
ar
X

iv
:1

70
5.

00
88

0v
2

 [
m

at
h.

N
A

]
 1

9
A

pr
 2

01
8

Higher-order principal component analysis for the

approximation of tensors in tree-based low rank formats

Anthony Nouy∗†

Abstract

This paper is concerned with the approximation of tensors using tree-based ten-
sor formats, which are tensor networks whose graphs are dimension partition trees.
We consider Hilbert tensor spaces of multivariate functions defined on a product set
equipped with a probability measure. This includes the case of multidimensional ar-
rays corresponding to finite product sets. We propose and analyse an algorithm for
the construction of an approximation using only point evaluations of a multivariate
function, or evaluations of some entries of a multidimensional array. The algorithm is
a variant of higher-order singular value decomposition which constructs a hierarchy of
subspaces associated with the different nodes of the tree and a corresponding hierarchy
of interpolation operators. Optimal subspaces are estimated using empirical principal
component analysis of interpolations of partial random evaluations of the function. The
algorithm is able to provide an approximation in any tree-based format with either a
prescribed rank or a prescribed relative error, with a number of evaluations of the order
of the storage complexity of the approximation format. Under some assumptions on
the estimation of principal components, we prove that the algorithm provides either
a quasi-optimal approximation with a given rank, or an approximation satisfying the
prescribed relative error, up to constants depending on the tree and the properties of
interpolation operators. The analysis takes into account the discretization errors for
the approximation of infinite-dimensional tensors. For a tensor with finite and known
rank in a tree-based format, the algorithm is able to recover the tensor in a stable way
using a number of evaluations equal to the storage complexity of the representation
of the tensor in this format. Several numerical examples illustrate the main results
and the behavior of the algorithm for the approximation of high-dimensional functions
using hierarchical Tucker or tensor train tensor formats, and the approximation of
univariate functions using tensorization.

Keywords: high-dimensional approximation, tree-based tensor formats, deep tensor net-
works, higher-order singular value decomposition, higher-order principal component anal-
ysis, interpolation.

∗Centrale Nantes, LMJL, UMR CNRS 6629, 1 rue de la Noë, BP 92101, 44321 Nantes Cedex 3, France.
email: anthony.nouy@ec-nantes.fr

†This research was supported by the French National Research Agency (grant ANR CHORUS MONU-
0005).

1

http://arxiv.org/abs/1705.00880v2

2010 AMS Subject Classifications: 15A69, 41A05, 41A63, 65D15, 65J99

1 Introduction

The approximation of high-dimensional functions is one of the most challenging tasks in
computational science. Such high-dimensional problems arise in many domains of physics,
chemistry, biology or finance, where the functions are the solutions of high-dimensional
partial differential equations (PDEs). Such problems also typically arise in statistics or
machine learning, for the estimation of high-dimensional probability density functions, or
the approximation of the relation between a certain random variable and some predictive
variables, the typical task of supervised learning. The approximation of high-dimensional
functions is also required in optimization or uncertainty quantification problems, where
the functions represent the response of a system (or model) in terms of some parameters.
These problems require many evaluations of the functions and are usually intractable when
one evaluation requires a specific experimental set-up or one run of a complex numerical
code.

The approximation of high-dimensional functions from a limited number of information
on the functions requires exploiting low-dimensional structures of functions. This usually
call for nonlinear approximation tools [11, 42]. A prominent approach consists of exploiting
the sparsity of functions relatively to a basis, a frame, or a more general dictionary of func-
tions [43, 4, 7]. Another approach consists of exploiting low-rank structures of multivariate
functions, interpreted as elements of tensor spaces, which is related to notions of sparsity
in (uncountably infinite) dictionaries of separable functions. For a multivariate function
v(x1, . . . , xd) defined on a product set X1 × . . .×Xd, which is here identified with a tensor
of order d, a natural notion of rank is the canonical rank, which is the minimal integer r
such that

v(x1, . . . , xd) =
r∑

k=1

v1k(x1) . . . v
d
k(xd)

for some univariate functions vνk defined on Xν . For d = 2, this corresponds to the unique
notion of rank, which coincides with the matrix rank when the variables take values in
finite index sets and v is identified with a matrix. A function with low canonical rank r
has a number of parameters which scales only linearly with r and d. However, it turns
out that this format has several drawbacks when d > 2 (see, e.g., [10, 21]), which makes
it unsuitable for approximation. Then, other notions of rank have been introduced. For
a subset of dimensions α in {1, . . . , d}, the α-rank of a function v is the minimal integer
rankα(v) such that

v(x1, . . . , xd) =

rankα(v)∑

k=1

vαk (xα)v
αc

k (xαc)

2

for some functions vαk and vα
c

k of complementary groups of variables xα = (xν)ν∈α ∈ Xα and
xαc = (xν)ν∈αc ∈ Xαc , with αc the complementary subset of α in {1, . . . , d}. Approximation
formats can then be defined by imposing α-ranks for a collection of subsets α. More
precisely, if A is a collection of subsets in {1, . . . , d}, we define an approximation format

T A
r = {v : rankα(v) ≤ rα, α ∈ A} =

⋂

α∈A

T {α}
rα ,

where r = (rα)α∈A is a tuple of integers. When A is a tree-structured collection of subsets
(a subset of a dimension partition tree), T A

r is a tree-based tensor format whose elements
admit a hierarchical and data-sparse representation. Tree-based tensor formats are tree
tensor networks, i.e. tensor networks with tree-structured graphs [35]. They include the
hierarchical Tucker (HT) format [20] and the tensor-train (TT) format [37]. Tree-based
formats have many favorable properties that make them favorable for numerical use. As
an intersection of subsets of tensors with bounded α-rank, α ∈ A, these formats inherit
most of the nice properties of the low-rank approximation format for order-two tensors.
In particular, under suitable assumptions on tensor norms, best approximation problems
in the set T A

r are well-posed [14, 15]. Also, the α-rank of a tensor can be computed
through singular value decomposition, and the notion of singular value decomposition can
be extended (in different ways) to these formats [9, 17, 36]. Another interesting property,
which is not exploited in the present paper, is the fact that the set T A

r is a differentiable
manifold [22, 44, 15, 16], which has interesting consequences in optimization or model order
reduction of dynamical systems in tensor spaces [29]. There are only a few results available
on the approximation properties of tree-based formats [41]. However, it has been observed
in many domains of applications that tree-based formats have a high approximation power
(or expressive power). Hierarchical tensor formats have been recently identified with deep
neural networks with a particular architecture [8].

The reader is referred to the monograph [19] and surveys [27, 25, 18, 34, 33, 1] for an in-
troduction to tensor numerical methods and an overview of recent developments in the field.

This paper is concerned with the problem of computing an approximation of a function
u(x1, . . . , xd) using point evaluations of this function, where evaluations can be selected
adaptively. This includes problems where the function represents the output of a black-
box numerical code, a system or a physical experiment for a given value of the input
variables (x1, . . . , xd). This also includes the solution of high-dimensional PDEs with a
probabilistic interpretation, where Monte-Carlo methods can be used to obtain point eval-
uations of their solutions. This excludes problems where evaluations of the functions come
as an unstructured data set. A multivariate function u(x1, . . . , xd) is here considered as
an element of a Hilbert tensor space H1 ⊗ . . . ⊗ Hd of real-valued functions defined on a
product set X1 × . . . × Xd equipped with a probability measure. This includes the case of
multidimensional arrays when the variables xν take values in finite sets Xν . In this case, a
point evaluation corresponds to the evaluation of an entry of the tensor.

3

Several algorithms have been proposed for the construction of approximations in tree-
based formats using point evaluations of functions or entries of tensors. Let us mention
algorithms that use adaptive and structured evaluations of tensors [38, 2] and statistical
learning approaches that use unstructured (random) evaluations of functions [13, 12, 6, 5].
Let us also mention the recent work [30] for the approximation in Tucker format, with an
approach similar to the one proposed in the present paper.

In the present paper, we propose and analyse a new algorithm which is based on a par-
ticular extension of the singular value decomposition for the tree-based format T A

r which
allows us to construct an approximation using only evaluations of a function (or entries of
a tensor). The proposed algorithm constructs a hierarchy of subspaces Uα of functions of
groups of variables xα, for all α ∈ A, and associated interpolation operators IUα which are
oblique projections onto Uα. For the construction of Uα for a particular node α ∈ A, we
interpret the function u as a random variable u(·, xαc) depending on a set of random vari-
ables xαc with values in the space of functions of the variables xα. Then Uα is obtained by
estimating the principal components of this function-valued random variable using random
samples u(·, xkαc). In practice, we estimate the principal components from interpolations
IVαu(·, xkαc) of these samples on a subspace Vα which is a certain approximation space when
α is a leaf of the tree, or the tensor product of subspaces {Uβ}β∈S(α) associated with the
sons S(α) of the node α when α is not a leaf of the tree. This construction only requires
evaluations of u on a product set of points which is the product of an interpolation grid
in Xα (unisolvent for the space Vα), and a random set of points in Xαc . It is a sequential
construction going from the leaves to the root of the tree.

The proposed algorithm can be interpreted as an extension of principal component
analysis for tree-based tensors which provides a statistical estimation of low-dimensional
subspaces of functions of groups of variables for the representation of a multivariate func-
tion. It is able to provide an approximation u⋆ in any tree-based format T A

r with either
a prescribed rank r or a prescribed relative error (by adapting the rank r). For a given
r, it has the remarkable property that it is able to provide an approximation in T A

r with
a number of evaluations equal to the storage complexity of the resulting approximation.
Under some assumptions on the estimation of principal components, we prove that the al-
gorithm, up to some discretization error ρ, provides with high probability a quasi-optimal
approximation with a prescribed rank, i.e.

‖u− u⋆‖ ≤ c min
v∈T A

r

‖u− v‖+ ρ,

where the constant c depends on the set A and the properties of orthogonal projections and
interpolation operators associated with principal subspaces. Also, under some assumptions
on the estimation of principal components and discretization error, we prove that the
algorithm with prescribed tolerance ǫ is able to provide an approximation u⋆ such that

‖u− u⋆‖ ≤ c̃ǫ‖u‖

4

holds with high probability, where the constant c̃ depends on the set A and the properties of
projections and interpolation operators. Sharp inequalities are obtained by considering the
properties of projection and interpolation operators when restricted to minimal subspaces
of tensors. The analysis takes into account the discretization errors for the approximation
of infinite-dimensional tensors. For a tensor with finite and known rank in a tree-based
format, and when there is no discretization error, the algorithm is able to recover the tensor
in a stable way using a number of evaluations equal to the storage complexity of the repre-
sentation of the tensor in this format. This algorithm may have important applications in
the manipulation of big data, by providing a way to reconstruct a multidimensional array
from a limited number of entries (tensor completion).

The outline of the paper is as follows. In section 2, we introduce some definitions and
properties of projections in Hilbert spaces, with a particular attention on Hilbert spaces
of functions and projections based on point evaluations. In section 3, we recall basic
definitions on tensors and Hilbert tensor spaces of functions defined on measured product
sets. Then we introduce some definitions and properties of operators on tensor spaces, with
partial point evaluation functionals as a particular case. Finally, we introduce definitions
and properties of projections on tensor spaces, with a particular attention on orthogonal
projection and interpolation. In section 4, we introduce tree-based low-rank formats in
a general setting including classical HT and TT formats. In section 5, we first introduce
the notion of principal component analysis for multivariate functions and then propose
an extension of principal component analysis to tree-based tensor format. This is based
on a new variant of higher-order singular value decomposition of tensors in tree-based
format. In section 6, we present and analyse a modified version of the algorithm presented
in section 5 which only requires point evaluations of functions, and which is based on
empirical principal component analyses and interpolations. In section 7, the behavior of
the proposed algorithm is illustrated and analysed in several numerical experiments.

2 Projections

For two vector spaces V and W equipped with norms ‖ · ‖V and ‖ · ‖W respectively, we
denote by L(V,W) the space of linear operators from V to W . We denote by L(V,W)
the space of linear and continuous operators from V to W , with bounded operator norm
‖A‖V →W = max‖v‖V =1 ‖Av‖W . We denote by V ∗ = L(V,R) the algebraic dual of V and
by V ′ = L(V,R) the topological dual of V , and we let ‖ · ‖V→R = ‖ · ‖V ′ . We denote
by 〈·, ·〉 the duality pairing between a space and its dual. We let L(V) := L(V, V) and
L(V) := L(V, V), and we replace the notation ‖ · ‖V →V by ‖ · ‖V , where the latter notation
also stands for the norm on V .

5

2.1 Projections

Let V be a Hilbert space and U be a finite-dimensional subspace of V . An operator P is
a projection onto a subspace U if Im(P) = U and Pu = u for all u ∈ U .

The orthogonal projection PU onto U is a linear and continuous operator which asso-
ciates to v ∈ V the unique solution PUv ∈ U of

‖v − PUv‖V = min
u∈U

‖v − u‖V ,

or equivalently (u, PUv−v) = 0, ∀u ∈ U. The orthogonal projection PU has operator norm
‖PU‖V = 1.

Let W be a finite-dimensional subspace of V ∗ such that

dim(W) = dim(U), and (1a)

{u ∈ U : 〈w, u〉 = 0 for all w ∈W} = {0}, (1b)

where the latter condition is equivalent to U∩⊥W = {0}, with ⊥W the annihilator ofW in
V (see [32, Definition 1.10.4]). Under the above assumptions, we have that for any v ∈ V ,
there exists a unique u ∈ U such that 〈w, u− v〉 = 0 for all w ∈W .1 This allows to define
the projection PW

U onto U along W which is the linear operator on V which associates to
v ∈ V the unique solution PW

U v ∈ U of

〈w,PW
U v − v〉 = 0, ∀w ∈W.

For W = RV U , where RV : V → V ′ is the Riesz map, the projection PW
U coincides with

the orthogonal projection PU . A non orthogonal projection is called an oblique projection.
If W ⊂ V ′, then PW

U is a projection from V onto U parallel to Ker(PW
U) = Z⊥, where

Z = R−1
V W . If W ⊂ Ũ ′, with Ũ a closed subspace of V , then PW

U |Ũ is a projection from

Ũ onto U parallel to Ker(PW
U) ∩ Ũ = Z⊥ ∩ Ũ , where Z = R−1

Ũ
W , with RŨ the Riesz map

from Ũ to Ũ ′.

Proposition 2.1. Let Ũ be a closed subspace of V and assume that U ⊂ Ũ and W ⊂ Ũ ′.2

Then PW
U is a continuous operator from Ũ to V .

Proof. Let us equip W with the norm ‖w‖W = ‖w‖Ũ ′ = maxv∈Ũ 〈w, v〉/‖v‖V , such that for

all v ∈ Ũ , 〈w, v〉 ≤ ‖w‖W ‖v‖V . Let

α = min
06=u∈U

max
06=w∈W

〈w, u〉
‖u‖V ‖w‖W

.

1Uniqueness comes from (1b) while existence comes from (1a) and (1b).
2Note that V ′ ⊂ Ũ

′ and we may have W 6⊂ V
′
.

6

Assumption (1b) implies that α > 0. Then for all v ∈ Ũ , we have

‖PW
U v‖V ≤ α−1 max

06=w∈W

〈w,PW
U v〉

‖w‖W
= α−1 max

06=w∈W

〈w, v〉
‖w‖W

≤ α−1‖v‖V ,

which ends the proof.

Proposition 2.2. Let P and P̃ be projections onto subspaces U and Ũ respectively and
assume U ⊂ Ũ . Then

P̃P = P.

Moreover, if P and P̃ are projections along W and W̃ respectively, with W ⊂ W̃ , then

P̃P = PP̃ = P.

Proof. For all v ∈ V , Pv ∈ U ⊂ Ũ , and therefore P̃Pv = Pv, which proves the first
statement. For the second statement, by definition of the projection P , we have that
〈φ, P P̃ v − P̃ v〉 = 0 for all φ ∈ W . Since W ⊂ W̃ and by definition of P̃ , this implies that
〈φ, P P̃ v − v〉 = 0 for all φ ∈ W . By definition of Pv and since PP̃v ∈ U, this implies
PP̃v = Pv = P̃Pv.

Proposition 2.3. Let U and Ũ be two closed subspaces of V , with U of finite dimension.
Let PU be the orthogonal projection onto U and let PW

U be the projection onto U along
W ⊂ Ũ ′. For all v ∈ Ũ ,

‖PW
U v − PUv‖V ≤ ‖PW

U − PU‖Ũ→V ‖v − PUv‖V ,

with
‖PW

U − PU‖Ũ→V = ‖PW
U ‖(id−PU)Ũ→V ≤ ‖PW

U ‖Ũ→V .

Also, for all v ∈ Ũ ,

‖v − PW
U v‖2V ≤ (1 + ‖PW

U − PU‖2Ũ→V
)‖v − PUv‖2V .

Proof. For v ∈ Ũ , ‖PW
U v − PUv‖V = ‖PW

U (v − PUv)‖V = ‖(PW
U − PU)(v − PUv)‖V ≤

‖PW
U − PU‖(id−PU)Ũ→V ‖v − PUv‖V , with ‖PW

U − PU‖(id−PU)Ũ→V = ‖PW
U − PU‖Ũ→V =

‖PW
U ‖(id−PU)Ũ→V . This proves the first statement. The second statement directly follows

from ‖v − PW
U v‖2V = ‖v − PUv‖2V + ‖PUv − PW

U v‖2V .

2.2 Projection of functions using point evaluations

Let V be a Hilbert space of functions defined on a set X. For x ∈ X, the point evaluation
functional δx ∈ V ∗ is defined by 〈δx, v〉 = v(x).

7

2.2.1 Interpolation

Let U be a n-dimensional subspace of V and let Γ = {xk}nk=1 be a set of n interpolation
points in X. The set of interpolation points Γ is assumed to be unisolvent for U , i.e. for
any (ak)

n
k=1 ∈ R

n, there exists a unique u ∈ U such that u(xk) = ak for all 1 ≤ k ≤ n. The
interpolation operator IU associated with Γ is a linear operator from V to U such that for
v ∈ V , IUv is the unique element of U such that

〈δx, IUv − v〉 = IUv(x)− v(x) = 0 ∀x ∈ Γ.

The interpolation operator IU is an oblique projection PW
U onto U along W = span{δx :

x ∈ Γ}. Note that the condition that Γ is unisolvent for U is equivalent to the condition
(1b) on U and W , which ensures that IU is well defined. From Proposition 2.2, we deduce
the following property.

Proposition 2.4. Let U and Ũ be two subspaces associated with sets of interpolation points
Γ and Γ̃ respectively. If U ⊂ Ũ and Γ ⊂ Γ̃, then

IUIŨ = IŨIU = IU .

Magic points. For a given basis {ϕi}ni=1 of U , a set of interpolation points Γ = {xk}nk=1,
called magic points, can be determined with a greedy algorithm proposed in [31, Remark 2].
The procedure for selecting the set Γ in a subset Γ⋆ in X is as follows. We first determine
a point x1 ∈ Γ⋆ and an index i1 such that

|ϕi1(x
1)| = max

x∈Γ⋆

max
1≤i≤n

|ϕi(x)|.

Then for k ≥ 1, we define ψ
(k)
i (x) = ϕi(x)−

∑k
m=1

∑k
p=1 ϕim(x)a

(k)
m,pϕi(x

p), with the matrix

(a
(k)
m,p)1≤m,p≤k being the inverse of the matrix

(ϕim(xp))1≤p≤k,1≤m≤k, such that ψ
(k)
im

(x) = 0 for all 1 ≤ m ≤ k and x ∈ X, and ψ
(k)
i (xp) = 0

for all 1 ≤ p ≤ k and 1 ≤ i ≤ n. Then, we determine the point xk+1 ∈ Γ⋆ and an index
ik+1 such that

|ψ(k)
ik+1

(xk+1)| = max
x∈Γ⋆

max
1≤i≤n

|ψ(k)
i (x)|.

2.2.2 Discrete least-squares projection

Let U be a n-dimensional subspace of V and let Γ = {xk}mk=1 be a set of m points in X,
m ≥ n, such that ‖v‖Γ = (

∑
x∈Γ v(x)

2)1/2 defines a norm on U . The discrete least-squares
projection QU is the linear operator from V to U such that for v ∈ V , QUv is the unique
element in U which minimizes ‖v − u‖2Γ over all u ∈ U , or equivalently

(u, v −QUv)Γ =
∑

x∈Γ

u(x)〈δx, v −QUv〉 = 0 ∀u ∈ U,

8

where (·, ·)Γ is the inner product associated with the norm ‖ · ‖Γ on U . The discrete least-
squares projection QU is an oblique projection onto U along W = {∑x∈Γ u(x)δx : u ∈ U}.
If #Γ = dim(U) and Γ is unisolvent for U , then QU coincides with the interpolation
operator IU .

Proposition 2.5. Let U and Ũ be two finite-dimensional subspaces such that U ⊂ Ũ . Let
QU be the discrete least-squares projection onto U associated with a set of points Γ in X,
and let QŨ be the discrete least-squares projection onto Ũ associated with a set of points Γ̃

in X. If either Γ = Γ̃ or Γ ⊂ Γ̃ and Γ̃ is unisolvent for Ũ , then

QUQŨ = QŨQU = QU .

Proof. QU is the projection onto U along W = {∑x∈Γ u(x)δx : u ∈ U}, and QŨ is the

projection onto Ũ along W̃ = {∑x∈Γ̃ ũ(x)δx : ũ ∈ Ũ}. If we prove that W ⊂ W̃ , then the

result follows from Proposition 2.2. Let w =
∑

x∈Γ u(x)δx ∈ W , with u ∈ U . If Γ = Γ̃,

then since u ∈ Ũ , we clearly have w ∈ W̃ . If Γ ⊂ Γ̃ and Γ̃ is unisolvent for Ũ , there exists
a function ũ ∈ Ũ such that ũ(x) = u(x) for all x ∈ Γ and ũ(x) = 0 for all x ∈ Γ̃ \ Γ.
Therefore, w =

∑
x∈Γ̃ ũ(x)δx is an element of W̃ , which ends the proof.

3 Tensors

Let Hν be Hilbert spaces of real-valued functions defined on sets Xν equipped with prob-
ability measures µν, 1 ≤ ν ≤ d. We denote by ‖ · ‖Hν the norm on Hν and by (·, ·)Hν

the associated inner product. Let X = X1 × . . . × Xd and µ = µ1 ⊗ . . . ⊗ µd. The tensor
product of d functions vν ∈ Hν , 1 ≤ ν ≤ d, denoted v1⊗ . . .⊗ vd, is a multivariate function
defined on X such that (v1 ⊗ . . . ⊗ vd)(x) = v1(x1) . . . v

d(xd) for x = (x1, . . . , xd) ∈ X .
Such a function is called an elementary tensor. The algebraic tensor space H1⊗a . . .⊗aHd

is defined as the linear span of all elementary tensors, which is a pre-Hilbert space when
equipped with the canonical inner product (·, ·) defined for elementary tensors by

(v1 ⊗ . . .⊗ vd, w1 ⊗ . . . wd) = (v1, w1)H1 . . . (v
d, wd)Hd

,

and then extended by linearity to the whole algebraic tensor space. We denote by ‖ · ‖ the

norm associated with inner product (·, ·). A Hilbert tensor space H = H1 ⊗a . . .⊗a Hd
‖·‖

is then obtained by the completion of the algebraic tensor space, which we simply denote

H = H1 ⊗ . . . ⊗Hd =

d⊗

ν=1

Hν .

Example 3.1. Consider finite sets Xν and Hν = R
Xν equipped with the norm ‖v‖2Hν

=∑
xν∈Xν

µν({xν})|v(xν)|2. Then, H is the space of multidimensional arrays RX1⊗ . . .⊗R
Xd

and ‖v‖2 =∑x∈X µ({x})|v(x)|2, where µ({x1, . . . , xd}) =
∏d

ν=1 µν({xν}).

9

Example 3.2. Consider Xν = R, µν a finite measure on R, and Hν = L2
µν
(Xν) equipped

with the natural norm ‖v‖2Hν
=
∫
|v(xν)|2µν(dxν). Then H is identified with L2

µ(X), where
µ = µ1 ⊗ . . . ⊗ µd, and ‖v‖2 =

∫
|v(x)|2µ(dx).

Example 3.3. Consider for Hν a reproducing kernel Hilbert space (RKHS) with repro-
ducing kernel kν : Xν × Xν → R. Then H is a RKHS with reproducing kernel k(x, x′) =
k1(x1, x

′
1) . . . kd(xd, x

′
d).

For a non-empty subset α in {1, . . . , d} := D, we let Xα be the set×ν∈α Xν equipped
with the product measure µα =

⊗
ν∈α µν . We denote by Hα =

⊗
ν∈αHν the Hilbert tensor

space of functions defined on Xα, equipped with the canonical norm ‖ · ‖Hα such that

‖
⊗

ν∈α

vν‖Hα =
∏

ν∈α

‖vν‖Hν

for vν ∈ Hν , 1 ≤ ν ≤ d. We have HD = H and we use the convention H∅ = R.

Matricisations and α-ranks. Let α ⊂ D, with α /∈ {∅,D}, and let αc = D \ α be its
complement in D. For x ∈ X , we denote by xα the subset of variables (xν)ν∈α. A tensor
v ∈ H can be identified with an order-two tensor

Mα(v) ∈ Hα ⊗Hαc ,

where Mα is the matricisation operator associated with α, which defines a linear isometry
between H and Hα ⊗Hαc . We use the conventions M∅(v) = MD(v) = v and H∅ ⊗HD =
HD ⊗H∅ = H. The α-rank of a tensor v ∈ H, denoted rankα(v), is defined as the rank of
the order-two tensor Mα(v), which is uniquely defined as the minimal integer such that

Mα(v) =

rankα(v)∑

k=1

vαk ⊗ vα
c

k , or equivalently v(x) =

rankα(v)∑

k=1

vαk (xα)v
αc

k (xαc), (2)

for some functions vαk ∈ Hα and vα
c

k ∈ Hαc of complementary subsets of variables xα and
xαc respectively. By convention, we have rank∅(v) = rankD(v) = 1. From now on, when
there is no ambiguity, Mα(v) and Hα ⊗Hαc will be identified with v and H respectively.

Minimal subspaces. The minimal subspace Umin
α (v) of v is defined as the smallest

closed subspace in Hα such that

v ∈ Umin
α (v)⊗Hαc ,

and we have rankα(v) = dim(Umin
α (v)) (see [14]). If v admits the representation (2), then

Umin
α (v) is the closure of span{vαk }

rankα(v)
k=1 . For any partition S(α) of α, we have

Umin
α (v) ⊂

⊗

β∈S(α)

Umin
β (v).

10

We have Umin
D (v) = Rv and for any partition S(D) of D,

v ∈
⊗

β∈S(D)

Umin
β (v).

3.1 Operators on tensor spaces

Let consider the Hilbert tensor space H =
⊗d

ν=1Hν equipped with the canonical norm ‖·‖.
For linear operators fromH toH, we also denote by ‖·‖ the operator norm ‖·‖H→H = ‖·‖H.

We denote by id the identity operator on H. For a non-empty subset α ⊂ D, we
denote by idα the identity operator on Hα. For Aα in L(Hα), we define the linear operator
Aα ⊗ idαc such that for vα ∈ Hα and vα

c ∈ Hαc ,

(Aα ⊗ idαc)(vα ⊗ vα
c

) = (Aαv
α)⊗ vα

c

,

and we extend this definition by linearity to the whole algebraic tensor space Hα ⊗a Hαc .
For a finite dimensional tensor space H, this completely characterizes a linear operator on
H. For an infinite dimensional tensor space H, if Aα ∈ L(Uα,Hα), with Uα ⊂ Hα, then
Aα ⊗ idαc can be extended by continuity to Uα ⊗H.

We denote by Aα, using calligraphic font style, the linear operator in L(H) associated
with an operator Aα in L(Hα), defined by Aα = M−1

α (Aα ⊗ idαc)Mα, and simply denoted

Aα = Aα ⊗ idαc

when there is no ambiguity. If Aα ∈ L(Hα), then Aα ∈ L(H) and the two operators have
the same operator norm ‖Aα‖ = ‖Aα‖Hα . Also, we have the following more general result.

Proposition 3.4. If Aα ∈ L(Uα,Hα), with Uα ⊂ Hα, then Aα ∈ L(Uα ⊗Hαc ,H) and the
two operators have the same operator norm

‖Aα‖Uα⊗Hαc→H = ‖Aα‖Uα→Hα .

Corollary 3.5. For a tensor v ∈ H and an operator Aα ∈ L(Umin
α (v),Hα),

‖Aαv‖ ≤ ‖Aα‖Umin
α (v)→Hα

‖v‖.

Let S = {α1, . . . , αK} be a collection of disjoint subsets of D and let Aα ∈ L(Hα) be
linear operators, α ∈ S. Then we can define a linear operator Aα1 ⊗ . . .⊗AαK

:=
⊗

α∈S Aα

on Hα1 ⊗a . . .⊗a HαK
such that

(
⊗

α∈S

Aα)(
⊗

α∈S

vα) =
⊗

α∈S

(Aαv
α)

11

for vα ∈ Hα, α ∈ S. The operator
⊗

α∈S Aα can be identified with an operator

A =
∏

α∈S

Aα,

defined on the algebraic tensor space H1 ⊗a . . .⊗a Hd. The definition of A is independent
of the ordering of the elements of S. If the operators Aα are continuous, then A defines a
continuous operator from H to H and since ‖·‖ is a uniform crossnorm (see [19, Proposition
4.127]), the operator A has for operator norm

‖A‖ =
∏

α∈S

‖Aα‖ =
∏

α∈S

‖Aα‖Hα .

Also, we have the following more general result.

Proposition 3.6. Let S be a collection of disjoint subsets of D and let β ⊂ D such that
β ∪ (∪α∈Sα) = D. Let Uα be a subspace of Hα and Aα ∈ L(Uα,Hα), for α ∈ S. Then
A =

∏
α∈S Aα is a continuous operator from U := (

⊗
α∈S Uα)⊗Hβ to H such that

‖A‖U→H =
∏

α∈S

‖Aα‖Uα⊗Hαc→H =
∏

α∈S

‖Aα‖Uα→Hα .

Corollary 3.7. Let S be a collection of disjoint subsets of D. For a tensor v ∈ H and
operators Aα, α ∈ S, such that Aα ∈ L(Umin

α (v),Hα), the operator A =
∏

α∈S Aα is such
that

‖Av‖ ≤ ‖v‖
∏

α∈S

‖Aα‖Umin
α (v)→Hα

.

3.2 Partial evaluations of tensors

Let α be a non-empty subset of D. For a linear form ψα ∈ H∗
α, ψα⊗idαc is a linear operator

from Hα ⊗a Hαc to Hαc such that (ψα ⊗ idαc)(vα ⊗ vα
c
) = ψα(v

α)vα
c
. If ψα ∈ H′

α, the
definition of ψα⊗ idαc can be extended by continuity to H. Then ψα⊗ idαc is a continuous
operator from H to Hαc with operator norm ‖ψα ⊗ idαc‖H→Hαc = ‖ψα‖H′

α
. Also, we have

the following result.

Proposition 3.8. If ψα ∈ U ′
α, with Uα a subspace of Hα, then ψα⊗idαc ∈ L(Uα⊗Hαc ,Hαc)

and
‖ψα ⊗ idαc‖Uα⊗Hαc→Hαc = ‖ψα‖U ′

α
.

Corollary 3.9. For a tensor v ∈ H and ψα ∈ Umin
α (v)′, we have

‖(ψα ⊗ idαc)v‖ ≤ ‖ψα‖(Umin
α (v))′‖v‖.

12

For a point xα ∈ Xα, we denote by δxα ∈ H∗
α the point evaluation functional at xα,

defined by 〈δxα , v
α〉 = vα(xα) for vα ∈ Hα. Then δxα ⊗ idαc defines a partial evaluation

functional, which is a linear operator from H to Hαc such that

(δxα ⊗ idαc)(vα ⊗ vα
c

) = vα(xα)v
αc

.

From Corollary 3.9, we deduce that for a given tensor v ∈ H, if δxα ∈ Umin
α (v)′, then the

definition of δxα ⊗ idαc can be extended by continuity to Umin
α (v) ⊗ Hαc and the partial

evaluation
v(xα, ·) = (δxα ⊗ idαc)v

is an element of Hαc such that

‖v(xα, ·)‖Hαc = ‖(δxα ⊗ idαc)v‖ ≤ ‖δxα‖Umin
α (v)′‖v‖.

3.3 Projection of tensors

Let α be a non-empty and strict subset of D and let Uα be a finite-dimensional subspace of
Hα. If Pα is a projection from Hα onto Uα, then Pα ⊗ idαc is a projection from Hα ⊗Hαc

onto Uα ⊗Hαc .

Proposition 3.10. Let v ∈ H and α, β ⊂ D. Let Pβ be a projection from Hβ to a subspace
Uβ and let Pβ be the corresponding projection onto Uβ ⊗Hβc. If β ⊂ α or β ⊂ D \ α, we
have

rankα(Pβv) ≤ rankα(v).

Proof. A tensor v admits a representation v =
∑rankα(v)

k=1 vαk ⊗ wαc

k . If β ⊂ α, then Pβ =

(Pβ ⊗ idα\β) ⊗ idD\α and Pβv =
∑rankα(v)

k=1 ((Pβ ⊗ idα\β)v
α
k) ⊗ wαc

k . If β ⊂ D \ α, then
Pβ = idα ⊗ (Pβ ⊗ idD\{α∪β}) and Pβv =

∑rankα(v)
k=1 vαk ⊗ ((Pβ ⊗ idD\{α∪β})w

αc

k). The result
follows from the definition of the α-rank.

If PUα is the orthogonal projection from Hα onto Uα, then PUα ⊗ idαc coincides with
the orthogonal projection PUα⊗Hαc from Hα ⊗Hαc onto Uα ⊗Hαc , and is identified with
the orthogonal projection PUα = PUα ⊗ idαc in L(H). If PWα

Uα
is the oblique projection onto

Uα along Wα ⊂ H∗
α, then PWα

Uα
:= PWα

Uα
⊗ idαc is the oblique projection from Hα ⊗ Hαc

onto Uα⊗Hαc along Wα⊗H′
αc. If Wα ⊂ H′

α, then P
Wα

Uα
and PWα

Uα
are continuous operators

with equal norms ‖PWα

Uα
‖ = ‖PWα

Uα
‖Hα .

Proposition 3.11. Let Uα be a finite-dimensional subspace of Hα and let PWα

Uα
be the

projection onto Uα along Wα. For a tensor v ∈ H such that Wα ⊂ Umin
α (v)′, PWα

Uα
v is an

element of Uα ⊗Hαc such that

‖PWα

Uα
v‖ ≤ ‖PWα

Uα
‖Umin

α (v)→Hα
‖v‖,

13

and
‖PWα

Uα
v − PUαv‖ ≤ ‖PWα

Uα
− PUα‖Umin

α (v)→Hα
‖v‖,

with

‖PWα

Uα
− PUα‖Umin

α (v)→Hα
= ‖PWα

Uα
‖(idα−PUα)U

min
α (v)→Hα

≤ ‖PWα

Uα
‖Umin

α (v)→Hα
.

Also,
‖v − PWα

Uα
v‖2 ≤ (1 + ‖PWα

Uα
− PUα‖2Umin

α (v)→Hα
)‖v − PUαv‖2.

Proof. We have v ∈ Umin
α (v)⊗Hαc . Noting that ‖PWα

Uα
‖Umin

α (v)⊗Hαc→H = ‖PWα

Uα
‖Umin

α (v)→Hα

and ‖PWα

Uα
− PUα‖Umin

α (v)⊗Hαc→H = ‖PWα

Uα
− PUα‖Umin

α (v)→Hα
, the results directly follow

from Proposition 2.3.

Now, let α be a non-empty subset of D and let S(α) be a partition of α. Let P
Wβ

Uβ

be oblique projections onto subspaces Uβ of Hβ along Wβ ⊂ H∗
β, β ∈ S(α). Then

⊗
β∈S(α) P

Wβ

Uβ
:= P

WS(α)

US(α)
is the oblique projection fromHS(α) =

⊗
β∈S(α) Hβ onto

⊗
β∈S(α) Uβ :=

US(α) along
⊗

β∈S(α)Wβ := WS(α), and PWS(α)

US(α)
= P

WS(α)

US(α)
⊗ idαc is the oblique projection

from Hα⊗Hαc to US(α)⊗Hαc alongWS(α)⊗H′
αc . From Proposition 2.2, we directly obtain

the following result.

Proposition 3.12. If Uα ⊂⊗β∈S(α) Uβ and Wα ⊂⊗β∈S(α)Wβ, then

PWα

Uα
(
∏

β∈S(α)

PWβ

Uβ
) = (

∏

β∈S(α)

PWβ

Uβ
)PWα

Uα
= PWα

Uα
.

4 Tree-based tensor formats

Let T ⊂ 2D \ ∅ be a dimension partition tree over D, with root D. The elements of T are
called the nodes of the tree. Every node α ∈ T with #α ≥ 2 has a set of sons S(α) which
form a partition of α, i.e.

⋃
β∈S(α) β = α. A node α ∈ T with #α = 1 is such that S(α) = ∅

and is called a leaf of the tree. The set of leaves of T is denoted L(T) (see an example on
Figure 1). For α ∈ T , we denote by level(α) the level of α in T , such that level(D) = 0 and
level(β) = level(α) + 1 if β ∈ S(α). We let L = depth(T) = maxα∈T level(α) be the depth
of T , which is the maximum level of the nodes in T , and Tℓ = {α ∈ T : level(α) = ℓ} be
the subset of nodes with level ℓ, 0 ≤ ℓ ≤ L. We let tℓ =

⋃
α∈Tℓ

α. We have tℓ+1 ⊂ tℓ and
tℓ \ tℓ+1 ⊂ L(T) (see example on Figure 2).

We introduce a subset of active nodes A ⊂ T \ {D} such that T \ A ⊂ {D} ∪ L(T),
which means that the set of non active nodes in T \{D} is a subset of the leaves (see Figure
3). A set A is admissible if for any α ∈ A, the parent node of α is in A ∪ {D}. We let
L(A) = A ∩ L(T), Aℓ = A ∩ Tℓ for 1 ≤ ℓ ≤ L, and aℓ = ∪α∈Aℓ

α. We define the A-rank of
a tensor v ∈ H as the tuple rankA(v) = {rankα(v)}α∈A.

14

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

Figure 1: A dimension partition tree T over D = {1, 2, 3, 4, 5, 6} and its leaves (blue nodes).

{1}

{2} {3}

{4} {5} {6}

T0 (level 0)

T1 (level 1)

T2 (level 2)

T3 (level 3)

Figure 2: A dimension partition tree T over D = {1, . . . , 6} with depth L = 3 and the
corresponding subsets Tℓ, 0 ≤ ℓ ≤ L. Here t3 = {2, 3} and t2 = t1 = t0 = D.

Now we consider a tensor v ∈ H with rankA(v) = (rα)α∈A. We let rD = rankD(v) = 1.
For all α ∈ A ∪ {D}, we denote by {vαkα}

rα
kα=1 a basis of the minimal subspace Umin

α (v) ⊂
Hα, and we let vD1 = v. For α ∈ A ∪ {D} such that ∅ 6= S(α) ⊂ A, since Umin

α (v) ⊂⊗
β∈S(α) U

min
β (v), the tensor vαkα admits a representation

vαkα(xα) =
∑

1≤kβ≤rβ
β∈S(α)

Cα
kα,(kβ)β∈S(α)

∏

β∈S(α)

vβkβ (xβ),

with a tensor of coefficients Cα ∈ R
rα××β∈S(α) rβ . For α ∈ A∪{D} such that ∅ 6= S(α) 6⊂ A,

we have Umin
α (v) ⊂ (

⊗
β∈S(α)∩A U

min
β (v)) ⊗ (

⊗
β∈S(α)\A Hβ), and therefore the tensor vαkα

admits a representation

vαkα(xα) =
∑

1≤kβ≤rβ
β∈S(α)∩A

Cα
kα,(kβ)β∈S(α)∩A

((xβ)β∈S(α)\A)
∏

β∈S(α)∩A

vβkβ(xβ),

with Cα ∈ R
rα××β∈S(α)∩A rβ ⊗ (

⊗
β∈S(α)\A Hβ). Finally, a tensor v such that rankA(v) =

(rα)α∈A admits a representation

v =
∑

1≤kα≤rα
α∈A∪{D}

∏

α∈(A∪{D})\L(A)

Cα
kα,(kβ)β∈S(α)∩A

((xβ)β∈S(α)\A)
∏

α∈L(A)

vαkα(xα) (3)

15

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

Figure 3: A dimension partition tree T over D = {1, 2, 3, 4, 5, 6} and an admissible subset
of active nodes A (red nodes).

For a tuple r = (rα)α∈A, we define the subset T A
r (H) of tensors in H with A-rank bounded

by r,

T A
r (H) = {v ∈ H : rankα(v) ≤ rα, α ∈ A} =

⋂

α∈A

T {α}
rα (H).

Remark 4.1. A tensor v ∈ T A
r (H) admits a representation as a composition of functions.

For α ∈ A, let vα(xα) = (vα1 , . . . , v
α
rα) ∈ R

rα. If ∅ 6= S(α) ⊂ A, the tensor Cα can be
identified with a multilinear function fα : ×β∈S(α)R

rβ → R
rα, and vα(xα) admits the

representation
vα(xα) = fα((vβ(xβ))β∈S(α)).

For α ∈ A ∪ {D} such that ∅ 6= S(α) 6⊂ A, the tensor Cα((xβ)β∈S(α)\A) can be identified
with a multilinear function fα(·, (xβ)β∈S(α)\A) :×β∈S(α)∩A R

rβ → R
rα, and vα(xα) admits

the representation

vα(xα) = fα((vβ(xβ))β∈S(α)∩A, (xβ)β∈S(α)\A),

where the fα is linear in the arguments associated with active nodes β ∈ S(α) ∩A. As an
example, for the case of Figure 3, the tensor v admits the representation

v(x) = f1,2,3,4,5,6(f1,2,3(x1, f
1,2(x2, v

3(x3))), f
4,5,6(x4, x5, v

6(x6))).

Proposition 4.2. Let V = V1 ⊗ . . . ⊗ Vd ⊂ H, with Vν a subspace of Hν with dimension
dim(Vν) = nν, 1 ≤ ν ≤ d. The storage complexity of a tensor in T A

r (H) ∩ V = T A
r (V) is

storage(T A
r (V)) =

∑

α∈(A∪{D})\L(A)

rα
∏

β∈S(α)∩A

rβ
∏

β∈S(α)\A

nβ +
∑

α∈L(A)

rαnα.

Example 4.3 (Tucker format). The Tucker format corresponds to a trivial tree T =
{{1, . . . , d}, {1}, . . . , {d}} with depth L = 1, and A = T \ {D} (see Figure 4). A ten-
sor v with A-rank bounded by (r1, . . . , rd) admits a representation of the form

v(x) =

r1∑

k1=1

. . .

rd∑

kd=1

Ck1,...,kdv
1
k1(x1) . . . v

d
kd
(xd), (4)

16

where C ∈ R
r1×...×rd, and vνkν ∈ Hν, 1 ≤ ν ≤ d, or equivalently

v(x) = f1,...,d(v1(x1), . . . , v
d(xd)).

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

Figure 4: Tucker format. Dimension partition tree T over D = {1, . . . , 5} and subset of
active nodes A (red nodes).

Example 4.4 (Degenerate Tucker format). A degenerate Tucker format corresponds to
a trivial tree T = {{1, . . . , d}, {1}, . . . , {d}} with depth L = 1, and an active set of nodes
A strictly included in T \ {D}. Up to a permutation of dimensions, this corresponds to
A = {{1}, . . . , {p}}, with p < d. A tensor v with A-rank bounded by (r1, . . . , rp) admits a
representation of the form

v(x) =

r1∑

k1=1

. . .

rp∑

kp=1

Ck1,...,kp(xp+1, . . . , xd)v
1
k1(x1) . . . v

p
kp
(xp), (5)

where C ∈ R
r1×...×rp ⊗H{p+1,...,d}, and v

ν
kν

∈ Hν, 1 ≤ ν ≤ p, or equivalently

v(x) = f1,...,d(v1(x1), . . . , v
p(xp), xp+1, . . . , xd).

Example 4.5 (Tensor train format). The tensor train (TT) format corresponds to a linear
tree T = {{1}, {2}, . . . , {d}, {1, 2}, . . . , {1, . . . , d}} and
A = {{1}, {1, 2}, . . . , {1, . . . , d − 1}} (see Figure 5). Here, A is a strict subset of T \
{D}. The nodes {2}, . . . , {d} in T are not active3. A tensor v with A-rank bounded by
(r1, . . . , rd−1) admits a representation of the form

v(x) =

r1∑

k1=1

. . .

rd−1∑

kd−1=1

v1k1(x1)C
2
k1,k2(x2) . . . C

d−1
kd−2,kd−1

(xd−1)C
d
kd−1,1

(xd),

where v1 ∈ R
r1 ⊗H1, C

ν ∈ R
rν−1×rν ⊗Hν for 2 ≤ ν ≤ d, with the convention rd = 1. Here

L = d−1, and for 1 ≤ ℓ ≤ L, Tℓ = {{1, . . . , d−ℓ}, {d−ℓ+1}}, tℓ = {1, . . . , d−ℓ+1}, Aℓ =
{{1, . . . , d− ℓ}} and aℓ = {1, . . . , d− ℓ}. The tensor v admits the equivalent representation

v(x) = f1,...,d(f1,...,d−1(...f1,2(v1(x1), x2)..., xd−1), xd).

17

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Figure 5: Tensor train format. Dimension partition tree T over D = {1, . . . , 5} and active
nodes A (red nodes).

Example 4.6 (Tensor train Tucker format). The tensor train Tucker (TTT) format cor-
responds to a linear tree T = {{1}, . . . , {d}, {1, 2}, . . . , {1, . . . , d}} and A = T \ {D} (see
Figure 6). A tensor v having a A-rank bounded by (r1, . . . , rd, s2, . . . , sd−1) admits a rep-
resentation of the form (4) with a tensor C ∈ R

r1×...×rd such that

Ck1,...,kd =

s2∑

i2=1

. . .

sd−1∑

id−1=1

C2
k1,k2,i2C

3
i2,k3,i3 . . . C

d−1
id−2,kd−1,id−1

Cd
id−1,kd,1

,

where C2 ∈ R
r1×r2×s2 and Ck ∈ R

sk−1×rk×sk for 3 ≤ k ≤ d, with the convention sd = 1.
Here L = d− 1, Tℓ = Aℓ = {{1, . . . , d− ℓ}, {d− ℓ+1}} and tℓ = aℓ = {1, . . . , d− ℓ+1} for
1 ≤ ℓ ≤ L. The tensor v admits the equivalent representation

v(x) = f1,...,d(f1,...,d−1(...f1,2(v1(x1), v
2(x2))..., v

d−1(xd−1)), v
d(xd)).

5 Principal component analysis for tree-based tensor format

5.1 Principal component analysis of multivariate functions

Here we introduce the notion of principal component analysis for multivariate functions.
We consider a given non-empty and strict subset α of D. Any tensor in H is identified
(through the linear isometry Mα) with its α-matricisation in Hα ⊗Hαc . A tensor u with

3Note that since rank{d}(v) = rank{1,...,d−1}(v), adding the node {d} in the set of active nodes A would
yield an equivalent tensor format.

18

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Figure 6: Tensor train Tucker format. Dimension partition tree T over D = {1, . . . , 5} and
active nodes A (red nodes).

α-rank rankα(u) ∈ N∪{+∞} admits a singular value decomposition (see [19, Section 4.4.3])

u =

rankα(u)∑

k=1

σαku
α
k ⊗ uα

c

k , (6)

where {uαk}
rankα(u)
k=1 and {uαc

k }rankα(u)k=1 are orthonormal vectors in Hα and Hαc respectively,
and where the σαk are the α-singular values of u which are supposed to be arranged by
decreasing values. The minimal subspace Umin

α (u) of u is given by

Umin
α (u) = span{uαk}

rankα(u)
k=1

‖·‖Hα

.

For rα < rankα(u), the truncated singular value decomposition

urα =
rα∑

k=1

σαk u
α
k ⊗ uα

c

k ,

is such that

‖u− urα‖2 = min
rankα(v)≤rα

‖u− v‖2 =

rankα(u)∑

k=rα+1

(σαk)
2.

The functions {uαk}rαk=1 are the rα principal components of u associated with dimensions α,
hereafter called α-principal components. The corresponding subspace U⋆

α = span{uαk}rαk=1,
which is a subspace of Umin

α (u), is hereafter called a α-principal subspace of dimension
rα. Denoting PU⋆

α
= PU⋆

α
⊗ idαc the orthogonal projection from H to U⋆

α ⊗ Hαc , we have
urα = PU⋆

α
u,4 and

‖u− PU⋆
α
u‖ = min

rankα(v)≤rα
‖u− v‖ = min

dim(Uα)=rα
‖u− PUαu‖. (7)

4For all m ≥ rα, we have PU⋆

α
um =

∑m

k=1 σ
α
k (PU⋆

α
u
α
k)⊗u

αc

k =
∑rα

k=1 σ
α
k u

α
k ⊗u

αc

k = urα . Then using the
continuity of PU⋆

α
and taking the limit with m, we obtain PU⋆

α
u = urα .

19

Remark 5.1. The optimization problem (7) over subspaces of dimension rα in Hα admits
a unique solution U⋆

α if and only if σαrα+1 > σαrα.

5.2 Principal component analysis for tree-based tensor format

Here, we propose and analyse an algorithm for the construction of an approximation u⋆ of
a function u in tree-based format T A

r (H). It is based on the construction of a hierarchy
of subspaces Uα, α ∈ A, from principal component analyses of approximations of u in
low-dimensional spaces in Hα. This is a variant of the leaves-to-root higher-order singular
value decomposition method proposed in [17] (see also [19, Section 11.4.2.3]).

For each leaf node α ∈ L(T), we introduce a finite-dimensional approximation space
Vα ⊂ Hα with dimension dim(Vα) = nα, and we let V =

⊗
α∈L(T) Vα ⊂ H. For each non

active node α ∈ L(T) \ A, we let Uα = Vα. The algorithm then goes through all active
nodes of the tree, going from the leaves to the root. For each α ∈ A, we let

uα = PVαu,

where for α /∈ L(T), Vα is defined by

Vα =
⊗

β∈S(α)

Uβ,

where the Uβ, β ∈ S(α), have been determined at a previous step. Then we determine
the rα-dimensional α-principal subspace Uα of uα, which is solution of

‖uα − PUαuα‖ = min
rankα(v)≤rα

‖uα − v‖. (8)

Finally, we define

u⋆ = PVD
u, (9)

where PVD
is the orthogonal projection from H onto VD =

⊗
β∈S(D)Uβ .

5.3 Analysis of the algorithm

Lemma 5.2. For α ∈ L(A), Uα ⊂ Vα. For α ∈ A \ L(A),

Uα ⊂
⊗

β∈S(α)

Uβ.

Proof. For α ∈ A, we have Uα ⊂ Umin
α (uα). If α ∈ L(A), we have Umin

α (uα) ⊂ Vα since
uα = PVαu. If α ∈ A \ L(A), we have Umin

α (uα) ⊂
⊗

β∈S(α) U
min
β (uα), and U

min
β (uα) ⊂ Uβ

since uα =
∏

β∈S(α) PUβ
u.

20

Proposition 5.3. The approximation u⋆ is an element of T A
r (H) ∩ V = T A

r (V).

Proof. Since u⋆ = PVD
u, we have u⋆ ∈ ⊗α∈S(D) Uα. Then using Lemma 5.2, we prove

by recursion that u⋆ ∈ ⊗α∈L(T) Vα = V . Also, for any β ∈ A, Lemma 5.2 implies that

u⋆ ∈ Uβ ⊗ Hβc . Therefore, Umin
β (u⋆) ⊂ Uβ, and rankβ(u

⋆) ≤ dim(Uβ) = rβ. This proves

that u⋆ ∈ T A
r (H).

For any level ℓ, 1 ≤ ℓ ≤ L, let PTℓ
=
∏

α∈Tℓ
PUα be the orthogonal projection from H

onto UTℓ
⊗Htc

ℓ
, with UTℓ

=
⊗

α∈Tℓ
Uα, and let

uℓ = PTℓ
uℓ+1,

with the convention uL+1 = u.

Lemma 5.4. For all 1 ≤ ℓ < ℓ′ ≤ L, we have

PTℓ′
PTℓ

= PTℓ
= PTℓ

PTℓ′
.

Proof. For 1 ≤ ℓ < L, we deduce from Lemma 5.2 that

UTℓ
=
⊗

α∈Tℓ

Uα ⊂ (
⊗

β∈Tℓ+1

Uβ)⊗ (
⊗

α∈Tℓ

S(α)=∅

Uα) ⊂ UTℓ+1
⊗Htℓ\tℓ+1

,

and then UTℓ
⊗Htcℓ

⊂ UTℓ+1
⊗Htcℓ+1

. Therefore, for 1 ≤ ℓ < ℓ′ ≤ L, we have UTℓ
⊗Htcℓ

⊂
UTℓ′

⊗Htc
ℓ′
, and the result follows from Proposition 2.2.

From Lemma 5.4, we have that

uℓ = PTℓ
uℓ+1 = PTℓ

. . .PTL
u = PTℓ

u,

for 1 ≤ ℓ ≤ L, and
u⋆ = PT1u = u1.

We now state the two main results about the proposed algorithm.

Theorem 5.5. For a given r, the approximation u⋆ ∈ T A
r (H) ∩ V satisfies

‖u− u⋆‖2 ≤ #A min
v∈T A

r (H)
‖u− v‖2 +

∑

α∈L(T)

‖u− PVαu‖2.

21

Proof. We first note that for all 1 ≤ ℓ < ℓ′ ≤ L, uℓ − uℓ+1 is orthogonal to uℓ
′ − uℓ

′+1.
Indeed, using Lemma 5.4, we obtain that

(uℓ − uℓ+1, uℓ
′ − uℓ

′+1) = (uℓ − uℓ+1,PTℓ′
uℓ

′+1 − PTℓ′+1
uℓ

′+1)

= (PTℓ′
(uℓ − uℓ+1),PTℓ′+1

(PTℓ′
uℓ

′+1 − uℓ
′+1))

= (PTℓ′+1
PTℓ′

(uℓ − uℓ+1),PTℓ′
uℓ

′+1 − uℓ
′+1)

= (PTℓ′
(uℓ − uℓ+1), (PTℓ′

− id)uℓ
′+1) = 0.

Then, we have

‖u− u⋆‖2 =
L∑

ℓ=1

‖uℓ+1 − uℓ‖2 =
L∑

ℓ=1

‖uℓ+1 − PTℓ
uℓ+1‖2

≤
L∑

ℓ=1

∑

α∈Tℓ

‖uℓ+1 − PUαu
ℓ+1‖2.

From Lemma 5.4, we know that uℓ+1 = PTℓ+1
u, where we use the convention PTL+1

= id.
For α ∈ L(Tℓ), since PUα and PTℓ+1

commute, ‖uℓ+1−PUαu
ℓ+1‖ = ‖PTℓ+1

u−PUαPTℓ+1
u‖ =

‖PTℓ+1
(u − PUαu)‖ ≤ ‖u − PUαu‖. Therefore, for α ∈ L(Tℓ) \ L(A), we have ‖uℓ+1 −

PUαu
ℓ+1‖ ≤ ‖u−PVαu‖, and for α ∈ L(Aℓ), we have ‖uℓ+1 −PUαu

ℓ+1‖2 ≤ ‖u−PVαu‖2 +
‖PVαu− PUαu‖2 = ‖u−PVαu‖2 + ‖uα − PUαuα‖2. For α ∈ Aℓ \ L(A), we have

uℓ+1 = PTℓ+1
u =

∏

δ∈Tℓ+1\S(α)

PUδ

∏

β∈S(α)

PUβ
u =

∏

δ∈Tℓ+1\S(α)

PUδ
uα,

so that

‖uℓ+1 − PUαu
ℓ+1‖ = ‖

∏

δ∈Tℓ+1\S(α)

PUδ
(uα − PUαuα)‖ ≤ ‖uα − PUαuα‖.

Gathering the above results, we obtain

‖u− u⋆‖2 =
∑

α∈A

‖uα − PUαuα‖2 +
∑

α∈L(T)

‖u− PVαu‖2. (10)

For α ∈ A, we let U⋆
α be the subspace in Hα such that

‖u− PU⋆
α
u‖ = min

rankα(v)≤rα
‖u− v‖ ≤ min

rankA(v)≤r
‖u− v‖.

For α ∈ L(A), we have uα = PVαu. From Proposition 3.10, we know that rankα(PVαPU⋆
α
u) ≤

rankα(PU⋆
α
u) ≤ rα. The optimality of Uα then implies that

‖uα − PUαuα‖ ≤ ‖PVαu− PVαPU⋆
α
u‖ ≤ ‖u− PU⋆

α
u‖.

22

Now consider α /∈ A \L(A). We know that rankα(
∏

β∈S(α) PUβ
PU⋆

α
u) ≤ rankα(PU⋆

α
u) ≤ rα

from Proposition 3.10. The optimality of Uα then implies that

‖uα − PUαuα‖ ≤ ‖uα −
∏

β∈S(α)

PUβ
PU⋆

α
u‖ = ‖

∏

β∈S(α)

PUβ
(u− PU⋆

α
u)‖

≤ ‖u− PU⋆
α
u‖.

Finally, we obtain

∑

α∈A

‖uα − PUαuα‖2 ≤
∑

α∈A

min
rankα(v)≤rα

‖u− v‖2 ≤ #A min
rankA(v)

‖u− v‖2,

which ends the proof.

Theorem 5.6. For any ǫ ≥ 0, if for all α ∈ A, the rank rα is chosen such that

‖uα − PUαuα‖ ≤ ǫ√
#A

‖uα‖,

the approximation u⋆ satisfies

‖u− u⋆‖2 ≤
∑

α∈L(T)

‖u− PVαu‖2 + ǫ2‖u‖2.

Proof. Starting from (10), we obtain

‖u− u⋆‖2 ≤
∑

α∈L(T)

‖u− PVαu‖2 +
∑

α∈A

ǫ2

#A
‖uα‖2,

and the result follows from ‖uα‖ = ‖∏β∈S(α) PUαu‖ ≤ ‖u‖ if α /∈ A \ L(A), and ‖uα‖ =
‖PVαu‖ ≤ ‖u‖ if α ∈ L(A).

6 Empirical principal component analysis for tree-based ten-

sor format

6.1 Empirical principal component analysis of multivariate functions

Here we present the empirical principal component analysis for the statistical estimation
of α-principal subspaces of a multivariate function (see Section 5.1). We consider that
H = L2

µ(X) or that H is a separable reproducing kernel Hilbert space compactly embedded
in L2

µ(X), equipped with the natural norm in L2
µ(X). Let (Xα,Xαc) be the random vector

with values in Xα×Xαc with probability law µα⊗µαc . The tensor u can be identified with
a random variable defined on Xαc with values in Hα which associates to xαc ∈ Xαc the

23

function u(·, xαc) = (idα ⊗ δxαc)u, this random variable being an element of the Bochner
space L2

µαc (Xαc ;Hα). Then problem (7) is equivalent to find a rα-dimensional subspace in
Hα solution of

min
dim(Uα)=rα

E
(
‖u(·,Xαc)− PUαu(·,Xαc)‖2Hα

)
. (11)

Given a set {xkαc}mα

k=1 of mα samples of Xαc , the α-principal subspace can be estimated by

an empirical α-principal subspace Ûα solution of

‖u− PÛα
u‖α,mα = min

dim(Uα)=rα
‖u− PUαu‖α,mα , (12)

where

‖u− PUαu‖2α,mα
=

1

mα

mα∑

k=1

‖u(·, xkαc)− PUαu(·, xkαc)‖2Hα
.

The problem is equivalent to finding the rα left principal components of {u(·, xkαc)}mα

k=1,
which is identified with an order-two tensor in Hα ⊗ R

mα . We note that the number of
samples mα must be such that mα ≥ rα in order to estimate rα principal components. In
the case of i.i.d. samples, the semi-norm ‖ · ‖α,mα on H is the natural statistical estimation
of the Bochner norm ‖·‖α in L2

µαc (Xαc ;Hα), defined by ‖v‖2α = E(‖v(Xαc)‖Hα). This norm
‖ · ‖α coincides with the norm ‖ · ‖ on H when H is equipped with the L2

µ(X)-norm.5

For some results on the comparison between ‖u − P
Ûα
u‖ and the best approximation

error ‖u− PU⋆
α
u‖, see [3, 40, 23, 24]. Under suitable assumptions on u (e.g., u uniformly

bounded), for any η > 0 and ǫ > 0, there exists a mα sufficiently large (depending on
η, ǫ, rα and u) such that

‖u− P
Ûα
u‖2 ≤ ‖u−PU⋆

α
u‖2 + ǫ2

holds with probability higher than 1−η. Then, for any τ > 0, there exists a mα sufficiently
large (depending on η, τ, rα and u) such that

‖u− P
Ûα
u‖2 ≤ (1 + τ2)‖u− PU⋆

α
u‖2

holds with probability higher than 1− η.

6.2 Empirical principal component analysis for tree-based format

Now we propose a modification of the algorithm proposed in Section 5.2 using only eval-
uations of the function u at some selected points in X . It is based on the construction
of a hierarchy of subspaces {Uα}α∈A, from empirical principal component analysis, and a

5Note that when H is equipped with a norm stronger than the norm in L
2
µ(X), then ‖ · ‖α does not

coincides with the norm ‖ · ‖ on H, so that the subspaces solutions of (7) and (11) will be different in
general.

24

corresponding hierarchy of commuting interpolation operators associated with nested sets
of points.

For each leaf node α ∈ L(T), we introduce a finite-dimensional approximation space
Vα ⊂ Hα with dimension dim(Vα) = nα, we introduce a set ΓVα of points in Xα which
is unisolvent for Vα, we denote by IVα the corresponding interpolation operator from Hα

to Vα, and we let IVα = IVα ⊗ idαc be the corresponding oblique projection from H to
Vα⊗Hαc . We let V =

⊗
α∈L(T) Vα ⊂ H. For each non active α ∈ L(T)\A, we let Uα = Vα

and ΓUα = ΓVα .
The algorithm then goes through all active nodes of the tree, going from the leaves to

the root.
For each active node α ∈ A, we let

uα = IVαu

where for α /∈ L(A), the space Vα is defined by

Vα =
⊗

β∈S(α)

Uβ,

where the Uβ , β ∈ S(α), have been determined at a previous step. For α /∈ L(A), IVα =
IVα ⊗ idαc , where IVα is the interpolation operator onto Vα =

⊗
β∈S(α) Uβ associated with

the product grid ΓVα =×β∈S(α) ΓUβ
, where each ΓVβ

have been determined at a previous
step. Then we determine a rα-dimensional empirical α-principal subspace Uα of uα, which
is solution of

‖uα − PUαuα‖α,mα = min
rankα(v)≤rα

‖uα − v‖α,mα , (13)

where

‖uα − v‖2α,mα
=

1

mα

mα∑

k=1

‖uα(·, xkαc)− v(·, xkαc)‖2Hα
,

and where {xkαc}mα

k=1 are mα random samples of Xαc , with mα ≥ rα. The problem is
equivalent to finding the rα left principal components of {uα(·, xkαc)}mα

k=1, which is identified
with an order two tensor in Vα ⊗ R

mα . The number of evaluations of the function u for
computing Uα is mα × dim(Vα). We let {ϕα

k}rαk=1 be the set of principal components, such
that Uα = span{ϕα

k}rαk=1. We then construct a set of points ΓUα which is unisolvent for Uα,
and such that

ΓUα ⊂ ΓVα . (14)

For the practical construction of the set ΓUα , we use the procedure described in Section
2.2.1. We denote by IUα the interpolation operator from Hα onto Uα associated with

25

the grid ΓUα , and we let IUα = IUα ⊗ idαc be the corresponding projection from H onto
Uα ⊗Hαc .

Finally, we compute

u⋆ = IVD
u, (15)

where IVD
=
⊗

β∈S(D) IUβ
is the interpolation operator from H onto VD =

⊗
β∈S(D) Uβ,

associated with the product grid ΓVD
=×β∈S(D) ΓUβ

.

6.3 Analysis of the algorithm

Let us first prove that the algorithm produces an approximation u⋆ in the desired tensor
format.

Lemma 6.1. For α ∈ L(T) \A, Uα = Vα. For α ∈ L(A), Uα ⊂ Vα. For α ∈ A \ L(A),

Uα ⊂
⊗

β∈S(α)

Uβ.

Proof. For α ∈ A, we have Uα ⊂ Umin
α (uα). If α ∈ L(A), we have Umin

α (uα) ⊂ Vα since
uα = IVαu. If α ∈ A \ L(A), we have Umin

α (uα) ⊂
⊗

β∈S(α) U
min
β (uα), and U

min
β (uα) ⊂ Uβ

since uα =
∏

β∈S(α) IUβ
u.

Proposition 6.2. The algorithm produces an approximation

u⋆ ∈ T A
r (H) ∩ V = T A

r (V).

Proof. Since u⋆ = IVD
u, we have u⋆ ∈ VD =

⊗
α∈S(D) Uα. Then using Lemma 6.1, we

prove by recursion that u⋆ ∈ ⊗α∈L(T) Vα = V . Also, for any α ∈ A, Lemma 6.1 implies

that u⋆ ∈ Uα ⊗ Hαc . Therefore, Umin
α (u⋆) ⊂ Uα, and rankα(u

⋆) ≤ dim(Uα) = rα. This
proves that u⋆ ∈ T A

r (H).

For all α ∈ T , the operator IVα = IVα ⊗ idαc is a projection from H onto Vα ⊗ Hαc

along W ⋆
α ⊗ H∗

αc , with W ⋆
α = span{δx : x ∈ ΓVα}. For all α ∈ T \ {D}, the operator

IUα = IUα ⊗ idαc is an oblique projection from H onto Uα ⊗ Hαc along Wα ⊗ H∗
αc , with

Wα = span{δx : x ∈ ΓUα}. From the property (14) of the grids, we deduce the following
result.

Lemma 6.3. For α ∈ L(T) \A, Wα =W ⋆
α. For α ∈ L(A), Wα ⊂W ⋆

α. For α ∈ A \ L(A),

Wα ⊂WS(α) =
⊗

β∈S(α)

Wβ.

26

Remark 6.4. Note that interpolation operators IUα , α ∈ A, could be replaced by oblique
projections PWα

Uα
onto Uα along subspaces Wα in H∗

α, with subspaces Wα satisfying for
α /∈ L(T), Wα ⊂ ⊗

β∈S(α)Wβ. Under this condition, all results of this section remain
valid.

For any level ℓ, 1 ≤ ℓ ≤ L, let

ITℓ
=
∏

α∈Tℓ

IUα = IUTℓ
⊗ idtc

ℓ
,

where IUTℓ
=
⊗

α∈Tℓ
IUα is the interpolation operator from Htℓ to UTℓ

=
⊗

α∈Tℓ
Uα associ-

ated with the tensor product grid ΓTℓ =×α∈Tℓ
Γα, and let

uℓ = ITℓ
uℓ+1,

with the convention uL+1 = u.We then prove that operators ITℓ
, 1 ≤ ℓ ≤ L, are commuting

oblique projections.

Lemma 6.5. For all 1 ≤ ℓ ≤ L, the operator ITℓ
is an oblique projection from H to

Uℓ := UTℓ
⊗ Htcℓ

along Wℓ := WTℓ
⊗ H∗

tc
ℓ
. For all 1 ≤ ℓ < ℓ′ ≤ L, we have Uℓ ⊂ Uℓ′ and

Wℓ ⊂ Wℓ′, and therefore
ITℓ

ITℓ′
= ITℓ

= ITℓ′
ITℓ

.

Proof. For 1 ≤ ℓ < L, we have

Uℓ =
(⊗

α∈Tℓ\L(T)

Uα

)
⊗
(⊗

α∈Tℓ∩L(T)

Uα

)
⊗Htcℓ

and Uℓ+1 =
(⊗

β∈Tℓ+1

Uβ

)
⊗Htcℓ+1

.

From Lemma 6.1, we know that
⊗

α∈Tℓ\L(T) Uα is a subspace of
⊗

β∈Tℓ+1
Uβ ⊂ Htℓ+1

.
Therefore, we obtain Uℓ ⊂ Uℓ+1. In the same way, using Lemma 6.3, we obtain that
Wℓ ⊂ Wℓ+1. We then deduce ITℓ

ITℓ+1
= ITℓ+1

ITℓ
= ITℓ

from Proposition 2.2, which ends
the proof.

Lemma 6.6. The approximation u⋆ satisfies

‖u− u⋆‖2 ≤ (1 + δ(L− 1))
L∑

ℓ=1

‖uℓ+1 − uℓ‖2,

where δ = maxℓ δTℓ
and

δTℓ
= ‖IUTℓ

− PUTℓ
‖Umin

Tℓ
(uℓ+1)→Htℓ

,

with tℓ = ∪α∈Tℓ
α. If u ∈ V , then

δTℓ
≤ δAℓ

:= ‖IUAℓ
− PUAℓ

‖Umin
Aℓ

(uℓ+1)→Haℓ
,

with aℓ = ∪α∈Aℓ
α.

27

Proof. Since u− u⋆ =
∑L

ℓ=1(u
ℓ+1 − uℓ), we have

‖u− u⋆‖2 =
L∑

ℓ=1

‖uℓ+1 − uℓ‖2 + 2
∑

ℓ′<ℓ

(uℓ+1 − uℓ, uℓ
′+1 − uℓ

′
).

For ℓ′ < ℓ, since PTℓ
(uℓ

′+1 − uℓ
′
) = uℓ

′+1 − uℓ
′
, we have

(uℓ+1 − uℓ, uℓ
′+1 − uℓ

′
) = (uℓ+1 − uℓ,PTℓ

(uℓ
′+1 − uℓ

′
))

= (PTℓ
(uℓ+1 − uℓ), uℓ

′+1 − uℓ
′
)

= (PTℓ
uℓ+1 − ITℓ

uℓ+1, uℓ
′+1 − uℓ

′
)

= ((PTℓ
− ITℓ

)(uℓ+1 − uℓ), uℓ
′+1 − uℓ

′
)

≤ ‖(PTℓ
− ITℓ

)(uℓ+1 − uℓ)‖‖uℓ′+1 − uℓ
′‖,

where we have used the fact that PTℓ
ITℓ

= ITℓ
and (PTℓ

− ITℓ
)uℓ = 0. Since PTℓ

− ITℓ
=

(PUTℓ
− IUTℓ

)⊗ idtc
ℓ
and uℓ+1 − uℓ = uℓ+1 − ITℓ

uℓ+1 ⊂ Umin
Tℓ

(uℓ+1) ⊗Htc
ℓ
, we obtain from

Proposition 3.11 that

|(uℓ+1 − uℓ, uℓ
′+1 − uℓ

′
)| ≤ δTℓ

‖uℓ+1 − uℓ‖‖uℓ′+1 − uℓ
′‖,

for ℓ′ < ℓ. We deduce that

‖u− u⋆‖2 ≤
L∑

ℓ,ℓ′=1

Bℓ,ℓ′‖uℓ+1 − uℓ‖‖uℓ′+1 − uℓ
′‖ ≤ ρ(B)

L∑

ℓ=1

‖uℓ+1 − uℓ‖2,

where the matrix B ∈ R
L×L is such that Bℓ,ℓ = 1 and Bℓ,ℓ′ = δTmax{ℓ,ℓ′}

if ℓ 6= ℓ′. Using the
theorem of Gerschgorin, we have that

ρ(B) ≤ 1 + max
ℓ

∑

ℓ′ 6=ℓ

Bℓ,ℓ′ = 1 +max
ℓ

((ℓ− 1)δTℓ
+
∑

ℓ′>ℓ

δTℓ′
) ≤ 1 + δ(L− 1),

with δ = maxℓ δTℓ
.

Finally, when u ∈ V , we have Umin
α (uℓ+1) ⊂ Umin

α (u) ⊂ Vα for all α ∈ L(T). Therefore,
IVαv = PVαv for all v ∈ Umin

α (uℓ+1) and α ∈ L(T), and

δTℓ
= ‖IUAℓ

⊗ IVTℓ\Aℓ
− PUAℓ

⊗ PVTℓ\Aℓ
‖Umin

Tℓ
(uℓ+1)→Htℓ

= ‖(IUAℓ
− PUAℓ

)⊗ PVTℓ\Aℓ
‖Umin

Tℓ
(uℓ+1)→Htℓ

= ‖IUAℓ
− PUAℓ

‖Umin
Aℓ

(uℓ+1)→Haℓ
‖PVTℓ\Aℓ

‖Umin
Tℓ\Aℓ

(uℓ+1)→Htℓ\aℓ

≤ ‖IUAℓ
− PUAℓ

‖Umin
Aℓ

(uℓ+1)→Haℓ
= δAℓ

.

28

Lemma 6.7. For 1 ≤ ℓ ≤ L,

‖uℓ+1 − uℓ‖2 ≤(1 + δ2Tℓ
)
(∑

α∈Aℓ

Λ2
Tℓ+1\S(α)

(1 + aα)‖uα −PUαuα‖2

+
∑

α∈Tℓ∩L(T)

Λ2
Tℓ+1

(1 + 2aαδ
2
α)‖u− PVαu‖2

)
,

where for S ⊂ T ,

ΛS =
∏

α∈S

Λα(Uα), Λα(Uα) = ‖IUα‖Umin
α (u)→Hα

,

aα = 1α∈L(A)1δα 6=0, (16)

and

δα = ‖IVα − PVα‖Umin
α (u)→Hα

(17)

for α ∈ L(T). Moreover, if u ∈ V , then δα = 0 for all α ∈ L(T), and aα = 0 for all α ∈ T .

Proof. For all 1 ≤ ℓ ≤ L, we have

‖uℓ+1 − uℓ‖2 = ‖uℓ+1 − ITℓ
uℓ+1‖2 = ‖uℓ+1 − PTℓ

uℓ+1‖2 + ‖ITℓ
uℓ+1 − PTℓ

uℓ+1‖2

= ‖uℓ+1 − PTℓ
uℓ+1‖2 + ‖(ITℓ

− PTℓ
)(uℓ+1 − PTℓ

uℓ+1)‖2

≤ (1 + δ2Tℓ
)‖uℓ+1 − PTℓ

uℓ+1‖2 ≤ (1 + δ2Tℓ
)
∑

α∈Tℓ

‖uℓ+1 − PUαu
ℓ+1‖2.

For α ∈ Tℓ \ L(T) = Aℓ \ L(T),

uℓ+1 = ITℓ+1
u =

∏

δ∈Tℓ+1\S(α)

IUδ

∏

β∈S(α)

IUβ
u =

∏

δ∈Tℓ+1\S(α)

IUδ
uα,

and since PUα and
∏

δ∈Tℓ+1\S(α)
IUδ

commute, we have

‖uℓ+1 − PUαu
ℓ+1‖ = ‖

∏

δ∈Tℓ+1\S(α)

IUδ
(uα − PUαuα)‖ ≤ ΛTℓ+1\S(α)‖uα − PUαuα‖.

Now for α ∈ Tℓ ∩ L(T), we have that PUα and ITℓ+1
commute, and therefore

‖uℓ+1 − PUαu
ℓ+1‖ = ‖ITℓ+1

(u− PUαu)‖ ≤ ΛTℓ+1
‖u− PUαu‖.

If α ∈ Tℓ \Aℓ, we have Uα = Vα. If α ∈ Aℓ ∩ L(T), we have

‖u− PUαu‖2 = ‖u−PUαPVαu‖2 = ‖u− PVαu‖2 + ‖(id − PUα)PVαu‖2,

29

so that if δα = ‖IVα − PVα‖Umin
α (u)→Hα

= 0, we have PVαu = IVαu = uα and

‖u−PUαu‖2 ≤ ‖u− PVαu‖2 + ‖(id − PUα)uα‖2, (18)

and if δα 6= 0, we have

‖u−PUαu‖2 ≤ ‖u− PVαu‖2 + 2‖(id − PUα)(PVα − IVα)u‖2 + 2‖(id − PUα)IVαu‖2

= ‖u− PVαu‖2 + 2‖(id − PUα)(PVα − IVα)(u− PVαu)‖2

+ 2‖(id − PUα)uα‖2

≤ (1 + 2δ2α)‖u− PVαu‖2 + 2‖uα −PUαuα‖2, (19)

where we have used Proposition 3.11. We conclude from (18) and (19) that if α ∈ Aℓ∩L(T),

‖u− PUαu‖2 ≤ (1 + 2aαδ
2
α)‖u− PVαu‖2 + (1 + aα)‖uα − PUαuα‖2.

Gathering the above results, we obtain

‖uℓ+1 − uℓ‖2 ≤ (1 + δ2Tℓ
)
(∑

α∈Aℓ\L(T)

Λ2
Tℓ+1\S(α)

‖uα − PUαuα‖2

+
∑

α∈Aℓ∩L(T)

(1 + aα)Λ
2
Tℓ+1

‖uα − PUαuα‖2

+
∑

α∈Aℓ∩L(T)

(1 + 2aαδ
2
α)Λ

2
Tℓ+1

‖u− PVαu‖2 +
∑

α∈Tℓ\Aℓ

Λ2
Tℓ+1

‖u− PVαu‖2
)
,

which ends the proof.

We now state the two main results about the proposed algorithm.

Theorem 6.8. Assume that for all α ∈ A, the subspace Uα is such that

‖uα − PUαuα‖2 ≤ (1 + τ2) min
rankα(v)≤rα

‖uα − v‖2 (20)

holds with probability higher than 1 − η, for some τ ≥ 1. Then the approximation u⋆ ∈
T A
r (H) ∩ V is such that

‖u− u⋆‖2 ≤ (1 + τ2)C2 min
v∈T A

r (H)
‖u− v‖2 +

∑

α∈L(T)

D2
α‖u− PVαu‖2 (21)

holds with probability higher than 1−#Aη, where C is defined by

C2 = (1 + δ(L− 1))

L∑

ℓ=1

(1 + δ2Tℓ
)Λ2

Tℓ+1

∑

α∈Aℓ

(1 + aα)λ
2
α, (22)

30

with

λα = 1α/∈L(A) + 1α∈L(A)‖IVα‖Umin
α (u)→Hα

(23)

and aα and δα defined by (16) and (17) respectively, and where Dα is defined by

D2
α = (1 + δ(L− 1))(1 + δ2Tℓ

)Λ2
Tℓ+1

(1 + 2aαδ
2
α) (24)

for α ∈ L(T) ∩ Tℓ.
Proof. For α ∈ A, let Ûα be a subspace such that

‖uα − PÛα
uα‖ = min

rankα(v)≤rα
‖uα − v‖,

and let U⋆
α ⊂ Umin

α (u) be a subspace such that

‖u− PU⋆
α
u‖ = min

rankα(v)≤rα
‖u− v‖ ≤ min

v∈T A
r (H)

‖u− v‖.

For α ∈ L(A), we have uα = IVαu. We know that rankα(IVαPU⋆
α
u) ≤ rα from Proposition

3.10. By the optimality of Ûα, we obtain

‖uα − P
Ûα
uα‖ ≤ ‖uα − IVαPU⋆

α
u‖ ≤ ‖IVα‖Umin

α (u)→Hα
‖u− PU⋆

α
u‖.

Now consider α ∈ A \ L(A). We know that rankα(
∏

β∈S(α) IUβ
PU⋆

α
u) ≤ rankα(PU⋆

α
u) ≤ rα

from Proposition 3.10. By the optimality of Ûα, we obtain

‖uα − P
Ûα
uα‖ ≤ ‖uα −

∏

β∈S(α)

IUβ
PU⋆

α
u‖ = ‖

∏

β∈S(α)

IUβ
(u− PU⋆

α
u)‖

≤ ΛS(α)‖u− PU⋆
α
u‖.

Then, using Lemma 6.7 and assumption (20), we obtain

‖uℓ+1 − uℓ‖2 ≤(1 + δ2Tℓ
)Λ2

Tℓ+1

(∑

α∈Aℓ

(1 + aα)λ
2
α(1 + τ2) min

rankα(v)≤rα
‖u− v‖2

+
∑

α∈Tℓ∩L(T)

(1 + 2aαδ
2
α)‖u− PVαu‖2

)
.

Then, using Lemma 6.6, we obtain (21).

Remark 6.9. Assume u ∈ V (no discretization). Then δα = 0 and ‖IVα‖Umin
α (u)→Hα

= 1
for all α ∈ L(T), aα = 0 and λα = 1 for all α ∈ T , ΛTℓ

= ΛAℓ
and δTℓ

= δAℓ
for all ℓ.

Also, the constant C defined by (22) is such that

C2 = (1 + δ(L− 1))

L∑

ℓ=1

(1 + δ2Aℓ
)Λ2

Aℓ+1
#Aℓ. (25)

31

Moreover, if Uα = Umin
α (u) for all α, then ΛTℓ

= ΛAℓ
= 1 and δTℓ

= δAℓ
= 0 for all ℓ,

which implies

C2 = #A. (26)

Theorem 6.10. Let ǫ, ǫ̃ ≥ 0. Assume that for all α ∈ A, the subspace Uα is such that

‖uα − PUαuα‖ ≤ ǫ‖uα‖ (27)

holds with probability higher than 1−η, and further assume that the subspaces Vα, α ∈ L(T),
are such that

‖u− PVαu‖ ≤ ǫ̃‖u‖. (28)

Then the approximation u⋆ is such that

‖u− u⋆‖2 ≤ (C2ǫ2 +D2ǫ̃2)‖u‖2

holds with probability higher than 1 − #Aη, where C is defined by (22) and where D2 =∑
α∈L(T)D

2
α, with Dα defined by (24), is such that

D2 = (1 + δ(L− 1))
L∑

ℓ=1

(1 + δ2Tℓ
)Λ2

Tℓ+1

∑

α∈Tℓ∩L(T)

(1 + 2aαδ
2
α). (29)

Proof. We first note that for α ∈ A \ L(A), we have ‖uα‖ ≤ ΛS(α)‖u‖. Also, for α ∈ L(T),
we have ‖uα‖ ≤ λα‖u‖, with λα defined in (23). Using Lemma 6.7 and assumptions (27)
and (28), we then obtain

‖uℓ+1 − uℓ‖2 ≤ (1 + δ2Tℓ
)Λ2

Tℓ+1

(∑

α∈Aℓ

(1 + aα)λ
2
αǫ

2‖u‖2

+
∑

α∈Tℓ∩L(T)

(1 + 2aαδ
2
α)ǫ̃

2‖u‖2
)
.

Finally, we obtain the desired result by using Lemma 6.6.

Example 6.11. For the Tucker format described in Example 4.3, the constants C and D
are given by

C2 = (1 + δ2T1
)
∑

α∈L(T)

(1 + 1δα 6=0)‖IVα‖2Umin
α (u)→Hα

,

D2 = (1 + δ2T1
)
∑

α∈L(T)

(1 + 2δ2α),

32

with

δT1 = ‖
⊗

α∈L(T)

IUα −
⊗

α∈L(T)

PUα‖Umin
D

(u)→H = ‖
⊗

α∈L(T)

IUαu−
⊗

α∈L(T)

PUαu‖/‖u‖.

If u ∈ V , then
C = (1 + δ2T1

)1/2
√
d.

Example 6.12. For the tensor train format described in Example 4.5, the constant C and
D are given by

C2 = (1 + δ(d − 2))
(d−2∑

ℓ=1

(1 + δ2Tℓ
)Λ2

{1,...,d−ℓ−1}‖IVd−ℓ
‖2Umin

d−ℓ
(u)→Hd−ℓ

+ (1 + δ2Td−1
)(1 + 1δ1 6=0)‖IV1‖2Umin

1 (u)→H1

)
,

D2 = (1 + δ(d− 2))
(d−2∑

ℓ=1

(1 + δ2Tℓ
)Λ2

{1,...,d−ℓ−1}‖IVd−ℓ
‖2Umin

d−ℓ
(u)→Hd−ℓ

+ (1 + δ2Td−1
)(2 + 2δ21)

)
,

with

δTℓ
= ‖IU{1,...,d−ℓ}

⊗ IV{d−ℓ+1}
− PU{1,...,d−ℓ}

⊗ PV{d−ℓ+1}
‖Umin

{1,...,d−ℓ+1}
(uℓ+1)→H{1,...,d−ℓ+1}

.

If u ∈ V , then

C2 = (1 + δ(d − 2))

(
d−2∑

ℓ=1

(1 + δ2Tℓ
)Λ2

{1,...,d−ℓ−1} + (1 + δ2Td−1
)

)
.

Example 6.13. For the tensor train Tucker format described in Example 4.6, the constant
C and D are given by

C2 = (1 + δ(d − 2))×
(d−2∑

ℓ=1

(1 + δ2Tℓ
)Λ2

{1,...,d−ℓ−1}Λ
2
{d−ℓ}

(
1 + (1 + 1δd−ℓ+1 6=0)‖IV{d−ℓ+1}

‖Umin
{d−ℓ+1}

→H{d−ℓ+1}

)

+ (1 + δ2Td−1
)
(
(1 + 1δ1 6=0)‖IV1‖2Umin

1 (u)→H1
+ (1 + 1δ2 6=0)‖IV2‖2Umin

2 (u)→H2

))
,

D2 = (1 + δ(d − 2))
(d−2∑

ℓ=1

(1 + δ2Tℓ
)Λ2

{1,...,d−ℓ−1}Λ
2
{d−ℓ}(2 + 2δ2d−ℓ+1)

+ (1 + δ2Td−1
)(1 + 2δ21)(1 + 2δ22)

)
.

33

If u ∈ V , then

C2 = (1 + δ(d − 2))

(
d−2∑

ℓ=1

2(1 + δ2Tℓ
)Λ2

{1,...,d−ℓ−1}Λ
2
{d−ℓ} + (1 + δ2Td−1

)

)
.

6.4 Complexity

Here we analyse the complexity of the algorithm in terms of the number of evaluations
of the function. Evaluations of the function u are required (i) for the computation of
the subspaces {Uα}α∈A through empirical principal component analysis of the Vα-valued
functions uα(·,Xαc), with Vα a given approximation space if α ∈ L(A) or Vα =

⊗
β∈S(α) Uβ

if α ∈ A \ L(A), and (ii) for the computation of the final interpolation IVD
u.

We then obtain the following result about the number of evaluations of the function
required by the algorithm

Proposition 6.14. The total number of evaluations of u required by the algorithm for
computing an approximation u⋆ in the tensor format T A

r (V) is

M(A, r,m, n) =
∑

α∈L(A)

mαnα +
∑

α∈A\L(A)

mα

∏

β∈S(α)∩A

rβ
∏

β∈S(α)\A

nβ

+
∏

β∈S(D)∩A

rβ
∏

β∈S(D)\A

nβ.

where n = (nα)α∈L(T), with nα = dim(Vα), and m = (mα)α∈A, with mα the number of
samples of the Zα-valued random variable uα(·,Xαc) used for computing Uα.

Proof. For α ∈ A, the function uα is an interpolation of u in Zα = Vα if α ∈ L(A),
or in Zα =

⊗
β∈S(α) Uβ =

(⊗
β∈S(α)∩A Uβ

)
⊗
(⊗

β∈S(α)\A Vβ

)
if α /∈ L(A). Therefore,

computing uα(·, xkαc) for one realization xkαc of Xαc requires dim(Vα) = nα evaluations
of u if α ∈ L(A) or dim(

⊗
β∈S(α) Uβ) =

∏
β∈S(α)∩A rβ

∏
β∈S(α)\A nβ if α /∈ L(A). Fi-

nally, the computation of the interpolation IT1u = IS(D)u requires dim(
⊗

α∈S(D) Uα) =∏
β∈S(D)∩A rβ

∏
β∈S(D)\A nβ evaluations of u.

For computing a rα-dimensional subspace Uα, the number of samples mα of uα(·,Xαc)
has to be at least rα.

Corollary 6.15. If the number of samples mα = rα for all α ∈ A, then the number of
evaluations of the function required by the algorithm is

M(A, r, r, n) = storage(T A
r (V)).

34

The above result states that for a prescribed rank r = (rα)α∈A, the algorithm is able to
construct an approximation of u using a number os samples equal to the storage complexity
of the tensor format T A

r (V).

When using the algorithm with a prescribed tolerance ǫ, the rank rα is not fixed a priori
but defined as the minimal integer such that the condition (27) is satisfied. Since samples of
uα(·,Xαc) belongs to the subspace Umin

α (uα) ⊂ Zα with dimension rankα(uα) ≤ dim(Zα),
the selected rank rα is at most dim(Zα). Therefore, by taking mα = dim(Zα) for all
α ∈ A, if we assume that the set of mα samples of u(·,Xαc) contains rankα(uα) linearly
independent functions in Zα, then the algorithm is able to produce an approximation with
arbitrary small tolerance ǫ.

Corollary 6.16. If the number of samples mα = dim(Zα) for all α ∈ A, then

M(A, r,m, n) =
∑

α∈L(A)

n2α +
∑

α∈A\L(A)

∏

β∈S(α)∩A

r2β
∏

β∈S(α)\A

n2β

+
∏

β∈S(D)∩A

rβ
∏

β∈S(D)\A

nβ.

Remark 6.17. For numerical experiments, when working with prescribed tolerance, we
will use mα = dim(Zα) for al α ∈ A.

7 Numerical examples

In all examples, we consider functions u in the tensor space L2
µ(X), with X ⊂ R

d, equipped
with the natural norm ‖ · ‖ (see example 3.2)6. For an approximation u⋆ provided by
the algorithm, we estimate the relative error ε(u⋆) = ‖u − u⋆‖/‖u‖ using Monte-Carlo
integration. We denote by M the total number of evaluations of the function u required
by the algorithm to provide an approximation u⋆, and by S the storage complexity of
the approximation u⋆. Since the algorithm uses random evaluations of the function u (for
the estimation of principal components), we run the algorithm several times and indicate
confidence intervals of level 90% for ε(u⋆), and also for M , S and approximation ranks
when these quantities are random.

For the approximation with a prescribed A-rank, we use mα = γrα samples for the
estimation of principal subspaces Uα, α ∈ A. If γ = 1, then M = S (see corollary 6.15).

For the approximation with a prescribed tolerance ǫ, we use mα = dim(Zα) for all
α ∈ A (see corollary 6.16 for the estimation of M).

In all examples except the last one, we use polynomial approximation spaces Vν =
Pp(Xν) over Xν ⊂ R, ν ∈ D, with the same polynomial degree p in all dimensions. For

6For the last example, X is a finite product set equipped with the uniform measure and L
2
µ(X) then

corresponds to the space of multidimensional arrays equipped with the canonical norm.

35

each ν ∈ D, we use an orthonormal polynomial basis of Vν = Pp(Xν) (Hermite polynomials
for a Gaussian measure, Legendre polynomials for a uniform measure,...), and associated
interpolation grids Γ⋆

ν selected in a set of 1000 random points (drawn from the measure
µν) by using the greedy algorithm described in Section 2.2.1.

7.1 Henon-Heiles potential

We consider X = R
d equipped with the standard Gaussian measure µ and the modified

Henon-Heiles potential [28]

u(x1, . . . , xd) =
1

2

d∑

i=1

x2i + σ∗

d−1∑

i=1

(xix
2
i+1 − x3i) +

σ2∗
16

d−1∑

i=1

(x2i + x2i+1)
2,

with σ⋆ = 0.2. We consider approximation in the tensor train format T A
r (V) described in

example 4.5. The function is such that rankα(u) = 3 for all α ∈ A. We use a polynomial
degree p = 4, so that there is no discretization error, i.e. u ∈ V .

In Table 1, we observe that the algorithm with a prescribed rank r = (3, . . . , 3) is able to
recover the function at very high precision with high probability with a number of samples
equal to the storage complexity of the approximation (when γ = 1), with no deterioration
when the dimension d increases from 5 to 100. The accuracy is slightly improved when
γ = 100 but with a much higher number of evaluations of the function.

Table 1: Henon-Heiles potential. Approximation with prescribed rank r = (3, . . . , 3) and
γ = 1 and γ = 100, for different values of d.

γ = 1

d 5 10 20 50 100

ε(u⋆)× 1014 [1.0; 234.2] [1.5; 67.5] [2.5; 79.9] [6.6; 62.8] [15.7; 175.1]

S =M 165 390 840 2190 4440

γ = 100

d 5 10 20 50 100

ε(u⋆)× 1014 [0.1; 0.4] [0.2; 0.4] [0.3; 0.4] [0.4; 0.7] [0.6; 0.8]

S 165 390 840 2190 4440

M 1515 3765 8265 21765 44265

7.2 Sine of a sum

We consider X = [−1, 1]d equipped with the uniform measure and the function

u(x1, . . . , xd) = sin(x1 + . . .+ xd).

36

We consider approximation in the tensor train Tucker format T A
r (V) described in example

4.6. The function is such that rankα(u) = 2 for all α ∈ A. In Table 2, we observe the
behavior of the algorithm with a prescribed rank r = (2, . . . , 2) for different polynomial
degrees p and different values of d. We observe a linear dependence of the complexity with
respect to d.

Table 2: Sine of a sum. Approximation with prescribed rank r = (2, . . . , 2) and γ = 1.
Relative error ε(u⋆) and number of evaluations M = S for different values of d and p.

d = 10 d = 20 d = 50

ε(u⋆) M ε(u⋆) M ε(u⋆) M

p = 3 [3.2; 3.3] × 10−1 148 [5.2; 5.3] × 10−1 308 [8.8; 8.81] × 10−1 788

p = 5 [1.29; 1.31] × 10−2 188 [2.3; 2.33] × 10−2 388 [5.2; 5.3] × 10−2 988

p = 7 [1.77; 1.81] × 10−4 228 [2.9; 3.0] × 10−4 468 [6.0; 6.1] × 10−4 1188

p = 9 [4.1; 4.2] × 10−6 268 [6.4; 6.6] × 10−6 548 [1.27; 1.29] × 10−5 1388

p = 11 [2.17, 2.2] × 10−8 308 [3.7; 3.8] × 10−8 628 [8.2; 8.4] × 10−8 1588

p = 13 [7.6, 7.7] × 10−10 348 [1.32; 1.24] × 10−10 708 [3.00; 3.04] × 10−10 1788

p = 15 [7.6, 7.8] × 10−12 388 [1.0; 1.1] × 10−12 788 [1.7; 2.5] × 10−12 1988

p = 17 [4.1, 13] × 10−14 428 [0.8; 4.9] × 10−14 868 [0.4; 6.7] × 10−13 2188

In Table 3, we observe the behavior of the algorithm with prescribed tolerance ǫ = 10−12

and fixed polynomial degree p = 17, for different values of d. For this value of ǫ, the
algorithm always provides an approximation with rank (2, . . . , 2) with a fixed number of
evaluations which is about ten times the storage complexity.

Table 3: Sine of a sum. Approximation with prescribed tolerance ǫ = 10−12, p = 17 and
γ = 1 for different values of d.

d = 10 d = 20 d = 50

ε(u⋆) S M ε(u⋆) S M ε(u⋆) S M

[3.7; 6.3] × 10−13 428 3372 [0.6; 1.3] × 10−14 868 6772 [1.4; 3.2] × 10−14 2188 16972

7.3 Sum of bivariate functions

We consider X = [−1, 1]d equipped with the uniform measure and the function

u(x1, . . . , xd) = g(x1, x2) + g(x3, x4) + . . .+ g(xd−1, xd) (30)

where g is a bivariate function, and d = 10. We consider approximation in the tensor train
Tucker format T A

r (V) described in example 4.6. The function is such that rank{ν}(u) =
rank(g)+1 for all ν ∈ D, and rank{1,...,ν}(u) = 2 if ν is even, or rank{1,...,ν}(u) = rank(g)+1
if ν is odd. Here, we use the algorithm we a prescribed tolerance ǫ.

37

We first consider the function g(y, z) =
∑3

j=0 y
jzj whose rank is 4 and we use polyno-

mial spaces of degree p = 5, so that there is no discretization error. We observe in Table
4 the behavior of the algorithm for decreasing values of ǫ. For ǫ = 10−4, the algorithm
always provides the solution at almost machine precision, with an exact recovery of the
rank of the function u. We observe that increasing γ (i.e. the number of evaluations for the
estimation of principal components) allows us to obtain a more accurate approximation for
a given prescribed tolerance but with a significant increase in the number of evaluations.

Table 4: Sum of bivariate functions (30) with g(y, z) =
∑3

j=0 y
jzj . Approximation with

prescribed ǫ, degree p = 5, and different γ. Confidence intervals for relative error ε(u⋆),
storage complexity S and number of evaluations M .

γ = 1

ǫ ε(u⋆) M S

10−1 [1.4 × 10−1; 2.8 × 10−1] [444, 521] [160, 192]

10−2 [0.8 × 10−1; 1.5 × 10−1] [918, 1034] [345, 373]

10−3 [1.7 10−15; 2.6 × 10−2] [1916, 2088] [530, 560]

10−4 [1.6 × 10−15; 7.8 × 10−15] 2088 560

γ = 10

ǫ ε(u⋆) M S

10−1 [1.7 10−1; 2.0 10−1] [5364, 5484] [202, 212]

10−2 [0.9 × 10−2; 1.1 × 10−2] [16132, 16412] [486, 500]

10−3 [2.1 × 10−15; 2.7 × 10−15] 20736 560

10−4 [1.7 × 10−15; 2.7 × 10−15] 20736 560

We now consider the function g(y, z) = exp−
1
8
(y−z)2 with infinite rank. We observe in

Tables 5 and 6 the behavior of the algorithm for decreasing values of ǫ, and for a fixed
polynomial degree p = 10 in Table 5, and an adaptive polynomial degree p(ǫ) = log10(ǫ

−1)
in Table 6. We observe that the relative error of the obtained approximation is below the
prescribed tolerance with high probability. Also, we clearly see the interest of adapting
the discretization to the desired precision, which yields a lower complexity for small or
moderate ǫ.

7.4 Borehole function

We here consider the function

f(Y1, . . . , Y8) =
2πY3(Y4 − Y6)

(Y2 − log(Y1))(1 +
2Y7Y3

(Y2−log(Y1))Y 2
1 Y8

+ Y3
Y5
)

which models the water flow through a borehole as a function of 8 independent ran-
dom variables Y1 ∼ N (0.1, 0.0161812), Y2 ∼ N (7.71, 1.0056), Y3 ∼ U(63070, 115600),

38

Table 5: Sum of bivariate functions (30) with g(y, z) = exp−
1
8
(y−z)2 . Approximation with

prescribed ǫ, degree p = 10, γ = 1. Confidence intervals for relative error ε(u⋆), storage
complexity S and number of evaluations M .

ǫ ε(u⋆) M S

10−1 [3.8 10−2; 5.3 10−2] [1219, 1222] [119, 131]

10−2 [1.8 10−2; 3.8 10−2] [1282, 1294] [252, 256]

10−3 [1.2 10−4; 2.0 10−3] [1813, 1876] [507, 519]

10−4 [1.2 10−4; 1.6 10−4] [1876, 1876] [519, 519]

10−5 [1.6 10−5; 6.9 10−5] [3275, 4063] [821, 935]

10−6 [1.8 10−6; 7.1 10−6] [4135, 4410] [975, 995]

10−7 [3.1 10−8; 2.5 10−6] [4685, 4960] [1015, 1035]

10−8 [2.7 10−8; 1.3 10−7] [5048, 6120] [1056, 1164]

10−9 [1.2 10−8; 4.8 10−8] [9671, 11595] [1476, 1578]

10−10 [1.9 10−10; 1.5 10−8] [11647, 13117] [1603, 1659]

Table 6: Sum of bivariate functions (30) with g(y, z) = exp−
1
8
(y−z)2 . Approximation with

prescribed ǫ, degree p(ǫ) = log10(ǫ
−1), γ = 1. Confidence intervals for relative error ε(u⋆),

storage complexity S and number of evaluations M .

ǫ ε(u⋆) M S

10−1 [1.4 10−1; 3.3 10−1] [52, 70] [32, 42]

10−2 [2.9 10−2; 4.2 10−2] [162, 184] [88, 100]

10−3 [3.2 10−3; 1.1 10−2] [598, 778] [258, 292]

10−4 [1.7 10−4; 2.5 10−4] [916, 916] [339, 339]

10−5 [5.7 10−5; 1.5 10−4] [2056, 2759] [562, 622]

10−6 [1.1 10−6; 3.5 10−5] [3190, 3465] [758, 778]

10−7 [6.9 10−8; 2.1 10−7] [4390, 4390] [885, 885]

10−8 [3.2 10−8; 1.2 10−7] [4560, 5319] [935, 998]

10−9 [8.3 10−9; 4.1 10−8] [9415, 11385] [1396, 1509]

10−10 [1.6 10−10; 1.7 10−8] [11647, 12382] [1603, 1631]

Y4 ∼ U(990, 1110), Y5 ∼ U(63.1, 116), Y6 ∼ U(700, 820), Y7 ∼ U(1120, 1680), Y8 ∼
U(9855, 12045). We then consider the function

u(x1, . . . , xd) = f(g1(x1), . . . , g8(x8)),

where gν are functions such that Yν = gν(Xν), with Xν ∼ N (0, 1) for ν ∈ {1, 2}, and
Xν ∼ U(−1, 1) for ν ∈ {3, . . . , 8}. Function u is then defined on X = R

2 × [−1, 1]6. We use
polynomial approximation spaces Vν = Pp(Xν), ν ∈ D. We consider approximation in the
tensor train Tucker format T A

r (V) described in example 4.6.

39

In Table 7, we observe the behavior of the algorithm with prescribed ranks (r, . . . , r)
and fixed degree p = 10. We observe a very fast convergence of the approximation with
the rank. Increasing γ (i.e. the number of evaluations for the estimation of principal
components) allows us to improve the accuracy for a given rank but it we look at the error
as a function of the complexity M , γ = 1 is much better than γ = 100.

Table 7: Borehole function. Approximation in tensor train Tucker format with prescribed
rank (r, . . . , r), fixed degree p = 10. Relative error ε(u⋆) and storage complexity S for
different values of r and γ.

γ = 1 γ = 100

r S ε(u⋆) ε(u⋆)

1 88 [2.4 10−2; 2.7 10−2] [2.3 10−2; 2.4 10−2]

2 308 [1.4 10−3; 1.4 10−2] [4.1 10−4; 5.0 10−4]

3 660 [1.8 10−5; 4.9 10−5] [9.9 10−6; 2.3 10−5]

4 1144 [2.9 10−6; 3.5 10−6] [8.8 10−7; 1.9 10−6]

5 1760 [5.2 10−7; 6.1 10−7] [1.8 10−7; 7.4 10−7]

6 2508 [9.0 10−8; 1.3 10−7] [1.9 10−8; 5.2 10−8]

7 3388 [5.7 10−8; 9.2 10−8] [5.1 10−9; 1.1 10−8]

8 4400 [1.6 10−9; 5.1 10−9] [4.3 10−10; 2.0 10−9]

9 5544 [1.5 10−9; 2.4 10−9] [3.1 10−10; 8.6 10−10]

10 6820 [5.5 10−11; 1.1 10−10] [4.3 10−11; 7.6 10−11]

In Table 8, we observe the behavior of the algorithm for decreasing values of ǫ, and for
an adaptive polynomial degree p(ǫ) = log10(ǫ

−1). We observe that for all ǫ, the relative
error of the obtained approximation is below ǫ with high probability. We note that the
required number of evaluations M is about 2 to 4 times the storage complexity.

7.5 Tensorization of a univariate function

We consider the approximation of the univariate function f : [0, 1] → R using tensorization
of functions [26, 39]. We denote by fN the piecewise constant approximation of f on
a uniform partition 0 = t0 ≤ t1 ≤ . . . ≤ tN = 1 with N = 2d elements, such that
fN (ih) = f(ih) for 0 ≤ i ≤ N and h = N−1 = 2−d. We denote by v ∈ R

N the vector with

components v(i) = f(ih), 0 ≤ i ≤ N − 1. The vector v ∈ R
2d can be identified with an

order-d tensor u ∈ H = R
2 ⊗ . . .⊗ R

2 such that

u(i1, . . . , id) = v(i), i =
d∑

k=1

ik2
d−k,

where (i1, . . . , id) ∈ {0, 1}d = X is the binary representation of the integer i ∈ {0, . . . , 2d −
1}. The set X is equipped with the uniform measure µ. Then we consider approximation of

40

Table 8: Borehole function. Approximation in tensor train Tucker format with prescribed
ǫ, p(ǫ) = log10(ǫ

−1), γ = 1. Confidence intervals for relative error ε(u⋆), storage complexity
S and number of evaluations M for different ǫ, and average ranks.

ǫ ε(u⋆) M S [r{1}, . . . , r{d}, r{1,2}, . . . , r{1,...,d−1}]

10−1 [1.8; 2.7] × 10−1 [39, 39] [23, 23] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

10−2 [0.3; 4.0] × 10−2 [88, 100] [41, 46] [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1]

10−3 [0.8; 1.9] × 10−3 [159, 186] [61, 78] [2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1]

10−4 [2.5; 5.6] × 10−5 [328, 328] [141, 141] [2, 2, 2, 3, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2]

10−5 [0.6; 1.6] × 10−5 [444, 472] [166, 178] [2, 2, 2, 4, 4, 2, 2, 2, 1, 2, 2, 2, 2, 2]

10−6 [3.1; 5.7] × 10−6 [596, 664] [204, 241] [3, 2, 2, 4, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2]

10−7 [1.0; 6.3] × 10−7 [1042, 1267] [374, 429] [4, 3, 4, 6, 5, 3, 3, 3, 2, 2, 3, 2, 2, 2]

10−8 [1.1; 7.1] × 10−8 [1567, 1567] [512, 512] [4, 3, 4, 7, 6, 3, 3, 3, 2, 2, 3, 2, 3, 3]

10−9 [0.2; 4.9] × 10−8 [1719, 1854] [534, 560] [4, 4, 4, 8, 6, 3, 3, 3, 2, 2, 3, 2, 3, 3]

10−10 [0.3; 1.9] × 10−9 [2482, 2828] [774, 838] [5, 4, 6, 10, 7, 4, 3, 3, 2, 2, 3, 2, 3, 3]

the tensor u in tensor train format. The algorithm evaluates the tensor u at some selected
entries (i1, . . . , id), which corresponds to evaluating the function f at some particular points
ti.

In this finite-dimensional setting, we consider V = H. In all examples, we consider
d = 40, and N = 2d ≈ 1012. This corresponds to a storage complexity of one terabyte for
the standard representation of fN as a vector v of size N .

We observe in Tables 9 and 10 the behavior of the algorithm with prescribed tolerance
ǫ applied to the functions f(t) = t2 and f(t) = t1/2 respectively. We indicate relative
errors in ℓ2 and ℓ∞ norms between the tensor u and the approximation u⋆. Let us recall
that for f(t) = tα, the approximation error ‖f − fN‖L∞ = O(N−β) = O(2−dβ) with
β = min{1, α}, which is an exponential convergence with respect to d. For the function
f(t) = t2, we observe that the relative error in ℓ2 norm is below the prescribed tolerance
with high probability. For the function f(t) = t1/2, the probability of obtaining a relative
error in ℓ2 norm below the prescribed tolerance decreases with ǫ but the ratio between the
true relative error and the prescribed tolerance remains relatively small (below 100). We
note that for f(t) = t2, the approximation ranks are bounded by 3, which is the effective
rank of fN . For f(t) = t1/2, the approximation ranks slowly increase with ǫ−1.

In both cases, we observe a very good behavior of the algorithm, which requires a
number of evaluations which scales as log(ǫ−1).

References

[1] M. Bachmayr, R. Schneider, and A. Uschmajew. Tensor networks and hierarchical
tensors for the solution of high-dimensional partial differential equations. Foundations

41

Table 9: Tensorization of f(t) = t2, d = 40. Approximation in tensor train format with
prescribed ǫ, γ = 1. Confidence intervals for relative ℓ2-error ε(u⋆), relative ℓ∞-error
ε∞(u⋆), number of evaluations M , storage complexity S and maximal rank for different ǫ.

ǫ ε(u⋆) ε∞(u⋆) M S maxα rα
10−1 [1.9 10−2; 1.2 10−1] [2.2 10−2; 1.8 10−1] [158, 194] [80, 96] [1, 2]

10−2 [2.4 10−3; 7.7 10−3] [3.1 10−3; 1.8 10−2] [230, 250] [114, 122] [2, 3]

10−3 [2.6 10−4; 3.1 10−3] [3.1 10−4; 7.2 10−3] [274, 326] [134, 160] [3, 3]

10−4 [2.7 10−5; 1.2 10−4] [4.2 10−5; 2.5 10−4] [370, 394] [182, 194] [3, 3]

10−5 [2.1 10−6; 8.9 10−6] [2.9 10−6; 1.1 10−5] [446, 470] [220, 232] [3, 3]

10−6 [2.5 10−7; 7.8 10−7] [3.1 10−7; 1.4 10−6] [514, 546] [254, 270] [3, 3]

10−7 [3.0 10−8; 2.4 10−7] [4.0 10−8; 2.6 10−7] [586, 614] [290, 304] [3, 3]

10−8 [2.1 10−9; 4.8 10−9] [3.4 10−9; 5.6 10−9] [678, 690] [336, 342] [3, 3]

10−9 [2.3 10−10; 4.8 10−10] [2.8 10−10; 7.5 10−10] [746, 766] [370, 380] [3, 3]

10−10 [3.1 10−11; 7.5 10−11] [3.9 10−11; 1.0 10−10] [810, 842] [402, 418] [3, 3]

Table 10: Tensorization of f(t) = t1/2, d = 40. Approximation in tensor train format
with prescribed ǫ, γ = 1. Confidence intervals for relative ℓ2-error ε(u⋆), relative ℓ∞-error
ε∞(u⋆), number of evaluations M , storage complexity S and maximal rank for different ǫ.

ǫ ε(u⋆) ε∞(u⋆) M S maxα rα
10−1 [9.3 10−3; 5.5 10−2] [4.1 10−2; 2.7 10−1] [182, 230] [90, 114] [2, 2]

10−2 [3.7 10−3; 8.6 10−3] [2.6 10−2; 5.1 10−2] [314, 350] [156, 172] [2, 3]

10−3 [5.4 10−4; 9.2 10−4] [3.0 10−3; 8.5 10−3] [514, 606] [252, 300] [3, 3]

10−4 [1.3 10−4; 3.3 10−3] [7.9 10−4; 2.4 10−2] [838, 962] [414, 474] [4, 4]

10−5 [1.8 10−5; 8.2 10−4] [1.6 10−4; 5.4 10−3] [1270, 1398] [626, 692] [4, 5]

10−6 [1.3 10−6; 6.3 10−5] [1.2 10−5; 4.3 10−4] [1900, 2036] [938, 1014] [5, 5]

10−7 [4.9 10−7; 1.3 10−6] [3.5 10−6; 1.5 10−5] [2444, 2718] [1218, 1344] [5, 6]

10−8 [1.0 10−7; 1.2 10−6] [1.1 10−6; 1.5 10−5] [3304, 3468] [1642, 1722] [6, 6]

10−9 [2.2 10−8; 1.3 10−7] [1.7 10−7; 1.2 10−6] [4116, 4328] [2046, 2144] [7, 7]

10−10 [8.6 10−10; 6.7 10−8] [8.8 10−9; 4.0 10−7] [5024, 5136] [2490, 2552] [7, 7]

of Computational Mathematics, pages 1–50, 2016.

[2] J. Ballani, L. Grasedyck, and M. Kluge. Black box approximation of tensors in hier-
archical tucker format. Linear Algebra and its Applications, 438(2):639 – 657, 2013.
Tensors and Multilinear Algebra.

[3] G. Blanchard, O. Bousquet, and L. Zwald. Statistical properties of kernel principal
component analysis. Machine Learning, 66(2-3):259–294, 2007.

42

[4] H-J. Bungartz and M. Griebel. Sparse grids. Acta. Numer., 13:147–269, 2004.

[5] M. Chevreuil, L. Giraldi, A. Nouy, and P. Rai. Learning algorithms for low-rank
approximation of multivariate functions in tensor-train tensor format. In preparation.

[6] M. Chevreuil, R. Lebrun, A. Nouy, and P. Rai. A least-squares method for sparse low
rank approximation of multivariate functions. SIAM/ASA Journal on Uncertainty
Quantification, 3(1):897–921, 2015.

[7] A. Cohen and R. DeVore. Approximation of high-dimensional parametric pdes. Acta
Numerica, 24:1–159, 2015.

[8] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning: A
tensor analysis. arXiv preprint arXiv:1509.05009, 2015.

[9] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value de-
composition. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

[10] V. de Silva and L.-H. Lim. Tensor rank and ill-posedness of the best low-rank ap-
proximation problem. SIAM Journal of Matrix Analysis & Appl., 30(3):1084–1127,
2008.

[11] R. A. DeVore. Nonlinear approximation. Acta Numerica, 7:51–150, 1998.

[12] A. Doostan, A. Validi, and G. Iaccarino. Non-intrusive low-rank separated approxima-
tion of high-dimensional stochastic models. Computer Methods in Applied Mechanics
and Engineering, 263(0):42 – 55, 2013.

[13] M. Espig, L. Grasedyck, and W. Hackbusch. Black box low tensor-rank approximation
using fiber-crosses. Constructive Approximation, 30:557–597, 2009.

[14] A. Falcó and W. Hackbusch. On minimal subspaces in tensor representations. Foun-
dations of Computational Mathematics, 12:765–803, 2012.

[15] A. Falco, W. Hackbusch, and A. Nouy. Geometric structures in tensor representations.
arXiv preprint arXiv:1505.03027, 2015.

[16] A. Falco, A., W. Hackbusch, and A. Nouy. On the dirac-frenkel variational principle
on tensor Banach spaces. arXiv preprint arXiv:1610.09865, 2016.

[17] L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM J. Matrix
Anal. Appl., 31:2029–2054, 2010.

[18] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor
approximation techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

43

http://arxiv.org/abs/1509.05009
http://arxiv.org/abs/1505.03027
http://arxiv.org/abs/1610.09865

[19] W. Hackbusch. Tensor spaces and numerical tensor calculus, volume 42 of Springer
series in computational mathematics. Springer, Heidelberg, 2012.

[20] W. Hackbusch and S. Kuhn. A New Scheme for the Tensor Representation. Journal
of Fourier analysis and applications, 15(5):706–722, 2009.

[21] C. Hillar and L.-H. Lim. Most tensor problems are np-hard. Journal of the ACM
(JACM), 60(6):45, 2013.

[22] S. Holtz, T. Rohwedder, and R. Schneider. On manifolds of tensors of fixed tt-rank.
Numerische Mathematik, 120(4):701–731, 2012.

[23] M. Jirak and M. Wahl. A tight sinΘ theorem for empirical covariance operators.
ArXiv e-prints, March 2018.

[24] M. Jirak and M. Wahl. Relative perturbation bounds with applications to empirical
covariance operators. ArXiv e-prints, February 2018.

[25] B. Khoromskij. Tensors-structured numerical methods in scientific computing: Survey
on recent advances. Chemometrics and Intelligent Laboratory Systems, 110(1):1 – 19,
2012.

[26] Boris N Khoromskij. O (dlog n)-quantics approximation of nd tensors in high-
dimensional numerical modeling. Constructive Approximation, 34(2):257–280, 2011.

[27] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, September 2009.

[28] Daniel Kressner, Michael Steinlechner, and André Uschmajew. Low-rank tensor meth-
ods with subspace correction for symmetric eigenvalue problems. SIAM Journal on
Scientific Computing, 36(5):A2346–A2368, 2014.

[29] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken. Dynamical approxima-
tion by hierarchical tucker and tensor-train tensors. SIAM Journal on Matrix Analysis
and Applications, 34(2):470–494, 2013.

[30] T. H. Luu, Y. Maday, M. Guillo, and P. Guérin. A new method for reconstruction of
cross-sections using tucker decomposition. 2017.

[31] Y. Maday, N. C. Nguyen, A. T. Patera, and G. S. H. Pau. A general multipurpose
interpolation procedure: the magic points. Communications On Pure and Applied
Analysis, 8(1):383–404, 2009.

[32] Robert E Megginson. An introduction to Banach space theory, volume 183. Springer
Science & Business Media, 2012.

44

[33] A. Nouy. Low-rank methods for high-dimensional approximation and model order
reduction. In P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, editors, Model
Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia, PA, 2017.

[34] Anthony Nouy. Low-rank tensor methods for model order reduction. In R. Ghanem,
D. Higdon, and H. Owhadi, editors, Handbook of Uncertainty Quantification, pages
1–26. Springer International Publishing, Cham, 2016.

[35] R. Orus. A practical introduction to tensor networks: Matrix product states and
projected entangled pair states. Annals of Physics, 349:117 – 158, 2014.

[36] I. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput., 33(5):2295–2317,
2011.

[37] I. Oseledets and E. Tyrtyshnikov. Breaking the curse of dimensionality, or how to use
svd in many dimensions. SIAM Journal on Scientific Computing, 31(5):3744–3759,
2009.

[38] I. Oseledets and E. Tyrtyshnikov. TT-cross approximation for multidimensional ar-
rays. Linear Algebra And Its Applications, 432(1):70–88, JAN 1 2010.

[39] Ivan V Oseledets and Eugene E Tyrtyshnikov. Algebraic wavelet transform via quan-
tics tensor train decomposition. SIAM Journal on Scientific Computing, 33(3):1315–
1328, 2011.

[40] M. Reiß and M. Wahl. Non-asymptotic upper bounds for the reconstruction error of
pca. arXiv preprint arXiv:1609.03779, 2016.

[41] R. Schneider and A. Uschmajew. Approximation rates for the hierarchical tensor
format in periodic sobolev spaces. Journal of Complexity, 30(2):56 – 71, 2014. Dagstuhl
2012.

[42] V. Temlyakov. Nonlinear methods of approximation. Foundations of Computational
Mathematics, 3(1):33–107, FEB 2003.

[43] V. Temlyakov. Greedy Approximation. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press, 2011.

[44] A. Uschmajew and B. Vandereycken. The geometry of algorithms using hierarchical
tensors. Linear Algebra and its Applications, 439(1):133–166, 2013.

45

http://arxiv.org/abs/1609.03779

	1 Introduction
	2 Projections
	2.1 Projections
	2.2 Projection of functions using point evaluations
	2.2.1 Interpolation
	2.2.2 Discrete least-squares projection

	3 Tensors
	3.1 Operators on tensor spaces
	3.2 Partial evaluations of tensors
	3.3 Projection of tensors

	4 Tree-based tensor formats
	5 Principal component analysis for tree-based tensor format
	5.1 Principal component analysis of multivariate functions
	5.2 Principal component analysis for tree-based tensor format
	5.3 Analysis of the algorithm

	6 Empirical principal component analysis for tree-based tensor format
	6.1 Empirical principal component analysis of multivariate functions
	6.2 Empirical principal component analysis for tree-based format
	6.3 Analysis of the algorithm
	6.4 Complexity

	7 Numerical examples
	7.1 Henon-Heiles potential
	7.2 Sine of a sum
	7.3 Sum of bivariate functions
	7.4 Borehole function
	7.5 Tensorization of a univariate function

