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Abstract
This paper addresses the complexity reduction of stochastic homogenisation of a class

of random materials for a stationary diffusion equation. A cost-efficient approximation of
the correctors is built using a method designed to exploit quasi-periodicity. Accuracy and
cost reduction are investigated for local perturbations or small transformations of periodic
materials as well as for materials with no periodicity but a mesoscopic structure, for which the
limitations of the method are shown. Finally, for materials outside the scope of this method,
we propose to use the approximation of homogenised quantities as control variates for variance
reduction of a more accurate and costly Monte Carlo estimator (using a multi-fidelity Monte
Carlo method). The resulting cost reduction is illustrated in a numerical experiment with
a control variate from weakly stochastic homogenisation for comparison, and the limits of
this variance reduction technique are tested on materials without periodicity or mesoscopic
structure.

Keywords: stochastic homogenisation, quasi-periodicity, tensor approximation, multiscale,
multi-fidelity Monte Carlo.
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1 Introduction
Many industries show a growing interest in heterogeneous materials designed with a regular—even
periodic—microscopic structure, such as most composite materials. Prediction of the behaviour
of such materials, either during production or intended use, raises various challenges. Amongst
those is the computational complexity induced by the scale difference between the size of the
final component and the micro-structure that has to be represented. Multiscale complexity is
a long-standing topic for which various well documented methods such as Multiscale Finite
Elements Method [MsFEM, explained in 15], Heterogeneous Multiscale Method [HMM, see 1]
have been developed. Unlike those general methods, a method designed specifically to break this
complexity by exploiting quasi-periodicity was recently proposed by Ayoul-Guilmard et al. [5].

Another long-standing approach to tackle this issue is to substitute a homogenised material
in the simulations; even though some detailed information is lost, this is still a relevant strategy
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2 PERIODIC AND STOCHASTIC HOMOGENISATION

for many quantities of interest, as discussed by Murat et al. [in 26]. Although low for periodic
materials, the homogenisation cost rises significantly with random periodicity loss [see e.g. 21].
This is a barrier to random defect modelling in these simulations.

We propose in this paper to tackle this issue with an approximation of the corrector functions,
the computation of which is the costliest part of the homogenisation process, using the method
from Ayoul-Guilmard et al. [5]. Section 2 will introduce the necessary background on homogeni-
sation for heterogeneous diffusion. Section 3 will present the key points of the approximation
method and illustrate its performance and limits on various numerical experiments.In order to
improve on the accuracy of this surrogate model, we propose in section 4 to combine it with
another, costlier and more precise, within a multi-fidelity Monte Carlo method [such as described
in 31]. Its performance is compared with another surrogate model from Legoll and Minvielle [22].

2 Periodic and stochastic homogenisation
2.1 General homogenisation
Let D ⊂ Rd an open bounded domain. We consider an heterogeneous stationary diffusion problem

−∇ · (K∇u) = f, (2.1)
u|∂D = 0, (2.2)

with f ∈ H−1(D). K is assumed to have variations at a small scale on D, which makes practical
computations expensive. We wish to substitute to (2.1) a problem without such variations that
preserves certain quantities of interest. For any 0 < α < β we let,

M(α, β) :=
{
a ∈ L∞(D;Rd×d) : 〈a(x)y | y〉 > α‖y‖2

and ‖a(x)y‖ 6 β‖y‖,∀y ∈ Rd, for a.e. x ∈ D
}
.

Definition 1 (H-convergence). Let f ∈ H−1(D), (Kn)n∈N ∈ M(α, β)N and K? ∈ M(α′, β′)
with 0 < α < β and 0 < α′ < β′. Let u? ∈ H1(D) be solution to{

−∇ · (K?∇u?) = f

(2.2)
(2.3)

and, for any n ∈ N, let un ∈ H1(D) be solution to{
−∇ · (Kn∇un) = f

(2.2)

We say that (Kn)n∈N H-converges to K? and note Kn⇀⇁K? when

un
H1(D)−−−−⇀ u?,

Kn∇un
L2(D;Rd)−−−−−−⇀ K?∇u?.

H-convergence is a generalisation by Murat et al. [26] of the G-convergence to non-symmetric
operators. G-convergence was originally introduced by Spagnolo [32]. The reader may consult De-
franceschi [13] for a detailed explanation of both.
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2 PERIODIC AND STOCHASTIC HOMOGENISATION

Theorem 1 (Fundamental theorem of homogenisation). Let (Kn)n∈N ∈M(α, β)N with 0 < α <
β. There exists a subsequence (Ks(n))n∈N and an operator K? ∈M(α, β2α−1) such that

Ks(n) ⇀⇁ K?,

Ks(n)∇us(n) · ∇us(n) −⇀ K?∇u? · ∇u? weakly-∗ in D′(Rd),
and

∫
D

Ks(n)∇us(n) · ∇us(n) →
∫
D

K?∇u? · ∇u?,

where D′(Rd) denotes the space of distributions on Rd. K? is commonly called the “homogenised
operator” of K.

Proof. See Murat et al. [26, pp. 31–36].

Theorem 2 (Corrector theorem). Let (Kn)n∈N ∈ M(α, β)N with 0 < α < β. For any i ∈
{1, . . . , d}, there exists a sequence (win)n∈N ∈ H1(D)N such that

wis(n)
H1(D)−−−−⇀ 0,

−∇ ·
(
Ks(n)(ei +∇wis(n))

)
H−1(D)−−−−−→ 0,

and ∇us(n) − (Id +∇ws(n))∇u?
L1(D)d

−−−−−→ 0 (2.4)

where s defines the same subsequence as in theorem 1. These functions win are called “correctors”
for they provide the necessary correction to ∇us(n), in the sense of (2.4), to converge strongly
towards ∇u?. Additionally, they can be used to deduce ∇us(n) from ∇u?. A direct consequence
is that

Ks(n)(Id +∇ws(n))
L2(D)d×d

−−−−−−⇀ K?.

Proof. See Murat et al. [26, pp. 37–42].

2.2 Periodic homogenisation
The corrector functions introduced above are used to build the homogenised operator, but more
information on K is required to give an expression of K?. The quasi-periodicity we are interested
in arises most often as the result of random perturbation of a periodic medium, and both the
periodic and stochastic context are well documented. Let us first consider the case where K is a
periodic operator.

Proposition 1 (Periodic homogenisation). Let K ∈ M(α, β), with 0 < α < β, be periodic
of period Y ⊂ Rd. Let (εn)n∈N ∈]0,+∞[N be a sequence converging to 0. Then the results
from theorems 1 and 2 hold for the sequence (K( ·εn

))n∈N itself—not only on a subsequence.
Furthermore,

∀(i, j) ∈ {1, . . . , d}2, (K?)ij =
∫
Y

(ei +∇wi) ·Kej , (2.5)

where the corrector wi ∈ H1
] (Y ) := {v ∈ H1(Y ) : v is Y -periodic} solves

−∇ · (K(ei +∇wi)) = 0. (2.6)

Q. AYOUL-GUILMARD, A. NOUY, C. BINETRUY 3



2 PERIODIC AND STOCHASTIC HOMOGENISATION

Proof. This result has been proven by different methods: first in 1978 through compensated
compactness by Murat [25], then in 1979 with oscillating test functions by Tartar [33] and later
in 1989 via two-scale convergence by Nguetseng [27].

The additional periodicity hypothesis in proposition 1 gives us expression (2.5) to compute
the homogenised operator K?. The d corrector problems (2.6) to be solved are limited to the
period Y , hence the reasonable cost. Additionally, this homogenisation is independent of the
source term f and the boundary conditions, since they do not affect the homogenised operator,
and are identical in both the original problem (2.1)–(2.2) and the homogenised one (2.3). This
justifies the concept of “homogenised material”.

2.3 Stochastic homogenisation
In the case where K is stochastic, the general results from theorems 1 and 2 hold almost surely. We
introduce a probability space (Ω, E ,P). Stochastic homogenisation generally relies on a stationarity
assumption, i.e. invariance of probability laws with respect to space (or time) translation. We
expect K to have a spatial quasi-periodic structure, therefore we choose a definition of stationarity
suited to represent such structure.

Definition 2 (Discrete stationarity). Let us assume that the group (Zd,+) acts on (Ω, E ,P)
through an ergodic measure-preserving transformation τ = (τz)z∈Zd :

∀e ∈ E ,
[
∀z ∈ Zd, τze = e

]
→ [P(e) ∈ {0, 1}].

Any φ ∈ L1
loc(Rd;L1(Ω)) is said to be (discretely) stationary if, and only if,

∀z ∈ Zd, φ(x+ z, ω) = φ(x, τzω) a.e. on Rd × Ω.

We can observe that the probability law of a function φ, stationary in the sense of definition 2,
is invariant by any translation by z ∈ Zd: since τz is preserves the measure, φ(x, ·) and φ(x+ z, ·)
follow the same probability law. This is related to periodicity, e.g. any stationary function has
a Y -periodic expectation, where Y := [0, 1]d. Up to a linear mapping x 7→ x/ε, we can relate
any [0, ε]d-periodic function to definition 2. It should be noted that discrete stationarity is not a
particular case of continuous stationarity.

Henceforth, stationarity will be meant in the discrete sense defined above and K is assumed
to be stationary. This definition, albeit not used directly here, allows us to use some well-known
results of stochastic homogenisation, such as the ergodic theorem formulated below in this discrete
setting.

Theorem 3 (Ergodic theorem). Let K ∈ L∞(Rd;L1(Ω)) be stationary. Then we have almost
surely

1
(2N + 1)d

∑
‖z‖∞6N

K(x, τzω) L∞(Rd)−−−−−→
N→∞

E(K(x, ·))

and K
( x
N
, ω
)

L∞(Rd)−−−−−⇀
N→∞

E

(∫
Y

K

)
in weak-∗ topology.

Proof. See Birkhoff [7].

Proposition 2 (Stochastic homogenisation). Let K ∈ L∞(Rd;L1(Ω)) be stationary and such
that K(·, ω) ∈ M(α, β), with 0 < α < β, almost surely. Let (εn)n∈N ∈]0,+∞[N be a sequence
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2 PERIODIC AND STOCHASTIC HOMOGENISATION

converging to 0. Then the results from theorems 1 and 2 hold for a subsequence of (K( ·εn
, ·))n∈N.

Furthermore,

∀(i, j) ∈ {1, . . . , d}2, (K?)ij = E

(∫
Y

(ei +∇wi) ·Kej
)
,

where1 every corrector wi ∈ W is solution to
−∇ · (K(ei +∇wi)) = 0 a.s. on Rd

E

(∫
Y

∇wi
)

= 0

∇wi stationary

. (2.7)

Proof. See Jikov et al. [21, th. 7.9, p. 244].

Unlike the periodic corrector problems (2.6), the stochastic corrector problems (2.7) are
impractical to solve because of the global conditions over both Rd and Ω. This is why practical
computations of K? usually introduce the “apparent homogenised operator”

(KN
? )ij :=

∫
YN

(ei +∇wN,i) ·K · ej (2.8)

on a truncated domain YN = [0, N ]d, where the “apparent correctors” are solutions to{
−∇ · (K(ei +∇wN,i)) = 0 a.s. on YN
wN,i YN -periodic

(2.9)

Since K is stationary, theorem 3 yields [see 10, th. 1 p. 158]

E
(
KN
?

)
= lim
N→∞

KN
? = K?, (2.10)

therefore we can approximate K? with a Monte Carlo estimator

θm(KN
? ) := 1

m

m∑
i=1

KN
? (·, ωi) (2.11)

of E(KN
? ), using m samples (independent and identically distributed) K(·, ωi), 1 6 i 6 m. The

chain of approximation thus reads K? ≈ E(KN
? ) ≈ θm(KN

? ). An evaluation of this estimator
requires d×m resolutions of the apparent corrector problem (2.9), which remains considerably
more expensive than periodic homogenisation. Furthermore,

∥∥E(KN
?

)
− θm(KN

? )
∥∥
L2(Ω) =

√
Var(KN

? )
m

, (2.12)

so the rate of convergence of the estimator is rather slow; hence the benefit of a method to exploit
quasi-periodicity in order to break down the complexity of these corrector problems.

1We let W :=
{

v ∈ L2
loc(R

d; L2(Ω)) : ∇ v ∈ L2
unif (Rd; L2(Ω))

}
with L2

unif (Rd; L2(Ω)) :=
{

v ∈
L2(Rd; L2(Ω)) : ∃C ∈ R+∗, ∀x ∈ Rd × R+∗, ‖v‖L2(B(x,1);L2(Ω)) 6 C

}
, and B(x, R) the ball of centre x and

radius R.

Q. AYOUL-GUILMARD, A. NOUY, C. BINETRUY 5



2 PERIODIC AND STOCHASTIC HOMOGENISATION

2.4 Homogenisation with random mapping
Alternatively to the previous setting, one may consider the problem (2.1) to be set on a domain
transformed by a random stationary diffeomorphism φ(ω) : Rd → Rd such that K ◦ φ =: K] is
Y -periodic. We can then write (2.1) as

−∇ ·
(
K] ◦ φ−1(ω)∇u

)
= f. (2.13)

This domain transformation is illustrated on figure 1.

D̃

φ

φ−1

D

Figure 1: Random mapping

Definition 3 (Random stationary diffeomorphism). For 0 < µ 6 ν < +∞, let us note Φ(µ, ν)
the set of functions ϕ ∈ L1(Ω;C1(Rd,Rd)) such that, ∀ω ∈ Ω, ϕ(ω) is a.s. a diffeomorphism,
∇ϕ : Ω→ C0(Rd;Rd×d) (such that ∇ϕ(ω) is the gradient of ϕ(ω)) is stationary,

Ess Inf
(x,ω)∈Rd×Ω

det(∇ϕ(ω)(x)) > µ, and Ess Sup
(x,ω)∈Rd×Ω

‖∇ϕ(ω)(x)‖ 6 ν.

Proposition 3 (Homogenisation with random mapping). Let K] ∈ M(α, β), with 0 < α < β,
be periodic of period Y ⊂ Rd; let φ ∈ Φ(µ, ν), with 0 < µ 6 ν < +∞; let (εn)n∈N ∈]0,+∞[N be a
sequence converging to 0. For any n ∈ N, we note un the solution in H1(D) to−∇ ·

(
K] ◦ φ(ω)−1

(
·
εn

)
∇un

)
= f

un|∂D = 0
.

Then un
H1(D)−−−−⇀ u? and un

L2(D)−−−−→ u?, a.s., where u? is solution of the homogenised problem

−∇ · (K?∇u?) = f.

The homogenised operator’s coefficients are defined as

(K?)ij = det
(
E

(∫
Y

∇φ(·)
))−1

E

(∫
φ(·)(Y )

(ei +∇wi) · (K] ◦ φ(·)−1)ej

)
for all (i, j) ∈ {1, . . . , d}2. Each corrector wi is the solution of

−∇ ·
(
K] ◦ φ(·)−1(ei +∇wi)

)
= 0

E

(∫
φ(·)(Y )

∇wi

)
= 0

∇ w̃i is stationary (w̃i ◦ φ(·)−1 := wi)

(2.14)

Q. AYOUL-GUILMARD, A. NOUY, C. BINETRUY 6



3 TENSOR-BASED TWO-SCALE METHOD

in H1(Y ;L2(Ω)), unique up to the addition of a random constant.

Proof. See Blanc et al. [8, § 1.3, pp. 719–722].

Remark 1 (Extension of proposition 3). Different assumptions on the operator in (2.13) may be
considered. Results similar to proposition 3 have been proven by Blanc et al. [9, pp. 11–13], with
assumption of ergodicity and stationarity, either continuous or discrete in the sense of definition 2.
Let us recall that the periodic setting considered here is a particular case of the discrete stationary
setting, but not of the continuous one.

We can see that problem (2.14) presents the same issues as problem (2.7) where practical
computations are concerned. The previous method based on apparent correctors computed on
truncated domains [detailed in 10] has been adapted to this setting by Costaouec et al. [12]. We
introduce the apparent homogenised operator

(KN
? (ω))ij := det

(
1
|YN |

∫
YN

∇φ(ω)
)−1

× 1
|YN |

∫
YN

eiK] · (ej + (∇φ(ω))t −1∇ w̃Nj (ω)) det(∇φ(ω)),

computed from apparent correctors w̃Ni ∈ H1
] (YN ). These are the solutions, unique up to an

additive random constant, to∫
YN

∇ ṽ∇φ−1 ·K(ei + ∇φt −1∇ w̃Ni ) det(∇φ) = 0,∀ṽ ∈ H1
] (YN ),

which is equivalent to
∫
YN

∇ ṽ · K̃( ∇φt ei +∇ w̃Ni ) = 0,∀ṽ ∈ H1
] (YN ), (2.15)

with K̃ := det(∇φ)∇φ−1K] ∇φt −1.
It has been proven by Legoll and Thomines [23] that KN

?
a.s.−−−−→

N→∞
K? so we can use a Monte

Carlo method to estimate E(KN
? ) and therefore to get an approximation of K?, as in the previous

setting.

3 Tensor-based two-scale method
3.1 Description of the method
We will briefly outline a method to get a cost-efficient approximation to the solution of stationary
heterogeneous diffusion problems such as (2.9). This method has been introduced by Ayoul-
Guilmard et al. [5].

We consider a multiscale representation which separates microscopic and mesoscopic informa-
tion, the mesoscopic scale being that of the periods. The domain D is partitioned into cells Di,
each being a period of the reference periodic medium. Letting I ⊂ N be the cell index set and
Y ⊂ Rd a reference period, I×Y is identified with

⋃
i∈I Di (see figure 2) through the isomorphism

ζ : I × Y 3 (i, y) 7→ y + bi ∈ D, with bi such that Y + bi = Di for any cell Di, i ∈ I.
Likewise, RD is isomorphic to RI ⊗ RY with isomorphism Υ such that, for any v ∈ RD, we

identify v with

Υ(v) =
#I∑
n=1

eIn ⊗ (v ◦ ζ(n, ·)) i.e., ∀(i, y) ∈ I × Y, v(ζ(i, y)) =
#I∑
n=1

eIn(i)v(ζ(n, y)), (3.1)

Q. AYOUL-GUILMARD, A. NOUY, C. BINETRUY 7
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1

4

7

2

5

8

3

6

9

≡ {1, . . . , 9}× Y

Figure 2: D =
⋃
i∈I Di ≡ I × Y

where {eIn}n∈I is the canonical orthonormal basis of RI . Henceforth we will define the rank of v
as the rank of Υ(v), which is the minimal r such that Υ(v) =

∑r
n=1 v

I
n ⊗ vYn . More specifically,

K and f can be identified with functions of RI ⊗ L∞(Y ) and RI ⊗ L2(Y ), respectively, and
the broken Sobolev space H1(

⋃
i∈I Di) =

{
v ∈ L2(R) : ∀i ∈ I, v|Di

∈ H1(Di)
}
is identified with

RI ⊗H1(Y ).
Consequently, problem (2.9) can be formulated over a space V (D) ⊂ RI ⊗H1(Y ) within a

discontinuous Galerkin setting2. This function space is defined as V (D) := RI ⊗ V (Y ) with
V (Y ) :=

{
v ∈ H1(Y ) : (∇v)|∂Y ∈ L2(∂Y )d

}
. We then introduce a finite-dimensional subspace

Vh(D) := RI⊗Vh(Y ) with Vh(Y ) ⊂ V (Y ) and look for an approximation of the corrector functions
wN,k (with N := #I1/d) as solutions to

aswiph (wN,k, δw) = bh,k(δw), ∀δw ∈ Vh(D). (3.2)

The benefit of format (3.1) lies in the match between the structure of the tensor product
space and the underlying periodic organisation. The representation in V (D) of a quasi-periodic
function has as low a rank r as it is close to periodic. Note for example that a periodic function
v is identified with a rank one tensor Υ(v) = 1I ◦ $, with 1I : I → {1} and $ = v ◦ ζ(1, ·).
The quasi-periodicity assumption on K is therefore interpreted as a low-rank assumption, hence
our expectation that the solution of (3.2) would have a low rank. We exploit this by building
a low-rank approximation of the solution of tensor-structured corrector problem (3.2) using a
greedy algorithm [see 5, § 3.2]). The residual error is controlled with a tolerance ε so that∥∥∥aswiph (wN,k, ·)− bh,k

∥∥∥
Vh(D)′

‖bh,k‖Vh(D)′
6 ε. (3.3)

Remark 2 (Random mapping). We assumed so far that the quasi-periodic structure of the
medium (i.e. K) matches a perfectly regular mesoscopic mesh. The case where such mesh would
be irregular, even random, can be addressed easily if we know a random stationary diffeomorphism
φ such that K ◦φ =: K] is periodic; then, the results from subsection 2.4 apply. For this low-rank
method to remain efficient, K̃ is assumed to have a low rank in RI ⊗ L∞(Y ), which depends on

2with a SWIP method detailed in 14.

Q. AYOUL-GUILMARD, A. NOUY, C. BINETRUY 8



3 TENSOR-BASED TWO-SCALE METHOD

the ranks of ∇φ−1 and det(φ) (since rank(K]) = 1). Remark 1 mentions that similar results can
be proven for K ◦φ stationary, in which case the rank of K̃ is also influenced by the rank of K ◦φ.

Modes recycling

An additional benefit arises from the tensor structure of V (D) for successive simulations. One
interpretation of format (3.1) is that

∀i ∈ I, v(i, ·) ∈ span
(
vYn
)
n∈{1,...,r},

so any function may be considered cell-wise as a superposition of the same set of microscopic
patterns vYn that we will call “modes”. This concept is illustrated on figure 3: the nine modes in
figure 3b compose the function pictured on figure 3a, where white lines delineate the hundred
cells. Whenever the solutions to successive problems can be expected to evince similar modes,
one may recycle those computed from one resolution to the next.

Such situation is common for random quasi-periodic materials, e.g. with sampling-based
methods such as Monte Carlo estimation. Indeed, this strategy bears particular relevance if the
differences between samples are consistent with the mesoscopic structure, which can be expected
from our view of quasi-periodicity as a randomly perturbed periodicity. Since the perturbation
is such that the rank of K remains low, recurring patterns are expected across realisations of
K. Should those realisations differ mostly in their spatial distribution, then the conductivity’s
microscopic information remains unchanged and—expectedly—so does the solution’s. Particularly,
we will present in subsection 3.2 examples of problem (2.9) typical of such cases where only the
functions KI

n ∈ RI in the representation K ≡
∑
nK

I
n ⊗ KY

n are random3. Furthermore, this
modes library is expected to reach a practical completion as a consequence of K’s stationarity.
I.e. the library will eventually become comprehensive enough to accurately represent the solution
associated to almost any realisation of K, within the chosen tolerance.

The most straightforward implementation of this recycling strategy would be to set an anterior
result u0 :=

∑r0
k=1 u

I
k ⊗ uYk as initial point for the subsequent resolution. Although the greedy

algorithm would usually see its performance significantly improved by an initialisation close to
the solution, it would always compute at least one additional term uIr0+1 ⊗ uYr0+1, even if the
two successive problems were identical. The resulting ever-growing library would yield worse
performance than the original method. Therefore, we first look for a suitable approximation on
the subspace spanned by the modes computed so far: we compute the Galerkin projection of u0
on RI ⊗ span{uY1 , . . . , uYr0

} then check the resulting approximation against criterion (3.3). If it is
not satisfied, then said projection is set as the greedy algorithm’s initial point. Once the library
has reached its aforementioned practical completion, subsequent resolutions are reduced to this
initial projection step, i.e. a Galerkin projection onto a subspace of Vh(D) of which a basis is
known and hopefully low-dimensional, thereby further reducing complexity.

This modes recycling strategy is akin to an adaptive reduced basis approach, and it should
be noted that this basis construction strategy is non-optimal in the sense that the low-rank
approximation is not optimal: the same precision might be achieved with a lower rank and yield a
library of fewer modes. Although this non-optimal greedy algorithm is usually more cost-efficient
as far as a single computation is concerned, this strategy has not been specifically designed toward
library construction.

3In this specific case, operators over Vh(Y ) could be recycled as well, thus saving the associated assembling
cost; since we observed this cost to be insignificant, we did not do so.

Q. AYOUL-GUILMARD, A. NOUY, C. BINETRUY 9



3 TENSOR-BASED TWO-SCALE METHOD

(a) Approximation v9 (b) Modes (vYn )n∈{1,...,9}

Figure 3: Modes library example

3.2 Numerical examples
Each but the last of the following numerical experiments will involve an approximation of the
homogenised conductivity K? following the process described in subsection 2.3 with D ⊂ R2. The
truncated corrector problems (2.9) will be solved using the multiscale low-rank method (MsLRM)
outlined in subsection 3.1, and the homogenised conductivity will be approximated using a Monte
Carlo estimator θm(KN

? ) as expressed in equation (2.11). The number of samples m = m(η) will
be selected to satisfy the error criterion∥∥E(KN

?

)
− θm(η)(KN

? )
∥∥
L2(Ω) 6 η,

using equation (2.12) and an estimation of Var(θm(η)(KN
? )). We denote such an estimator

θη := θm(η). Unless specified otherwise, the default parameters values in table 1 apply to every
experiment. These values will be discussed with experiments results below.

Table 1: Default tests parameters

N2 dim(Vh(Y )) ε p K2/K1 η

1600 441 0.01 0.1 100 0.05

The reference periodic medium of our main test case has a square inclusion in each cell, more
conductive than the other phase, and the two phases have equal volume fractions. The random
perturbation is the absence of some inclusions, replaced with the other phase. The random
conductivity can be expressed as

K(i, y, ω) = K1 +Bi(ω)χ(y)(K2 −K1), ∀(i, y, ω) ∈ I × Y × Ω, (3.4)

where the random variables (Bi)i∈I follow independent and identical Bernoulli laws with P(Bi =
1) = p, and χ : Y → {0, 1} is the characteristic function of the inclusion within the reference
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3 TENSOR-BASED TWO-SCALE METHOD

cell. K is stationary according to definition 2. Figure 4 displays examples of such conductivity,
associated correctors and source term, with the chosen reference cell Y := [0, 1]2 outlined on
figure 4a. Every mesoscopic grid will be square unless specified otherwise.

Our reference when needed, both for accuracy and cost-efficiency evaluation, will be the exact
same homogenisation process performed using a finite element method (FEM) with piecewise
linear approximation for the corrector problems (2.9). For comparison purposes, its approximation
space is built on an identical mesh, with the same degree of polynomials. This results in a problem
of comparable size, if slightly smaller: a square domain of 400 cells with 400 finite elements each
yield a FEM approximation space of dimension 160 801 and a tensor approximation space Vh(D)
of dimension 176 400.

All computations were run on the same workstation, i.e. a DellTM OptiplexTM 7010 with:

• 8 GiB4 (2× 4) RAM DDR3 1600 MHz;

• Intel R© CoreTM i7-3770 CPU: 4 cores at 3.40 GHz with 2 threads each.

3.2.1 Approximation precision

The trade-off between precision and cost-efficiency is fundamental to any approximation technique.
We wish to assess the effect of MsLRM error on our quantity of interest KN

? . We computed the
exact same5 Monte Carlo estimator θ20(K20

? ) by FEM and MsLRM, with different tolerances ε
for MsLRM: 10−1, 10−2, 10−3, 10−4 and 10−5. FEM computational cost caused us to reduce the
domain size and set an arbitrary low sample size, none of which interferes with the purpose of
this test.

We can see on figure 5b how it affects the estimator’s convergence, and it seems that a high
tolerance shifts uniformly the estimation toward lower values: with inaccurately approximated cor-
rectors, the estimator underestimates the exact value (with a discrepancy apparently independent
of m). Consequently, the error due to the approximation can not be compensated by a greater
number of samples. We believe the cause to be an underestimation of the correctors’ peaks at
phase boundaries (visible on figures 4c and 4d as darker or lighter areas) so that the approximated
correctors represent a medium with smaller conductivity jumps at phase boundary, hence a lower
homogenised conductivity. However, we observe no significant accuracy improvement on the
homogenised quantity beyond a tolerance of 10−3: both the approximation of 10−3 and 10−5

seem as precise as the FEM reference. Even the approximation at 10−2 yields very close results.
Figure 5a shows the significant effect of ε on cost-efficiency: it is clear that reducing the

tolerance increases considerably the computational cost. There seems to be a tipping point
between 10−2 and 10−3 after which the cost increase is steeper. The tolerance value will be set
to 10−2 henceforth as a satisfactory compromise.

3.2.2 Modes recycling

To illustrate modes recycling benefits, we computed the estimator θη(KN
? ) with and without

recycling. For the sake of graph clarity, only the first 20 samples were displayed on figure 6. We
see on figure 6b the average corrector’s rank per sample (averaged over both correctors). With
recycling the average rank reaches immediately a plateau, which means the modes library was
complete enough after the first sample. The computational cost is not reduced to zero however,
as is shown on figure 6a. The larger the modes library, the higher the cost of initial step (i.e.

45.5 to 6.5 of which were usually available for the simulations.
5The same samples where used.
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3 TENSOR-BASED TWO-SCALE METHOD

(a) Conductivity K (b) Source term ∇ ·Ke1

(c) Corrector w5,1 (d) Corrector w5,2

Figure 4: Main test case (example for N2 = 25)
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3 TENSOR-BASED TWO-SCALE METHOD
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Figure 5: MsLRM performance for various tolerances (20 samples; N2 = 400)

computing the best approximation possible on the current modes library), hence the drawback of
non-optimal low-rank approximation.

Nevertheless, this reduces significantly the time required by subsequent computations, as can
be seen on table 2 from the average times and ranks, computed from all samples (not only the
first 20). For comparison, the FEM time has been measured from a single computation. The
average rank confirms that the modes library was complete with the first 6 modes.

Table 2: Comparison between FEM, MsLRM (with and without recycling)

FEM MsLRM MsLRM+recycling
Average time per sample (s) 4040 5.76 3
Average rank per computation – 6.15 6

3.2.3 Conductivity contrast

Here we evaluated the Monte Carlo estimator θη(KN
? ) with the same samples for different values

of K2/K1: 2, 101, 102, 103, 104 and 105. The number of samples required were computed with
formula (2.12) with a variance estimated with 100 samples. It can be seen on figure 7b that this
contrast affects greatly the estimator’s variance, as expected. On the other hand, a high contrast
seems to reduce the approximation cost (see figure 7a). One explanation is that the correctors’
approximation is easier when the inter-phase peaks are so great that other variations become
negligible. From now on, we will keep the conductivity contrast at 102 so that our medium
remains significantly heterogeneous.

3.2.4 Defect probability

In a defect-type model such as described by equation (3.4), the defect probability p is an important
characteristic of the random medium. That is one way to quantify periodicity loss. We computed
an estimation θη(KN

? ) for different values of p: 0.01, 0.1, 0.2, 0.3, 0.4 and 0.5.
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3 TENSOR-BASED TWO-SCALE METHOD
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Figure 6: Modes recycling effect on MsLRM (averages across samples)
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Figure 7: Conductivity contrast effect on MsLRM performance
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Figure 8: Defect probability effect on MsLRM performance

Figure 8a shows that the average approximation rank of correctors increases with p, as
expected, until it reaches a plateau. Beyond a certain value of p (0.3 here), every configuration
that would require new modes has become likely enough to occur, hence a rank plateau. We can
relate this observation to the library completion previously discussed.

Figure 8b shows the impact of p on the estimator’s variance (recalling the estimator’s
convergence rate (2.12)). We set p to 0.1 to keep the number of samples moderate.

3.2.5 Mesoscopic size

Recalling result (2.12), building an estimator with a good convergence rate is a compromise
between domain size (which affects variance, see section 4) and number of samples. We showed a
way to curb MsLRM computational cost increase with respect to sample number with modes
recycling. However, an immediate advantage of MsLRM is its low sensitivity to domain size
increase, even though modes recycling further reduces it. To illustrate this, we evaluated θη(KN

? )
for several numbers of cells: 100, 400, 900, 1600, 2500 and 3600.

Additionally, we wish to broach the case of unidirectional periodicity. We dealt only with
bi-directional periodicity so far, on square mesoscopic grids. Let us consider a unidirectional
mesoscopic grid with reference cell Y := [0, 1]× [0, 10] so that a five-cells domain is [0, 5]× [0, 10]
as illustrated on figure 9 (with Y outlined on figure 9a). We choose a conductivity K̂ of the same
form (3.4) but with χ replaced with χ̂ to get the patterns shown on figure 9a. This test case was
inspired by unidirectional fibre-reinforced composite materials. We evaluate θη(K̂N

? ) as well, with
the same values as above for the number of cells and the other parameters still set according to
table 1.

First, we see on figure 10a the complexity reduction achieved, whatever the mesoscopic
dimension. The MsLRM computational cost increase when the number of cells grows is moderate,
particularly in comparison to the cost of the corresponding FEM solution6 (displayed on the same
graph, with identical values for both cases). Furthermore, figure 10b shows the rank’s plateau
caused by K’s stationarity, as was discussed in subsection 3.1 on the topic of modes recycling.

6Measured from a single computation.
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3 TENSOR-BASED TWO-SCALE METHOD

(a) Conductivity K (b) Source term f = ∇ ·Ke1 (c) Corrector w1

Figure 9: Unidirectional periodic medium (example with five cells)

Table 3: Domain size effect on samples number m(η) and time required for estimation

1D 2D
#I 100 400 900 1600 2500 3600 100 400 900 1600 2500 3600
m(η) 4116 1107 467 229 164 106 4015 1089 457 227 163 105

Time (s) 6480 2012 1164 813 1030 1142 6552 1927 979 746 758 761

Secondly, it is clear from figure 10b that the complexity of the unidirectional case is considerably
lower. A uni-dimensional grid brings the approximation’s rank much closer to K’s: any local loss
of periodicity (faulty cell here) has much fewer neighbours to affect than in the previous case.
The slight difference on figure 10a comes from a better conditioning of the bi-directional problem,
due to homogeneity of K on cells boundaries.

As for the approximation in the bi-directional case, although it is almost constant the first
point (100 cells) on figure 10b is worth commenting. We mentioned that the modes library is
built in a non-optimal way; furthermore, it can only grow. Here, for every domain of 400 cells or
more, the completion was almost immediate, i.e. the first sample was a good representation of
the medium as far as the algorithm was concerned. With 100 cells, however, several samples had
to be processed before reaching completion, each one causing some modes to be added to the
library. These modes were the best choices for the sample, but not necessarily with regards to
every possible realisation, hence a larger library.

Finally, table 3 shows how domain size affects the convergence rate of Monte Carlo estimation,
as was mentioned above. Those values were estimated from 100 samples (as were all averages
computed for this test case). For these estimators of identical variance η, the improved convergence
rate somewhat balances the increase in computational time per sample in the overall cost of
estimation, as the measured total times testify. Consequently, and although there is generally a
compromise to be found to minimise the cost (more details in section 4), we observe a wide range
of acceptable values for #I. The cost seems minimal around 1600 cells, so we chose this value as
default (see table 1).
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Figure 10: Domain size effect on MsLRM and FEM performance for uni- and bi-directional
periodicity (averages across samples)

Table 4: Uniform laws’ parameters

K−2 K+
2 (Li)i∈{1,...,10}

1 100 (i− 1)× 0.1

3.2.6 Aperiodic media with mesoscopic structure

In order to address a more general case where both the conductivityK2 and the area it encompasses
(represented by the characteristic function χ) may be random, we consider a broader variant of
conductivity expression (3.4). For (i, y, ω) ∈ I × Y × Ω, we let

K(i, y, ω) = K1 + χi(y, ω)(K2,i(ω)−K1),

where K2,i(ω) ∈ U([K−2 ,K
+
2 ]) are independent and identically distributed, and each χi(·, ω) :

Y → {0, 1} is the characteristic function of the square of side length `i(ω) centred relatively
to the cell. The random variables `i ∈ U({L1, . . . , Lq}), i ∈ I, are i.i.d. as well. An example is
displayed on figure 11 and the chosen values for our tests are in table 4.

We call such medium “aperiodic” because, for i 6= j, P(K(i, ·, ·) = K(j, ·, ·)) = 0. Nevertheless,
there is a spatial structure such that a mesoscopic grid can be defined, and we outlined the chosen
reference cell Y on figure 11a. Here the rank rK of K is a random variable whose values are
bounded according to (`i)i∈I probability laws: rK 6 1 + q almost surely in this case. However,
had we chosen (`i)i∈I to be continuous random variables (e.g. `i ∈ U([L1, Lq])), then rK = N2

almost surely.
To get insight into the complexity of such problem, we perform the same tests as in sub-

section 3.2.5 (only the bi-directional case). The comparison of figures 10b and 12b reveals
the increased complexity of the current case, and explains the difference between figures 10a
and 12a; this was expected from the conductivities’ rank difference: 2 against 10. Incidentally,
this difference is due exclusively to the geometric variability introduced with (χi); indeed a
rank-2 “aperiodic” conductivity (in the sense explained above) is possible. However, the FEM
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3 TENSOR-BASED TWO-SCALE METHOD

(a) Conductivity K (b) Source term ∇ ·Ke1

(c) Corrector w5,1 (d) Corrector w5,2

Figure 11: Aperiodic medium example for 25 cells

Q. AYOUL-GUILMARD, A. NOUY, C. BINETRUY 18



3 TENSOR-BASED TWO-SCALE METHOD

0 1 000 2 000 3 000

102

103

104

Number of cells

T
im

e
(s
)

MsLRM
FEM

(a) Computational cost

0 1 000 2 000 3 000
50

60

70

80

90

Number of cells

A
pp

ro
xi
m
at
io
n
ra
nk

(b) Approximation rank

Figure 12: MsLRM performance on aperiodic medium (averages across samples)

Table 5: Sample number and time required on aperiodic medium

N2 100 400 900 1600 2500 3600
m(η) 4627 961 510 297 191 124

Time (s) 202 530 29 637 30 889 34 707 51 475 145 960

computation times remind that the complexity reduction remains significant even in such aperiodic
medium. As a side note, the computer reached its memory limit during MsLRM computations
for N2 := 3600, which somewhat diminished the performance.

Additionally, the increased rank of the approximations makes modes recycling particularly
relevant here: the average values on figure 12 are based on 100 samples, and a greater number
of samples would decrease the average time as the impact of the first computations’ cost (from
which the library was built) fades. To give more insight, the cost per sample on a complete library
varied between 5 % and 17 % of the first sample’s computation cost. Modes library was essentially
completed within the first 8 samples, except the case N2 = 100 which required around 35. The
decreasing trend on figure 12b has the same explanation as was given in subsection 3.2.5, with
greater variability in K.

Finally, we show on table 5 the number of samples required and associated total computation
time (estimated from 100 samples). The comparison with table 3 shows how the increased
computational cost has shifted the optimal cell number downward. In both tables, however,
appears a minimal number of cells above which the total cost is of the same order of magnitude.

3.2.7 Transformed media

We illustrate here the use of MsLRM in the variant of stochastic homogenisation detailed in
subsection 2.4. We define a periodicK] = K1+χ̂(K2−K1) with χ̂ introduced in subsection 3.2.5 for
the unidirectional case (see figure 9) and choose a random diffeomorphism φ and let K := K]◦φ−1.
No fibre is missing this time, but the spaces between fibres are independent random variables
(`i)i∈{0,...,#I} following the same uniform law U([0.1, 2]). The two limit fibres in D1 and D#I are
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3 TENSOR-BASED TWO-SCALE METHOD

separated from the domain boundary by respectively `0/2 and `#I/2 and the fibre width is a
constant denoted δ. The chosen random diffeomorphism φ is then continuous, piecewise affine
and expressed component-wise φ(i, y) = φ1(i, y)e1 + (ζ(i, y) · e2)e2. Therefore, nothing is changed
along e2 and φ1 has the rank-4 representation φ1 = φI0⊗1Y +φI1⊗φY1 + 1I ⊗φY2 +φI3⊗φY3 , where

φI0(i) =


0 if i = 1

`0
2 + `i−1

2 + (i− 1)δ +
i−2∑
k=1

`k else
, φI1(i) = `i−1

1− δ , φ
I
3(i) = `i

1− δ ,

and

φY1 (y) = min
(
y1,

1− δ
2

)
, φY2 (y) = max

(
0,min

(
δ, y1 −

1− δ
2

))
,

φY3 (y) = max
(

0, y1 −
1 + δ

2

)
.

We noted 1I and 1Y the constant functions of value 1 and y1 := y · e1. This gradient of this
transformation is expressed

∇φ =
(
φ1,1 0

0 1I ⊗ 1Y
)

with φn,1 = ∂ φn
∂ x1

,

so det(∇φ) = φ1,1 = φI1 ⊗ φY1,1 + 1I ⊗ φY2,1 + φI3 ⊗ φY3,1. Here ∇
(
φ−1) = (∇φ)−1 thus the

ensuing simplifications in K̃ := det(∇φ)∇φ−1K] ∇φt −1 yield rank(K̃) = 3. The effects of this
transformation are illustrated on figure 13 with an example of realisation of K and its associated
source term and first corrector function.

In this test, we solve the corrector problems (2.15). We perform the same tests as for the
unidirectional case in subsection 3.2.5. The performance, shown on figure 14, is between that on
figure 10 and that on figure 12, which suggests that these tests are comparable enough for the
performance to be dominated by rK ’s influence. This is a consequence of the correctors problems’
nature: the source term follows the same quasi-periodicity as K, and boundary conditions do not
break this quasi-periodicity in the solution. Therefore, the only periodicity loss in the solution
comes from K.
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(a) Conductivity K (b) Source term f = ∇ · (Ke1) (c) Corrector w5,1

Figure 13: Example of randomly transformed medium for 5 cells.
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Figure 14: MsLRM performance on transformed medium (averages across samples)
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4 Variance reduction by control variate
The error associated with approximation of K? by θm(KN

? ) (from (2.11)) can be decomposed as

K? − θm(KN
? ) = K? − E

(
KN
?

)
systematic error

+E
(
KN
?

)
− θm(KN

? )
statistical error

.

It has been proven that

E
(
K? − E

(
KN
?

))
. N−d lnd(N) [in 17]

and
√
E((E(KN

? )− θm(KN
? ))2) . (Ndm)−1/2 [in 18, 19]

for a cubic domain of side length proportional to N . Consequently, the bias decreases fast with
domain size and the statistical error is usually the major contribution to the error. As was
mentioned in equation (2.12), this statistical error can be quantified as

E
((
θm(X̃)− E

(
X̃
))2) = Var

(
θm(X̃)

)
=

Var
(
X̃
)

m

for any random variable X̃ ∈ L2(Ω), hence the numerous variance reduction techniques developed
to accelerate Monte Carlo method’s convergence rate. Such techniques include stratified sampling,
importance sampling, antithetic variates, control variates and many more; we are interested in
the latter.

Let ρ ∈ R and let Z ∈ L2(Ω) be a random variable. Z serves as a control variate by defining
the controlled variable X = X̃ − ρ(Z − E(Z)). We have, purposely, E(X̃) = E(X). As for the
variance, Var(X) = Var(X̃)− 2ρCov(X̃, Z) + ρ2 Var(Z) and is minimal for

ρ =
Cov

(
X̃, Z

)
Var(Z) , (4.1)

with minimum

min
ρ∈R

Var(X) =
(

1−
(
Cov

(
X̃, Z

))2
Var

(
X̃
)
Var(Z)

)
Var

(
X̃
)
. (4.2)

We observe from equation (4.2) that, whatever Z, a variance reduction can be achieved with
a suitable parameter ρ. A good control variate would be closely correlated to X̃: the higher
the correlation between X̃ and Z, the greater the variance reduction. However, E(Z) must be
precisely known lest the control variate introduces a bias. Additionally, the benefit of an optimal
ρ comes at the cost of estimating Var(Z) and Cov(X̃, Z).

What we actually do is estimate E(X) = E(U) + ρE(Z), with U := X̃ − ρZ, as

θnU ,nZ
(X) = 1

nU

nU∑
k=1

U(ωk) + ρ

nZ

nZ∑
k=1

Z(ω′k) (4.3)

where ω and ω′ are i.i.d. samples, with variance

Var(θnU ,nZ
(X)) = Var(U)

nU
+ ρ2 Var(Z)

nZ
. (4.4)
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This estimation’s cost is cnU ,nZ
= nUcU + nZcZ with cU := c0 + cZ , where c0 := cost(X̃) and

cZ := cost(Z) denote the cost of an evaluation of X̃ and Z, respectively. For a given variance η2,
we minimise cnU ,nZ

over (nU , nZ) ∈ R2 by solving the equivalent saddle-point problem

max
λ>0

min
nU ,nZ>0

cunu + cZnZ + λ

(
Var(U)
nU

+ ρ2 Var(Z)
nZ

− η2
)
,

which yields nU
√
cUρ2 Var(Z) = nZ

√
cZ Var(U). Therefore, equation (4.4) now reads

Var(θnU ,nZ
(X)) = 1

nZ

(
ρ2 Var(Z) +

√
Var(U)Var(Z)ρ2 cU

cZ

)
with

nZ =
⌈

1
η2

(
ρ2 Var(Z) +

√
Var(U)Var(Z)ρ2 cU

cZ

)⌉
and nU =

⌈
nZ

√
cZ Var(U)
cU Var(Z)ρ2

⌉
(4.5)

for a variance of7 η2. Like expectations, variances and covariances are estimated empirically. For
two random variables A and B, with a sample (ωi)i∈{1,...,m} of size m ∈ N∗, we define

ςm(A,B) := 1
m− 1

m∑
i=1

(A(ωi)− θm(A))(B(ωi)− θm(B)).

This is an unbiased estimator, i.e. Cov(A,B) = E(ςm(A,B)); obviously, Var(A) = E(ςm(A,A)).
We set a minimal sample size required to get a reliable estimation of Var(U), Var(Z), cU and cZ
before estimating nZ and nU . Likewise, the optimal control coefficient value is estimated from
formula (4.1) as ςnU

(X̃, Z)/ςmax(nU ,nZ)(Z).
A cost-efficient approximation of the homogenised operator, provided by a surrogate model,

would be a closely correlated random variable. In a situation where the surrogate model does not
provide a satisfying approximation, it remains a suitable control variate Z to a more precise, and
costlier, solution X̃. We will first present a control variate that has been introduced a few years
ago in a similar context of quasi-periodicity by Legoll and Minvielle [22], then propose another
one based on the tensor-based approximation method.

4.1 Weakly stochastic approach
4.1.1 Defect-type surrogate model

The various surrogate models of weakly stochastic homogenisation have been set in the theoretical
framework outlined in subsections 2.3 and 2.4 and address randomly perturbed periodic media.
They all rely on an asymptotic development of corrector functions with respect to a parameter
which quantifies the weakness of the perturbation, hence the name. Different surrogate models
have been proposed for different perturbation’s modelling [as in 2, 8, 34], and we are interested
in one proposed for the specific context of local material defects at the microscopic scale. This
“defect-type” approach, introduced by Anantharaman and Le Bris [3], is based on the assumptions
that every material cell8 is either sound or faulty (all defects being identical), that every cell has
the same probability ε of being faulty and that this probability is small.

7The variance is actually slightly lower, due to the ceil function d·e.
8Period of the reference unperturbed material.
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Proposition 4 (Defect-type perturbation). Let K ∈M(α, β) be such that

K(x, ω) = K](x) +Kdef (x)
∑
i∈I

1Di
(x)Biε(ω), ∀(x, ω) ∈ Rd × Ω,

with K] and Kdef periodic, and independent random variables
(
Biε
)
i∈I following the Bernoulli

law of parameter ε, so that P(Biε = 1) = ε. Then,

K? = lim
N→∞

K]? + εNdKN
1? + ε2KN

2? + o(ε2)

where K]? is the periodic homogenised operator defined in proposition 1,

(
KN

1?
)
ij

:= 1
|D|

∫
D

(ei +∇w1,N
i ) · (K] + 1D1Kdef ) · ej − (K]?)ij ,

with the d correctors w1,N
i ∈ H1

] (D) solutions of

−∇ ·
(

(K] + 1D1Kdef ) · (ei +∇w1,N
i )

)
= 0,

and

KN
2? = 1

2
∑
l∈I

∑
m∈I\{l}

K
1+|m−l|,N
2? (4.6)

where (
Kk,N

2?

)
ij

= 1
|D|

∫
D

(
ei +∇w2,N

i,k

)
· (K] + 1D1∪Dk

Kdef ) · ej − 2
(
KN

1?
)
ij

+ (K]?)ij ,

with the d× (Nd − 1) correctors w2,N
i,k ∈ H1

] (D) solutions of

−∇ ·
(

(K] + 1D1∪Dk
Kdef )

(
ei +∇w2,N

i,k

))
= 0.

Proof. See Anantharaman and Le Bris [4].

In proposition 4, sound cells have diffusion coefficient K] and faulty cells have K] +Kdef . As
an example, the conductivity expressed in (3.4), involved in most tests of subsection 3.2, falls in
this defect-type category. As in subsection 3.2, we still consider isotropic mesoscopic grids of N
cells along each direction so #I = Nd, and set as reference cell Y := D1, the “first” cell.

The terms KN
1? and Kk,N

2? are referred to as 1-defect and 2-defects individual contributions,
respectively. They are the homogenised operators associated with the periodic repetition of
domain D with, respectively, one and two defects. Due to periodicity, only the relative localisation
of one defect with respect to the other affects the apparent homogenised operator; with only one
defect, its position does not matter. Therefore, the total 1-defect contribution is NdKN

1? whereas
the total 2-defects contribution is defined by equation (4.6), where we chose arbitrarily to place
the first defect in D1. The “0-defect” contribution is, obviously, K]?.
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4.1.2 Variance reduction based on defect-type model

Weakly stochastic homogenisation provides a surrogate model whose accuracy is related to
perturbation weakness. When the perturbation is not weak enough for that model to provide
the desired accuracy, its approximation remains supposedly highly correlated to the estimated
homogenised operator KN

? . Therefore, it can be used as control variate in the Monte Carlo
estimation θm(KN

? ) (from equation (2.11)), as detailed in the introduction of section 4, where KN
?

is evaluated by FEM. This variance reduction scheme has been published by Legoll and Minvielle
[in 22] for the defect-type approach from proposition 4. We will outline the method here and
refer the reader to this publication for a detailed explanation and justification of what follows.

Proposition 4 offers a second-order approximation from which can be deduced either a first-
or second-order controlled variable, depending on whether the second-order term is accounted for.
This decision is a compromise between accuracy and cost-efficiency, which will be discussed in
subsection 4.3. The first-order controlled variable is defined as

X1 = KN
? − ρ1(Z1 − E(Z1))

with

Z1 = K]? +
∑
i∈I

BεiK
N
1?, and E(Z1) = K]? + εNdKN

1?,

therefore, our first-order controlled variable reads

X1 = KN
? − ρ1

(∑
i∈I

Bεi − εNd

)
KN

1?

and, from (4.1), the optimal control coefficient value is

ρ1 =
Cov

(
KN
? , Z1

)
Var(Z1) .

We used here the same notations as in proposition 4. Henceforth we will note cN := cost
(
KN
?

)
and, accordingly, c1 := cost(K]∗). The computational cost related to control variate Z1 can be
broken down into an a priori cost cp1 and the cost of evaluating a new realisation of Z1. The
latter is deemed negligible9 while former amounts to the computation of K]? and KN

1?, hence
cp1 := cFE + c1.

The second-order controlled variable is expressed as

X2 = KN
? − ρ1(Z1 − E(Z1))− ρ2(Z2 − E(Z2))− ρ̌2

(
Ž2 − E

(
Ž2

))
with

Z2 = 1
2
∑
i∈I

∑
j∈I\{i}

BεiB
ε
jK

1+|j−i|,N
2? so E(Z2) = ε2

2
∑
i∈I

∑
j∈I\{i}

K
1+|j−i|,N
2? ,

and

Ž2 = 1
2
∑
i∈I

∑
j∈I\{i}

(1−Bεi )(1−Bεj), Ǩ
1+|j−i|,N
2? so E

(
Ž2

)
= (1− ε)2

2
∑
i∈I

∑
j∈I\{i}

Ǩ
1+|j−i|,N
2? .

9Compared to, e.g. c1.
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We introduced above the quantity Ǩk,N
2? for k ∈ I. It is the counterpart of Kk,N

2? for the
“complementary” material, i.e. the material whose reference conductivity is K] +Kdef and whose
faulty cells have conductivity K]. Consequently, the associated 2-defects individual contributions
are (

Ǩk,N
2?

)
ij

:= 1
|D|

∫
D

(ei +∇ w̌2,N
i,k ) · (K] +Kdef − 1D1∪Dk

Kdef ) · ej − 2ǨN
1? + Ǩ]?

with −∇ ·
(

(K] +Kdef − 1D1∪Dk
Kdef )(ei +∇ w̌2,N

i,k )
)

= 0,

and the 1-defect individual contribution is(
ǨN

1?

)
ij

:= 1
|D|

∫
D

(ei +∇ w̌1,N
i ) · (K] +Kdef − 1D1Kdef ) · ej − (Ǩ]?)ij

with −∇ ·
(

(K] +Kdef − 1D1Kdef ) · (ei +∇ w̌1,N
i )

)
= 0,

and, finally, the periodically homogenised operator is

(Ǩ]?)ij := 1
|Y |

∫
Y

(ei +∇ w̌]i ) · (K] +Kdef )ej ,

with −∇ ·
(

(K] +Kdef )(ei +∇ w̌]i )
)

= 0.

This additional contribution was ignored in proposition 4 because we assumed ε � 1. There
is no such assumption here and therefore no precedence of one reference over the other. This
does not apply at the first order, for which considering one or the other is equivalent. Indeed,
the first-order control variate accounts only for the proportion of faulty cells without geometric
consideration.

As for the control coefficients ρ1, ρ2 and ρ̌2, their optimal values are solutions to Var(Z1) Cov(Z1, Z2) Cov(Z1, Ž2)
Cov(Z2, Z1) Var(Z2) Cov(Z2, Ž2)
Cov(Ž2, Z1) Cov(Ž2, Z2) Var(Ž2)

ρ1
ρ2
ρ̌2

 =

Cov(KN
? , Z1)

Cov(KN
? , Z2)

Cov(KN
? , Ž2)

 . (4.7)

The a priori cost cp2 of this second-order control variate is significantly higher than the
first-order one: cp2 = 2(C1 +(Nd−1)CFE). The subsequent cost of every realisation is admittedly
higher as well, mainly due to the resolution of (4.7), yet we still deem it negligible.

Obviously, the cost of these a priori computations could be greatly reduced by MsLRM. Even
more so because modes recycling would be most efficient in this case.

4.2 Low-rank approximation as control variate
Results from subsection 3.2 hinted at the MsLRM limits, i.e. situations where a more general
and simple direct resolution (e.g. FEM) would be more efficient. These situations occur mostly
when the rank required to achieve the desired precision is too high, because either the tolerance
is too low or the quasi-periodicity too weak. To address these situations, we wish to propose a
MsLRM-based low-fidelity model as a control variate to KN

? evaluated by a high-fidelity model—
FEM here. First, we observed that the rank of K had a significant effect on the approximation’s
rank. To address cases where K may not be quasi-periodic, one way to provide a cost-efficient
approximation would be to use a low-rank approximation of K. However, to guarantee the
approximation’s quality we must still be able to control the precision of this perturbed MsLRM.
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Let ε ∈ R+∗, we note Uεi the function fromM(α, β) to Vh(D) which maps K to the MsLRM
approximation wεN,i of the apparent corrector solution to (2.9) (for a chosen i ∈ {1, . . . , d}).
We choose δ ∈ R+∗ and let K̃ ∈ L∞(D) be such that ‖K̃ −K‖L∞(D) 6 δ and rank(K̃) is low.
Then, assuming Uεi ∈ C0(L∞(D);Vh(D)), we have ‖Uεi (K̃)− Uεi (K)‖ 6 CUδ where CU denotes
the Lipschitz constant of Uεi . Consequently, we can control the error caused on the MsLRM
approximation by the approximation on K, provided that we can control δ.

Then, let us note Zδ,ε the function from L2(Ω;M(α, β)) to L2(Ω;L∞(D)d×d) which maps
K to the apparent homogenised operator associated to K̃ with MsLRM approximation to the
precision ε of the correctors, i.e.

(Zδ,ε(K))ij := 1
|D|

∫
D

ei · K̃(ej +∇Uεj (K̃)). (4.8)

We hope to provide a cost-efficient, highly correlated control variate Zδ,ε(K) to KN
? . More

precisely, we hope to achieve cost-efficiency for aperiodic conductivities K with large enough δ
and ε while remaining highly correlated to KN

? . We note the controlled variable

Xδ,ε := KN
? + ρ(Zδ,ε − E(Zδ,ε)),

where control coefficient ρ is computed according to expression (4.1). The process that yield Xδ,ε

from KN is summarised on figure 15.

KN (ω) wN,k(ω) KN
∗ (ω)FEM app. hom.

(2.8)

K̃N (ω) Uεi
(
K̃N (ω)

)
Zδ,ε(ω)

EIM δ

MsLRM
ε

app. hom.
(4.8)

Xδ,ε(ω)

E (Zδ,ε(ω))

Figure 15: Combination of high- and low-fidelity models into controlled variable Xδ,ε

The low-rank approximation K̃ is built as an empirical interpolation of K in the form
In[K] :=

∑n
j=1 α

n
j ⊗ qj by greedy algorithm 1. At every step n ∈ N∗, the interpolation points

(in, yn) are defined to be where the current interpolation is worse. Then qn is chosen colinear
to K(in, ·) − In−1[K](in, ·) and such that qn(yn) = 1. Since the matrix (qj(yp))(j,p)∈{1,...,n}2

is invertible10, we can choose αn such that ∀(i, p) ∈ I × {1, . . . , n}, In[K](i, yp) = K(i, yp).
Once ‖K − In[K]‖L∞(D) 6 δ, we stop and keep approximation K̃ := In[K]. The a priori
error estimation maxi∈I‖K(i, ·)− In[K](i, ·)‖L∞(Y ) 6 (1+Λn) infκ∈Kn‖K − κ‖L∞(Y ) holds, with
Kn := span{{K(ip, ·), p ∈ {1, . . . , n}}} and the Lebesgue constant Λn := supy∈Y

∑n
j=1
∣∣hnj (y)

∣∣ 6
2n − 1, where hnj ∈ Kn is such that ∀p ∈ {1, . . . , n}, hnj (yp) = δjp. From the quasi-periodicity
assumption on K, we expect infκ∈Kn

‖K − κ‖L∞(Y ) to decrease rapidly with n and thus believe
that algorithm 1 can provide accurate and low-rank approximations in our case. For a detailed
explanation of the Empirical Interpolation Method (EIM), we refer the reader to [6, 24].
Remark 3 (Multi-level control variates). The benefit of a control variate to an estimator is
measured by the error reduction achieved for a given computational budget or, conversely, by the
cost reduction achieved for a given precision. Therefore a control variate quality can be assessed,
with formula (4.2), from its correlation with the variable of interest and its cost: the former
should be high and the latter low. Consequently, the quality of Zδ,ε hinges on the choice of the

10It is actually lower triangular, with unity diagonal [see 24, th. 2.2 p. 387].
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Algorithm 1: Empirical interpolation of K
Initialise I0[K] := 0, R0 := K and n := 1
while supi∈I‖Rn(i, ·)‖L∞(Y ) > δ do

Define Rn−1 := K − In−1[K]
Compute points in := argmaxi∈I‖Rn−1‖L∞(Y ) and yn := argmaxy∈Y |Rn−1(i, y)|

Set qn := Rn−1(in, ·)
Rn−1(in, yn)

Compute αn by solving
∑n
j=1 α

n
j (i)qj(yp) = K(i, yp), ∀(i, p) ∈ I × {1, . . . , n}

Update In[K] :=
∑n
j=1 α

n
j ⊗ qj , Rn := K − In[K] and n := n+ 1

return K̃ := In[K]

couple of tolerances (δ, ε). A strategy could be devised to choose good values based on measures
of cost and correlation on reasonably small samples.

Another approach to this issue would be to combine several such control variates into a variant
of estimator θnU ,nZ

(X), defined by formula (4.3). Thus, for a number n ∈ N∗ of control variates,
we would choose (δ, ε) ∈ Rn × Rn then observe that

X = X̃ − ρ1Zδ1,ε1 + ρ1E(Zδ1,ε1)
= X̃ − ρnZεn,δn

+ ρnZεn,δn
− ρn−1Zεn−1,δn−1 . . .+ ρ2Zε2,δ2 − ρ1Zε1,δ1 + ρ1E(Zε1,δ1). (4.9)

Several multi-level estimators have been based on this, such as the famous multi-level Monte
Carlo methods detailed in the monograph [20]. These have been applied successfully by Giles [16]
and Cliffe et al. [11] to stochastic partial differential equations, with demonstrated complexity
reduction. An optimal sampling strategy could then be formulated via a similar reasoning as for
the two-level case, which lead to formulæ (4.5), albeit not as straightforward.

Alternatively, Peherstorfer et al. [30] proposed multi-fidelity Monte Carlo estimators, which
stem from the same idea. For a sample ω ∈ ΩM of size M ∈ N∗ and n ∈ N∗ low-fidelity models
(i.e. control variates, here), such an estimator could be

1
m0

∑
k=1

X̃(ωk) +
n∑
j=1

(
1
mj

mj∑
k=1

Zδj ,εj
(ωk)− 1

mj−1

mj−1∑
k=1

Zδj ,εj
(ωk)

)

where ∀j ∈ {0, . . . ,M}, 0 < mj 6M . For the sake of brevity, we will note the high-fidelity model
ζ0 := X̃, and ζj = Zδj ,εj

any low-fidelity model j ∈ {1, . . . , n}; furthermore, ∀j ∈ {0, . . . , n},
γj := cost(ζj) and rj = corr(ζ0, ζj). Let us also introduce control coefficients ρ ∈ Rn as we did at
the beginning of section 4, p. 22. We then define the multi-fidelity estimator

ϑm(X) := 1
m0

∑
k=1

ζ0(ωk) +
n∑
j=1

ρj

(
1
mj

mj∑
k=1

ζj(ωk)− 1
mj−1

mj−1∑
k=1

ζj(ωk)
)
. (4.10)

Interestingly, there are results on error minimisation of such multi-fidelity estimators for a
fixed budget. Owing to the telescopic sum11 in (4.9) and (4.10), ϑm(X) is an unbiased estimator
of E(X). Consequently, its mean squared error is

Var(ϑm(X)) = Var(ζ0)
m0

+
n∑
j=1

(
1

mj−1
− 1
mj

)
(ρ2
j Var(ζj)− 2ρj Cov(ζ0, ζj)),

11And the fact that, ∀j ∈ {0, . . . , m}, mj > 0.
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which we note E(m, ρ), and cost(ϑm(X)) =
∑n
j=0mjγj .

Given (δ, ε), estimator ϑm(X) is uniquely defined by the choice of sample sizes m ∈ Nn+1
∗ and

control coefficients ρ. For a given computational budget B ∈ R+∗, an optimal choice with respect
to the estimation error would be solution to

min
m∈Rn+1

+∗ , ρ∈Rn
{E(m, ρ) : cost(ϑm(X)) = B}. (4.11)

Let us make the following assumptions12, ∀j ∈ {1, . . . , n− 1}:

mj > mj+1 ;
|rj | > |rj+1| ; (4.12)

γi
γi+1

>
r2
i − r2

i+1
r2
i+1 − r2

i+2
. (4.13)

Under these conditions, Peherstorfer et al. [see 30, th. 3.4] proved that problem (4.11) has a
unique solution (m̆, ρ̆) expressed as

m̆0 = B

 n∑
j=0

√
γjγ0

r2
j − r2

j+1

1− r2
1

−1

,

∀j ∈ {1, . . . , n}, m̆j = m̆0

√
γ0

γj

r2
j − r2

j+1

1− r2
1

and ρ̆j =
Cov

(
X̃, Zj

)
Var(Zj)

.

Then the mean squared error (i.e. variance, here) reduction achieved is12

E(m̆, ρ̆)p
Var(X̃)

=

 n∑
j=0

√
γj
γ0

(r2
j − r2

j+1)

2

, (4.14)

where p := B/ cost(X̃). If p ∈ N∗ and m̆ ∈ Nn+1
∗ (see below), the left-hand side of (4.14) is

Var(θm̆(X))/Var(θp(X̃)) and cost(θp(X̃)) = cost(θm̆(X)) = B.
In conditions (4.12) and (4.13), we see that only cost and correlation are involved; particularly,

no assumption is made as to the pointwise accuracy of the approximation yielding the control
variates. Moreover, the error reduction expressed in equation (4.14) shows that the contribution
of one control variate depends on its correlation to the others. A strategy could be developed to
choose (δ, ε) ∈ Rn+∗ × Rn+∗ so as to satisfy conditions (4.12) and (4.13), in which case we would
know the optimal choice (m̆, ρ̆).

It should be noted that minimisation problem (4.11) is posed over Rn+1
+∗ × Rn; consequently,

m̆ will have to be projected onto Nn+1
∗ . For a given computational budget not to be exceeded, we

would use the lower integers bm̆c, whereas we would take dm̆e in order to satisfy a given tolerance
t on the mean squared error. In the latter case, Peherstorfer et al. [see 29, th. 1] has proven, under
some assumptions, that cost(ϑm(X)) ∈ O(t−1); a convergence rate which, according to Cliffe
et al. [11], is also achieved by multi-level Monte Carlo methods.

Finally, Peherstorfer [28] proposes an adaptive approach to account for the non-negligible
creation cost of a control variate, whereas the aforementioned methods only consider the sampling
cost. Its purpose is to balance the overall budget between construction and evaluation of a single

12With the convention rn+1 := 0.
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surrogate model, so that the model design is cost-oriented as well. This too could be adapted
to the method proposed here, although there is not so much a “construction-evaluation”13 cost
separation as an “initialisation-asymptotic” one; the former refers to the library construction cost
and the latter to the evaluation cost once the library has reached practical completion.

4.3 Numerical results
We consider bidimensional problems of type (2.1) and choose three different random stationary
conductivities K. The first one is an ideal quasi-periodic case previously introduced in subsec-
tion 3.2, with a conductivity of rank at most 2; it falls within the scope of the control variate
technique detailed in subsection 4.1.2 and allows us to compare it to the one from subsection 4.2.
Both other conductivities where chosen to assess the limits of this latter technique and have
almost surely full rank14. The first one still follows a regular mesoscopic grid whereas the last
one exhibits no such structure.

For each test case we wish to estimate the total cost reduction from computing θη(KN
? ) to

computing θη(X) for different controlled versions X of KN
? and always for the same standard

deviation η := 0.1. Those total costs are respectively CFE = ĉnVar(KN
? )/η2, and CX =

(ĉn + cZ)nU + cZnZ where ĉn and cZ are the costs of a single estimation of KN
? and of the control

variate15 Z involved in X, respectively; nU and nZ are calculated according to formulæ (4.5).
Single costs, variances and covariances are estimated from 100 samples of KN

? , X and Z. Xδ,ε is
tested with five values of (δ, ε) on each test case, and X1 and X2 are tested on the first test case.

All tests are set on a domain D := [0, 20]2 ≡ {1, . . . , 400} × [0, 1]2. Control variates are
evaluated by MsLRM with dim(Vh(Y )) := 441 and EIM cost is accounted for, albeit lower than
0.1 s per interpolation. KN

? is computed by FEM with the same mesh as MsLRM, thus 160 801
degrees of freedom16; its associated cost ĉn ≈ 246 s does not vary significantly from one test case
to another.

These computations were run on the same hardware as described at the beginning of subsec-
tion 3.2, p. 11.

4.3.1 Quasi-periodic inclusions

The first case is defined in equation (3.4) and illustrated on figure 4a; we set defect probability
p := 0.5 for greatest periodicity loss. Table 6 displays the cost reductions achieved with various
control variates, along with values on which this cost reduction depends. This table has been
designed so that greater values mean better performance, except for the average ranks rw and
rK̃ , respectively for correctors and empirically interpolated conductivities. The single cost
reduction ĉn/cZ was irrelevant for Z1 and Z2 whose evaluation cost is almost zero, so we display
instead ĉn/cp between parentheses, where cp is the a priori cost discussed in subsection 4.1.2
(either cp1 or cp2, respectively); those computations were performed by MsLRM with tolerance
ε := 0.01. The other values between parentheses are the optimal variance reductions, estimated
from formula (4.2); the difference between those and the observed reductions comes from the
uncertainties in empirical estimations of variances and covariances.

The first observation is that all control variates achieve comparable variance reduction, and
therefore the major difference is in their cost. Hence Z1 and Z2 are the most efficient by far and
the cost reduction displayed is only limited by the fact that we always do at least one computation
of KN

? (i.e. nU > 1). Here the variance reduction is such that every control variate achieved
13Sometimes referred to as “offline-online”.
14I.e. rK = N2.
15Either Z1, Z2 or some Zδ,ε, depending on the chosen surrogate model.
16Slightly less than 400× 441 = 176 400, due to continuity.
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Table 6: Cost and variance reductions on quasi-periodic inclusions — Var(KN
? ) = 1.8

δ ε rK̃ rw ĉn/cZ Var(KN
? )/Var(X) nZ/nU CFE/CX

–Z1– 0.01 – 1 ( 59 ) 10 747 (10 747) 3337 180
–Z2– 0.01 – 11 ( 0.11) 15 673 461 178
1 1 1 1 165 10 751 (11 335) 209 79.3
1 0.1 1 1 164 10 751 (11 335) 209 79.1
1 0.01 1 7.2 134 2054 (2392) 208 70.5
0.1 1 2 1 140 15 327 (15 503) 208 72.3
0.01 1 2 1 140 15 327 (15 503) 208 72.3

Table 7: Cost and variance reductions on regular peaks — Var(KN
? ) = 1.2

δ ε rK̃ rw ĉn/cZ Var(KN
? )/Var(X) nZ/nU CFE/CX

1 1 22.7 1 29 15 (17) 16 5.9
1 0.1 22.7 23.9 8.29 1307 (1367) 66 6.6
0.1 1 35.3 1 19 15 (18) 13 5.0
0.01 1 49.5 1 14 15 (18) 11 4.3

nU = 1, and Z1 and Z2 reduced the total cost to that single computation: CX ≈ ĉn. This ignores
the a priori cost which, although low for Z1, is much greater for Z2 and makes it questionable
whether the additional variance reduction is worth the extra cost17. These a priori costs were
significantly reduced by using MsLRM instead of FEM: the values of ĉn/59 and 9ĉn would have
been, respectfully, 2ĉn and 2(N2 + 1)ĉn = 802ĉn with FEM.

As for Zδ,ε, ε has little effect (except a cost increase) but δ makes the difference between
a rank-1 approximation K̃, which yields the same variance reduction as the first-order control
variate Z1, and the exact rank-2 conductivity from which we get the same variance reduction
as with the second-order control variate Z2. There is hardly any difference in cost between
the cases where rK̃ = 1 and those where rK̃ = 2, cZ varies only from 1.5 s to 2 s. Because
every Zδ,ε reaches the optimal situation nU = 1 here, the differences in total cost reduction
CFE/CX is not significant and one should rather gauge performance from the variance reduction
Var(KN

? )/Var(X).

4.3.2 Regular peaks

The second conductivity tested exhibits a mesoscopic structure following a regular grid, yet it is
aperiodic in the sense that its rank almost surely equals the number of cells. Its expression is

K(i, y, ω) = 1 + αi(ω)e−‖βi(ω)(y−γ)‖

where αi ∈ U([0, 199]) and βi = diag((βi,1, βi,2)) with (βi,1, βi,2) ∈ U([2, 10])2. The exponential
peak is centred within each cell with γ := (0.5, 0.5). An example of this function is displayed on
figure 16a. Its contrast (between highest and lowest values) and variance are on a par with the
previous conductivity, yet its periodicity is much lower.

Results are presented in table 7 in the same format as table 6 previously explained, yet without
Z1 and Z2 which cannot be used here. We first observe that a cost reduction is achieved for

17Ignoring the influence of the complementary reference periodic material would half this extra cost but reduce
correlation.
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(a) Regular peaks (b) Irregular peaks

Figure 16: Examples of second and third test conductivity functions on a 20× 20 grid

every value of (δ, ε) tested but (1, 0.01). The results for this latter case are not available since
the approximation reached ranks so high (rw > 100) that the test machine ran out of memory18;
these computations were costlier than the FEM ones and serve to point out MsLRM limits. Then
we see that a low tolerance δ yields better results since a high conductivity is quite detrimental to
MsLRM performance and does produce a better correlated control variate. Indeed, 23 is already
a great rank increase from the previous test case, although much better than the raw rK = 400.
Finally, performance improves when ε is lowered just enough19 to go beyond the crude rank-1
approximation of the correctors.

4.3.3 Irregular peaks

This last conductivity function has been chosen to be an irregular variant of the second one, with
similar exponential peaks distributed according to a stationary Poisson point process. It reads

K(x, ω) = 1 +
ν(ω)∑
n=1

αn(ω)e−‖βn(ω)(x−γn(ω))‖

where the families (αn) and (βn) are composed of independent and identically distributed random
variables: αn ∈ U([0, 179]) and βn = diag((βn,1, βn,2)) with (βn,1, βn,2) ∈ U([0.1, 2])2. The
number of peaks ν follows a Poisson distribution of expectation (N +R)2. R is defined as the

18Memory usage went over 8 GiB.
19Here, a better compromise could be found with ε ∈]0.1, 1[.
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Table 8: Cost and variance reductions on irregular peaks — Var(KN
? ) = 3642

δ ε rK̃ rw ĉn/cZ Var(KN
? )/Var(X) nZ/nU CFE/CX

1 1 28.7 19.8 11.1 4628 (8226) 237 10.0
1 0.1 28.7 45.4 3.15 4624 (8276) 139 3.0
1 0.01 28.7 72.9 1.13 4623 (8275) 100 1.1
0.1 1 41.8 19.6 9.42 4822 (8796) 225 8.6

radius beyond which a peak’s value is below tolerance δ, hence∥∥∥αne−‖βn× (R,R)t ‖
∥∥∥
L∞(Ω)

6 δ,

so R := λmin(βn)−1 ln
(
‖αn‖L∞(Ω)

δ

)
= 10 ln

(
179
δ

)
with λmin = min

ω∈Ω
min{βn,1(ω), βn,2(ω)}.

The centres γn are independent random variables following the same uniform law U([−R,N+R]2).
This represents the truncation toD := [0, N ]2 of a spatial Poisson point process over R2, accounting
for a radius R around each point. An example of such K is illustrated on figure 16b.

The results in table 8 follow the same layout as the previous one. Surprisingly, the results
are somewhat better than those reported in subsection 4.3.2, even though the average of rK̃ is
slightly higher. As before, every control variate tested reduces the overall cost but Z1,0.01, which
does not offer further variance reduction than Z1,0.1. Unlike the previous case, Z1,1 goes beyond
the rank-1 approximations of the correctors and is the best control variate here since it achieves
almost as good a variance reduction as Z1,0.1. We conclude that a crude empirical interpolation
of the conductivity along with low-rank (but above the trivial rank 1) approximation of the
correctors yields significant cost-reduction (factor 10 for Z1,1).

Another important parameter to discuss here would be the mesoscopic discretisation. Although
the choice was obvious for every other test case presented, it was arbitrary for this one. A different
cell size based, for example, on the radius R might be more relevant.

5 Conclusion
We proposed a way to reduce the cost of stochastic homogenisation for quasi-periodic conductivities
by a low-rank approximation of the corrector functions identified with bivariate functions. The
subsequent error on the homogenised quantities has been found to be reasonable on our examples,
whereas the computational cost is greatly reduced in most cases, compared to FEM. The complexity
was reduced first regarding domain size and then to samples number. The major influence on the
cost of this multiscale low-rank method [MsLRM, from 5] comes from the rank of the conductivity
identified as a tensor; the closer to a periodic function, the lower the rank.

Interestingly, the number of occurrences of a given defect does not change the conductivity
rank and therefore has no effect on the complexity of the associated corrector problem. More
generally, materials that would not be intuitively considered quasi-periodic have been found to be
of low complexity for this MsLRM. A category of such materials is quasi-periodic ones transformed
through a random mapping with low rank gradient. Another one is materials following a regular
grid and whose grid cells patterns are linear combinations of the same small number of patterns.
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This reduced complexity for aperiodic media with mesoscopic structure was exploited by
building a low-rank empirical interpolation of the conductivity, computing MsLRM approximations
of the associated corrector functions and using the resulting homogenised operator as a control
variate to the homogenised operator computed by direct FEM. This was found to provide
cost-efficient and well correlated control variates in our numerical experiment, not only for quasi-
periodic conductivities but also for materials with not enough periodicity for the MsLRM to be
efficient. We illustrated and discussed the influences of tolerances on both empirical interpolation
on the conductivity and low-rank approximation of the correctors. Additionally, the MsLRM
reduced greatly the a priori cost of the weakly stochastic control variate from Legoll and Minvielle
[22], which is more specific but less expensive.

Finally, this variance reduction technique, applied here to quantities computed by FEM, could
be used in an experimental campaign on measured quantities, with sufficient knowledge of the
material to deduce a low-rank approximation of the conductivity as described in subsection 4.2.
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