
ar
X

iv
:1

71
2.

07
25

6v
2 

 [
m

at
h.

N
A

] 
 1

0 
O

ct
 2

01
8

Low-rank approximation of linear parabolic

equations by space-time tensor Galerkin methods
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Abstract

We devise a space-time tensor method for the low-rank approximation

of linear parabolic evolution equations. The proposed method is a sta-

ble Galerkin method, uniformly in the discretization parameters, based

on a Minimal Residual formulation of the evolution problem in Hilbert–

Bochner spaces. The discrete solution is sought in a linear trial space

composed of tensors of discrete functions in space and in time and is

characterized as the unique minimizer of a discrete functional where the

dual norm of the residual is evaluated in a space semi-discrete test space.

The resulting global space-time linear system is solved iteratively by a

greedy algorithm. Numerical results are presented to illustrate the per-

formance of the proposed method on test cases including non-selfadjoint

and time-dependent differential operators in space. The results are also

compared to those obtained using a fully discrete Petrov–Galerkin setting

to evaluate the dual residual norm.

Keywords. Parabolic equations, Tensor methods, Proper Generalized Decom-
position, Greedy algorithm.

AMS. 65M12, 65M22, 35K20

1 Introduction

The goal of this work is to devise a space-time tensor method for the low-rank ap-
proximation of the solution to linear parabolic evolution equations. The method
we propose has two salient features. First, it is a stable Galerkin method, uni-
formly with respect to the discretization parameters in space and in time, leading
to quasi-optimal error estimates in the natural norms of the problem as specified
below. Second, the method is global in time (and in space), and the approxi-
mate solution is iteratively constructed by solving alternatively global problems
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in space and in time. More precisely, at iteration m ∈ N
∗, the space-time

approximate solution um(x, t) is of the form

um(x, t) =
∑

1≤n≤m

vn(x)sn(t), (1)

where vn and sn are members of some finite-dimensional spaces Vh and Sk com-
posed of space and time functions having dimension Nh and Nk, respectively.
We say that um is an approximation of rank m of the exact solution, consisting
of a summation of rank-one terms. We employ a greedy rank-one algorithm
for computing the sequence of approximations. Specifically, the approximate
solution um is constructed iteratively, i.e., once um−1 for m ≥ 1 is known (we
set conventionally u0 = 0), the functions vm and sm are computed by solv-
ing successively a global problem in space and in time having size Nh and Nk,
respectively, and which is defined by minimizing some quadratic convex func-
tional. The present method has the potential to be computationally effective
if the exact solution can be approximated accurately by low-rank space-time
tensors. In this case, space-time compression is meaningful and full parallelism
in time can be exploited by the global time solves leading to an overall com-
putational cost of the order of m(Nh +Nk), whereas traditional time-stepping
methods are expected to exhibit a cost of the order of Nh ×Nk. Thus, compu-
tational benefits are expected whenever m ≪ min(Nh, Nk). We notice that in
the literature, approximate solutions of the form (1) are typically obtained by
a Proper Generalized Decomposition (PGD) [23, 29, 11, 7], which is a greedy
algorithm [34]. In the context of parabolic problems, the PGD strategy has
been first introduced within the LATIN method in [22]. Theoretical conver-
gence results have been obtained in different contexts, see, e.g., [7, 23, 5, 12, 6].
We leave the question of adaptivity to future work, i.e., the discrete spaces Vh
and Sk are fixed a priori in what follows. Possible applications of the present
method can be envisaged in optimal control problems constrained by parabolic
evolution equations (see, e.g., [17]) and in parabolic evolution equations with
random input data (see, e.g., [18]); in both cases indeed, global space-time ap-
proaches are important. We also mention the dynamical low-rank integrators
from, e.g., [21, 26, 20] which can be used for parabolic evolution equations with
the rank referring to the space variables.

Our starting point is the well-posed formulation of the parabolic evolu-
tion equation at hand in the setting of space-time Hilbert–Bochner spaces.
More precisely, following Lions and Magenes [25, p. 234], the trial space is
X = L2(I;V ) ∩ H1(I;V ′) and the test space is Z = L2(I;V ) × L, where I is
the (non-empty, bounded) time interval and the separable real Hilbert spaces
(V, L, V ′) form a Gelfand triple, i.e., V →֒ L ≡ L′ →֒ V ′ with densely de-
fined embeddings. The prototypical example is the heat equation for which
V = H1

0 (Ω), L = L2(Ω), V ′ = H−1(Ω), where Ω is a bounded, Lipschitz, open
subset of Rd, d ≥ 1. More generally, we consider time-dependent linear (pos-
sibly non-selfadjoint) operators A(t) : V → V ′ that are bounded and coercive,
pointwise in time (a.e.). One important assumption for the present method
to remain computationally effective is that the space-time operator and source
term in the parabolic evolution equation admit a separated representation in
space and in time with a relatively low rank, see Eq. (7) below. This assumption
is met in practice for a wide range of problems coming from the engineering and
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applied sciences. In several situations, it is also possible to devise such low-rank
separated representations with good accuracy using the Empirical Interpolation
Method (EIM) [4]. The above well-posed space-time formulation allows one to
view the parabolic evolution problem as a Minimal Residual (MinRes) formula-
tion, where the exact solution is the unique minimizer over the trial space X of
the (square of the) dual norm of the residual in Z ′. The present approximation
method is formulated as a Galerkin method for the MinRes formulation. More
precisely, we look for the minimizer over a finite-dimensional subspace Xhk ⊂ X
of the (square of the) dual norm of the residual measured with respect to a
space semi-discrete subspace Zh ⊂ Z. Here, Xhk is a linear space generated us-
ing space-time tensor-products of elements of the finite-dimensional subspaces
Vh ⊂ V and Sk ⊂ H1(I) considered above, whereas Zh = (Vh ⊗ L2(I)) × Vh,
i.e., the time variable is not discretized in Zh.

Let us put our work in perspective with the literature. The subject of nu-
merical methods to approximate parabolic evolution equations is extremely rich.
One important class of methods are the traditional time-stepping schemes which
approximate the solution on a succession of time sub-intervals by marching
along the positive time direction, see, e.g., [35] for an overview. In the context
of parabolic evolution equations, implicit schemes are often preferred to cir-
cumvent the classical CFL restriction on explicit schemes, which is of the form

δk . δ2h (where δk ∼ N−1
k is the time-step and δh ∼ N

−1/d
h is the space-step),

but at the expense of having to solve a large linear system of equations at each
time-step. The cost of having to solve these systems sequentially has motivated
the devising of parareal methods [24, 13] based on iterative corrections at all
time sub-intervals simultaneously using the global space-time discrete system
associated with time-stepping methods. This global space-time discrete sys-
tem has also been central in the devising of space-time domain decomposition
methods based on waveform relaxation [19, 14, 15]. In contrast to the above
approaches which do not make a direct use of the well-posed functional setting
in space-time Hilbert–Bochner spaces, a space-time adaptive wavelet method
for parabolic evolution problems was proposed and analyzed in [32], involv-
ing a rather elaborate construction of the wavelet bases. Simpler hierarchical
wavelet-type tensor bases on a space-time sparse grid were also considered in [16]
within a heuristic space-time adaptive algorithm, but without offering guaran-
teed a-priori stability, uniformly with respect to the discretization parameters.
We also mention the recent work [28] where the above functional setting for
parabolic evolution problems is used to devise preconditioned time-parallel it-
erative solvers. Furthermore, PGD approximations based on a discrete MinRes
formulation measured in the space-time Euclidean norm of the components in
a basis of Xhk have been devised and evaluated numerically in [30], obtaining
promising results on various model parabolic evolution problems.

More recently, space-time Petrov–Galerkin discretizations of parabolic evo-
lution equations were proposed and analyzed in the PhD Thesis [1] and in the
related papers [2, 3]. Therein, the same MinRes formulation is considered as
in the present work at the continuous level, and the approximate solution is
typically sought in the same space-time discrete space. There are, however,
several salient differences between [2, 3] and the present work. First, in [2, 3],
the dual residual norm of the discrete solution is measured with respect to a
fully discrete space-time test space, leading to a Petrov–Galerkin formulation,
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whereas we consider a space semi-discrete test space, leading to a standard
Galerkin formulation. The difference is that a careful design of the test space is
necessary in the Petrov–Galerkin setting. Precise results in this direction have
been obtained in [2]. Let us for instance notice that, for a constant-in-time and
selfadjoint differential operator in space (e.g., for the heat equation), the Crank–
Nicolson scheme (obtained using continuous piecewise affine time-functions in
the trial space and piecewise constant time-functions in the test space) is only
conditionally stable, with a stability constant degenerating with the parabolic
CFL condition, whereas unconditional stability is achieved by further refining
the time mesh used to build the discrete test space as shown in [1, Sec. 5.2.3]. In
contrast with this, the present formulation automatically inherits uniform sta-
bility with respect to the time-step size. In particular, Lemma 3.1 below shows
well-posedness and Lemma 3.3 a quasi-optimal error bound with a constant in-
dependent on the time discretization. Nonetheless, the condition number of the
discrete matrices should behave as O(N−2

k ), so that, as usual, the precision can
be limited in practice by round-off errors. The second difference lies in the way
the discrete system of linear equations is solved iteratively: we use a greedy algo-
rithm to build a sequence of approximate solutions having the form (1), whereas
(a generalization of) the LSQR algorithm [31] is used in [3]. Third, we report nu-
merical results on a larger set of model parabolic evolution problems, including
in particular non-selfadjoint operators of advection-diffusion-type at moderate
Péclet numbers. Finally, let us mention, as already observed in [1, 2, 3], that
the inner product with which we equip the discrete test space Zh plays the role
of a preconditioner in the discrete system of linear equations resulting from the
discrete MinRes formulation. Equipping Zh with the natural norm leads to the
appearance of the inverse of the stiffness matrix in space. Herein, we explore
numerically the effect of relaxing the use of this preconditioner by simply equip-
ping the space-part of Zh with the Euclidean norm of the components in a basis
of Vh. This corresponds to the approach considered in [30].

In Section 2, we specify the functional setting for parabolic evolution equa-
tions and the MinRes formulation. This formulation is the basis for the discrete
MinRes Galerkin formulation devised in Section 3, where one key idea is the
use of a space semi-discrete test space to measure the dual norm of the residual.
In Section 4, we present the greedy algorithm we consider to obtain a low-rank
approximation of the discrete solution. In Section 5, we present two other dis-
crete MinRes formulations, one using a fully discrete Petrov–Galerkin setting
as in [1, 2, 3] and one using the same space semi-discrete setting as in Section 3
but equipping the test space with the above-mentioned Euclidean norm. These
additional formulations are introduced for the purpose of performing numerical
comparisons. Numerical results on various test cases are discussed in Section 6.
Finally, conclusions are drawn in Section 7.

2 Minimal Residual formulation of parabolic evo-

lution equations

In this section, we present the MinRes formulation of parabolic equations, which
is at the heart of the tensor approximation method we propose later on.
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2.1 Parabolic equations

The functional setting for parabolic equations is well understood (see, e.g., the
textbooks by Lions and Magenes [25, p. 234], Dautray and Lions [8, p. 513],
and Wloka [38, p. 376]). Let

V →֒ L ≡ L′ →֒ V ′ (2)

be a Gelfand triple where V and L are separable real Hilbert spaces respectively
equipped with inner products 〈·, ·〉V and 〈·, ·〉L, with associated norms ‖·‖V and
‖ · ‖L. The symbol →֒ represents a densely defined and continuous embedding.
Let T > 0 be the time horizon and let I := (0, T ) be the time interval. Let A :
I → L(V, V ′) be a strongly measurable time-function with values in the Hilbert
space of bounded linear operators from V to V ′. We assume that the following
boundedness and coercivity properties hold true: there exist 0 < α ≤M < +∞
such that a.e. t ∈ I,

‖A(t)v‖V ′ ≤M‖v‖V , ∀v ∈ V, (3a)

〈A(t)v, v〉V ′,V ≥ α‖v‖2V , ∀v ∈ V. (3b)

We do not require A(t) to be selfadjoint.
Let us define the Hilbert–Bochner spaces

X := L2(I;V ) ∩H1(I;V ′), Y := L2(I;V ), Z := Y × L. (4)

Since X →֒ C0(I;L) with I = [0, T ], the value at any time t ∈ I of any function
x ∈ X is well-defined as an element of L. In particular, we denote x(0) ∈ L the
initial value of x at the time t = 0. The spaces X and Z are equipped with the
norms

‖x‖2X := ‖x‖2L2(I;V ) +M−2‖∂tx‖2L2(I;V ′) + α−1‖x(T )‖2L, ∀x ∈ X, (5a)

‖z‖2Z := ‖y‖2L2(I;V ) + α−1‖g‖2L, ∀z = (y, g) ∈ Y × L = Z, (5b)

where the various scaling factors are introduced to be dimensionally consistent.
Let f ∈ Y ′ = L2(I;V ′) and let u0 ∈ L. We consider the following parabolic

problem: find u ∈ X such that

{

∂tu(t) +A(t)u(t) = f(t), in V ′, a.e. t ∈ I,
u(0) = u0, in L.

(6)

For the present space-time tensor methods to be computationally effective, we
assume that the operator A and the source term f have the following separated
form:

A(t) =
∑

1≤p≤P

µ(p)(t)A(p) ∈ L(V, V ′), f(t) =
∑

1≤q≤Q

λ(q)(t)f (q) ∈ V ′, (7)

for some positive integers P,Q taking moderate values, where µ(p) ∈ L∞(I),
A(p) ∈ L(V, V ′) for all 1 ≤ p ≤ P , and λ(q) ∈ L2(I), f (q) ∈ V ′ for all 1 ≤
q ≤ Q. A similar decomposition is considered, e.g., in [27] for the space-time
isogeometric discretization of parabolic problems with varying coefficients.
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Example 2.1 (Heat equation). Let Ω be a Lipschitz domain in R
d, V = H1

0 (Ω),
L = L2(Ω), and V ′ = H−1(Ω). Let µ : I → R be a measurable function
bounded from above and from below away from zero uniformly on I. Then, the
time-dependent family of operators (A(t))t∈I defined such that A(t) := −µ(t)∆,
for a.e. t ∈ I, where ∆ ∈ L(V ;V ′) is the Laplacian operator, satisfies the
assumptions (3) and (7). Whenever µ(t) ≡ 1, the family of operators is time-
independent, and one recovers the prototypical example of the heat equation.

2.2 Well-posedness and minimal residual formulation

It is convenient to introduce the operator A : X → Y ′ so that

(Ax)(t) = ∂tx(t) +A(t)x(t) ∈ V ′, a.e. t ∈ I. (8)

Problem (6) can be equivalently rewritten using the operator B : X → Z ′ =
Y ′ × L such that

Bx = (Ax, x(0)) ∈ Z ′, ∀x ∈ X. (9)

Then, an equivalent reformulation of problem (6) reads as follows: find u ∈ X
such that

Bu = (f, u0) in Z ′. (10)

It is well-known that the operator B is bounded, i.e., B ∈ L(X,Z ′), and satisfies
the following two properties:

∃β > 0 s.t. inf
x∈X

sup
z∈Z

〈Bx, z〉Z′,Z

‖x‖X‖z‖Z
≥ β, (11a)

∀z ∈ Z, (〈Bx, z〉Z′,Z = 0, ∀x ∈ X) =⇒ (z = 0), (11b)

where it is implicitly understood that nonzero arguments are considered in the
inf-sup condition, and where, for all (y, g) ∈ Y × L = Z,

〈Bx, (y, g)〉Z′,Z = 〈Ax, y〉Y ′,Y + 〈x(0), g〉L

=

ˆ

I

〈∂tx(t) +A(t)x(t), y(t)〉V ′,V dt+ 〈x(0), g〉L. (12)

Therefore, owing to the Banach–Nečas–BabuškaTheorem (see, e.g., [9, Thm. 2.6]),
B is an isomorphism. The proof of the well-posedness of parabolic problems by
means of inf-sup arguments can be found in [9, Thm. 6.6] using a strongly en-
forced initial condition; a systematic treatment can be found more recently in
[33]. Since the operator norm of B and the inf-sup constant β in (11a) play an
important role in what follows, we provide respectively an upper bound and a
lower bound for these two constants. For a.e. t ∈ I, the inverse adjoint operator
A(t)−T is well-defined in L(V ′;V ), and we have M−1‖ϕ‖V ′ ≤ ‖A(t)−Tϕ‖V ≤
α−1‖ϕ‖V ′ and 〈ϕ,A(t)−Tϕ〉V ′,V ≥ α

M2 ‖ϕ‖2V ′ , for all ϕ ∈ V ′.

Lemma 2.2 (Boundedness). The norm of the operator B : X → Z ′ is such that

‖B‖L(X;Z′) := sup
x∈X

sup
z∈Z

〈Bx, z〉Z′,Z

‖x‖X‖z‖Z
≤
√
3M.
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Proof. For all x ∈ X , z = (y, g) ∈ Z = Y × L, we have

〈Bx, z〉Z′,Z = 〈Ax, y〉Y ′,Y + 〈x(0), g〉L ≤ ‖Ax‖Y ′‖y‖Y + ‖x(0)‖L‖g‖L
≤

(

‖Ax‖2Y ′ + α‖x(0)‖2L
)1/2 (‖y‖2Y + α−1‖g‖2L

)1/2 ≤
√
3M‖x‖X‖z‖Z,

since ‖Ax‖2Y ′ ≤ 2M2(M−2‖∂tx‖2Y ′ + ‖x‖2Y ) ≤ 2M2‖x‖2X and α‖x(0)‖2L ≤
α‖x(T )‖2L+2α‖∂tx‖Y ′‖x‖Y ≤ α‖x(T )‖2L+αM(M−2‖∂tx‖2Y ′+‖x‖2Y ) ≤M2‖x‖2X
(recall that α ≤M).

Lemma 2.3 (Inf-sup constant). (11a) holds true with the inf-sup constant β ≥
α2

M (1 + κ2)−
1

2 , where κ := ess supt∈I
1
2‖A(t)A(t)−T − I‖L(V ′;V ′).

Proof. For completeness, we briefly outline the proof which is similar to that of
[33, Prop. 3.1], but with a different scaling for the norms. Let x ∈ X and let us
take

z = (A(t)−T∂tx(t) + x(t), x(0)) ∈ Z.
Then, using the coercivity of A(t) and of A(t)−1, we have

〈Bx, z〉Z′,Z =

ˆ

I

〈∂tx(t) +A(t)x(t), A(t)−T∂tx(t) + x(t)〉V ′,V dt+ ‖x(0)‖2L

≥ αM−2‖∂tx‖2L2(I;V ′) + α‖x‖2L2(I;V ) + ‖x(T )‖2L ≥ α‖x‖2X .
Moreover, using again the coercivity of A(t) and the boundedness of A(t) and
A(t)−T, we have

‖z‖2Z =

ˆ

I

‖A(t)−T∂tx(t) + x(t)‖2V dt+ α−1‖x(0)‖2L

≤ α−1

ˆ

I

〈A(t)
(

A(t)−T∂tx(t) + x(t)
)

, A(t)−T∂tx(t) + x(t)〉V ′,V dt+ α−1‖x(0)‖2L

≤Mα−1‖x‖2L2(I;V ) +M2α−2‖∂tx‖2L2(I;V ′) + α−1‖x(T )‖2L
+ 2κα−1‖∂tx‖L2(I;V ′)‖x‖L2(I;V )

≤ (1 + κ2)M2α−2‖x‖2X ,
and the conclusion is straightforward.

Remark 2.4 (Heat equation). Sharp estimates of the inf-sup constant β for
the heat equation (with µ(t) ≡ 1 on I so that α = M = 1 and κ = 0) can be
found in [36, 10] using the above norms.

The solution to the parabolic equation (6) is the global minimizer of the
residual-based quadratic functional E : X → R, defined such that

E(x) := 1

2
‖Bx− (f, u0)‖2Z′ , ∀x ∈ X, (13)

where we equip the space Z ′ = Y ′ × L with the norm

‖(φ, g)‖2Z′ := ‖φ‖2L2(I;V ′) + α‖g‖2L. (14)

Since the functional E is strongly convex on X with parameter β2 > 0 owing to
the inf-sup condition (11a), E admits a unique global minimizer in X , and since
the operator B is surjective, the minimum value of E on X is zero. In other
words, the unique solution to (6) can be equivalently characterized as follows:

u = argmin
x∈X

1

2

(

‖Ax− f‖2Y ′ + α‖x(0)− u0‖2L
)

. (15)
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3 Discrete Minimal Residual Galerkin formula-

tion

In this section, we introduce a discrete energy based on a space semi-discrete
Galerkin method to approximate the unique minimizer in (15). We consider
finite-dimensional spaces Vh and Sk such that

Vh ⊂ V, Sk ⊂ S := H1(I), (16)

and we set Nh := dim(Vh) and Nk := dim(Sk). Typically, Vh is constructed
using P1 Lagrange finite elements on a space mesh of Ω and Sk is constructed
using continuous, piecewise affine functions on a time mesh of I. We are going
to seek the discrete minimizer in the tensor-product space

Xhk := Vh ⊗ Sk ⊂ X, (17)

which is of dimension dim(Xhk) = Nh ×Nk.

3.1 Space semi-discrete Galerkin approximation

Let us set

Xh = Vh⊗H1(I), Yh := Vh⊗L2(I) ≡ L2(I;Vh), Y ′
h = V ′

h⊗L2(I) ≡ L2(I;V ′
h).

(18)
Since Vh is a subspace of V and owing to (2), we have Yh ⊂ Y and Y ′ ⊂ Y ′

h,
where the second inclusion follows by restricting the action of linear forms on
V to Vh. Let us define fh ∈ Y ′

h s.t. fh(t) = f(t)|Vh
a.e. t ∈ I. Recalling the

separated form (7), we have

fh(t) :=
∑

1≤q≤Q

λ(q)(t)f (q)|Vh
a.e. t ∈ I. (19)

Let u0h be the L-orthogonal projection of u0 onto Vh. Let Ah : Xh → Y ′
h be s.t.

(Ahxh)(t) := (JVh
⊗ ∂t)xh(t) +Ah(t)xh(t) ∈ V ′

h, a.e. t ∈ I, (20)

where JVh
: Vh → V ′

h is the injection resulting from (2), i.e., 〈JVh
vh, wh〉V ′

h
,Vh

=
〈vh, wh〉L for all vh, wh ∈ Vh, and Ah(t) : Vh → V ′

h is the discrete counterpart
of A(t) s.t. 〈Ah(t)vh, wh〉V ′

h
,Vh

= 〈A(t)vh, wh〉V ′,V . Let us introduce the space
semi-discrete space Zh = Yh × Lh so that Z ′

h = Y ′
h × L′

h, where Lh coincides
with Vh as linear space but is equipped with the norm of L (note that Lh ⊂
L ≡ L′ ⊂ L′

h). Note that Zh ⊂ Z. Let Bh : Xh → Z ′
h be the operator defined

for xh ∈ Xh by
Bhxh = (Ahxh, xh(0)) ∈ Z ′

h = Y ′
h × L′

h, (21)

and such that, for all (yh, gh) ∈ Yh × Lh, (compare with (12))

〈Bhxh, (yh, gh)〉Z′

h
,Zh

= 〈Ahxh, yh〉Y ′

h
,Yh

+ 〈xh(0), gh〉L = 〈Bxh, (yh, gh)〉Z′,Z .

(22)

The space semi-discrete formulation is as follows: find uh ∈ Xh such that

Bhuh = (fh, u0h) in Z ′
h. (23)
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The well-posedness of this formulation is ensured by the following lemma, where
the subspace Xh ⊂ X is equipped with the norm ‖xh‖2Xh

:= ‖xh‖2L2(I;V ) +

M−2‖∂txh‖2L2(I;V ′

h
) +α−1‖xh(T )‖2L, and the subspace Zh ⊂ Z is equipped with

the norm of Z. Recall the inf-sup constant β = α2

M (1 + κ2)−
1

2 from Lemma 2.3.

Lemma 3.1. The operator Bh : Xh → Z ′
h satisfies ‖Bh‖L(Xh;Z′

h
) ≤
√
3M, and

inf
xh∈Xh

sup
zh∈Zh

〈Bhxh, zh〉Z′

h
,Zh

‖xh‖Xh
‖zh‖Z

≥ β, (24a)

∀zh ∈ Zh, (〈Bhxh, zh〉Z′

h
,Zh

= 0, ∀xh ∈ Xh) =⇒ (zh = 0). (24b)

Proof. The upper bound on ‖Bh‖L(Xh;Z′

h
) is shown as in the proof of Lemma 2.2.

To prove (24a), one can use the same arguments as in the proof of Lemma 2.3
by picking in the supremizing set zh = (Ah(t)

−T∂txh(t) + xh(t), xh(0)) ∈ Yh ×
Lh = Zh. Finally, one can prove (24b) using the following arguments, as in [9,
Thm. 6.6]. Let zh = (yh, gh) ∈ Zh. Taking xh arbitrary in Vh ⊗ C∞

0 (I) shows
that (JVh

⊗ ∂t)yh − A−T
h yh = 0 in Y ′

h. Taking next xh = tvh with vh arbitrary
in Vh proves that yh(T ) = 0, and taking xh = tyh, one concludes that yh = 0.
Finally, taking xh = vh with vh arbitrary in Vh yields gh = 0.

Lemma 3.1 implies that Bh : Xh → Z ′
h is an isomorphism such that

β‖xh‖Xh
≤ ‖Bhxh‖Z′

h
≤
√
3M‖xh‖Xh

, (25)

for all xh ∈ Xh. The solution uh to the equation (23) is the unique minimizer
of the discrete energy functional Eh : Xh → R defined for all xh ∈ Xh by

Eh(xh) :=
1

2
‖Bhxh − (fh, u0h)‖2Z′

h

=
1

2

(

‖Ahxh − fh‖2Y ′

h

+ α‖xh(0)− u0h‖2L
)

.

(26)
An important property of this discrete energy functional is the strong convexity
that is inherited from the continuous setting, uniformly with respect to the space
discretization parameter. More precisely, the functional Eh is strongly convex
on Xh with parameter β2 > 0 owing to the inf-sup condition (24a). Since the
operator Bh is surjective, the minimum value of Eh on Xh is zero and is attained
at uh.

Remark 3.2 (Norm ‖·‖Xh
). The difference between the ‖·‖X-norm and the

‖·‖Xh
-norm lies in the use of the dual norm in V ′

h and not in V ′ to measure
the time-derivative. Note that ‖xh‖Xh

≤ ‖xh‖X , for all xh ∈ Xh. The reason
for this difference is that, as shown in [33], the equivalence of the two norms,
uniformly with respect to the space discretization, holds true if and only if the
L-orthogonal projection onto Vh is V -stable. This uniform stability (with V =
H1

0 (Ω) and L = L2(Ω)) is, in turn, not known to hold true if general shape-
regular meshes are used to build the finite element space Vh; it does hold true
if quasi-uniform meshes are used (as it is the case in the present numerical
experiments). We emphasize that the use of a discrete dual norm to measure
the time-derivative is a general feature that arises in the quasi-optimality of
space semi-discrete Galerkin methods for parabolic evolution problems [33], and
is not specific to the present setting.
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3.2 Minimal residual Galerkin approximation

An approximation uhk ∈ Xhk of uh ∈ Xh is now defined as the unique minimizer
of the discrete energy functional Eh restricted to the subspace Xhk of Xh, i.e.we
look for

uhk = argmin
xhk∈Xhk

Eh(xhk) = argmin
xhk∈Xhk

1

2

(

‖Ahxhk − fh‖2Y ′

h

+ α‖xhk(0)− u0h‖2L
)

.

(27)
We emphasize the use of the space semi-discrete test space Yh to measure the
dual norm of the residual. We obtain the following quasi-optimal error estimate.

Lemma 3.3 (Error estimate). Let uh be the unique solution to (23), and let
uhk ∈ Xhk be the unique minimizer of (27). Then, we have

‖uh − uhk‖Xh
≤ C inf

xhk∈Xhk

‖uh − xhk‖Xh
, (28)

where C =
√
3M
β is independent of the time discretization.

Proof. Using (25), we have

‖uhk − uh‖Xh
≤ β−1‖Bh(uhk − uh)‖Z′

h
= β−1 min

xhk∈Xhk

‖Bh(xhk − uh)‖Z′

h

≤
√
3Mβ−1 min

xhk∈Xhk

‖xhk − uh‖Xh
,

which proves the assertion.

The unique minimizer of the quadratic discrete minimization problem (27)
can be characterized by a system of linear equations. To write this system, let us
first introduce the Riesz isomorphismRV ′

h
: Vh → V ′

h such that 〈RV ′

h
vh, wh〉V ′

h
,Vh

=
〈vh, wh〉V for all vh, wh ∈ Vh (note that RV ′

h
differs from the injection JVh

in-
troduced above). Let RY ′

h
: Yh → Y ′

h be the space-time Riesz isomorphism such
that

RY ′

h
= RV ′

h
⊗ IL2 , (29)

where IL2 is the identity operator in L2(I) (it is actually the Riesz isomorphism
from L2(I) onto L2(I)′ ≡ L2(I)). The quadratic discrete minimization problem
(27) is equivalent to the following linear problem: find uhk ∈ Xhk such that

Bhkuhk = ghk, (30)

with Bhk : Xhk → X ′
hk and ghk ∈ X ′

hk such that, for all xhk, zhk ∈ Xhk,

〈Bhkxhk, zhk〉X′

hk
,Xhk

= 〈Ahxhk, R
−1
Y ′

h

Ahzhk〉Y ′

h
,Yh

+ α〈xhk(0), zhk(0)〉L, (31a)

〈ghk, zhk〉X′

hk
,Xhk

= 〈fh, R−1
Y ′

h

Ahzhk〉Y ′

h
,Yh

+ α〈u0h, zhk(0)〉L. (31b)

Let us briefly describe the algebraic realization of the discrete problem (30).
Let (ψi)1≤i≤Nh

be a basis of Vh and let (φl)1≤l≤Nk
be a basis of Sk. We can

then seek for the components of the unique solution uhk of (30) in the basis
(ψi ⊗ φl)1≤i≤Nh,1≤l≤Nk

of Xhk, i.e., we seek u = (uil)1≤i≤Nh,1≤l≤Nk
∈ R

NhNk

such that

uhk =

Nh
∑

i=1

Nk
∑

l=1

uilψi ⊗ φl. (32)
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We define the following matrices of size Nh×Nh (related to the space discretiza-
tion):

(Dh)ij = 〈ψj , ψi〉V , (Mh)ij = 〈ψj , ψi〉L, (33)

and the following matrices of size Nk ×Nk (related to the time discretization):

(Dk)lm =

ˆ

I

φ′m(t)φ′l(t)dt, (Mk)lm =

ˆ

I

φm(t)φl(t)dt, (Ok)lm = φm(0)φl(0).

(34)
Recalling the separated form (7), we introduce the following matrix of size
Nh ×Nh:

(A
(p)
h )ij = 〈A(p)ψj , ψi〉V ′,V , (35)

and the following matrices of size Nk ×Nk:

(M
(p,p′)
k )lm =

ˆ

I

µ(p)(t)µ(p′)(t)φm(t)φl(t)dt, (E
(p)
k )lm =

ˆ

I

µ(p)(t)φ′m(t)φl(t)dt,

(36)
for all 1 ≤ p, p′ ≤ P . Then, we obtain the following symmetric positive-definite
linear system in R

NhNk :
Bu = g, (37)

with the matrix

B = MhD
−1
h Mh ⊗Dk +

∑

1≤p≤P

2sym
{

(A
(p)
h )TD−1

h Mh ⊗E
(p)
k

}

+
∑

1≤p,p′≤P

(A
(p)
h )TD−1

h A
(p′)
h ⊗M

(p,p′)
k + αMh ⊗Ok, (38)

where sym(Zh⊗Zk) =
1
2 (Zh⊗Zk+ZT

h ⊗ZT
k ) for any matrix Zh of size Nh×Nh

and any matrix Zk of size Nk ×Nk, and the right-hand side

g =
∑

1≤q≤Q

MhD
−1
h f

(q)
h ⊗e

(q)
k +

∑

1≤p≤P
1≤q≤Q

(A
(p)
h )TD−1

h f
(q)
h ⊗d

(p,q)
k +αu0h⊗ ik, (39)

with the vectors (f
(q)
h )i = 〈f (q)|Vh

, ψi〉V ′,V = 〈f (q), ψi〉V ′,V , (u0h)i = 〈u0h, ψi〉L =

〈u0, ψi〉L, for all 1 ≤ i ≤ Nh, and (e
(q)
k )l =

´

I
λ(q)(t)φ′l(t)dt, (d

(p,q)
k )l =

´

I µ
(p)(t)λ(q)(t)φl(t)dt, (ik)l = φl(0), for all 1 ≤ l ≤ Nk.

Example 3.4 (Heat equation). Let us consider the heat equation where P = 1,
µ(1)(t) ≡ 1 and A(1) = −∆, and let us equip the space V with the H1-seminorm
so that 〈v, w〉V =

´

Ω∇v(x)·∇w(x)dx = 〈A(1)v, w〉V ′,V . Then the expression of
B simplifies as follows:

B = MhD
−1
h Mh ⊗Dk +Mh ⊗ 2sym(Ek) +Dh ⊗Mk + αMh ⊗Ok, (40)

with the following matrix of size Nk ×Nk:

(Ek)lm =

ˆ

I

φ′m(t)φl(t)dt. (41)
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4 Low-rank approximation

In this section, we present the low-rank approximation method we use to approx-
imate iteratively the unique minimizer of (27) (or, equivalently, the unique solu-
tion to the linear system (37)). We consider here a greedy algorithm [34, 5, 12, 7]
which is an iterative procedure such that, at each iteration m ∈ N

∗, one com-
putes an approximation umhk ∈ Xhk of the solution uhk ∈ Xhk of (27) in the
form

umhk(x, t) =
∑

1≤n≤m

vnh(x) ⊗ snk (t), (42)

with vnh ∈ Vh and snk ∈ Sk for all 1 ≤ n ≤ m. The algorithm can be outlined as
follows:

GREEDY ALGORITHM:

1. Set u0hk = 0 and m = 1.

2. Solve for

(vmh , s
m
k ) ∈ argmin

(vh,sk)∈Vh×Sk

Eh(um−1
hk + vh ⊗ sk). (43)

Set umhk := um−1
hk + vmh ⊗ smk .

3. Check convergence, and if not satisfied, set m← m+1 and go to step
(2).

The following relative stagnation-based stopping criterion is used with a
tolerance ǫgreedy > 0:

‖vmh ⊗ smk ‖X
‖umhk‖X

< ǫgreedy. (44)

Using the general results from [5, 12], one can verify that the iterations of the
above greedy algorithm are well-defined using the discrete minimal residual for-
mulation presented in Section 3. Recall that the uniqueness of the solution to
the minimization problem (27) follows from the strong convexity of the func-
tional Eh, and the sequence (umhk)m∈N converges to uhk as n goes to infinity.
Actually, it can be checked that this convergence result still holds true in the
infinite-dimensional setting.

In the above greedy algorithm, the minimization problem (43) is nonlinear.
Therefore, it is not straightforward to solve it and in practice, one often considers
an alternating minimization algorithm (see [37]), based on the following fixed-
point iterative scheme:

ALTERNATING MINIMIZATION ALGORITHM FOR (43):

1. Choose sm,0
k ∈ Sk randomly and set p = 1.

12



2. Let vm,p
h ∈ Vh be the unique solution to

vm,p
h = argmin

vh∈Vh

Eh
(

um−1
hk + vh ⊗ sm,p−1

k

)

. (45)

Compute sm,p
k ∈ Sk to be the unique solution to

sm,p
k = argmin

sk∈Sk

Eh
(

um−1
hk + vm,p

h ⊗ sk
)

. (46)

3. Check convergence, and if not satisfied, set p← p+ 1 and go to step
(2).

The following relative stagnation-based stopping criterion is used with a
tolerance ǫalt > 0:

‖vm,p
h ⊗ sm,p

k − vm,p−1
h ⊗ sm,p−1

k ‖X
‖vm,p

h ⊗ sm,p
k ‖X

< ǫalt. (47)

The cost of an iteration of the alternating minimization algorithm is of order
(Nh + Nk). Provided the number of fixed-point iterations remains reasonably
small, the cost of each iteration of the greedy algorithm can be estimated to
scale also as (Nh +Nk). We will verify in our numerical experiments that this
is indeed the case.

Remark 4.1 (Matrix form). The matrix form of problem (43) is as follows:

(vm
h , s

m
k ) = argmin

(vh,sk)∈R
N

h×R
N

k

{

1

2

(

um−1
hk + vh ⊗ sk

)T
B
(

um−1
hk + vh ⊗ sk

)

−
(

um−1
hk + vh ⊗ sk

)T
g

}

,

where um−1
hk denotes the vector in R

NhNk containing the coordinates of um−1
hk in

the basis (ψi ⊗ φl)1≤i≤Nh,1≤l≤Nk
. Similarly, the matrix form of problems (45)

and (46) is as follows:

v
m,p
h = argmin

vh∈R
N

h

{

1

2

(

um−1
hk + vh ⊗ s

m,p−1
k

)T
B
(

um−1
hk + vh ⊗ s

m,p−1
k

)

−
(

um−1
hk + vh ⊗ s

m,p−1
k

)T
g

}

,

s
m,p
k = argmin

sk∈R
N

k

{

1

2

(

um−1
hk + v

m,p
h ⊗ sk

)T
B
(

um−1
hk + v

m,p
h ⊗ sk

)

−
(

um−1
hk + v

m,p
h ⊗ sk

)T
g

}

.

5 Other discrete minimal residual methods

In this section, we describe for the purpose of numerical comparisons in Section 6
two other discrete minimal residual approaches. The discrete method introduced
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in Section 3 is henceforth referred to as Method 1. The first variant, called
Method 2, hinges on a fully discrete Petrov–Galerkin setting as devised in [1,
2, 3]. The second variant, called Method 3, uses the same space semi-discrete
setting as Method 1, but the test space is now equipped with a simple Euclidean
norm of the components on a basis of Vh; Method 3 has been introduced in [30].

5.1 Method 2: fully discrete Petrov–Galerkin method

Let us set
Yhk := Vh ⊗ SP

k , Y ′
hk = V ′

h ⊗ (SP
k )

′, (48)

where SP
k is a finite-dimensional subspace of L2(I) so that SP

k ⊂ L2(I) ≡
L2(I)′ ⊂ (SP

k )
′. The injection JSP

k

: L2(I) → (SP
k )

′ is such that JSP

k

=

R(SP

k
)′ ◦ΠSP

k

where ΠSP

k

is the L2(I)-orthogonal projection from L2(I) onto SP
k

and R(SP

k
)′ : S

P
k → (SP

k )
′ is the Riesz isomorphism so that 〈R(SP

k
)′q, r〉(SP

k
)′,SP

k

=

〈q, r〉L2(I), for all q, r ∈ SP
k . Let us set dim(SP

k ) = NP
k . Recalling the separated

form (7), let us define fhk ∈ Y ′
hk s.t.

fhk(t) =
∑

1≤q≤Q

(JSP

k

λ(q))(t)f (q)|Vh
a.e. t ∈ I. (49)

Let Ahk := (IV ′

h
⊗ JSP

k

)Ah : Xhk → Y ′
hk where IV ′

h
is the identity operator

in V ′
h and Ah is defined by (20). We consider the discrete energy functional

E fdPG
hk : Xhk → R defined as

E fdPG
hk (xhk) :=

1

2

(

‖Ahkxhk − fhk‖2Y ′

hk

+ α‖xhk(0)− u0h‖2L
)

, ∀xhk ∈ Xhk.

(50)
The discrete minimization problem is as follows: find ufdPG

hk ∈ Xhk such that

ufdPG
hk = argmin

xhk∈Xhk

E fdPG
hk (xhk). (51)

Remark 5.1 (Comparison of energies). Since fhk = (IV ′

h
⊗ JSP

k

)fh with fh
defined by (19), we have

‖Ahkxhk − fhk‖Y ′

hk
= ‖(IV ′

h
⊗ JSP

k

)(Ahxhk − fh)‖Y ′

hk
≤ ‖Ahxhk − fh‖Y ′

h
,

which implies that E fdPG
hk (xhk) ≤ Eh(xhk) for all xhk ∈ Xhk.

As shown in [2, 3] in the case of time-independent and selfadjoint operators
A ∈ L(V ;V ′), the Hessian of the discrete energy E fdPG

hk induces a bilinear form
that satisfies an inf-sup condition that degenerates with the parabolic CFL. In
the general case with a time-dependent differential operator, the positivity of
the inf-sup constant is not guaranteed a priori, which means that the discrete
energy functional E fdPG

hk may be only convex in some unfavorable situations.
This means that in such cases, global minimizers of (51) exist but may not be
unique. Any minimizer satisfies the following system of linear equations: find
ufdPG
hk ∈ Xhk such that

BfdPG
hk ufdPG

hk = gfdPG
hk , (52)
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with BfdPG
hk : Xhk → X ′

hk and gfdPG
hk ∈ X ′

hk such that, for all xhk, zhk ∈ Xhk,

〈BfdPG
hk xhk, zhk〉X′

hk
,Xhk

= 〈Ahkxhk, R
−1
Y ′

hk

Ahkzhk〉Y ′

hk
,Yhk

+ α〈xhk(0), zhk(0)〉L,
(53a)

〈gfdPG
hk , zhk〉X′

hk
,Xhk

= 〈fhk, R−1
Y ′

hk

Ahkzhk〉Y ′

hk
,Yhk

+ α〈u0h, zhk(0)〉L, (53b)

with the space-time Riesz isomorphism RY ′

hk
= RV ′

h
⊗ JSP

k

: Yhk → Y ′
hk. Let

us point out that, since JSP

k

= R(SP

k
)′ on SP

k , we have RY ′

hk
= RV ′

h
⊗ R(SP

k
)′ .

Let us briefly describe the algebraic realization of the discrete problem (52).
Recall that (ψi)1≤i≤Nh

is a basis of Vh and (φl)1≤l≤Nk
is a basis of Sk. Let

(φPl )1≤l≤NP

k

be a basis of SP
k . In addition to the square matrices Mh, Dh, Ok

defined by (33), (34), (35), we consider the square matrix MP
k of size NP

k ×NP
k

and the rectangular matrix EPG
k of size NP

k ×Nk such that

(MP
k )lm =

ˆ

I

φPm(t)φPl (t)dt, (EPG
k )lm =

ˆ

I

φ′m(t)φPl (t)dt, (54)

and the rectangular matrices M
PG,(p)
k , for all 1 ≤ p ≤ P , of size NP

k ×Nk such
that

(M
PG,(p)
k )lm =

ˆ

I

µ(p)(t)φm(t)φPl (t)dt. (55)

Then, we obtain the following symmetric positive-definite linear system inR
NhNk :

BfdPGufdPG = gfdPG, (56)

with the matrix

BfdPG = MhD
−1
h Mh ⊗ (EPG

k )T(MP
k )

−1EPG
k

+
∑

1≤p≤P

2sym
{

(A
(p)
h )TD−1

h Mh ⊗ (M
PG,(p)
k )T(MP

k )
−1EPG

k

}

+
∑

1≤p,p′≤P

(A
(p)
h )TD−1

h A
(p′)
h ⊗ (M

PG,(p)
k )T(MP

k )
−1M

PG,(p′)
k + αMh ⊗Ok,

(57)

and the right-hand side

gfdPG =
∑

1≤q≤Q

MhD
−1
h f

(q)
h ⊗ (EPG

k )T(MP
k )

−1e
P,(q)
k

+
∑

1≤p≤P
1≤q≤Q

(A
(p)
h )TD−1

h f
(q)
h ⊗ (M

PG,(p)
k )T(MP

k )
−1d

P,(q)
k

+ αu0h ⊗ ik, (58)

with (e
P,(q)
k )l =

´

I λ
(q)(t)(φPl )

′(t)dt and (d
P,(q)
k )l =

´

I λ
(q)(t)φPl (t)dt, for all

1 ≤ l ≤ NP
k .

Remark 5.2 (Lowest-order Petrov–Galerkin discretization). Assume that Sk is
composed of continuous, piecewise affine functions and that SP

k is composed of
piecewise constant functions on the same time mesh so that dim(SP

k ) = Nk − 1.
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This corresponds to the well-known Crank–Nicolson time scheme. Then, one
can readily verify that

(EPG
k )T(MP

k )
−1EPG

k = Dk, (M
PG,(p)
k )T(MP

k )
−1EPG

k = E
(p)
k , (59)

for all 1 ≤ p ≤ P , where Dk is defined in (34) and E
(p)
k in (36). As a conse-

quence, there is only one term composing the matrices B and BfdPG that differs,
namely the time matrix in the double summation over p, p′ where this matrix is

M
(p,p′)
k for B and is (M

PG,(p)
k )T(MP

k )
−1M

PG,(p′)
k for BfdPG. Even for the heat

equation with P = 1 and µ(1)(t) ≡ 1, these matrices, which become, respectively,
Mk and (MPG

k )T(MP
k )

−1MPG
k with (MPG

k )lm =
´

I
φm(t)φPl (t)dt, are still dif-

ferent. Note that Mk ≥ (MPG
k )T(MP

k )
−1MPG

k in the sense of quadratic forms,
which is compatible with our above observation on the discrete energies that
E fdPG
hk (xhk) ≤ Eh(xhk) for all xhk ∈ Xhk. As observed in [1, 2, 3], uniform

stability with respect to the time discretization is not guaranteed, but this can be
fixed, e.g., by constructing the discrete test space SP

k using a time mesh that is
twice as fine as that used for the discrete trial space.

5.2 Method 3: an unpreconditioned space semi-discrete

Galerkin method

We consider the same space semi-discrete setting as in Section 3 but we now
equip the space Vh with the Euclidean norm of the components on the basis
(ψi)1≤i≤Nh

instead of considering as before the norm induced by V . The main
motivation for this change is that it avoids the appearance of the inverse stiffness
matrix D−1

h in the linear system. We obtain the following symmetric positive-
definite linear system in R

NhNk :

Bunprecuunprec = gunprec, (60)

with the matrix

Bunprec = (MhIhMh)⊗Dk +
∑

1≤p≤P

2sym
{

((A
(p)
h )TIhMh)⊗E

(p)
k

}

+
∑

1≤p,p′≤P

((A
(p)
h )TIhA

(p′)
h )⊗M

(p,p′)
k + αMh ⊗Ok, (61)

and the right-hand side

gunprec =
∑

1≤q≤Q

MhIhf
(q)
h ⊗e

(q)
k +

∑

1≤p≤P
1≤q≤Q

(A
(p)
h )TIhf

(q)
h ⊗d

(p,q)
k +αu0h⊗ik, (62)

where Ih is the identity matrix of size Nh × Nh. The present formulation is
chosen for illustrative purposes; in practice, one can also replaceD−1

h by another
matrix.

6 Numerical results

For all the test cases, we consider the space domain Ω = (0, 1) × (0, 1), the
time interval I = [0, 1], and the functional spaces V = H1

0 (Ω) and L = L2(Ω).
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We consider first the heat equation, where the differential operator A is time-
independent and selfadjoint, then we consider a time-oscillatory diffusion prob-
lem, where the operator is time-dependent and selfadjoint, and finally a convection-
diffusion equation, where the operator is time-independent and non-selfadjoint.
The scaling factor for the contribution of the initial condition to the residual
functional is always taken to be α := 1. Let Th be a shape-regular mesh of
the domain Ω; in what follows, we consider uniform meshes composed of square
cells. The finite-dimensional finite element subspace Vh ⊂ V of dimension Nh

is composed of continuous, piecewise bilinear functions on Th vanishing at the
boundary. Let Tk be a mesh of the interval I; for simplicity, we consider uniform
meshes in time. The finite-dimensional subspace Sk ⊂ H1(I) of dimension Nk

is composed of continuous, piecewise affine functions on Tk. In what follows,
all the norms of residuals of algebraic quantities are evaluated using the Eu-
clidean norm in R

NhNk which is denoted ‖ · ‖ℓ2 . When comparing to Method
2 (see Section 5.1), we considered the Crank–Nicolson time scheme discussed
in Remark 5.2. We also performed systematic comparisons with the uniformly
stable variant using a finer time mesh for the test space, but we did not observe
any significant difference in the results obtained for all the test cases considered
herein.

6.1 Test case 1: heat equation with manufactured solution

We consider the heat equation with the time-independent, selfadjoint operator
A = −∆. The initial condition is zero and the source term is evaluated from
the following manufactured solution:

u(x, y, t) =
∑

1≤n≤10

n−4sin(πn3t)sin(πnx)sin(πny). (63)

The discretization parameters are Nh = (26)2 and Nk = 213, and the stopping
tolerances are ǫgreedy = 10−5 and ǫalt = 5× 10−2.
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Figure 1: Test case 1. Left: relative residual at each iteration of the greedy
algorithm. Right: cumulated number of alternating minimization iterations in
the greedy algorithm.

The left panel of Figure 1 presents the decrease of the relative residual as
a function of the number of greedy iterations for Methods 1, 2 and 3. More
precisely, we plot ‖Biu

m
i − gi‖ℓ2/‖gi‖ℓ2 where i ∈ {1, 2, 3} is the method in-

dex and m is the greedy iteration counter. We notice that the three methods
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take about the same number of iterations (13, 15, and 17, respectively). This
number is slightly larger than the space-time rank of the manufactured exact
solution which is equal to 10. However, the relative residual takes larger values
for Method 3 than for Methods 1 and 2. The right panel of Figure 1 presents
the cumulated number of alternating minimization iterations in the greedy al-
gorithm for Methods 1, 2 and 3. We observe that this number is about the
same for Methods 1 and 2, whereas it is about 1.8 times larger for Method
3. Therefore, the use of a preconditioner, although it requires some additional
computational effort, is beneficial to the efficiency of the overall behavior of
the greedy algorithm. It is interesting to notice that with Methods 1 and 2,
we have solved at convergence of the greedy algorithm about 50 linear systems
in space, which is about 0.25% of the amount that would have been solved by
using an implicit time-stepping method (recall that Nk = 213). We can make
two further remarks concerning the decrease of the (relative) residual. First, we
can decompose the residual of the space-time linear system as follows:

Biu
m
i − gi = (Bpde

i um
i − g

pde
i ) + (Bic

i u
m
i − gic

i ), (64)

where we have written Bi = B
pde
i +Bic

i and gi = g
pde
i + gic

i to distinguish the
contribution of the differential operator from that of the initial condition. Our
results (not displayed for brevity) show that after a few greedy iterations, the
two contributions have about the same size. Moreover, as the greedy iteration
approaches convergence, there is some compensation between the two contribu-
tions to the relative residual in Method 1 (but not for Method 2) since they have
a size which is about one order of magnitude larger than the relative residual
itself. As a further comparison, we considered the quantities

rmi = ‖B1u
m
i − g1‖ℓ2/‖g1‖ℓ2 , (65)

which represent the relative residual for the linear system originating from
Method 1 when the iterates produced by Method i ∈ {1, 2, 3} are inserted
into the residual. As expected from the MinRes formulation, rm1 ≤ min(rm2 , r

m
3 )

for all m ≥ 0, and as the greedy iterations approach convergence, rm1 reaches
the value 4 × 10−5, whereas rm2 and rm3 reach a value of 4 × 10−4 and 10−4,
respectively.

Figure 2: Test case 1: first six modes in space (top row) and in time (bottom
row) for Method 1.

Figure 2 presents the first six space and time modes for Method 1. The
first six modes obtained with Method 2 are essentially the same, whereas some
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differences, especially in the space modes, can be observed with Method 3. This
indicates that the preconditioner plays a relevant role in the exploration of the
discrete trial space.
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Figure 3: Test case 1: comparison of the errors produced by Methods 1, 2, 3 in
two norms: L2(I;H1(Ω)) (left) and H1(I;H−1(Ω)) (right); in both cases, the
curves for Methods 1 and 2 almost overlap.

Figure 3 reports the normalized errors (umhk,i−u) as a function of the iteration
counter m of the greedy algorithm where, as above, the additional subscript
i ∈ {1, 2, 3} indicates which method has been used. The errors are measured
in the L2(I;H1(Ω))- and H1(I;H−1(Ω))-norms. The three methods produce
in both norms relatively close errors, and the error for Method 3 is always a
bit larger. At convergence of the greedy algorithm, both errors are very small,
namely 2× 10−4 in the L2(I;H1(Ω))-norm and 5× 10−4 in the H1(I;H−1(Ω))-
norm.

Figure 4 presents a convergence study for Methods 1, 2 and 3 as a function of
the discretization parameters Nh (in space) and Nk (in time). In both cases, we
report the L2(I;H1(Ω))- and H1(I;H−1(Ω))-errors. The left panel considers
Nh = (2l)2, l ∈ {2, 3, 4} with Nk = 213, whereas the right panel considers
Nk = 2l, l ∈ {4, . . . , 11} with Nh = (26)2. We observe that the convergence is of
second order in time (if the time-step is small enough) and first order in space
in the L2(I;H1(Ω))-norm, whereas it is of first order in time (if the time-step
is small enough) and second order in space in the H1(I;H−1(Ω))-norm. These
convergence orders are consistent with the expected decay rates of the best-
approximation errors in both norms when approximating smooth functions by
elements of the discrete trial space Xhk. Incidentally, we observe that the errors
produced by Method 2 in both norms are slightly worse for the coarser time
discretizations; this observation is consistent with the CFL-dependent inf-sup
stability estimate for Method 2.

6.2 Test case 2: time-dependent diffusion

We consider a time-dependent, selfadjoint differential operator A(t) = −µ(t)∆
with diffusion coefficient µ(t) = sin(100πt) + 2. The initial condition is u0 = 0
and the source term is f = 1. The explicit expression of the exact solution is
not available. The discretization parameters are Nh = (26)2 and Nk = 213 (as
in the previous test case), and the stopping tolerances are ǫgreedy = 10−5 and
ǫalt = 5× 10−2 (as in the previous test case).
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Figure 4: Test case 1: convergence study for Methods 1, 2 and 3 for errors
measured in the L2(I;H1(Ω))-norm (top row) and in the H1(I;H−1(Ω))-norm

(bottom row) for various mesh-sizes N
−1/2
h (left column) and various time-steps

N−1
k (right column); in all cases, the curves for Methods 1 and 3 overlap.

The left panel of Figure 5 presents the decrease of the relative residual as a
function of the number of greedy iterations for Methods 1, 2 and 3. We notice
that the greedy algorithm takes between 16 and 21 iterations for the three meth-
ods to converge. The right panel of Figure 5 presents the cumulated number of
alternating minimization iterations in the greedy algorithm for Methods 1, 2 and
3. We observe that this number is about the same for Methods 1 and 2 (as for
test case 1), whereas it is about 1.5 times larger for Method 3, confirming once
again the benefit of using a preconditioner. It is interesting to notice that with
Methods 1 and 2, we have solved at convergence of the greedy algorithm about
80 linear systems in space, which is about 0.5% of the amount that would have
been solved by using an implicit time-stepping method (recall that Nk = 213).
Furthermore, similar observations as for test cases 1 and 2 can be made con-
cerning the two contributions to the relative residual and the behavior of the
residuals rmi defined by (65). In particular, we have again rm1 ≤ min(rm2 , r

m
3 ) for

all m ≥ 0 (as expected from the MinRes formulation); as the greedy algorithm
approaches convergence, rm1 reaches a value of 9 × 10−5, whereas rm2 and rm3
reach a value of 10−4 and 2× 10−4, respectively.

Figure 6 presents the first six space and time modes for Method 1. The
first six modes obtained with Method 2 are essentially the same, whereas some
differences, especially in the space modes, can be observed with Method 3. This
observation again confirms that the preconditioner plays a relevant role in the
exploration of the discrete trial space.

Figure 7 reports the normalized differences (umhk,1−umhk,2) and (umhk,1−umhk,3)
as a function of the iteration counter m of the greedy algorithm, where, as
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Figure 5: Test case 2. Left: relative residual at each iteration of the greedy
algorithm. Right: cumulated number of alternating minimization iterations in
the greedy algorithm.

Figure 6: Test case 2: first six modes in space (top row) and in time (bottom
row) for Method 1.

above, the additional subscript i ∈ {1, 2, 3} indicates which method has been
used. These differences are measured in the L2(I;H1(Ω))- and H1(I;H−1(Ω))-
norms. We observe that the three methods produce approximate solutions that
are relatively close in both norms. At the convergence of the greedy algorithm,
the difference in the L2(I;H1(Ω))-norm is of the order of 5 × 10−5, and it is
about one order of magnitude higher in the H1(I;H−1(Ω))-norm.

Figure 8 presents a convergence study for Methods 1, 2 and 3 as a function of
the discretization parameters Nh (in space) and Nk (in time). In both cases, we
report the L2(I;H1(Ω))- and H1(I;H−1(Ω))-errors. The left panel considers
Nh = (2l)2, l ∈ {2, 3, 4} with Nk = 213, whereas the right panel considers
Nk = 2l, l ∈ {4, . . . , 10} with Nh = (26)2. Since the exact solution is not
available, we consider for each method the approximate solution produced on the
finest space-time discretization available. These method-dependent reference
solutions are very close according to Figure 7, and their differences are, in both
norms, two orders of magnitude lower than the convergence errors reported in
Figure 8. In this figure, we observe that for the three methods, the convergence
rates are consistent with the best-approximation properties of the discrete trial
space Xhk in both norms: the convergence is of second order in time and first
order in space in the L2(I;H1(Ω))-norm, whereas it is of first order in time and
second order in space in the H1(I;H−1(Ω))-norm.
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Figure 7: Test case 2: comparison of the solutions produced by Methods 1, 2, 3
in two norms: L2(I;H1(Ω)) (left) and H1(I;H−1(Ω)) (right).

6.3 Test case 3: advection-diffusion

We consider in this section a time-independent, but non-selfadjoint, differential
operatorA = −∇·µ∇+c(x, y)·∇ with diffusion coefficient µ = 0.1 and advection
velocity field c(x, y) = 2π(12−y, x− 1

2 )
T. The source term is f = 0 and the initial

condition is u0(x, y) = exp
(

− (x− 2

3
)2+(y− 1

2
)2

0.072

)

. The explicit expression of the

exact solution is not available. The discretization parameters are Nh = (25)2

and Nk = 210, and the stopping tolerances are ǫgreedy = 10−5 and ǫalt = 5×10−2

(as in the previous test cases). The discretization parameters for this test case
are a bit coarser than for the two other test cases because this test case turns out
to be more computationally intensive. This is due to the fact that the differential
operator in space is non-selfadjoint so that it is necessary to assemble the matrix
AT

hD
−1
h appearing in the definition (38) of the global system matrix B (recall

that P = 1 here and that AT
h = Dh when the differential operator corresponds

to a pure diffusion operator).
The left panel of Figure 9 presents the decrease of the relative residual as a

function of the number of greedy iterations for Methods 1, 2 and 3. We notice
that for Methods 1 and 2, the greedy algorithm takes around 90 iterations to
converge (94 and 97, respectively), whereas it takes only 49 iterations for Method
3. Thus, for this test case, Method 3 takes less iterations. The right panel of
Figure 9 presents the cumulated number of alternating minimization iterations
in the greedy algorithm for Methods 1, 2 and 3. We observe that this number
is about the same for the three methods. When reaching convergence for the
greedy algorithm, we have solved about 750 linear systems in space, which is
73% of the amount that would have been solved by using an implicit time-
stepping method (recall that Nk = 210). This percentage is larger than the ones
reported for the previous two test cases, but is still competitive. Furthermore,
similar observations as for test cases 1 and 2 can be made concerning the two
contributions to the relative residual and the behavior of the residuals rmi defined
by (65). In particular, we have again rm1 ≤ min(rm2 , r

m
3 ) for all m ≥ 0 (as

expected from the MinRes formulation); as the greedy algorithm approaches
convergence, rm1 reaches a value of 2× 10−5, whereas rm2 and rm3 reach a value
of 7× 10−5 and 3× 10−3, respectively.

Figure 10 presents the first six space and time modes for Method 1. The
first six modes obtained with Method 2 are essentially the same, whereas some
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Figure 8: Test case 2: convergence study for Methods 1, 2 and 3 for errors
measured in the L2(I;H1(Ω))-norm (top row) and in the H1(I;H−1(Ω))-norm

(bottom row) for various mesh-sizes N
−1/2
h (left column) and various time-steps

N−1
k (right column); in all cases, the curves for Methods 1 and 3 overlap.

differences, especially in the space modes, can be observed with Method 3. This
observation again confirms that the preconditioner plays a relevant role in the
exploration of the discrete trial space.

Figure 11 reports the normalized differences (umhk,1−umhk,2) and (umhk,1−umhk,3)
as a function of the iteration counterm of the greedy algorithm where, as above,
the additional subscript i ∈ {1, 2, 3} indicates which method has been used.
These differences are measured in the L2(I;H1(Ω))- and H1(I;H−1(Ω))-norms.
We observe that the difference between the solutions produced by Methods 1
and 3 is significant in both norms (two orders of magnitude larger than the
difference between Methods 1 and 2); therefore, we can conclude that Method
3 converges more rapidly than Methods 1 and 2, but with a poorer accuracy.

Figure 12 presents a convergence study for Methods 1, 2 and 3 as a function
of the discretization parameters Nh (in space) and Nk (in time). In both cases,
we report the L2(I;H1(Ω))- and H1(I;H−1(Ω))-errors. The left panel considers
Nh = (2l)2, l ∈ {2, 3, 4} with Nk = 210, whereas the right panel considers
Nk = 2l, l ∈ {4, . . . , 8} with Nh = (25)2. Since the exact solution is not
available, we consider for each method the approximate solution produced on
the finest space-time discretization available. For Methods 1 and 2, these two
reference solutions are very close according to Figure 11, and their difference
is, in both norms, two orders of magnitude lower than the convergence errors
reported in Figure 12. Moreover, for both methods, the reported convergence
rates are, as above, consistent with the best-approximation properties of the
discrete trial space Xhk in both norms. Finally, for Method 3, the convergence
rates are similar except for the behavior with respect to time refinement in the
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Figure 9: Test case 3. Left: relative residual at each iteration of the greedy
algorithm. Right: cumulated number of alternating minimization iterations in
the greedy algorithm.

Figure 10: Test case 3: first six modes in space (top row) and in time (bottom
row) for Method 1.

L2(I;H1(Ω))-norm which is somewhat sub-optimal.

7 Conclusion and outlook

In this work, we have devised a space-time tensor for the low-rank approximation
of linear parabolic evolution equations. The proposed method is uniformly
stable with respect to the space-time discretization parameters and leads to
solving sequentially global problems in space and in time. Our numerical results
on various test cases indicate the importance of the preconditioner (which enters
the method by means of the norm equipping the discrete test space), since the
preconditioner has an influence on the convergence of the greedy algorithm.
However, although the preconditioner improves the convergence of the greedy
algorithm, it increases the cost of each iteration. Table 1 summarizes the relative
CPU times for Methods 2 and 3 normalized with respect to Method 1 (we have
considered 21 random initializations in each case and used for each method
the median CPU time). We can see from this table that Methods 1 and 2
essentially deliver the same CPU times, whereas Method 3 turns out to be
more effective especially for test case 3 despite the increased number of greedy
iterations. Finally, various perspectives of this work can be envisaged. We
mention in particular the question of adapting the discretization spaces and that
of devising different approaches to obtain a separated representation of the exact
solution with sufficient accuracy at low-rank when the differential operator has
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Figure 11: Test case 3: comparison of the solutions produced by Methods 1, 2,
3 in two norms: L2(I;H1(Ω)) (left) and H1(I;H−1(Ω)) (right).

Test case 1 2 3
Method 2 0.92 1.01 1.02
Method 3 1.17 0.82 0.38

Table 1: Relative CPU times for Methods 2 and 3 with respect to Method 1 for
the three test cases.

a dominant non-selfadjoint part, as in advection-dominated transport problems.
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algorithm for high-dimensional convex nonlinear problems. Math. Models
Methods Appl. Sci. 21 (2011), 2433–2467.

[6] Cancès, E., Ehrlacher, V., and Lelièvre, T. Greedy algorithms for
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