy algorithm, one could imagine to improve
the offline cost by storing the solution trajectories computed during the greedy procedure
for parameters selected several times, but this would imply additional storage costs.

Offline - Basis selection Offline - Reduced quantities Online

T-Greedy 34907 77.69 37.86
POD-Greedy 32767 0.22 34.6

Table 3: Test case 2: Offline and online CPU-times for both MTD and MTI.

5.3 Test case 3

We study a nonlinear viscous Burger’s equation with uncertain parameters. This test case
is adapted from [34]. We consider a spatial domain Ω = (0, 1), a time interval I = (0, 1),
homogeneous Dirichlet boundary conditions and an initial condition u0 = 0. We consider
c(u, ξ) = 1

2
u, a(x, ξ) = 0 and a diffusion coefficient µ(ξ) = ξ, with ξ ∼ U(0.01, 0.06) a

uniform random variable. The source term is defined by g(x, t, ξ) = g1(x, t)+g2(x, t), with

g1(x, t) = 4e−(
x−0.2
0.03

)21[0.1,0.3](x) sin(4πt),

g2(x, t) = 4 · 1[0.6,0.7](x)1[0.2,0.4](t).

The term g1 corresponds to an excitation localized in space and oscillating with time,
whereas the term g2 corresponds to a constant excitation over a localized space-time region.
We use a finite difference scheme in space (with n = 300 nodes, and d = 298) with uniform
mesh (as in Subsection 5.1) and a semi-implicit Euler scheme in time (with K = 200 time
steps), yielding the following scheme:

(IX − δtA(ξ))uk+1(ξ) = uk(ξ) + δt(h(uk) + gk), (30)

where A ∈ Rd×d denotes the discrete second derivative operator, and where the discrete
flux h(uk) ∈ Rd is defined by (h(uk))i = −uki (Cuk)i with C ∈ Rd×d the matrix associated
with the discrete first derivative operator.

Reduced spaces are constructed with POD-greedy and T-greedy algorithms with a
training set of size 60. For the error estimation, we have used a nearest neighbor inter-
polation of the Lipschitz constant of the flux h. The maximum ML(ξ) and minimum

mL(ξ) of L̃X [h](ur(t,ξ),t,ξ)
LX [h](ur(t,ξ),t,ξ)

over the time interval I have been computed for both MTD

and MTI methods (see Table 4). We observe that the values are localized in intervals
whose bounds are close to 1, which indicates that the approximations are quite satisfac-
tory. For the efficient evaluation of the nonlinear flux h, an EIM has been used with
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a tolerance ε = 10−10 in the stopping criterion (24). For the considered simulations,
it corresponds to an average number m of terms in the EIM equal to 103 and 108 for
MTD and MTI respectively. As shown in Table 4, the maximum of the relative errors
Eh(t, ξ) = ‖h(ur(t, ξ), t, ξ) − h̃(ur(t, ξ), t, ξ)‖X/‖h(ur(t, ξ), t, ξ)‖X on the flux is of order
10−10 as expected.

maxtEh(ξ, t) [mL(ξ),ML(ξ)]
ξ MTI MTD MTI MTD

0.01 1.5550 10−10 4.2208 10−10 [0.9116, 1.1011] [1.1055, 1.1297]
0.035 3.5803 10−10 1.4400 10−11 [0.7804, 0.9536] [1.0062, 1.0483]
0.06 5.0374 10−10 1.4201 10−11 [0.7567, 1.0009] [0.9947, 0.9989]

Table 4: Test case 3 : Maximum over the time interval of the relative approximation error
of the flux h with EIM, and minimum and maximum values mL and ML of the ratio
between approximate and exact Lipschitz constants of h, for MTD and MTI.

We first study the behavior of the approximations provided by the MTD and MTI
evaluated for the parameter values ξ ∈ {0.01, 0.035, 0.06} and for r = 15. The evolution of
the solution of the reduced order model obtained with MTD is plotted on Figure 14. We
clearly observe different features for different values of the diffusion coefficient.Figure 15
represents the exact solution and the approximations obtained by MTD and MTI at final
time and for a given value of the parameter. For r = 15, the reduced approximations are
in good agreement with the exact solution. Nevertheless, we note that the approximation
obtained with MTD is clearly better than with MTI.

ξ = 0.01 ξ = 0.035 ξ = 0.06

Figure 14: Test case 3 : Evolution over the space-time grid of the approximation ur
computed with MTD for r = 15 and for ξ ∈ {0.01, 0.035, 0.06}.
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Figure 15: Test case 3 : Comparison between the exact solution u (black line) and the
approximations ur obtained with MTD (blue dashed line) and MTI (red dotted line) with
r = 15, at final time T = 0.1 and for ξ ∈ {0.01, 0.035, 0.06}.

This superiority of MTD over MTI is confirmed byFigure 16 where we have plotted
statistical estimations (with a random sample of size 50) of the expectation and maximum
of the relative errors. As we can see, MTD provides with r = 15 an approximation with
a relative error of 10−10, whereas MTI only provides an approximation with a relative
error of 10−2 for the same dimension of the reduced space. For r = 50, MTI provides an
approximation with relative error 10−6, which is still higher than MTD with r = 15.
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Figure 16: Test case 3: Statistical estimations of the expectations and maxima of the
relative errors E2 and E∞ with respect to the reduced dimension r, for MTD (left) and
MTI (right).

Study of error estimates We now compare the behavior of the error estimate ∆̃r for
MTD and MTI. Figure 17 represent the evolution with time of the exact error and of
the error estimate for both methods, with and without approximation of the flux and the
Lipchitz constants, for ξ = 0.035 and r = 15. We first remark that the EIM approximation
of the nonlinear flux as well as the approximated Lipschitz constants have a small impact
on the behavior of the error estimate. Nevertheless we notice that for the first instants
for MTD, where the error is smaller than 10−10, the EIM error is no longer negligible and
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‖er‖X and ∆̃r are slightly impacted. For MTD, a small difference is observed for final times
only on ∆̃r. This is probably due to the approximation of the Lipchitz constant. These
differences disappear when choosing a smaller precision ε for MTD or when considering
larger reduced spaces for MTI. Again, we obtain several orders of magnitude between the
errors provided by the MTD and MTI. Here, the expectations of the effectivity index κ(t, ξ)
(plotted onFigure 18) are of the same order, with or without EIM, which means that the
error estimate has the same efficiency for both approaches.
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Figure 17: Test case 3: Evolution with time of the error estimate ∆̃r (dotted line) and the
exact error ‖er‖X (solid line), for MTD (left) and MTI (right), for ξ = 0.035 and r = 15.
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Figure 18: Test case 3: Evolution with time of a statistical estimation of the expected
effectivity index E(κ(t, ξ)), for MTD (left) and MTI (right), for ξ = 0.035 and r = 15.

Study of greedy algorithms We finally study the behavior of the greedy algorithms
used for the construction of the reduced space Xr. Once again, we have plotted the
evolution of the maximum of ∆̃

(0,T )
r (ξ) over Ξtrain with the iteration r and the number

of calls to the full order problem with respect to the maximum of ∆̃
(0,T )
r (ξ) onFigure 19.
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We observe the same behavior as for the test case 2. The maximum error during the
greedy iterations decreases faster with T-greedy than with POD-greedy (T-greedy reaches
a precision of order 10−6 for the iteration 14, while POD-greedy reaches a precision of 10−2

for the iteration 49). In terms of computational costs, the number of calls to the full order
problem in the offline step is lower for T-greedy algorithm than for POD-greedy (e.g., for
reaching a precision of order 10−2, T-greedy (resp. POD-greedy) algorithm requires 7 (resp.
11) calls to the full order problem). Contrary to the previous linear test case, the use of
MTD with T-greedy algorithm clearly reduces the computational costs of both online and
offline steps in comparison to a MTI combined with a POD-greedy construction of reduced
spaces.
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Figure 19: Test case 3 : Evolution of the maximum of ∆̃
(0,T )
r (ξ) over Ξtrain with the iteration

r (left), and number of calls to the full order problem with respect to the maximum of

∆̃
(0,T )
r (ξ) over Ξtrain (right), for T-greedy (blue line) and POD-greedy (red line) algorithms.

CPU times The dimension of reduced spaces is fixed to r = 15 for both methods. As
summarized in the table Table 5, once again for this problem, both offline and online cost
are roughly of the same order for both MTI and MTD while MTD gives a finer reduced
approximation which is by 8 orders of magnitude (see Figure 16) better than the one
provided by MTI .

Offline (Basis) Offline (Reduction)

MTI 6137.2 9.22
MTD 6253.8 9.27

Table 5: Test case 1: Offline and online CPU-times for both MTD and MTI.
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6 Conclusion

In this paper, we have presented a projection-based model order reduction approach for
the solution of parameter-dependent dynamical systems. It relies on a Galerkin projection
of the full order dynamical system on time-dependent reduced spaces. This generalizes
classical model order reduction methods with time-independent reduced spaces. An a
posteriori error estimate using the logarithmic Lipschitz constant associated to the flux
has also been proposed and provides an efficient a posteriori error estimate. Using this
error estimate, we have derived a greedy algorithm (called T-greedy algorithm) for the
construction of a sequence of time-dependent reduced spaces. We have performed several
numerical tests on both linear and nonlinear dynamical systems. The order reduction
method with time-dependent spaces constructed with a T-greedy algorithm (MTD) has
been compared to a method with time-independent spaces constructed with a POD-greedy
algorithm (MTI). For the same online costs (time for evaluating the ROM), the error in
the predictions of the ROM obtained by MTD may be several orders of magnitude lower
than the error in the predictions of the ROM obtained by MTI. In other words, for a
given precision of the ROM, the MTD approach yields a significant reduction of online
computation costs. Here, the proposed T-greedy algorithm for the selection of parameters
relies on an error indicator using a L2-norm in time of an error estimate. This global error
estimate could be improved by considering sharper local in time error estimates which
could be obtained by improving the local Lipschitz constants used to derive our error
bound [34]. Moreover, a goal-oriented variant of this algorithm could be introduced by
considering norms taking into account a certain quantity of interest (e.g., the value of the
solution at the final time) in order to improve the efficiency of the order reduction method
for this approximation of this quantity of interest.
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