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Abstract

This paper is concerned with the approximation of tensors using tree-based ten-
sor formats, which are tensor networks whose graphs are dimension partition trees.
We consider Hilbert tensor spaces of multivariate functions defined on a product set
equipped with a probability measure. This includes the case of multidimensional ar-
rays corresponding to finite product sets. We propose and analyse an algorithm for
the construction of an approximation using only point evaluations of a multivariate
function, or evaluations of some entries of a multidimensional array. The algorithm is
a variant of higher-order singular value decomposition which constructs a hierarchy of
subspaces associated with the different nodes of the tree and a corresponding hierarchy
of interpolation operators. Optimal subspaces are estimated using empirical principal
component analysis of interpolations of partial random evaluations of the function. The
algorithm is able to provide an approximation in any tree-based format with either a
prescribed rank or a prescribed relative error, with a number of evaluations of the order
of the storage complexity of the approximation format. Under some assumptions on
the estimation of principal components, we prove that the algorithm provides either
a quasi-optimal approximation with a given rank, or an approximation satisfying the
prescribed relative error, up to constants depending on the tree and the properties of
interpolation operators. The analysis takes into account the discretization errors for
the approximation of infinite-dimensional tensors. For a tensor with finite and known
rank in a tree-based format, the algorithm is able to recover the tensor in a stable way
using a number of evaluations equal to the storage complexity of the representation
of the tensor in this format. Several numerical examples illustrate the main results
and the behavior of the algorithm for the approximation of high-dimensional functions
using hierarchical Tucker or tensor train tensor formats, and the approximation of
univariate functions using tensorization.
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1 Introduction

The approximation of high-dimensional functions is one of the most challenging tasks in
computational science. Such high-dimensional problems arise in many domains of physics,
chemistry, biology or finance, where the functions are the solutions of high-dimensional
partial differential equations (PDEs). Such problems also typically arise in statistics or
machine learning, for the estimation of high-dimensional probability density functions, or
the approximation of the relation between a certain random variable and some predictive
variables, the typical task of supervised learning. The approximation of high-dimensional
functions is also required in optimization or uncertainty quantification problems, where
the functions represent the response of a system (or model) in terms of some parameters.
These problems require many evaluations of the functions and are usually intractable when
one evaluation requires a specific experimental set-up or one run of a complex numerical
code.

The approximation of high-dimensional functions from a limited number of information
on the functions requires exploiting low-dimensional structures of functions. This usually
call for nonlinear approximation tools [I1,[42]. A prominent approach consists of exploiting
the sparsity of functions relatively to a basis, a frame, or a more general dictionary of func-
tions [43, 4, [7]. Another approach consists of exploiting low-rank structures of multivariate
functions, interpreted as elements of tensor spaces, which is related to notions of sparsity
in (uncountably infinite) dictionaries of separable functions. For a multivariate function
v(x1,...,zq) defined on a product set X7 x ... x Xy, which is here identified with a tensor
of order d, a natural notion of rank is the canonical rank, which is the minimal integer r
such that

v(T1,...,2q) = Zv,ﬁ(xl) v (xg)
k=1

for some univariate functions v; defined on X),. For d = 2, this corresponds to the unique
notion of rank, which coincides with the matrix rank when the variables take values in
finite index sets and v is identified with a matrix. A function with low canonical rank r
has a number of parameters which scales only linearly with r and d. However, it turns
out that this format has several drawbacks when d > 2 (see, e.g., [10, 21]), which makes
it unsuitable for approximation. Then, other notions of rank have been introduced. For
a subset of dimensions « in {1,...,d}, the a-rank of a function v is the minimal integer
rank, (v) such that

rankq (v)

v(@,.xa) = Y R (a)vR (Tae)

k=1



for some functions vy’ and Ug‘c of complementary groups of variables z, = (2,)yeq € Xy and
Tae = (Ty)peac € Xge, with a the complementary subset of ain {1, ..., d}. Approximation
formats can then be defined by imposing a-ranks for a collection of subsets a. More
precisely, if A is a collection of subsets in {1,...,d}, we define an approximation format

7;:4 = {'U : ranka(v) < 7ro,a € A} — m 7;&04}7

a€cA

where 7 = (r4)aca is a tuple of integers. When A is a tree-structured collection of subsets
(a subset of a dimension partition tree), 7,4 is a tree-based tensor format whose elements
admit a hierarchical and data-sparse representation. Tree-based tensor formats are tree
tensor networks, i.e. tensor networks with tree-structured graphs [35]. They include the
hierarchical Tucker (HT) format [20] and the tensor-train (TT) format [37]. Tree-based
formats have many favorable properties that make them favorable for numerical use. As
an intersection of subsets of tensors with bounded a-rank, o € A, these formats inherit
most of the nice properties of the low-rank approximation format for order-two tensors.
In particular, under suitable assumptions on tensor norms, best approximation problems
in the set 7,4 are well-posed [14, [15]. Also, the a-rank of a tensor can be computed
through singular value decomposition, and the notion of singular value decomposition can
be extended (in different ways) to these formats [9, 17, [36]. Another interesting property,
which is not exploited in the present paper, is the fact that the set 7;,A is a differentiable
manifold [22] [44] [T5] [16], which has interesting consequences in optimization or model order
reduction of dynamical systems in tensor spaces [29]. There are only a few results available
on the approximation properties of tree-based formats [41]. However, it has been observed
in many domains of applications that tree-based formats have a high approximation power
(or expressive power). Hierarchical tensor formats have been recently identified with deep
neural networks with a particular architecture [§].

The reader is referred to the monograph [19] and surveys [27, 25 [18], 34 33}, [1] for an in-
troduction to tensor numerical methods and an overview of recent developments in the field.

This paper is concerned with the problem of computing an approximation of a function
u(zy,...,xq) using point evaluations of this function, where evaluations can be selected
adaptively. This includes problems where the function represents the output of a black-
box numerical code, a system or a physical experiment for a given value of the input
variables (z1,...,x4). This also includes the solution of high-dimensional PDEs with a
probabilistic interpretation, where Monte-Carlo methods can be used to obtain point eval-
uations of their solutions. This excludes problems where evaluations of the functions come
as an unstructured data set. A multivariate function u(x1,...,x4) is here considered as
an element of a Hilbert tensor space Hi ® ... ® Hy of real-valued functions defined on a
product set X7 x ... x Xy equipped with a probability measure. This includes the case of
multidimensional arrays when the variables x, take values in finite sets X),. In this case, a
point evaluation corresponds to the evaluation of an entry of the tensor.



Several algorithms have been proposed for the construction of approximations in tree-
based formats using point evaluations of functions or entries of tensors. Let us mention
algorithms that use adaptive and structured evaluations of tensors [38] 2] and statistical
learning approaches that use unstructured (random) evaluations of functions [13], 12, 6] [5].
Let us also mention the recent work [30] for the approximation in Tucker format, with an
approach similar to the one proposed in the present paper.

In the present paper, we propose and analyse a new algorithm which is based on a par-
ticular extension of the singular value decomposition for the tree-based format 7, which
allows us to construct an approximation using only evaluations of a function (or entries of
a tensor). The proposed algorithm constructs a hierarchy of subspaces U, of functions of
groups of variables z,, for all & € A, and associated interpolation operators Iy;, which are
oblique projections onto U,. For the construction of U, for a particular node o € A, we
interpret the function u as a random variable u(-, x,c) depending on a set of random vari-
ables x4c with values in the space of functions of the variables x,. Then U, is obtained by
estimating the principal components of this function-valued random variable using random
samples u(,x';c) In practice, we estimate the principal components from interpolations
Iy u(-, 2E.) of these samples on a subspace V,, which is a certain approximation space when
a is a leaf of the tree, or the tensor product of subspaces {Us}ges(a) associated with the
sons S(«) of the node a when « is not a leaf of the tree. This construction only requires
evaluations of u on a product set of points which is the product of an interpolation grid
in &, (unisolvent for the space V,), and a random set of points in X,c. It is a sequential
construction going from the leaves to the root of the tree.

The proposed algorithm can be interpreted as an extension of principal component
analysis for tree-based tensors which provides a statistical estimation of low-dimensional
subspaces of functions of groups of variables for the representation of a multivariate func-
tion. It is able to provide an approximation w* in any tree-based format 7;‘4 with either
a prescribed rank r or a prescribed relative error (by adapting the rank r). For a given
r, it has the remarkable property that it is able to provide an approximation in 7, with
a number of evaluations equal to the storage complexity of the resulting approximation.
Under some assumptions on the estimation of principal components, we prove that the al-
gorithm, up to some discretization error p, provides with high probability a quasi-optimal
approximation with a prescribed rank, i.e.

u—u*l| < ¢ min ||lu—v|+
| | < me |+ p,

where the constant ¢ depends on the set A and the properties of orthogonal projections and
interpolation operators associated with principal subspaces. Also, under some assumptions
on the estimation of principal components and discretization error, we prove that the
algorithm with prescribed tolerance € is able to provide an approximation «* such that

[l — w*|| < éeull



holds with high probability, where the constant ¢ depends on the set A and the properties of
projections and interpolation operators. Sharp inequalities are obtained by considering the
properties of projection and interpolation operators when restricted to minimal subspaces
of tensors. The analysis takes into account the discretization errors for the approximation
of infinite-dimensional tensors. For a tensor with finite and known rank in a tree-based
format, and when there is no discretization error, the algorithm is able to recover the tensor
in a stable way using a number of evaluations equal to the storage complexity of the repre-
sentation of the tensor in this format. This algorithm may have important applications in
the manipulation of big data, by providing a way to reconstruct a multidimensional array
from a limited number of entries (tensor completion).

The outline of the paper is as follows. In section 2l we introduce some definitions and
properties of projections in Hilbert spaces, with a particular attention on Hilbert spaces
of functions and projections based on point evaluations. In section Bl we recall basic
definitions on tensors and Hilbert tensor spaces of functions defined on measured product
sets. Then we introduce some definitions and properties of operators on tensor spaces, with
partial point evaluation functionals as a particular case. Finally, we introduce definitions
and properties of projections on tensor spaces, with a particular attention on orthogonal
projection and interpolation. In section Ml we introduce tree-based low-rank formats in
a general setting including classical HT and TT formats. In section Bl we first introduce
the notion of principal component analysis for multivariate functions and then propose
an extension of principal component analysis to tree-based tensor format. This is based
on a new variant of higher-order singular value decomposition of tensors in tree-based
format. In section [0, we present and analyse a modified version of the algorithm presented
in section [ which only requires point evaluations of functions, and which is based on
empirical principal component analyses and interpolations. In section [7, the behavior of
the proposed algorithm is illustrated and analysed in several numerical experiments.

2 Projections

For two vector spaces V and W equipped with norms || - ||y and || - ||y respectively, we
denote by L(V,W) the space of linear operators from V' to W. We denote by L(V, W)
the space of linear and continuous operators from V to W, with bounded operator norm
| Allv—w = max,|, =1 [[Av|][w. We denote by V* = L(V,R) the algebraic dual of V' and
by V! = L(V,R) the topological dual of V, and we let || - [[yor = || - |[1»- We denote
by (-,-) the duality pairing between a space and its dual. We let L(V) := L(V,V) and
L(V):= L(V,V), and we replace the notation || - ||y by || - ||y, where the latter notation
also stands for the norm on V.



2.1 Projections

Let V be a Hilbert space and U be a finite-dimensional subspace of V. An operator P is
a projection onto a subspace U if Im(P) = U and Pu = u for all u € U.

The orthogonal projection Py onto U is a linear and continuous operator which asso-
ciates to v € V the unique solution Pyv € U of

_p i _
v — Pyvllv ggg}llv ullv,

or equivalently (u, Pyv—v) = 0, Yu € U. The orthogonal projection P has operator norm
|Pullv = 1.

Let W be a finite-dimensional subspace of V* such that

dim(W) = dim(U), and (1a)
{ueU: (w,u) =0 for all w e W} = {0}, (1b)

where the latter condition is equivalent to UN+W = {0}, with ~W the annihilator of W in
V' (see [32] Definition 1.10.4]). Under the above assumptions, we have that for any v € V,
there exists a unique u € U such that (w,u —v) =0 for all w € Wl This allows to define
the projection ng onto U along W which is the linear operator on V' which associates to
v € V the unique solution ng veU of

(w, PV v—v) =0, Yw e W.

For W = RyU, where Ry : V — V' is the Riesz map, the projection PgV coincides with
the orthogonal projection Py. A non orthogonal projection is called an oblique projection.
If W C V', then P} is a projection from V onto U parallel to Ker(P}/) = Z+, where
Z = R‘_/lw. If W c U, with U a closed subspace of V, then PgV]U is a projection from
U onto U parallel to Ker(PgV) NU = Z+NU, where Z = R;W, with Ry the Riesz map
from U to U'.

Proposition 2.1. Let U be a closed subspace of V' and assume that U C U and W C U'H
Then PgV is a continuous operator from U to V.

Proof. Let us equip W with the norm [|w|[w = ||| = max, g (w,v)/||v|lv, such that for
allv € U, (w,v) < [Jw||wllv|v. Let

: (w, u)
min max

o= TP T,
0£uel 02wew ||ully||w||w

'Uniqueness comes from (b)) while existence comes from ([a) and (IH).
2Note that V’ € U’ and we may have W ¢ V',



Assumption (D) implies that o > 0. Then for all v € U, we have

PW
[PV vllv <o max (w Py v) =a ! max (w, v) <a Mlly,
0A£weWw HwHW 0AweW ”w”w

which ends the proof. O

Proposition 2.2. Let P and P be projections onto subspaces U and U respectively and
assume U C U. Then .
PP =P.

Moreover, if P and P are projections along W and 1474 respectively, with W C W, then
PP =PP=P.

Proof. For all v € V, Pv € U C U, and therefore PPv = Puv, which proves the first
statement. For the second statement, by definition of the projection P, we have that
(0, PPu— Pv> =0 for all ¢ € W. Since W C W and by definition of P, this implies that
(¢, PPv — v) = 0 for all ¢ € W. By definition of Pv and since PPuv € U, this implies
PPv = Py = PPo. O

Proposition 2.3. Let U and U be two closed subspaces of V., with U of finite dimension.
Let Py be the orthogonal projection onto U and let P be the projection onto U along
W cU. Foralvel,

1P v — Pyolly < |BY = Pullg_yllv— Poollv,
with
w w w
||PU - PUHU_W = ||PU H(id—PU)U—>V = ||PU HU_>V

Also, for allv e U,

lv = P ol} < 1+ (1P — Pyll lv = Pyolf-

U—>V)

Proof. For v € U, |Pv — Prolly = [BY (v — Pro)llv = (BY — Po)(v — Pyo)llv <

1P = Pulljaepyyi—vllv = Povllv, with [P = Pullga_ppoy = IPY = Pollgy
| P ||(Z d—Py)0—v- This proves the first statement. The second statement directly follows
from |[v — PYvl|} = |[v — Pyv|? + || Puv — P o|j}. O

2.2 Projection of functions using point evaluations

Let V be a Hilbert space of functions defined on a set X. For x € X, the point evaluation
functional ¢, € V* is defined by (d,,v) = v(x).



2.2.1 Interpolation

Let U be a n-dimensional subspace of V' and let I' = {xk}zzl be a set of n interpolation
points in X. The set of interpolation points I' is assumed to be unisolvent for U, i.e. for
any (ay)?_, € R™, there exists a unique u € U such that u(z*) = aj for all 1 <k < n. The
interpolation operator Iy associated with I' is a linear operator from V to U such that for
v € V, Iyv is the unique element of U such that

0z, Iyv —v) = Iyv(z) —v(x) =0 Vzel.

The interpolation operator Iy is an oblique projection ng onto U along W = span{J, :
xz € I'}. Note that the condition that I' is unisolvent for U is equivalent to the condition
(@B) on U and W, which ensures that I is well defined. From Proposition [2.2] we deduce
the following property.

Proposition 2.4. Let U and (j be two subspaces associated with sets of interpolation points
I' and T" respectively. If U C U and I' C T, then

Iply = IIy = Iy

Magic points. For a given basis {¢;}1; of U, a set of interpolation points I' = {z* ey
called magic points, can be determined with a greedy algorithm proposed in [3T, Remark 2.
The procedure for selecting the set I' in a subset I'y in X is as follows. We first determine
a point 2! € T, and an index i1 such that

()] = .
[pir ()] = max max |;(x)].

Then for k£ > 1, we define %(k) () = pi(x) _251:1 Z?:l i, (x)agi?pgoi(xp), with the matrix
(a#f?p)lgm,pgk being the inverse of the matrix
(@i (2P))1<p<k,1<m<k, such that %'(Z) () =0foralll <m < kandz € X, and ¢Z-(k) (zP) =0

forall 1 <p <kand1l<i<n. Then, we determine the point 2kt € T, and an index
ig+1 such that

(k) (pht1y _ (k)
iy, (277)] = max max [ (x)].

2.2.2 Discrete least-squares projection

Let U be a n-dimensional subspace of V and let I' = {a:k}znzl be a set of m points in X,
m > n, such that [|v||r = (3 ,cr v(2)?)}/? defines a norm on U. The discrete least-squares
projection @y is the linear operator from V to U such that for v € V, Quuv is the unique
element in U which minimizes ||v — u||3 over all u € U, or equivalently

(U,U - QUU)F = Zu($)<5rvv _QUU> =0 Vuel,

zel



where (-, -)r is the inner product associated with the norm || - ||r on U. The discrete least-
squares projection Qy is an oblique projection onto U along W = {>_ _ru(x)d, : u € U}.
If #I" = dim(U) and T is unisolvent for U, then Qu coincides with the interpolation
operator I .

Proposition 2.5. Let U and U be two finite-dimensional subspaces such that U C U. Let
Qu be the discrete least-squares projection onto U associated with a set of points I' in X,
and let Qg be the discrete least-squares projection onto U associated with a set of points r
in X. If either T' =T or T C T and T is unisolvent for U, then

QuQy = QpQu = Qu-

Proof. Qu is the projection onto U along W = {> _ ru(z)d, : uw € U}, and Qp is the
projection onto U along W = {2 per U)oy s 0 € U}. If we prove that W C W, then the
result follows from Proposition Let w =) pu(x)d, € W, withu € U. If T = T,
then since u € U, we clearly have w € W. IfT c T and T is unisolvent for U, there exists
a function @& € U such that @(z) = u(z) for all z € T' and @(z) = 0 for all z € T\ T
Therefore, w = ) i u(x)d, is an element of W, which ends the proof. O

3 Tensors

Let H, be Hilbert spaces of real-valued functions defined on sets X, equipped with prob-
ability measures p,, 1 < v < d. We denote by || - ||, the norm on H, and by (-, )y,
the associated inner product. Let X = X} x ... x Xy and pp = 41 ® ... ® ug. The tensor
product of d functions v¥ € H,, 1 < v < d, denoted v' ®...®v%, is a multivariate function
defined on X such that (v' ® ... ® v¥)(z) = v (21)...v%(xg) for = (z1,...,14) € X.
Such a function is called an elementary tensor. The algebraic tensor space Hi ®q ... Rq Hy
is defined as the linear span of all elementary tensors, which is a pre-Hilbert space when
equipped with the canonical inner product (,-) defined for elementary tensors by

We.. . ovhuve.. wl)= (vh, why, ...(vd,wd)yd,

and then extended by linearity to the whole algebraic tensor space. We denote by || - || the

norm associated with inner product (-,-). A Hilbert tensor space H = Hi ®q - .. Qq Hd”“
is then obtained by the completion of the algebraic tensor space, which we simply denote

d
H=H1®...0Hs= Q)Mo
v=1

Example 3.1. Consider finite sets X, and H, = RY equipped with the norm HUH%V =
D oe e, po({x, Vv, 2. Then, H is the space of multidimensional arrays RV ®. .. @R

and [[0]* = 3 e n({z})|o(@)?, where p({ar,....xa}) = TT)=; mo({a}).



Example 3.2. Consider X, = R, u, a finite measure on R, and H, = Liu (X,) equipped
with the natural norm ||v||%iy = [ |v(z,)|?u(dx,). Then H is identified with Lz(X), where
p=m® ... @ pug, and |[vl|* = [ |v(@)]*p(d).

Example 3.3. Consider for H, a reproducing kernel Hilbert space (RKHS) with repro-
ducing kernel k, : X, x X, — R. Then H is a RKHS with reproducing kernel k(z,z') =
k’l(l‘l, l‘ll) ce k‘d(l‘d, :EZI)

For a non-empty subset v in {1,...,d} := D, we let X, be the set X, ecq v equipped
with the product measure p,, = ®V€ o M. We denote by Ho = @ ‘H, the Hilbert tensor

vea
space of functions defined on X, equipped with the canonical norm || - |3, such that
1 vl = [T IIv”ll24,
vea vEQ

for v € H,, 1 <v <d. We have Hp = H and we use the convention Hy = R.

Matricisations and a-ranks. Let a C D, with « ¢ {0}, D}, and let a® = D \ « be its
complement in D. For z € X', we denote by z, the subset of variables (x,),eq. A tensor
v € ‘H can be identified with an order-two tensor

MO!(U) c Hoc ® Hacy

where M, is the matricisation operator associated with «, which defines a linear isometry
between H and Hq ® Hae. We use the conventions Mgy(v) = Mp(v) =v and Hy @ Hp =
Hp ® Hyg = H. The a-rank of a tensor v € H, denoted rank, (v), is defined as the rank of
the order-two tensor M, (v), which is uniquely defined as the minimal integer such that

rankq (v) rankeq (v)
My (v) = Z v @Y, or equivalently wv(z) = Z V(202 (2ac),  (2)
k=1 k=1

for some functions v} € H, and v,‘j‘c € Hae of complementary subsets of variables x, and
xqe respectively. By convention, we have rankg(v) = rankp(v) = 1. From now on, when
there is no ambiguity, M, (v) and H, ® Hae will be identified with v and H respectively.

Minimal subspaces. The minimal subspace U™"(v) of v is defined as the smallest
closed subspace in H,, such that

v € UMM (1) @ Hae,

and we have rank, (v) = dim(U7" (v)) (see [14]). If v admits the representation (2)), then

rankeq (v)

Un(v) is the closure of span{vg}, """, For any partition S(«) of o, we have
Upitwy ¢ Q) UFt(v).
pes(a)

10



We have U™ (v) = Ro and for any partition S(D) of D,

v e U5 (v).
(D)

3.1 Operators on tensor spaces

Let consider the Hilbert tensor space H = ®ff:1 ‘H, equipped with the canonical norm ||-||.
For linear operators from H to H, we also denote by ||-|| the operator norm ||-||x—x = ||-||%-

We denote by id the identity operator on H. For a non-empty subset « C D, we
denote by id, the identity operator on H,. For A, in L(H,), we define the linear operator
A, @ idge such that for v® € H, and v*° € Hae,

c

(Ag ® idae) (V™ © %) = (Aqv®) @ v,

and we extend this definition by linearity to the whole algebraic tensor space Hqo ®q Hac.
For a finite dimensional tensor space H, this completely characterizes a linear operator on
H. For an infinite dimensional tensor space H, if A, € L(U,, Hq), with U, C Heg, then
A, ®idye can be extended by continuity to U, ® H.

We denote by A,, using calligraphic font style, the linear operator in L(#) associated
with an operator A, in L(H,), defined by A, = M3 (A, ®idac) M, and simply denoted

Ao = Ay @ idge

when there is no ambiguity. If A, € £(H,), then A, € L(H) and the two operators have
the same operator norm || A || = [|Aa||3, - Also, we have the following more general result.

Proposition 3.4. If A, € L(Uy, Ha), with Uy C He, then Aq € L(Uy @ Hae, H) and the
two operators have the same operator norm

[Aallvaetae—1 = [ Aallva—ta-

Corollary 3.5. For a tensor v € H and an operator A, € LIUT™(v), Hy),
[Aavll < 1 Aalloginw)—re 0]
Let S = {aq,...,ax} be a collection of disjoint subsets of D and let A, € L(H,) be

linear operators, o € S. Then we can define a linear operator Ag, ®...® An, = Queg Aa
on Hey Qg ... Qg Hay such that

() 4)( Q) v") = X)(Aav?)

a€esS a€eS a€eS

11



for v* € H,, a € S. The operator ) A, can be identified with an operator

aesS

A= ] Ao

aesS

defined on the algebraic tensor space Hi ®q ... ®q Hg. The definition of A is independent
of the ordering of the elements of S. If the operators A, are continuous, then A defines a
continuous operator from H to H and since ||| is a uniform crossnorm (see [19, Proposition
4.127]), the operator A has for operator norm

HAH::II”AQHZZII”AQWM-

aesS a€esS
Also, we have the following more general result.

Proposition 3.6. Let S be a collection of disjoint subsets of D and let 8 C D such that
B U (Ugesa) = D. Let Uy be a subspace of Ho and Ay € L(Uy, Hy), for a € S. Then
A = [l,eg Aa is a continuous operator from U := (@ es Ua) @ Hp to H such that

A2 = ] Mallvaetae—n = [] 14allva—ra-

a€eS a€es

Corollary 3.7. Let S be a collection of disjoint subsets of D. For a tensor v € H and
operators Ay, a € S, such that A, € LIU™"(v),Ha), the operator A = [lacs Aa is such
that

AV < Jloll TT 1 Aallezminw)-sa. -
a€es

3.2 Partial evaluations of tensors

Let o be a non-empty subset of D. For a linear form v, € H},, 1o ®id,e is a linear operator
from Hey ®q Hae to Hae such that (g ® idee) (v @ v°) = g ()0, If by € H.,, the
definition of ¥, ®id,e can be extended by continuity to 4. Then 1, ® id,c is a continuous
operator from H to Hae with operator norm |[1g ® idac |1 —31,c = [[%allpe, . Also, we have
the following result.

Proposition 3.8. If ¢, € U.,, with U, a subspace of Hy, then 1o®idye € L(Uy@Hae, Hae)
and
”¢a ® idac|’Ua®Hac—>Hac = HwaHU,’l'

Corollary 3.9. For a tensor v € H and 1, € U™ (v)’, we have

(Yo @ idae)v|| < |[Yall@mpn @)y llvll-
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For a point z, € X,, we denote by d,, € H} the point evaluation functional at x,,
defined by (d,,,v%) = v¥(xy) for v* € H,. Then 0., ® id,e defines a partial evaluation
functional, which is a linear operator from H to Hqe such that

(02, ® idge) (v @ V™) = v (20)0™".
From Corollary 3.9}, we deduce that for a given tensor v € H, if §,, € U7 (v)’, then the
definition of §,, ® id.c can be extended by continuity to UT"(v) @ Hae and the partial
evaluation

V(ZTa, ) = (0z, ® idye)v

is an element of H,e such that
[v(@a; e = [0z @ idae)v|| < |0z llumin @y llv]]-

3.3 Projection of tensors

Let « be a non-empty and strict subset of D and let U, be a finite-dimensional subspace of
He. If P, is a projection from H, onto U,, then P, ® id,c is a projection from H, ® Hae
onto Uy, ® Hae.

Proposition 3.10. Letv € H and o, 3 C D. Let Pg be a projection from Hg to a subspace
Up and let Pg be the corresponding projection onto Ug @ Hge. If B C o or B C D\ o, we
have

rank, (Psv) < rankq(v).

Proof. A tensor v admits a representation v = gﬁ{ o) vp ® w?c. If 3 C «, then Pg =

(P ® idg5) © idp\o and Py = SO (Py @ idgy5)v) @ wf. 1f 8 C D\ a, then
Pp = ido @ (Ps @ idp)(augy) and Pav = 31 o @ ((Ps @ idpy faugy)wg”). The result
follows from the definition of the a-rank. O

If Py, is the orthogonal projection from H, onto U,, then Py, ® idye coincides with
the orthogonal projection P, g, . from Hy ® Hee onto Uy @ Hee, and is identified with
the orthogonal projection Py, = Py, ®idge in L(H). If Pg‘; “ is the oblique projection onto
Uq along Wy, C M7, then P> = P[IJ/Z “ ® idqe is the oblique projection from H, ® Hae
onto Uy @ Heae along Wy @ Hle. If W, C H.,, then P[IJ/Z * and 775[; “ are continuous operators
with equal norms HP[IZ‘* | = HPgZ"HHQ.

Proposition 3.11. Let U, be a finite-dimensional subspace of Ho and let P[%1 be the

projection onto U, along Wy. For a tensor v € H such that W, C U™ (v), P(‘Xav s an
element of Uy, ® Hae such that

Wa Wa
1Py oll < 12y, logn () 0]l
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and
7% 7%
[Pr2v = Pu,oll < |PLY = Poallumin w)—aa 0]l

with

W, W,
1P = Py, luminoy—tta = 1P ida— Py yvmin @)—tta < NP gmn ) -

Also,
lo = Pevll? < (L4 1P = Pu|Fmin )20 10 = Puool®

Proof. We have v € U™ (v)@Hqe. Noting that HPU lomin () @Hae -1 = HPVZ“HUQM(U)_,HQ

and HP[VJI: * = Pualvmin wyetoe—n = HP 0" = Pugllumin (v)—., the results directly follow
from Proposition 23] O

Now, let « be a non-empty subset of D and let S(«) be a partition of a. Let Pg; g
be oblique projections onto subspaces Ug of Hg along W3 C Hp, B € S(a). Then

®8 B
ES
S(a) P”S(a)

Us(a) along ®6€S(a Wp = Wg(q), and PUS( : Us oy
from He @ Hae t0 Ug(q) @ Hae along Wq) @ H,e. From Proposition 2.2 we directly obtain
the following result.

Ws(a) . —
=Py Sy 8 the oblique projection from Hg(,) = ®Be$(a) H onto ®Be$(a) Ug ==
® idge is the oblique projection

Proposition 3.12. If U, C ®Be$(a) Ug and W, C ®Be$(a) W3, then

“( 11 7> H 7> =Py

BeS() BES

4 Tree-based tensor formats

Let T C 2P\ 0 be a dimension partition tree over D, with root D. The elements of T are
called the nodes of the tree. Every node o € T" with #a > 2 has a set of sons S(«) which
form a partition of «, i.e. UBeS(a) B =a. Anode a € T with #a = 1 is such that S(a) =0
and is called a leaf of the tree. The set of leaves of T' is denoted £(T) (see an example on
Figure[)). For o € T', we denote by level(«) the level of « in T, such that level(D) = 0 and
level(B) = level(a) + 1 if 5 € S(a). We let L = depth(T") = maxaer level(a) be the depth
of T, which is the maximum level of the nodes in T, and Ty = {a € T : level(a)) = £} be
the subset of nodes with level £, 0 < ¢ < L. We let t; = UaETe a. We have ty1 C ty and
te \ try1 C L(T') (see example on Figure [2]).

We introduce a subset of active nodes A C T'\ {D} such that T\ A C {D} U L(T),
which means that the set of non active nodes in T\ { D} is a subset of the leaves (see Figure
B). A set A is admissible if for any o € A, the parent node of v is in AU {D}. We let
LA)=ANL(T), Ay =ANT;for 1 <¢ <L, and ay = Upea,. We define the A-rank of
a tensor v € H as the tuple rank4(v) = {rank,(v)}aca-

14



{1,2,3,4,5,6}

{2 {3}

Figure 1: A dimension partition tree T over D = {1,2,3,4,5,6} and its leaves (blue nodes).
To (level 0)
T1 (level 1)

T (level 2)
{1} {4 {5 {6}

{2 {3}

T3 (level 3)

Figure 2: A dimension partition tree T over D = {1,...,6} with depth L = 3 and the
corresponding subsets Ty, 0 < ¢ < L. Here t3 = {2,3} and to = t; =ty = D.

Now we consider a tensor v € H with rank4(v) = (7a)aca. We let rp = rankp(v) = 1.
For all @« € AU{D}, we denote by {vf };%_; a basis of the minimal subspace Umin(v)

Ha, and we let vP = v. For @ € AU {D} such that § # S(a) C A, since UM (v) C
Qses(a) Ué”m (v), the tensor v admits a representation

Uga(xa): Z Cl?m(kﬁ)zaesm) H Ufﬁ(xﬁ)’

1skg<rg peS(a)

peS(a)
with a tensor of coefficients C* € R"***ses() "8, For o € AU{D} such that ) # S(a) ¢ A,
we have U™ (v) C (®BeS(a)mA Ug“"(v)) ® (®BeS(a)\A Hp), and therefore the tensor v
admits a representation

B0 = D Chbesmma(@sesana) [T vk, ),
ISkBSTﬁ BeS(a)NA
BeS(a)NA

with C% € RM*Xges@na’™ g (@ pes(ana Hp)- Finally, a tensor v such that ranks(v) =
(ra)acA admits a representation

v= >y 11 Chn (k) sesana (E8) Bes(@)\4) I v (xa) (3)

1<ka<ra ac(AU{D})\L(A) a€L(A)
acAU{D}
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{1,2,3,4,5,6}

{2 {3}

Figure 3: A dimension partition tree T over D = {1,2,3,4,5,6} and an admissible subset
of active nodes A (red nodes).

For a tuple 7 = (74 )acA, we define the subset 7,4(#) of tensors in H with A-rank bounded
by r,
TAM) = {v e H :ranky(v) < re, a0 € A} = ﬂ Tl (H).
acA
Remark 4.1. A tensor v € T,A(H) admits a representation as a composition of functions.
For o € A, let v*(xq) = (vf,...,v%) € R'e. If ) # S(a) C A, the tensor C* can be
identified with a multilinear function [ : Xgeg,R™ — R™, and v*(zo) admits the
representation
v*(2a) = f*((v"(258)) pes(a))-
For oo € AU{D} such that ) # S(a) ¢ A, the tensor C*((x5)ges(a)\a) can be identified
with a multilinear function f(-, (2p)ges@nAa) : Xges(@naR™? = R™, and v¥(xo) admits
the representation

v*(@a) = (V7 (28)) pes(ana, (T8)pesna)

where the f is linear in the arguments associated with active nodes 5 € S(a) N A. As an
example, for the case of Figurel3, the tensor v admits the representation

v(a) = fRE3AO0(FL25 (g, f12 (@, 0% (23))), f17 (s, 5, 0% (26)))-

Proposition 4.2. Let V = V1 ® ... ® Vg C H, with V,, a subspace of H, with dimension
dim(V,) = n,, 1 <v < d. The storage complezity of a tensor in TA(H)NV = TAV) is

storage(T,A(V)) = Z To H rg H ng + Z Tala-
a€(AUDI\L(A)  BeS(@)NA  BeS(a)\A aeL(A)

Example 4.3 (Tucker format). The Tucker format corresponds to a trivial tree T =
{{1,...,d},{1},...,{d}} with depth L = 1, and A = T \ {D} (see Figure[])). A ten-

sor v with A-rank bounded by (r1,...,74) admits a representation of the form
r1 rq
1 d
v(@) =YY Cry kWb (1) - 0F, (24), (4)
k=1  ky=1
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where C € R™**"d “and vy € H,, 1 <v <d, or equivalently

v(z) = fldwt(x),. .. v (xq)).

{1,2,3,4,5}

v o i

v {2 8 {4 {5}

Figure 4: Tucker format. Dimension partition tree 7" over D = {1,...,5} and subset of
active nodes A (red nodes).

Example 4.4 (Degenerate Tucker format). A degenerate Tucker format corresponds to
a trivial tree T = {{1,...,d},{1},...,{d}} with depth L = 1, and an active set of nodes
A strictly included in T \ {D}. Up to a permutation of dimensions, this corresponds to
A={{1},... {p}}, withp < d. A tensor v with A-rank bounded by (r1,...,rp) admits a
representation of the form

T1

v(@) =YY Cryoey (Tpits - )R, (1) v (), (5)

ki=1  kp=1

where C € R™* " @ Hypy  qy, and vy, € Hy, 1 < v < p, or equivalently

ol@) = For U0l @), e VP (@), s T0).

Example 4.5 (Tensor train format). The tensor train (TT) format corresponds to a linear

tree T = {{1},{2},...,{d},{1,2},...,{1,...,d}} and

A = {{1},{1,2},... . {1,....,d — 1}} (see Figure[5). Here, A is a strict subset of T \
{D}. The nodes {2},...,{d} in T are not actival. A tensor v with A-rank bounded by
(ri,...,rq—1) admits a representation of the form

Td—1

1
v(@) =Y 0 > o (@)Chy gy (@2) . O L (2q21)CR, L (a),

klzl kd,lzl

where vt € R @ Hy, C¥ € R @ H,, for 2 < v < d, with the convention rq = 1. Here
L=d-1,and for1<(<L,T,={{1,...,d=L},{d—0+1}}, t,={1,...,d—L+1}, Ay =
{{1,...,d—1}} and ay = {1,...,d—{}. The tensor v admits the equivalent representation

() = foro (ot R 0 (@), 22) 0 ), ).
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{1,2,3,4,5}

{1 {2}

Figure 5: Tensor train format. Dimension partition tree T over D = {1,...,5} and active
nodes A (red nodes).

Example 4.6 (Tensor train Tucker format). The tensor train Tucker (TTT) format cor-
responds to a linear tree T = {{1},...,{d},{1,2},...,{1,...,d}} and A =T \ {D} (see
Figure[d). A tensor v having a A-rank bounded by (r1,...,74,82,...,84—1) admits a rep-
resentation of the form (@) with a tensor C' € R™**"d such that

59 Sd—1
_ 2 3 d—1 d
Cklv---vkd - E : E : Ck1,k27i20i27k3,i3 s Cz’d,g,kd,hid,lCidfhkd,l’
io=1  ig_i=1

where C? € R™M*72%52 gnd CkF € RS=1%X"6X8k for 3 < k < d, with the convention sq = 1.
Here L=d—-1,Ty=A={{1,...,d—¢},{d—0+1}} and ty =ay={1,...,d—{(+ 1} for
1 < ¢ < L. The tensor v admits the equivalent representation

v(x) = fl"“’d(fl""’d_l(...f1’2(1)1(a:l), v*(22))..., vd_l(a:d_l)), vd(xd)).

5 Principal component analysis for tree-based tensor format

5.1 Principal component analysis of multivariate functions

Here we introduce the notion of principal component analysis for multivariate functions.
We consider a given non-empty and strict subset a of D. Any tensor in H is identified
(through the linear isometry M) with its a-matricisation in H, ® Hqe. A tensor u with

*Note that since rank gy (v) = rank
yield an equivalent tensor format.

a—13(v), adding the node {d} in the set of active nodes A would

,,,,,
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{1,2,3,4,5}

{1 {2}

Figure 6: Tensor train Tucker format. Dimension partition tree T over D = {1,...,5} and
active nodes A (red nodes).

a-rank rank, (u) € NU{+oco} admits a singular value decomposition (see [19] Section 4.4.3])

rankeq (u

Z ofu @ up, (6)

where {uj }rank“ and {uj rank“( ) are orthonormal vectors in Hq and Hae respectively,

and where the o are the Q- smgular values of u which are supposed to be arranged by
decreasing values. The minimal subspace UJ""(u) of u is given by

. || 75N
U (1) = span{ug }i2 k)

For r, < rank,(u), the truncated singular value decomposition

Ta

a, ac

Ury = E O U @ Uy
k=1

is such that

rankq (u)
o=l = i M=ol = 3 (k)
ranka (v)<ra k=ro+1

The functions {uf };* , are the r, principal components of u associated with dimensions «,
hereafter called a-principal components. The corresponding subspace U} = span{uf },,
which is a subspace of UY""(u), is hereafter called a a-principal subspace of dimension
To- Denotinﬁ Pus = Pyx @ idae the orthogonal projection from H to US ® Hae, we have

Ur, = Pysufl and
u—Pyxul| = min u—v||=  min u — Py, ul. 7
o= Pogul = min_fu—v] = win fu—Pu,ul )
*For all m > ro, we have Puxum = Y pv, o (Puzuf) Qug’ =%, ohuR ® u” = u,,. Then using the

continuity of Py and taking the limit with m, we obtain Pysu = ur,, .
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Remark 5.1. The optimization problem ([Tl) over subspaces of dimension ro in Ho admits
a unique solution U} if and only if o 1 > o .
5.2 Principal component analysis for tree-based tensor format

Here, we propose and analyse an algorithm for the construction of an approximation u* of
a function u in tree-based format 7,A(#). It is based on the construction of a hierarchy
of subspaces Uy, a € A, from principal component analyses of approximations of u in
low-dimensional spaces in H,. This is a variant of the leaves-to-root higher-order singular
value decomposition method proposed in [17] (see also [19, Section 11.4.2.3]).

For each leaf node a € L(T'), we introduce a finite-dimensional approximation space
Vo € Ho with dimension dim(V,) = nq, and we let V = @), £(T) V, C H. For each non
active node a € L(T) \ A, we let U, = V,. The algorithm then goes through all active
nodes of the tree, going from the leaves to the root. For each o € A, we let

Uq = Py, u,

where for a ¢ L(T), V,, is defined by

Vo= @ Us
)

BeS(a

where the Ug, 8 € S(«), have been determined at a previous step. Then we determine
the r,-dimensional a-principal subspace U, of u,, which is solution of

Uy — Pu. el = min Uy — V|| 8
e~ Prual| = min_ e~ ] (5)

Finally, we define
ut = Pvpu, 9)

where Py, is the orthogonal projection from H onto Vp = @ BeS(D) Us.

5.3 Analysis of the algorithm
Lemma 5.2. For a € L(A), U, CV,. Fora € A\ L(A),
U C X Us.
peS(a)

Proof. For a € A, we have U, C U™"(u,). If a € L(A), we have U™"(u,) C V, since
Uuo = Pyu. If @ € A\ L(A), we have U™ (u,) C X pes(a) Ug”i”(ua), and Ug”i”(ua) C Ug
since ua = [[geg(a) Pusu- O
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Proposition 5.3. The approzimation u* is an element of TA(H)NV = TAV).

Proof. Since u* = Py, u, we have u* € @, s(p) Ua- Then using Lemma 5.2 we prove
by recursion that u* € @), £(T) Vo = V. Also, for any g € A, Lemma implies that

u* € Ug @ Hge. Therefore, Ug“'"(u*) C Ug, and rankg(u*) < dim(Ug) = rg. This proves
that u* € T,A(H). O

For any level £, 1 < ¢ < L, let Pr, =[] aet, Pu, be the orthogonal projection from H
onto Ur, ® Hyg, with U, = ®o¢€Te U,, and let

ut = Pruttt,
with the convention u**! = u.
Lemma 5.4. For all 1 < /¢ < /¢ < L, we have
Pr, Pr, = Pr, = Pr,Pr, -

Proof. For 1 </ < L, we deduce from Lemma [5.2] that

Ur, = ® Ua C ( ® Us) @ ( ® Ua) C Uz, @ Hi\tesrs
a€Ty BET 11 S‘E‘E)ﬂ@

and then Ur, ® Hie C Ur,, ® Ht?+1‘ Therefore, for 1 < ¢ < ¢’ < L, we have Ur, ® Hie C
Ur, ® ’Ht;, and the result follows from Proposition O

From Lemma [5.4] we have that
L _ 041 _
u —'PTZU —'PTZ...'PTLU—'PTZU,
for1 </ <L, and

u* = Pru=u'.

We now state the two main results about the proposed algorithm.

Theorem 5.5. For a given r, the approzimation u* € T, (1) NV satisfies

u—uw?P<#A min |u—v|®+ u— Py ul]?.
Ju— | < #A min Ju=vl+ 3 u=Prul
acl(T)
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Proof. We first note that for all 1 < ¢ < ¢/ < L, u* — u’*! is orthogonal to u’ — uf*+1.
Indeed, using Lemma [5.4], we obtain that

uZ’—i—l)

o Tyr 41
/ /
PTZ/ (’LLE _ uf—l—l)’ PTZ/+1 (PTZ/UE +1 ’LLE —I—l))

2+1 41
o —u )

Then, we have

L L
”u _ u*”2 — Z HUZ—H _ UZH2 — Z ”uf—i-l _ PTZUZ+1H2
/=1

(=1
L

< Z Z Hué-ﬁ-l _ PUau£+1H2'

(=1 a€Ty

From Lemma 54, we know that u‘*t1 = Pr, 41U, where we use the convention Pr,  , = id.
For a € L(Ty), since Py, and Pr,,, commute, ||[u‘™—Py Y| = P, ,u—Pu. Pr,,, ul =
P, (u — Pu,w)|| < |lu— Py,ull. Therefore, for a € L(Ty) \ L(A), we have [[u‘T! —
Py w1 < ||lu — Py, ul|, and for o € L(Ay), we have |[u*! — Py uT? < |lu — Py, ul|? +
|Pv.u — Po,ul? = ||lu — Pyyul® + [[ua — Pu,uall?. For a € Ay \ L(A), we have

= pu= [ Pu I Pou= I Posue
)

5€Ty41\S(a) BES(a 5€Ty41\S(a)
so that
HUZ—H - ,PUauZ-H” = || H Pus(ta — Puyta)ll < [lua — Pu,uall-
56T[+1\S(a)
Gathering the above results, we obtain
[u—w*|? =" llua = Poyuall> + D lu—Py,ul? (10)
acA ael(T)
For ao € A, we let U} be the subspace in H,, such that
|lu —Pyszull = min |u—-v| < min |u—o|.
rankeq (v)<rq rank 4 (v)<r

For o € L(A), we have uq = Py, u. From Proposition[3.10, we know that rank, (Py, Pysu) <
rank,(Pyzu) < ro. The optimality of U, then implies that

|ua — Pu,uall < [[Pv,u — Py, Pusul| < |lu—Pusul.
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Now consider v ¢ A\ £(A). We know that ranka (][ e (q) PusPugu) < ranka(Pugu) < ra
from Proposition B0l The optimality of U, then implies that

[ta = Puytall < llua — [[ PosPosull =1 T Pu,(u—Pusu)l
BeS(a) BeS(a)

< [lu = Puzul.
Finally, we obtain

Z e — Pu. e < Z min N |u—v||? < #Aragﬁ;r%v) |u—v|?,

eyl ranka (v)<

which ends the proof. O

Theorem 5.6. For any ¢ > 0, if for all o € A, the rank ro is chosen such that

ua — Pu,tall <

€
the approxrimation u* satisfies
lu—w*|> < > flu—Pyul®+ €lul*.
acLl(T)

Proof. Starting from (I0]), we obtain

le =P < Hu—Pvau||2+Z IIUaH2

acl(T) aEA

and the result follows from |lua | = [[TIges() Pl < [[ull if o ¢ A\ L(A), and [Jua || =
1Py, ul| < |ull if « € L(A). O

6 Empirical principal component analysis for tree-based ten-
sor format

6.1 Empirical principal component analysis of multivariate functions

Here we present the empirical principal component analysis for the statistical estimation
of a-principal subspaces of a multivariate function (see Section [5.1]). We consider that
H= L2( ) or that # is a separable reproducing kernel Hilbert space compactly embedded
in L2 (X ), equipped with the natural norm in L? 2(X). Let (Xa, Xqae) be the random vector
w1th values in X, x X, with probability law g, ® tac. The tensor u can be identified with
a random variable defined on X, with values in H, which associates to x,c € X, the
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function u(-, z4c) = (idy ® g, )u, this random variable being an element of the Bochner
space LQQC (Xac; He). Then problem (7)) is equivalent to find a r,-dimensional subspace in
‘H,, solution of

it E (e Xee) = P, Xoe) I, (11)
Given a set {$§c}km§1 of m, samples of X,c, the a-principal subspace can be estimated by
an empirical a-principal subspace ﬁa solution of

”u - ,Pfjau”a,ma = dim?[}il)lzra Hu - ,PUauHa,maa (12)

where

1 &3 k k
lu — Pugull m, = pro Z u(, zhe) — Puju(-, zhe) |3, -
@ k=1

The problem is equivalent to finding the r, left principal components of {u(-,zk.) s
which is identified with an order-two tensor in H, ® R™=. We note that the number of
samples m, must be such that m, > r, in order to estimate r, principal components. In
the case of i.i.d. samples, the semi-norm || - [la,m,, on H is the natural statistical estimation
of the Bochner norm || ||o in L2 (Xac; Ha), defined by [|v]|2 = E(||v(Xac) |2, ). This norm
Il - [|o coincides with the norm || - || on H when H is equipped with the Li(X )-norm

For some results on the comparison between ||u — PﬁauH and the best approximation
error |lu — Pysull, see [3, 40, 23] 24]. Under suitable assumptions on u (e.g., u uniformly
bounded), for any n > 0 and e > 0, there exists a m, sufficiently large (depending on
1, €,7o and u) such that

lu —Pg_ull* < |lu — Pygul® + €

holds with probability higher than 1 —7. Then, for any 7 > 0, there exists a m,, sufficiently
large (depending on 7, 7,7, and u) such that

lu =P, ull* < (1 +72)|u ~ Pyl

holds with probability higher than 1 — 7.

6.2 Empirical principal component analysis for tree-based format

Now we propose a modification of the algorithm proposed in Section using only eval-
uations of the function u at some selected points in X'. It is based on the construction
of a hierarchy of subspaces {Ug }aca, from empirical principal component analysis, and a

®Note that when # is equipped with a norm stronger than the norm in L2 (X), then || - ||a does not
coincides with the norm || - || on H, so that the subspaces solutions of (@) and () will be different in
general.
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corresponding hierarchy of commuting interpolation operators associated with nested sets
of points.

For each leaf node o € L(T), we introduce a finite-dimensional approximation space
Vo C Hq with dimension dim(V,) = n,, we introduce a set I'y, of points in X, which
is unisolvent for V,, we denote by Iy, the corresponding interpolation operator from #,
to Vu, and we let Zy, = Iy, ® id,e be the corresponding oblique projection from H to
Va®Hae. Welet V =@ ep(r) Vo C H. For each non active a € L(T') \ 4, we let Uy = Vo
and FUQ = FVa-

The algorithm then goes through all active nodes of the tree, going from the leaves to
the root.

For each active node o € A, we let

Uq = 2Ly, u

where for ao ¢ L(A), the space V,, is defined by

Vo= @ Us.
)

BeS(a

where the Ug, f € S(a), have been determined at a previous step. For a ¢ L(A), Iy, =
Iy, ® idge, where Iy, is the interpolation operator onto V, = @ BeS(a) Up associated with
the product grid I'y, = X 8eS(a) I'y,, where each I'y, have been determined at a previous
step. Then we determine a r,-dimensional empirical a-principal subspace U, of u, which
is solution of

|ua — PUauaHa,ma = min llua — UHa,maa (13)
rankeq (v)<ra

where

1 = k k
[t = [|Z = — Z ta (-, 2he) —v(-, 2ke) 3,
Ma =

and where {z%.}7'® are m, random samples of Xse, with m, > r,. The problem is
equivalent to finding the r, left principal components of {u(-, x’éc)}?;l, which is identified
with an order two tensor in V,, ® R™=. The number of evaluations of the function u for
computing U, is mq x dim(V,,). We let {¢}},* ;| be the set of principal components, such
that U, = span{y?};*,. We then construct a set of points I'y, which is unisolvent for U,
and such that

I'y, CTly,. (14)

For the practical construction of the set I'y,, we use the procedure described in Section
2211 We denote by Iy, the interpolation operator from H, onto U, associated with
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the grid I'y,,, and we let Zy;, = Iy, ® id.e be the corresponding projection from H onto
Uy @ Hee.
Finally, we compute

u* =Ty, u, (15)

where Zy,, = ®ﬁeS(D) IUﬁ is the interpolation operator from H onto Vp = ®B€S(D) Us,
associated with the product grid I'y,, = XBeS(D) Ly,

6.3 Analysis of the algorithm

Let us first prove that the algorithm produces an approximation «* in the desired tensor
format.

Lemma 6.1. Fora € L(T)\ A, Uy, =V,. Fora € L(A), U, C Vy. For a € A\ L(A),

U C X Us.
)

BeS(a

Proof. For a € A, we have U, C U™"(u,). If a € L(A), we have U™ (u,) C V,, since
Uq = Zy,u. If @ € A\ L(A), we have UM (u,) C Qses(a) Uém”(ua), and Ugbi”(ua) C Us
since uq = [[geg(a) Zuyu- O

Proposition 6.2. The algorithm produces an approzimation
ut e TAMH) NV = TAWV).

Proof. Since v* = Ty,u, we have u* € Vp :®aeS(D) U,. Then using Lemma [6.1] we
prove by recursion that u* € @, cryVa=V. Also, for any a € A, Lemma implies
that u* € U, ® Hae. Therefore, U™ (u*) C Uy, and rank,(u*) < dim(U,) = r,. This
proves that u* € T,A(H). O

For all a € T, the operator Zy, = Iy, ® id,e is a projection from H onto V, ® Hae
along W @ H}., with W = span{d, : « € T'y, }. For all « € T\ {D}, the operator
Ty, = Iy, ® idye is an oblique projection from H onto U, ® Hee along W, @ H}e, with

W, = span{d, : € I'y, }. From the property (I4)) of the grids, we deduce the following
result.

Lemma 6.3. Fora € L(T)\ A, Wy = W}. For a € L(A), W, CWZ. Fora € A\ L(A),

Wa C W)= & W
pes(a)
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Remark 6.4. Note that interpolation operators Iy, o € A, could be replaced by oblique
projections P[IJ/Z “ onto U, along subspaces W, in H},, with subspaces W, satisfying for
a ¢ L(T), W, C ®5€S(a) Wpg. Under this condition, all results of this section remain
valid.

For any level £, 1 < /¢ < L, let

Ir, = [ Zv. = Ivs, @ idsc,
a€eT)y
where IUTZ = aET, Iy, is the interpolation operator from Hy, to Uy, = @ aET, U, associ-

ated with the tensor product grid I'T* = X aeT, I'®, and let

’LLE — ITZUZ-Fl’
with the convention u=*!
oblique projections.

= u. We then prove that operators Z7,, 1 < ¢ < L, are commuting

Lemma 6.5. For all 1 < ¢ < L, the operator Zt, is an oblique projection from H to
Up == Ur, @ Hyg along Wy :== W, ® 7-[;%. For all1 < ¢ < ¥ < L, we have Uy C Uy and
Wy C Wy, and therefore

IrIr, = Ir, = Ir,Ir,.

Proof. For 1 < /¢ < L, we have

U= Q@ U)o @ Ua)oHyand Ur=( @ Us)oHs,,.
a€T\L(T) a€T,NL(T) BETr1

From Lemma (.1 we know that &,cq,\ () Ua is a subspace of Qger,,, Us C Hiyy,-
Therefore, we obtain Uy C Uyyi. In the same way, using Lemma [6.3] we obtain that
Wy C Wey1. We then deduce Z7,Zr,,, = I, I1, = I1, from Proposition [2.2] which ends
the proof. O

Lemma 6.6. The approximation u* satisfies

L
lu —w*? < (L +8(L = 1)) D [lu™H =%,
/=1

where § = max, o7, and
o1, = vy, — Pur, ”U;zm(uul)—mtev
with tg = Uger, . If u €'V, then
o1, < 04, = |Tu,, — Pua, ||U1Tei”(ul+1)—>7'lae’

with ag = Uaea, 00

27



Proof. Since u —u* = S0 (1 — uf), we have

/ ’
—u ”2 ZHUZ—H £H2_’_2Z(u€+l_ué7u€ +1_u£ )

<t

. ’ ’ ’ ’
For ¢ < £, since Pr,(u’ Tt —u?) = w1 — " we have

(ué—l-l _ uzj B ’) (ué—l-l ut PTZ( O+1 uél))
('P ué—i—l _ ué)’ugl—l-l _ ué’)
(PTgu _ ITZUH_ly uf’—i—l _ uZ’)
— ((,PTe ITZ)(UH_I _ 'LLZ), uf’—i—l _ uZ’)

where we have used the fact that Pr,Zr, = Zr7, and (Pr, - ITe)ug = 0. Since P, — I7, =
(Pug, = Iug,) ® idye and ut —uf = w1 - Ittt C U:?Zm(u“l) ® My, we obtain from
Proposition 3.I7] that

< (P, = Zr) (™' = )"+ ="

!/ / !/ !/
|(ué+1 _uf ué—l—l _uZ)| SéTgHuZ—H _uZHHuZ—l—l_ué ||’

9

for ¢/ < ¢. We deduce that
L
Ju — w*[|* < Z By |lutt — uf|[luf T — (| < p(B) D uf T —uf|?,
L4'=1 =

where the matrix B € RE*L is such that By, = 1 and Byy = r

max{¢,¢'} lf E ;é El' USng the
theorem of Gerschgorin, we have that

p(B) <1+ m?x;:#Bg,g, =1+ m?x((ﬁ —1)0r, —i—;;gfm,) <1+0(L—1),

with § = maxy d7,.
Finally, when u € V', we have U™ (u‘*1) c U™ (u) C V, for all a € L(T). Therefore,
Iy, v = Py, v for all v € U™ (u**1) and a € L(T), and

5Tg = ”[UAZ ® IVTe\AZ - PUAZ ® PVTe\Ag”U%i"(UZ+1)—>HtZ
- ”(IUAZ o PUAZ) ® PVTe\Az ”Uﬂi”(uul)—ﬂ-{t
= ||IUA2 - PUAZ||U,74nZn(UZ+1)—>HaE||PVTZ\AZ||Um7'n (ug+ )—YHt Ny

< ”IUAe - PUAL, HUX?"(u”l)—)Hae =04,
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Lemma 6.7. For 1 </ <L,

= <1+ 03)( 3 A, ey (L o) ke — Pl
aEAy

> AR, (1 20082 lu = Prul?),
OcETeﬁ,C()

where for S C T,

Ag = H Aa(Ua); Aa(Ua) = ||IUQ||Ug””(u)—>Hav
a€csS

aa = Loer(a)ls,+0;
and

6o = vy — Pvi llomin ()20

for av € L(T'). Moreover, if u € V, then 6o =0 for all « € L(T'), and aq =0 for all v € T

Proof. For all 1 < /¢ < L, we have
Hué—i—l _ uf||2 _ Huf—l—l I uf+1||2 Huf—l—l _ ,PTKUZ—HH2 + HITZUZ—H _ PTZ,LLZ+1||2
= |t = Pr,u ™ + (Zg, — Pr) (u = Pruh)

< (1+5%e)“ué+l Pr u€+1H2 (1+5T Z Huﬁ-l—l Py u€+1”2.
acTy

For a e T)\ L(T) = Ay \ L(T),

= ITZ+1U = H H IUBU = H IU(;uon

66Tg+1\S(a) BES 6€Ty1\S()

ué—i—l

and since Py, and [] 5€Ty,1\S(a) Lus commute, we have

[t =Pu M =1 I Zus(a — Puata)ll < Az, st — Pugtial-
6€Ty1\S(a)

Now for v € Ty N L(T'), we have that Py, and Zz,,, commute, and therefore
HU’Z—H - ,PUaug—HH = ”ITZ+1(U’ - ’PUQU)” < AT2+1 ”u - PUau”’
If o € Ty \ Ay, we have Uy, =V,,. If o € Ay N L(T'), we have

lu = Pu,ull? = lu = Pu, Prull® = [lu = Py,ull® + [|(id — Pv,) Py, ull?,
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so that if 6o = |[Iv,, — Pv, lumin(u)y—m. = 0, we have Py, u = Zy, u = u, and
lu = Poull® < llu = Py,ul® + |[(id — Pu, Juall, (18)
and if d, # 0, we have

lu = Pu,ull® < [lu = Py,ull® + 2||(id — P, ) (Py, — Zv)ull® + 2| (id — Pu,) v, ul?
= |lu = Py ull* + 2||(id — Pu,)(Pv, — Tv,) (u — Py, u)|?
+ 2| (id — Py, uall
< (1+202)[[u — Py, ull? + 2[ua — Pu,ual?, (19)

where we have used Proposition[B11l We conclude from (I8]) and (I9]) that if « € A,NL(T),
lu = Pr,ul? < (14 2a083)[lu — Proull® + (1 + aa) ua — Po,ual®.

Gathering the above results, we obtain

=2 < 0+ ) (Y M lite — Poatal?

a€ANL(T)
+ Z (1+ aa)A%Hl l[ta — PUaua||2
OcEAeﬂ,C(T)
Y (14 20082)A, - Prul®+ >0 A% - Pvau||2>,
OcEAeﬂ[:(T) OfETg\Ae

which ends the proof.

O
We now state the two main results about the proposed algorithm.
Theorem 6.8. Assume that for all o € A, the subspace U, is such that
Jua — Puatial® < (1472 min_ g — vf]? (20)

ranka (v)<ra

holds with probability higher than 1 —n, for some T > 1. Then the approximation u* €
TAH) NV is such that

lu —w*? < 1+ 75)C* min Ju—ol*+ Y Dillu—Pyul (21)
vETAM) acLl(T)

holds with probability higher than 1 — #An, where C is defined by

L
C? (I1+46(L Z 1+ 5Tz AT‘ZJrl Z 1+ aa))‘§7 (22)
/=1

acAy
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with

Ao = Lagr(ay + Lacc) Hva lluminuy—2a (23)
and aq and o, defined by ([6) and (IT) respectively, and where D, is defined by
DZ = (146(L —1)(1+0%,)A%, | (14 2a407) (24)

forae L(T)NT,.
Proof. For a € A, let ﬁa be a subspace such that

[ua = Pp_ tall = 0 [t =,

and let U C U™"(u) be a subspace such that

lu —Pysull = min  |lu—-v] < min ||ju—2v].
ranke (v)<rq veT,A(H)

For o € L(A), we have uq = Ty, u. We know that rank, (Zy, Pysu) < 7 from Proposition
[3.10l By the optimality of U,, we obtain
[ta = Py vall < lua = Zva Pugull < Uy, llugin - lv = Pogull

Now consider a € A\ £(A). We know that ranka(]]seg() ZvsPugu) < ranka(Pugu) < 7o
from Proposition B.I0l By the optimality of ﬁa, we obtain
lua = Pg tall < llua — [[ ZvsPogull =1 J] Zvs(u—Pusu)|
BeS(a) BeS ()
< Ag(ollu — Pysgull.

Then, using Lemma [6.7] and assumption (20, we obtain

l+1 2112 2 2 2 2 : 2
= w2 <(1+63,)A%,,, (; (+aWi 47 min fu o
4

> (42000l — Prul).
OcETeﬂ,C(T)
Then, using Lemma [6.6] we obtain (21]). O
Remark 6.9. Assume u € V' (no discretization). Then 6o = 0 and ||Iv, [|ymin (u)—n, =1

for alla € L(T), ag =0 and Ay =1 for all « € T', Ay, = Aa, and 61, = da, for all L.
Also, the constant C defined by [22)) is such that

L
C?=(1+6(L—1)) ) (1+63,)A%,, , #A (25)
/=1
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Moreover, if Uy, = U™ (u) for all a, then Ar, = Ay, =1 and 67, = 04, = 0 for all ¢,
which implies

= #A. (26)
Theorem 6.10. Let €,€ > 0. Assume that for all o € A, the subspace Uy, is such that
[ua — Putall < €lluall (27)

holds with probability higher than 1—n, and further assume that the subspaces V,,, a € L(T),
are such that

lu = Pyull < éull. (28)
Then the approximation u* is such that
lu —w*||? < (C?¢* + D?&)||ul|?

holds with probability higher than 1 — #An, where C is defined by 22)) and where D? =
> ael(T) D2, with Dy, defined by @24), is such that

L
D*=(1+6L-1)> 1+)A7,, . > (1+2a.07). (29)
(=1 aeT,NL(T)

Proof. We first note that for @ € A\ L(A), we have |[uqa|| < Ag(q)llull. Also, for a € L(T),
we have |[uq|| < Aq|lul|, with A\, defined in (23]). Using Lemma [l and assumptions (27))
and (28]), we then obtain

Ju st =2 < (14 63,87, (30 (1 + aa)AZeull
acAy

+ Y 2aa6§)€2|]uH2>.

a€TyNL(T)
Finally, we obtain the desired result by using Lemma O

Example 6.11. For the Tucker format described in Example [{.3, the constants C' and D
are given by

C?=(140%) > (14 Lauro) IV llfmin (i),
acl(T)

D*=(1+463) > (1+262),
ael(T)
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with
=l Q .- Q@ Pullugewon=| & Inu- ® Py, ull/llull.
ael(T) acel(T) acel(T) ael(T

If u e V, then
C=(1+6,)"*Va.

Example 6.12. For the tensor train format described in Example[{.3, the constant C' and
D are given by

U
[

C? = (1+6(d - 2))( (1+6%,)A% . d—Z—l}HIVd—e”[2];7:2'?(11)_)7-[117@

~
|

1
(1403, )0+ Lo o) i B3, )

QU
[\

D? = (1 + 5(d - 2))( (1 + 5Te)A{1 d—f—l}||IVd*ZH2Ugf?(u)—>Hd,g

~
Il

1
+ (1463, ,)(2+209)),
with

5 HIU{1 d—t} ®IV{d e+1} PU{1 d—e} ®PV{d z+1}HU7”“ a Hl}(u“l)—ﬂ{{l d—t+1}

~~~~~~~~~~~~~
»»»»»»»

If u € V, then

d—2
C?=(1+6d (Zl+5TeA{1 dy F(1+67, 1)).
=

Example 6.13. For the tensor train Tucker format described in Example[].6], the constant
C and D are given by

C? = (1+6(d —2))x
—2
(1 + 6%2)A%1,...,d—£—1}A%d—Z} (1 + (1 + 15d—2+17£0)”‘[v{d7[+1} ”U"”" _>H{d—2+1})

{d—e+1}
1

04, )+ L) iy + (U L)l iy, )

ISH

~
Il

IS

9
D? = (1+6(d— 2))( (L+67)A% a1y A ey (2 + 207 r41)

~
Il

1
(1463, )1+ 200)(1 +263)).
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If u € V, then

U

-2

C? = (1+6(d—2)) < 2014+ 7,)A7 . 4 Mo+ 1+ 5%d1)> .

&~
Il

1

6.4 Complexity

Here we analyse the complexity of the algorithm in terms of the number of evaluations
of the function. Evaluations of the function u are required (i) for the computation of
the subspaces {U,}aca through empirical principal component analysis of the V,-valued
functions uq (-, Xae), with Vi, a given approximation space if o € L(A) or Vo = @) ¢ S(a) Us
if a € A\ L(A), and (ii) for the computation of the final interpolation Zy,, u.

We then obtain the following result about the number of evaluations of the function
required by the algorithm

Proposition 6.14. The total number of evaluations of u required by the algorithm for
computing an approzimation w* in the tensor format T,2(V) is

M(A,r,m,n) = Zmana+ Z Me, H rg H ng

aEL(A) a€A\L(A)  BeS(@NA  BeS(a)\A

+H7’5Hn5.

BeS(D)NA  BeS(D\A

where n = (Na)acrs(T), With ng = dim(Vy), and m = (ma)aca, with mq the number of
samples of the Z,-valued random variable uy (-, Xoc) used for computing U, .

Proof. For a« € A, the function u, is an interpolation of u in Z, = V, if a € L(A),

or in Z, = ®66S(a Us = <®BES((X A UB) <®66S(a nA VB) if « ¢ L(A). Therefore,

computing uq (-, z%.) for one realization z¥. of X,c requires dim(V,) = n, evaluations

of uif a € L(A) or dim(@pes(a)Us) = pes@inarslpes@pans if @ ¢ L(A). Fi-
nally, the computation of the interpolation Iy u = Zg(pyu requires dim(@),c S(D) Uy) =

[ses(pyna 8 1 gespy a ns evaluations of u. O

For computing a r,-dimensional subspace U, the number of samples mg, of uq (-, Xoc)
has to be at least r,.

Corollary 6.15. If the number of samples mq, = ro for all o € A, then the number of
evaluations of the function required by the algorithm is

M (A,r,r,n) = storage(TA(V)).
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The above result states that for a prescribed rank r = (r4)aeca, the algorithm is able to
construct an approximation of v using a number os samples equal to the storage complexity
of the tensor format 7,4(V).

When using the algorithm with a prescribed tolerance €, the rank r,, is not fixed a priori
but defined as the minimal integer such that the condition (27 is satisfied. Since samples of
o (-, Xac) belongs to the subspace U™ (u,) C Z, with dimension rank, (u,) < dim(Z,),
the selected rank r, is at most dim(Z,). Therefore, by taking m, = dim(Z,) for all
a € A, if we assume that the set of m, samples of u(-, Xyc) contains rank, (uq) linearly
independent functions in Z,, then the algorithm is able to produce an approximation with
arbitrary small tolerance e.

Corollary 6.16. If the number of samples mq = dim(Z,,) for all a € A, then

M(A,r,m,n) = Zn—l—z Hr%Hn%

aEL(A a€A\L(A) BES()NA  BeS(a)\A

+H7‘5H7lg.

BeS(D)NA  BeS(D)\A

Remark 6.17. For numerical experiments, when working with prescribed tolerance, we
will use my, = dim(Zy,) for al a € A.

7 Numerical examples

In all examples, we consider functions v in the tensor space Li(X ), with X C R?, equipped
with the natural norm || - || (see example B:Zl)@ For an approximation u* provided by
the algorithm, we estimate the relative error e(u*) = ||lu — v*||/||u|| using Monte-Carlo
integration. We denote by M the total number of evaluations of the function u required
by the algorithm to provide an approximation u*, and by S the storage complexity of
the approximation u*. Since the algorithm uses random evaluations of the function w (for
the estimation of principal components), we run the algorithm several times and indicate
confidence intervals of level 90% for e(u*), and also for M, S and approximation ranks
when these quantities are random.

For the approximation with a prescribed A-rank, we use m, = ~yr, samples for the
estimation of principal subspaces U,, a € A. If v =1, then M = S (see corollary [6.15]).

For the approximation with a prescribed tolerance €, we use m, = dim(Z,) for all
a € A (see corollary for the estimation of M).

In all examples except the last one, we use polynomial approximation spaces V, =
P,(X,) over X, C R, v € D, with the same polynomial degree p in all dimensions. For

SFor the last example, X is a finite product set equipped with the uniform measure and Li(X) then
corresponds to the space of multidimensional arrays equipped with the canonical norm.
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each v € D, we use an orthonormal polynomial basis of V,, = P,(X,) (Hermite polynomials
for a Gaussian measure, Legendre polynomials for a uniform measure,...), and associated
interpolation grids I'} selected in a set of 1000 random points (drawn from the measure
) by using the greedy algorithm described in Section [2.2.1]

7.1 Henon-Heiles potential

We consider X = R? equipped with the standard Gaussian measure g and the modified
Henon-Heiles potential [28]

d d—1 d—1

1 L s
U(xl,...,wd)zizw?+0*2( z+1 1_62x +‘Tz+1 )

i=1

s
|
—_
<.
|
—_
-.

with o, = 0.2. We consider approximation in the tensor train format 7,4(V') described in
example The function is such that rank,(u) = 3 for all & € A. We use a polynomial
degree p = 4, so that there is no discretization error, i.e. u € V.

In Table[I], we observe that the algorithm with a prescribed rank » = (3,...,3) is able to
recover the function at very high precision with high probability with a number of samples
equal to the storage complexity of the approximation (when v = 1), with no deterioration
when the dimension d increases from 5 to 100. The accuracy is slightly improved when
v = 100 but with a much higher number of evaluations of the function.

Table 1: Henon-Heiles potential. Approximation with prescribed rank r» = (3,...,3) and
v =1 and v = 100, for different values of d.

r=1
d ) 10 20 50 100
e(u*) x 101 | [1.0;234.2] | [1.5;67.5] | [2.5;79.9] | [6.6;62.8] | [15.7;175.1]
S=M 165 390 840 2190 4440
v =100
d 5 10 20 50 100
e(u*) x 101 [ [0.1;0.4] | [0.2;0.4] | [0.3;0.4] | [0.4;0.7] | [0.6;0.8]
S 165 390 840 2190 4440
M 1515 3765 8265 21765 44265
7.2 Sine of a sum
We consider X' = [—1, 1]d equipped with the uniform measure and the function
w(zy,...,xq) =sin(x; + ...+ zq).

36



We consider approximation in the tensor train Tucker format 7,4(V') described in example
The function is such that rank,(u) = 2 for all « € A. In Table 2, we observe the
behavior of the algorithm with a prescribed rank r = (2,...,2) for different polynomial
degrees p and different values of d. We observe a linear dependence of the complexity with
respect to d.

Table 2: Sine of a sum. Approximation with prescribed rank r» = (2,...,2) and v = 1.
Relative error e(u*) and number of evaluations M = S for different values of d and p.
d=10 d=20 d =50

e(u*) M e(u*) M e(u*) M
p=3 || [3.2;3.3] x107! [148 | [5.2;5.3] x 10~1 [308 | [8.8;8.81] x 10~ 1 | 788
p=>5 [ [1.29;1.31] x 1072 [ 188 || [2.3;2.33] x 1072 [ 388 [5.2;5.3] x 1072 | 988
p=7 | [1.77;1.81] x 107% [ 228 || [2.9;3.0] x 10~* [468 | [6.0;6.1] x 10~* [ 1188
p= [4.1;4.2] x 107° [ 268 || [6.4;6.6] x 107¢ | 548 [ [1.27;1.29] x 107> | 1388
p=11] [2.17,2.2] x 1078 [ 308 | [3.7;3.8] x 1078 [628 | [8.2;8.4] x 1078 | 1588
p=131 [7.6,7.7] x 10719 [ 348 | [1.32;1.24] x 10~1 [ 708 || [3.00;3.04] x 10~ | 1788
p=15] [7.6,7.8] x 10712 [ 383 | [1.0;1.1] x 1072 [ 788 [1.7;2.5] x 1012 | 1988
p=17| [41,13] x 1071* [428 | [0.8;4.9] x 10~ [868 | [0.4;6.7] x 10~ |2188

In Table[3] we observe the behavior of the algorithm with prescribed tolerance e = 10712
and fixed polynomial degree p = 17, for different values of d. For this value of ¢, the
algorithm always provides an approximation with rank (2,...,2) with a fixed number of
evaluations which is about ten times the storage complexity.

Table 3: Sine of a sum. Approximation with prescribed tolerance € = 1072, p = 17 and
~v =1 for different values of d.

d=10 d =20 d = 50

e(u*) S| M e(u*) S| M e(u*) S

[3.7;6.3] x 10713 | 428 | 3372 || [0.6;1.3] x 10~ | 868 | 6772 || [1.4;3.2] x 1071 | 2188 | 16972

7.3 Sum of bivariate functions
We consider X = [~1,1]? equipped with the uniform measure and the function
w(z1, ..., 2a) = g(21,22) + g(3,24) + ... + 9(Ta—1, Ta) (30)

where g is a bivariate function, and d = 10. We consider approximation in the tensor train
Tucker format 7,4(V) described in example The function is such that rankg,,(u) =
rank(g)+1 for all v € D, and rankyy ) (u) = 2 if v is even, or rankg; 3 (u) = rank(g)+1
if v is odd. Here, we use the algorithm we a prescribed tolerance e.
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We first consider the function ¢(y, z) = Z?:o 1727 whose rank is 4 and we use polyno-
mial spaces of degree p = 5, so that there is no discretization error. We observe in Table
@ the behavior of the algorithm for decreasing values of €. For ¢ = 10™%, the algorithm
always provides the solution at almost machine precision, with an exact recovery of the
rank of the function u. We observe that increasing v (i.e. the number of evaluations for the
estimation of principal components) allows us to obtain a more accurate approximation for
a given prescribed tolerance but with a significant increase in the number of evaluations.

Table 4: Sum of bivariate functions ([B0) with g(y,z) = Z?:o Y27, Approximation with
prescribed €, degree p = 5, and different . Confidence intervals for relative error (u*),
storage complexity S and number of evaluations M.

v=1
€ e(u*) M S
1071 [1.4 x1071;2.8 x 1071 [444,521] | [160, 192]
1072 ] [0.8 x1071;1.5 x 1071] [918,1034] | [345,373]
1073 ] [1.710715;2.6 x 107?] [1916,2088] | [530, 560]
1074 [ [1.6 x 10715;7.8 x 10719] 2088 560
v =10
€ e(u*) M S
1071 [1.71071;2.0107}] [5364, 5484] | [202,212]
1072 ] [0.9 x 1072, 1.1 x 1072] | [16132,16412] | [486, 500]
1073 [ 2.1 x 1071%;2.7 x 10719] 20736 560
1074 | [1.7 x 10715, 2.7 x 10719] 20736 560

We now consider the function g(y, z) = eXp_é(y_Z)2 with infinite rank. We observe in
Tables Bl and [6 the behavior of the algorithm for decreasing values of €, and for a fixed
polynomial degree p = 10 in Table[5] and an adaptive polynomial degree p(e) = logo(e™1)
in Table [0 We observe that the relative error of the obtained approximation is below the
prescribed tolerance with high probability. Also, we clearly see the interest of adapting
the discretization to the desired precision, which yields a lower complexity for small or
moderate €.

7.4 Borehole function

‘We here consider the function
21Y3(Yy — Yg)

VLY. %
(Y2 =log(YD))(1 + rioginyyvews + 1)

f(Y,...,Yg) =

which models the water flow through a borehole as a function of 8 independent ran-
dom variables Y7 ~ N(0.1,0.0161812), Yo ~ N(7.71,1.0056), Y3 ~ U(63070,115600),
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Table 5: Sum of bivariate functions ([B0) with g(y, z) = exp_é(y_z)Q. Approximation with
prescribed €, degree p = 10, v = 1. Confidence intervals for relative error e(u*), storage
complexity S and number of evaluations M.

€ e(u*) M S
1071 | [3.81072%;5.31072] | [1219,1222] | [119,131]
1072 | [1.81072;3.8107%] | [1282,1294] | [252,256]
1073 | [1.2107%;2.01073] | [1813,1876] [507,519]
10~* | [1.2107%;1.6107%] | [1876,1876] [519,519]
107> | [1.6107°;6.9107°] | [3275,4063] | [821,935]
1076 | [1.8107%;7.1107°] | [4135,4410] | [975,995]
1077 | [3.11078;2.51075] | [4685,4960] | [1015,1035]
1078 | [2.7107%;1.31077] | [5048,6120] | [1056,1164]
1079 | [1.2107%;4.81078] | [9671,11595] | [1476, 1578]
10710 [ [1.910719;1.5107%] | [11647,13117] | [1603, 1659]

Table 6: Sum of bivariate functions ([B0) with g(y, z) = exp_é(y_z)Q. Approximation with
prescribed €, degree p(e) = logyo(e71), v = 1. Confidence intervals for relative error e(u*),
storage complexity S and number of evaluations M.

€ e(u*) M S
10~ [ [1.41071;3.31071] [52, 70] [32,42]
1072 | [2.91072;4.21077] [162, 184] (88, 100]
1073 | [3.21073;1.11072] [598, 778] 258, 292]
1074 | [1.7107%;2.5107%] (916, 916] [339, 339]
10=° | [5.7107°;1.5107%] | [2056,2759] | [562,622]
107% | [1.1107°%;3.5107°] | [3190,3465] | [758,778]
1077 [ [6.91078;2.11077] | [4390,4390] | [885,885]
1078 | [3.21078;1.21077] | [4560,5319] (935, 998]
1077 | [8.31077;4. 110—8] [9415,11385] | [1396, 1509]
10710 [ [1.610~ 10,1.710 8] | [11647,12382] | [1603,1631]

Yy ~ U(990,1110), Y5 ~ U(63.1,116), Y5 ~ U(700,820), Y+ ~ 1/(1120,1680), Vg ~
U(9855,12045). We then consider the function
w(zy, ... zq) = f(g1(21), ..., gs8(28)),

where g, are functions such that Y, = ¢,(X,), with X, ~ N(0,1) for v € {1,2}, and
X, ~U(—-1,1) for v € {3,...,8}. Function u is then defined on X = R? x [—1,1]%. We use
polynomial approximation spaces V,, = IP,(&,), v € D. We consider approximation in the
tensor train Tucker format 7,4(V) described in example
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In Table [l we observe the behavior of the algorithm with prescribed ranks (r,...,r)
and fixed degree p = 10. We observe a very fast convergence of the approximation with
the rank. Increasing v (i.e. the number of evaluations for the estimation of principal
components) allows us to improve the accuracy for a given rank but it we look at the error
as a function of the complexity M, v = 1 is much better than v = 100.

Table 7: Borehole function. Approximation in tensor train Tucker format with prescribed
rank (r,...,r), fixed degree p = 10. Relative error e(u*) and storage complexity S for
different values of r and ~.

y=1 v = 100

r| S e(u*) e(u*)

1| 88 | [24107%2.71072] | [2.31072;2.4107?]

2 [ 308 | [1.41073;1.41072] | [4.1107%5.0107%]

3| 660 | [1.8107°;4.9107°] | [9.9107%;2.31077]

4 [ 1144 | [2.9107%,3.5107°] | [8.81077;1.9107F]

51760 | [5.21077;6.11077] | [1.81077;7.41077]

6 [2508 | [9.0107%;1.310°7] | [1.9107%;5.2107°]

7 13388 | [5.7107%;9.2107%] | [5.11079;1.11079]

8 14400 | [1.6107%;5.11077] | [4.310710;2.01077]
9 | 5544 | [1.51079;2.4107"] | [3.110719;8.610~17]
10 [ 6820 | [5.510~1;1.110719] [ [4.3107 ;7.6 10~ 1]

In Table 8 we observe the behavior of the algorithm for decreasing values of €, and for
an adaptive polynomial degree p(e) = log;y(e~!). We observe that for all ¢, the relative
error of the obtained approximation is below e with high probability. We note that the
required number of evaluations M is about 2 to 4 times the storage complexity.

7.5 Tensorization of a univariate function

We consider the approximation of the univariate function f : [0,1] — R using tensorization
of functions [26, 39]. We denote by fy the piecewise constant approximation of f on
a uniform partition 0 = tg < t; < ... < ty = 1 with N = 2¢ elements, such that
fn(ih) = f(ih) for 0 < i < N and h = N~! = 2% We denote by v € RY the vector with
components v(i) = f(ih), 0 < i < N — 1. The vector v € R2" can be identified with an
order-d tensor u € H = R?> ® ... ® R? such that

d
u(iy,...,ig) =v(i), i=» 2"
k=1

where (i1, ...,iq) € {0,1}¢ = X is the binary representation of the integer i € {0,...,2% —

1}. The set X is equipped with the uniform measure p. Then we consider approximation of
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Table 8: Borehole function. Approximation in tensor train Tucker format with prescribed
e, p(€) = logy(e71), v = 1. Confidence intervals for relative error e(u*), storage complexity
S and number of evaluations M for different €, and average ranks.

€ E(u*) M S [7’{1}, ce ,T{d},r{m}, ce 7T{1,...,d—1}]
1071 [ [1.8;2.7] x 107! (39, 39] [23, 23] [1,1,1,1,1,1,1,1,1,1,1,1,1, 1]
1072 [ [0.3;4.0] x 1072 | [88,100] [41, 46] [1,1,1,1,1,1,1,1,1,2,1,2,1, 1]
1073 [ [0.8;1.9] x 1073 | [159, 186] [61,78] [2,1,1,2,2,1,1,1,1,2,2,2,1,1]
107% [ [2.5;5.6] x 107° | [328,328] | [141,141] | [2,2,2,3,3,2,2,2,1,2,2,2,2,2]
107° [ 0.6;1.6] x 107° | [444,472] |[166,178] | [2,2,2,4,4,2,2,2,1,2,2,2,2,2]
107% | [3.1;5.7] x 1076 | [596,664] |[204,241] | [3,2,2,4,5,3,2,2,2,2,2,2,2,2]
1077 [ [1.0;6.3] x 1077 | [1042,1267] | [374,429] | [4,3,4,6,5,3,3,3,2,2,3,2,2, 2]
1078 | [1.1;7.1] x 1078 | [1567,1567] | [512,512] [4,3,4,7,6,3,3,3,2,2,3,2,3, 3]
1079 [ [0.2;4.9] x 1078 | [1719, 1854] | [534,560] | [4,4,4,8,6,3,3,3,2,2,3,2,3, 3]
10710 1 [0.3;1.9] x 1079 | [2482,2828] | [774,838] | [5,4,6,10,7,4,3,3,2,2,3,2,3, 3]

the tensor u in tensor train format. The algorithm evaluates the tensor u at some selected
entries (i1, .. .,14), which corresponds to evaluating the function f at some particular points
t.

In this finite-dimensional setting, we consider V' = H. In all examples, we consider
d =40, and N = 2% ~ 10'2. This corresponds to a storage complexity of one terabyte for
the standard representation of fy as a vector v of size N.

We observe in Tables [@ and [I0] the behavior of the algorithm with prescribed tolerance
e applied to the functions f(t) = t> and f(t) = t'/? respectively. We indicate relative
errors in ¢2 and /> norms between the tensor u and the approximation u*. Let us recall
that for f(t) = t, the approximation error ||f — fy|lz= = O(N=F) = O(2=%) with
B = min{l, a}, which is an exponential convergence with respect to d. For the function
f(t) = t2, we observe that the relative error in £2 norm is below the prescribed tolerance
with high probability. For the function f(t) = t'/2, the probability of obtaining a relative
error in ¢2 norm below the prescribed tolerance decreases with e but the ratio between the
true relative error and the prescribed tolerance remains relatively small (below 100). We
note that for f(¢) = t2, the approximation ranks are bounded by 3, which is the effective
rank of fy. For f(t) = t1/2, the approximation ranks slowly increase with 1.

In both cases, we observe a very good behavior of the algorithm, which requires a
number of evaluations which scales as log(e™!).
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