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SINGULAR VALUE DECOMPOSITION IN SOBOLEV SPACES: PART I
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Abstract. A well known result from functional analysis states that any compact operator between
Hilbert spaces admits a singular value decomposition (SVD). This decomposition is a powerful tool that
is the workhorse of many methods both in mathematics and applied fields. A prominent application in
recent years is the approximation of high-dimensional functions in a low-rank format. This is based on
the fact that, under certain conditions, a tensor can be identified with a compact operator and SVD
applies to the latter. One key assumption for this application is that the tensor product norm is not
weaker than the injective norm. This assumption is not fulfilled in Sobolev spaces, which are widely
used in the theory and numerics of partial differential equations. Our goal is the analysis of the SVD in
Sobolev spaces.

This work consists of two parts. In this manuscript (part I), we address low-rank approximations and
minimal subspaces in H

1. We analyze the H
1-error of the SVD performed in the ambient L2-space. In

part II, we will address variants of the SVD in norms stronger than the L
2-norm. We will provide a few

numerical examples that support our theoretical findings.

1. Introduction

1.1. Low-Rank Approximation. We begin by providing a few motivating examples where the need
for low-rank approximation arises. We do not aim to provide a comprehensive overview and refer
instead to, e.g., [9, 10, 8, 5, 11] for more details.

Consider a prototypical situation in numerical approximation where a function f ∈ C([0, 1]d) is
approximated by a discrete function on a finite grid

fk1, ..., kd := f(xk1, ..., xd), xk1, ..., xd := (k1h, . . . , kdh) ∈ [0, 1]d, 0 ≤ kj ≤ n,(1.1)

where h = 1/n and n + 1 is the number of grid points in each dimension. Simply storing such an
approximation requires storing at least (n + 1)d values – and this number grows exponentially in d.
This quickly becomes unfeasible for problems with a large dimension d.

Low-rank approximation is a widely used tool to address high-dimensional problems. Suppose we
can approximate f in the form

f ≈ fr :=

r
∑

k=1

f1k ⊗ . . .⊗ fdk .

Storing or evaluating the right-hand-side fr requires only the knowledge of the rd one-dimensional

entries f jk and thus reduces the cost to nrd. Thus, this is a significant reduction in cost, provided r is
small in some sense (hence, the term low-rank).

Prominent applications where such high-dimensional problems appear arise in quantum mechanics
and quantum chemistry. Wave functions describing physical states of non-relativistic quantum systems
are functions in the space L2(R3N ), where N is the number of elementary particles. Thus, for multi-
particle systems the dimension d = 3N is large even for comparatively simple models. A wave function
ψ ∈ L2(R3N ) is then given as a solution to a PDE, such as the Schrödinger equation, and ψ is approx-
imated via, e.g., a finite difference method with point values as in (1.1), or through the coefficients of
some basis expansion ψ ≈

∑

k1, ..., kd
ck1, ..., kdϕk1, ..., kd , where ϕk1, ..., kd is some multi-dimensional basis

of functions such as finite elements or wavelets. See [9] for more details.
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Yet another application is the approximation of operators or inverse operators for either solving or
pre-conditioning equations. Suppose a matrix or an operator are given in the form

A =
d
∑

k=1

id1 ⊗ . . .⊗ idk−1⊗Ak ⊗ idk+1⊗ . . .⊗ idd .(1.2)

Assume that a function ϕ applied to A has the integral representation

ϕ(A) =

∫

Ω
exp(AF (t))G(t)dt,

for some Ω ⊂ R and functions F and G. This is valid for, e.g., the inverse function ϕ(x) = x−σ and
a self-adjoint positive A. Then, since A has the form as in (1.2), a quadrature rule for approximating
the integral

ϕ(x) =

∫

Ω
exp(xF (t))G(t)dt, x ∈ R,

provides a separable approximation to ϕ(A). For more details we refer to [10, 8].

1.2. The Singular Value Decomposition. Let T : H1 → H2 be a continuous compact linear oper-
ator between Hilbert spaces. Then, for any x ∈ H1

Tx =
∞
∑

k=1

σk 〈x, ψk〉H1
φk,(1.3)

for a non-negative non-increasing sequence {σk}k∈N and orthonormal systems
{ψk}k∈N ⊂ H1 and {φk}k∈N ⊂ H2. The representation (1.3) is known as the singular value decomposi-
tion of T , or SVD for short. It is both a powerful analysis tool and an approximation tool. Perhaps
the most important feature of this decomposition can be summarized as

∥

∥

∥

∥

∥

T −
r
∑

k=1

σk 〈·, ψk〉H1
φk

∥

∥

∥

∥

∥

= σr+1 = inf
rank(A)≤r

‖T −A‖,

where ‖ · ‖ refers to the standard operator norm and where the infimum is taken over all operators A
from H1 to H2 with rank bounded by r. I.e., (1.3) gives both the optimal approximation with rank
≤ r (for any r), obtained by truncating the SVD, and the singular values {σk}k∈N provide the best
approximation errors.

SVD has many applications in both mathematics and applied sciences. To name a few: computation
of pseudoinverse, determination of rank (and null space, range), least-squares minimization, principal
component analysis, proper orthogonal decomposition, data compression, quantum entanglement. For
recent applications in model reduction see [12, 1]. The subject of this work is the application of SVD
to low-rank approximation of functions, see [5].

A function u in the tensor productH1⊗H2 of two Hilbert spacesH1 andH2 possesses a decomposition

u =
∞
∑

k=1

σkψk ⊗ φk,(1.4)

if the norm on the tensor product space is not weaker than the injective norm. This guarantees that
u can be identified with a compact operator and thus (1.3) applies. These conditions are certainly
satisfied for functions between finite dimensional spaces. There are also important examples of infinite
dimensional spaces, where this is satisfied as well. The most prominent example is the space of square
integrable functions L2(Ω1 × Ω2).

Low-rank approximations are of essential importance when dealing with tensor product spaces
⊗d

j=1Hj, d≫ 2. There is no known generalization of SVD to d > 2. However, if we consider the vector

space isomorphism (given appropriate norms),
⊗d

j=1Hj
∼=
(

⊗

j∈αHj

)

⊗
(

⊗

j∈αc Hj

)

, α ⊂ {1, . . . , d},

we can apply SVD in the latter tensor space since this is again a two dimensional tensor product. This
is known as the higher-order singular value decomposition (HOSVD), see [4, 7]. Thus, the theory for
d = 2 can be recycled for higher dimensions. This applies to high-dimensional kernel operators in

L2(×d
j=1Ωj).



SINGULAR VALUE DECOMPOSITION IN SOBOLEV SPACES: PART I 3

There are two other works1 that considered the related questions of regularity and error estimation of
the L2-SVD. In [14] the author showed that the L2-SVD inherits the regularity of the original function.
In [6] the author investigated L∞-error control of the L2-SVD for functions with sufficient smoothness
by using the Gagliardo-Nirenberg inequality.

An important example where (1.4) does not apply are multi-dimensional Sobolev spaces. The Sobolev
norm on the tensor product space is not weaker than the injective norm and thus Sobolev functions
can not be identified with compact operators. Another way of framing this from an approximation
standpoint: we can not apply SVD to functions while controlling the Sobolev norm. However, not all
hope is lost, since Sobolev spaces are “in between” spaces where SVD applies. E.g., the space of square
integrable functions or the space of functions with mixed smoothness. Moreover, Sobolev spaces such
as H1(Ω) can be identified with an intersection of tensor product spaces, where SVD applies in each of
the spaces in the intersection.

The purpose of this work is to analyze if and how SVD can be applied to approximate functions in
a Sobolev space. We work with the prototype H1(Ω), which frequently arises as the solution space of
partial differential equations. The results can be naturally extended to the spaces Hk(Ω), k > 1. The
paper is organized as follows. In Section 2 we briefly review some of the basics of tensor spaces. In
Section 3 we discuss low-rank approximation and minimal subspaces in Sobolev spaces. In Section 4
we analyze the H1-error of the SVD performed in the ambient L2 space (L2-SVD).

2. Preliminaries

We briefly review some of the theory on tensor spaces and minimal subspaces. Most of the following
material can be found in [5], some of it in [3]. We use the notation A . B ⇔ A ≤ CB, for some
constant C > 0 independent of A or B. Similarly for &; and ∼ if both . and & hold. We use ∼= to
denote vector space isomorphisms, with equivalent norms where relevant.

2.1. Algebraic Tensor Spaces. Let V = X⊗a Y be an algebraic tensor product space, where X and
Y are vector spaces. Briefly, it is the space of all sums of the form v =

∑r
k=1 x⊗y, x ∈ X, y ∈ Y, r ∈ N,

where the tensor product ⊗ is bilinear on X × Y . See [5, Chapter 3.2] for a precise definition of the
tensor product.

This construction can be extended for more than two vector spaces to obtain the tensor space

V = a
⊗d

j=1Xj , with elements v =
∑r

k=1

⊗d
j=1 xj, xj ∈ Xj, r ∈ N. We will sometimes require the

isomorphic representations

a

d
⊗

j=1

Xj
∼= Xi ⊗a



a

⊗

j 6=i

Xj




∼=



a

⊗

j∈α

Xj



⊗a

(

a

⊗

i∈αc

Xi

)

,

where α ⊂ {1, . . . , d}, αc = {1, . . . , d} \ α.

2.2. Tensor Norms and Banach Tensor Spaces. If we are given a norm ‖ · ‖ on the vector space

V = a
⊗d

j=1Xj , we can consider the completion w.r.t. that norm.

Definition 2.1 (Topological Tensor Product). The space

‖·‖

d
⊗

j=1

Xj := a

d
⊗

j=1

Xj

‖·‖

,

is called a topological tensor product.

Let each of the Xj be a normed vector space. Since ‖·‖ induces a topology on V and with the product

topology on×d
j=1Xj, we can ask if ⊗ :×d

j=1Xi → V is continuous. In fact, many useful properties in

the analysis of tensor product spaces require even stronger conditions. For ease of presentation, we list
the definitions for d = 2.

Definition 2.2 (Crossnorms). A norm on V = X⊗aY is called a crossnorm if ‖x⊗y‖ = ‖x‖X‖y‖Y . It
is called a reasonable crossnorm if it is a crossnorm and ‖x∗⊗y∗‖∗ = ‖x∗‖X∗‖y

∗‖Y ∗ , x
∗ ∈ X∗, y∗ ∈ Y ∗

where ‖ · ‖∗ denotes the standard dual norm on the topological dual Z∗ of a space Z.

1That we are aware of.
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It is called a uniform crossnorm if it is a reasonable crossnorm and ‖A ⊗ B‖ = ‖A‖‖B‖, A ∈
L(X,X), B ∈ L(Y, Y ), with the standard operator norms and where L(X,Y ) denotes the space of
continuous linear operators from X to Y .

There are two important examples of reasonable crossnorms which are the strongest and the weakest
crossnorms (see [3, Chapter 1.1.2] for a justification of the terminology).

Definition 2.3 (Projective and Injective Norms). The projective norm on V = X ⊗a Y is defined as

‖v‖∧ := inf

{

m
∑

i=1

‖xi‖X‖yi‖Y : v =
m
∑

i=1

xi ⊗ yi

}

,

where the infimum is taken over all possible representations of v. The injective norm on V = X ⊗a Y
is defined as

‖v‖∨ := sup
ϕ∈X∗\{0}, ψ∈Y ∗\{0}

|(ϕ ⊗ ψ)v|

‖ϕ‖X∗‖ψ‖Y ∗
.

By [5, Proposition 4.68], we have that for any reasonable crossnorm ‖ · ‖, ‖ · ‖∨ . ‖ · ‖ . ‖ · ‖∧. In
this work we will frequently require the following definition.

Definition 2.4 (Hilbert Tensor Space with Canonical Norm). Let H = H1⊗aH2 be an algebraic tensor
product of two Hilbert spaces H1 and H2. The canonical inner product (and associated canonical norm)
on H is defined such that 〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈x1, x2〉H1

· 〈y1, y2〉H2
. By linearity this definition extends

to any v ∈ H. The canonical norm is a uniform crossnorm.

2.3. Sobolev Spaces. For the remainder of this work we will require the spaces

L2(Ω) = L2(
d

×
j=1

Ωj), H1(Ω) = H1(
d

×
j=1

Ωj).

We use the shorthand notation ‖ · ‖0 to denote the L2 norm and ‖ · ‖1 to denote the H1 norm. This
notation will be used both for the tensor product space and the one dimensional components, where
the difference should be clear from context. We use H1

mix(Ω) to denote spaces of functions with mixed
smoothness with the corresponding norm ‖ · ‖mix.

We have

L2(Ω) ∼= ‖·‖0

d
⊗

j=1

L2(Ωj), H1
mix(Ω)

∼= ‖·‖mix

d
⊗

j=1

H1(Ωj),

where ‖ · ‖0 (resp. ‖ · ‖mix) are uniform crossnorms defined from the norms ‖ · ‖0 (resp. ‖ · ‖1) on the
individual spaces L2(Ωj) (resp. H

1(Ωj)).
We frequently require spaces of functions differentiable in only one direction

Hek := H1(Ωk)⊗‖·‖ek



a

⊗

j 6=k

L2(Ωj)



,

where for ek = (δ1k, . . . , δdk) being the k-th canonical vector, the norm is defined via

‖v‖2ek := ‖v‖20 +

∥

∥

∥

∥

∂

∂xk
v

∥

∥

∥

∥

2

0

.

As in Definition 2.3, we can define the projective and injective norms on H1(Ωk)a ⊗
(

a
⊗

j 6=k L
2(Ωj)

)

.

We denote these norms by ‖ · ‖∧(ek) and ‖ · ‖∨(ek), respectively. The space H
1(Ω) can be identified with

the intersection space

H1(Ω) ∼=

d
⋂

k=1

Hek ,(2.1)

where the latter is equipped with the intersection norm ‖ · ‖ := max1≤k≤d ‖ · ‖ek , or any equivalent
norm. The utility in this representation lies in the fact that ‖ · ‖ek is the canonical norm on the Hilbert
tensor space Hek and thus SVD applies (see Section 2.5). For each 1 ≤ k ≤ d, we get a different
decomposition.
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2.4. Minimal Subspaces and Tensor Formats. For a tensor in the algebraic tensor space X ⊗a Y ,
with X and Y Hilbert spaces, the SVD gives the representation v =

∑r
k=1 σkψk ⊗ φk. Letting U1 :=

span {ψk : 1 ≤ k ≤ r} , U2 := span {φk : 1 ≤ k ≤ r} , we have the obvious statement u ∈ U1⊗aU2. More
importantly, these spaces are minimal in the sense that if u ∈ V1 ⊗a V2, then U1 ⊂ V1 and U2 ⊂ V2.
Spaces U1 and U2 are called the minimal subspaces of u and they can be defined in a more general
setting.

Definition 2.5 (Minimal Subspaces). Let ‖ ·‖ & ‖ ·‖∨ be a norm on V = a
⊗d

j=1Xj . For any v ∈ V
‖·‖

the j-th minimal subspace is defined as

Umin
j (v) := span

{

ϕ(v) : ϕ =

d
⊗

k=1

ϕk, ϕj = idj , ϕk ∈ (Xk)∗, k 6= j)

}
‖·‖Xj

,

where idj denotes the identity operator on Xj . This definition can be naturally extended to Umin
α (v) for

any α ⊂ {1, . . . , d}.

The question whether

v ∈ a

d
⊗

j=1

Umin
j (v)

‖·‖

(2.2)

is not trivial for topological tensors v ∈ V
‖·‖

. A positive answer requires further structure of the
component spaces and the tensor norm.

Definition 2.6 (Grassmanian). Let X be a Banach space. A closed subspace U ⊂ X is called direct or
complemented if there exists a closed subspace W such that X = U ⊕W is a direct sum. The set G(X)
of all complemented subspaces in X is called the Grassmanian.

Any closed subspace U of a Hilbert space X belongs to G(X). An important example where (2.2)
is satisfied is when all Xj are Hilbert spaces and ‖ · ‖ is the canonical norm. The Sobolev space H1(Ω)
does not have this property. In particular, ‖ · ‖ & ‖ · ‖∨ does not hold. However, H1(Ω) is isomorphic
to an intersection of tensor spaces, where each individual space in the intersection satisfies (2.2). This
property is frequently exploited in our work.

Ultimately we are interested in low-rank approximations. For d = 2, there is only one choice of a
low-rank format. However, for d > 2 there are many possible low-rank tensor formats. The two most
basic tensor formats are the following.

Definition 2.7 (Canonical Format). Let r ∈ N. The r-term (or canonical) format in V = a
⊗d

j=1Xj

is defined as

Rr(V ) :=







v =

r
∑

k=1

d
⊗

j=1

xkj : x
k
j ∈ Xj







.

Definition 2.8 (Tucker Format). For r = (r1, . . . , rd) ∈ Nd, the Tucker format in V = a
⊗d

j=1Xj is
defined as

Tr(V ) :=
{

v ∈ V : dimUmin
j (v) ≤ rj

}

.

2.5. Tensors as Operators and Singular Value Decomposition. Let F(Y,X) denote the space
of finite rank operators from Y to X, K(Y,X) denote the space of compact operators from Y to X and
N (Y,X) denote the space of nuclear operators from Y to X. Then, for any reasonable crossnorm ‖ · ‖
we get the inclusions (see [5, Corollary 4.84])

N (Y,X) ∼= X ⊗‖·‖∧ Y
∗ ⊂ X ⊗‖·‖ Y

∗ ⊂ X ⊗‖·‖∨ Y
∗ ∼= F(Y,X)

‖·‖X←Y
⊂ K(Y,X).

An important example and the subject of this work is the case when X and Y are Hilbert spaces.
Then,X∗ ∼= X and Y ∗ ∼= Y . This implies that if ‖·‖ is a reasonable crossnorm, thenX⊗‖·‖Y ⊂ K(Y,X).
Since we can apply the singular value decomposition in K(Y,X), this gives a representation for any
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v ∈ X ⊗‖·‖ Y , v =
∑∞

k=1 σkψk ⊗ φk, for a decreasing non-negative sequence {σk}k∈N and orthonormal
systems {ψk}k∈N ⊂ X, {φk}k∈N ⊂ Y . Moreover, this provides us with the best low-rank approximations

‖v −
r
∑

k=1

σkxk ⊗ yk‖∨ = σr+1 = inf
vr=

∑r
k=1 xk⊗yk

‖v − vr‖∨,

for any r ∈ N. The rank of v is the smallest r such that σr+1 = 0 (r = ∞ if no such r exists). For the
canonical norm on Hilbert tensor spaces we get

‖v −
r
∑

k=1

σkxk ⊗ yk‖
2 =

∞
∑

k=r+1

(σk)
2 = inf

vr=
∑r

k=1 xk⊗yk
‖v − vr‖

2.

The corresponding space is the space of Hilbert Schmidt operators from Y to X, X⊗‖·‖ Y ∼= HS(Y,X).

A typical example is the space of square integrable functions L2(Ω) ∼= L2(Ω1) ⊗‖·‖0 L
2(Ω2), where we

consider product domains Ω = Ω1 ×Ω2. The Sobolev space H1(Ω), on the other hand, is not equipped
with the canonical norm. The Hilbert tensor space that is the tensor product of one dimensional Sobolev
spaces with the canonical norm corresponds to the space H1

mix(Ω) of functions with mixed smoothness.
The singular value decomposition does not apply in H1 directly, which is the motivation for this work.

The above does not extend to d > 2 directly. However, we have the following vector space isomor-
phism.

Definition 2.9 (Matricisation). The matricisation Mα with ∅ 6= α ( {1, . . . , d} is the linear map
defined by

Mα : a

d
⊗

j=1

Xj →



a

⊗

j∈α

Xj



⊗a



a

⊗

j∈αc

Xj



 ,

d
⊗

j=1

xj 7→





⊗

j∈α

xj



⊗





⊗

j∈αc

xj



 ,

where the definition can be extended to any x ∈ a
⊗d

j=1Xj by linearity. Moreover, this definition can
be extended to topological tensors, if the norms in the domain and image of Mα are compatible, i.e.,
Mα and M−1

α are continuous.

Definition 2.10 (HOSVD). Let α be as in (2.9) and let

V = ‖·‖

⊗d
j=1Xj , where all Xj are Hilbert spaces and ‖·‖ is the canonical norm. Then, Mα is an linear

isometric isomorphism from V to the Hilbert tensor space
(

a
⊗

j∈αXj

)

⊗‖·‖α

(

a
⊗

i∈αc Xi

)

, endowed

with the canonical norm ‖ · ‖α. Thus, we can apply SVD for any α. Set α = {j} and let {ψjk}k∈N ⊂ Xj

denote the Xj-orthonormal singular functions obtained from the SVD of M{j}(x). Then, there exists

a unique sequence x ∈ ℓ2(N
d) such that x =

∑∞
k1,...,kd=1 xk1,...,kdψ

1
k1

⊗ · · · ⊗ ψdkd . This representation is
called the higher-order singular value decomposition
(HOSVD) of x.

Other types of decompositions can be obtained by considering SVDs of
α-matricisations for all α in a dimension partition tree over {1, · · · , d}. These decompositions are called
hierarchical HOSVDs. For details and precise definitions see [5, Sections 8.3, 11.3].

The approximation obtained by truncating the HOSVD is not optimal anymore but rather quasi-
optimal, as recalled in the following theorem. The proof can be found in [5, Theorem 10.3].

Theorem 2.11 (HOSVD truncation). In the setting of Definition 2.10, let r := (r1, . . . , rd) ∈ Nd and

let P jrj be the orthogonal projection from Xj onto U
j
rj(x) = span

{

ψjk : 1 ≤ k ≤ rj

}

, where ψjk ∈ Xj are

the singular functions obtained via the HOSVD. Then xr := Prx, with Pr =
⊗d

j=1 P
j
rjx, is called the

truncated HOSVD with multilinear (Tucker) rank r, and the truncation error satisfies

‖x− xr‖
2 ≤

d
∑

j=1

∞
∑

i=rj+1

(σji )
2 ≤ d inf

v∈Tr(V )
‖x− v‖2,

where {σji }i∈N are the singular values of M{j}(x).
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Similar statements can be obtained for the hierarchical HOSVD, with different constants [4, 7].

3. Low-Rank Approximations in H1

Before we continue with our analysis of low-rank approximations, we clarify what is meant by an
algebraic tensor in H1(Ω). So far we defined algebraic tensors only on tensor product spaces. In the
case of intersection spaces there are several candidates, since there are multiple tensor product spaces
involved. As the following lemma shows, all possible choices lead to the same algebraic tensor space,
as long as we require H1 regularity.

Lemma 3.1 ([5, Proposition 4.104]).

a

d
⊗

j=1

L2(Ωj)
⋂

H1(Ω) = a

d
⊗

j=1

H1(Ωj).

Proof. To show how the algebraic tensors in L2(Ω) inherit H1 regularity, we detail the proof in a more
rigorous way than in [5, Proposition 4.104]. The inclusion “⊃” is obvious. For the inclusion “⊂”, let

u ∈ a
⊗d

j=1 L
2(Ωj)

⋂

H1(Ω). For a fixed 1 ≤ k ≤ d, we have

u ∈ L2(Ωk)⊗a



a

⊗

j 6=k

L2(Ωj)



 ∩H1(Ωk)a
⊗

j 6=k

L2(Ωj)
‖·‖ek

.(3.1)

Then, there is a number r ∈ N and functions {vl}
r
l=1 ⊂ L2(Ωk),

{wl}
r
l=1 ⊂ a

⊗

j 6=k L
2(Ωj) such that u =

∑r
l=1 vl ⊗ wl. By [5, Lemma 3.13], w.l.o.g., we can as-

sume {vl}
r
l=1 and {wl}

r
l=1 to be linearly independent. Thus, we can choose a dual basis {ϕl}

r
l=1 ⊂

(

a
⊗

j 6=k L
2(Ωj)

)∗
such that ϕk(wl) = δkl. Note that the mapping

idk ⊗ϕl : H
1(Ωk)⊗‖·‖ek



a

⊗

j 6=k

L2(Ωj)



→ H1(Ωk)

is continuous for all 1 ≤ l ≤ r, since ‖ · ‖ek is a reasonable crossnorm.

Moreover, by (3.1), there exist {vml ⊗ wml } 1≤l≤m,
1≤m<∞

⊂ H1(Ωk)⊗a

(

a
⊗

j 6=k L
2(Ωj)

)

such that

lim
m→∞

∥

∥

∥

∥

∥

u−
m
∑

l=1

vml ⊗wml

∥

∥

∥

∥

∥

ek

= 0.

Thus, since idk ⊗ϕi is continuous

0 = lim
m→∞

∥

∥

∥

∥

∥

idk ⊗ϕi

(

u−
m
∑

l=1

vml ⊗ wml

)∥

∥

∥

∥

∥

1

= lim
m→∞

∥

∥

∥

∥

∥

r
∑

l=1

vlϕi(wl)−
m
∑

l=1

vml ϕi(w
m
l )

∥

∥

∥

∥

∥

1

= lim
m→∞

∥

∥

∥

∥

∥

vi −
m
∑

l=1

vml ϕi(w
m
l )

∥

∥

∥

∥

∥

1

.

And thus vi ∈ span
{

vml : 1 ≤ l ≤ m, 1 ≤ m <∞
}‖·‖1

⊂ H1(Ωk). Since i and k were chosen arbitrar-

ily, this shows u ∈
⋂d
k=1H

1(Ωk) ⊗a

(

a
⊗

j 6=k L
2(Ωj)

)

. Finally, by [5, Lemma 6.11]
⋂d
k=1H

1(Ωk) ⊗a
(

a
⊗

j 6=k L
2(Ωj)

)

= a
⊗d

j=1H
1(Ωj). This completes the proof. �

3.1. Existence of Low-Rank Approximations. First, we address the question of existence of low-
rank approximations of a function u ∈ H1(Ω). Since for d > 2 and r > 1 the set Rr(V ) is not closed
even for the case V = L2(Ω) (see [5, Section 9.4.1]), we only consider Tucker formats.
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In analogy to Definition 2.5, for u ∈ H1(Ω) we define the subspace

U j(u) := span

{

ϕ(u) : ϕ =

d
⊗

k=1

ϕk, ϕj = idj, ϕk ∈
(

L2(Ωk))
∗, k 6= j

)

}

.(3.2)

Note that for u ∈ a
⊗d

j=1H
1(Ωj), U

j(u) is a closed subspace of H1(Ωj) and the definition coincides

with the case u ∈ a
⊗d

j=1 L
2(Ωj). Since in this case u can be written as u =

∑r
k=1

⊗d
i=1 v

i
k, for

some r ∈ N, any ϕ from (3.2) applied to u yields ϕ(u) =
∑r

k=1 v
j
k

(

∏

i 6=j ϕi(v
i
k)
)

. And thus U j(u) ⊂

span
{

vjk : 1 ≤ k ≤ r
}

. The subspace U j(u) ⊂ H1(Ωj) is finite dimensional and is closed in any norm.

Thus, together with Lemma 3.1, we can define the Tucker manifold for r = (r1, . . . , rd) and V =

a
⊗d

j=1H
1(Ωj) in the same way as in Definition 2.8. This set remains weakly closed in H1(Ω). To

show this, we first require the following lemma.

Lemma 3.2. Tr
(

a
⊗d

j=1H
1(Ωj)

)

= a
⊗d

j=1H
1(Ωj) ∩ Tr

(

a
⊗d

j=1 L
2(Ωj)

)

.

Proof. The inclusion “⊂” is trivial.

For the other inclusion, assume v ∈ a
⊗d

j=1H
1(Ωj)∩Tr

(

a
⊗d

j=1 L
2(Ωj)

)

. Since v ∈ a
⊗d

j=1H
1(Ωj),

U j(v) ⊂ H1(Ωj) and by [5, Lemma 6.11] v ∈ a
⊗d

j=1 U
j(v) ⊂ a

⊗d
j=1 L

2(Ωj). In particular, since

v ∈ Tr
(

a
⊗d

j=1 L
2(Ωj)

)

, dimU j(v) ≤ rj for all 1 ≤ j ≤ d. Hence, v ∈ Tr
(

a
⊗d

j=1H
1(Ωj)

)

. This

completes the proof. �

Theorem 3.3. Tr
(

a
⊗d

j=1H
1(Ωj)

)

is weakly closed and therefore proximinal in H1(Ω).

Proof. Let {vn}n∈N ⊂ Tr
(

a
⊗d

j=1H
1(Ωj)

)

satisfy vn ⇀ v in H1(Ω). Since
(

L2(Ω)
)∗

⊂
(

H1(Ω)
)∗
,

vn ⇀ v in L2(Ω). By Lemma 3.2, {vn}n∈N ⊂ Tr
(

a
⊗d

j=1 L
2(Ωj)

)

, i.e., dimU j(vn) ≤ rj for all 1 ≤ j ≤

d. By [5, Theorem 6.24], dimU j(v) ≤ lim infn→∞ dimU j(v) ≤ rj , and thus v ∈ Tr
(

a
⊗d

j=1H
1(Ωj)

)

.

Since H1(Ω) is a reflexive Banach space, the set Tr
(

a
⊗d

j=1H
1(Ωj)

)

is proximinal. �

3.2. Minimal Subspaces. The subspaces from (3.2) inherit H1 regularity.

Lemma 3.4. For u ∈ H1(Ω), U j(u) ⊂ H1(Ωj).

Proof. Let v ∈ a
⊗d

j=1H
1(Ωj) and ϕ[j] :=

⊗d
k=1 ϕk, ϕj = idj, ϕk ∈ L2(Ωk)

∗, k 6= j. Clearly, ϕ[j](v) ∈

H1(Ωj). By [5, Lemma 4.97] and [5, Proposition 4.68]

‖ϕ[j](v)‖1 . ‖v‖∨(ej ) . ‖v‖ej .

Thus, ϕ[j] :
(

a
⊗d

j=1H
1(Ωj), ‖ · ‖1

)

→ H1(Ωj) is a continuous linear mapping. Since

a
⊗d

j=1H
1(Ωj) is dense in H

1(Ω), ϕ[j] can be uniquely extended to a bounded linear mapping on H1(Ω)

with the same operator norm, i.e., ϕ[j](v) ∈ H1(Ωj) is well defined for v ∈ H1(Ω) and the statement
follows. �

Before we proceed, we would like to clarify that there are several possible definitions for minimal
subspaces when considering u ∈ H1(Ω). First, there are two possible choices for the dual space leading
to

U ja(u) := span

{

ϕ(u) : ϕ =

d
⊗

k=1

ϕk, ϕj = id, ϕk ∈
(

L2(Ωk))
∗, k 6= j

)

}

,

U jb (u) := span

{

ϕ(u) : ϕ =
d
⊗

k=1

ϕk, ϕj = id, ϕk ∈
(

H1(Ωk))
∗, k 6= j

)

}

,
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where clearly U ja(u) = U j(u). Second, there are two possible choices for the completion norm, which
overall leads to four possible definitions

U jI (u) := U ja(u)
‖·‖0

, U jII(u) := U ja(u)
‖·‖1

,

U jIII(u) := U jb (u)
‖·‖0

, U jIV (u) := U jb (u)
‖·‖1

.

The space U jI (u) is the minimal subspace of u as a function in L2(Ω). For d = 2, U1
II(u) (resp. U

2
II(u))

is the minimal subspace of u as a function in H(1,0) (resp. H(0,1)), U1
III(u) (resp. U2

III(u)) is the

minimal subspace of u as a function in H(0,1) (resp. H(1,0)) and U jIV (u) is the minimal subspace of u

as a function in H1
mix(Ω). Since we want to consider precisely u ∈ H1(Ω), we consider u ∈ H(1,0) and

choose the variant U1
II(u) for the left minimal subspace, and u ∈ H(0,1) with the variant U2

II(u) for the
right minimal subspace. Analogously for d > 2.

With the preceding lemma we may now define Umin
j (u) = U ja(u)

‖·‖1
⊂ H1(Ωj). This space differs

from U j(u) in case u 6∈ a
⊗d

j=1H
1(Ωj). We want to check if property (2.2) still holds for H1 functions.

To this end, we require the following assumption.

Assumption 3.5. Let Pj : H1(Ωj) → Umin
j (u) be an orthogonal projection. We assume Pj is contin-

uous in L2

sup
vj∈H1(Ωj),

v 6=0

‖Pjvj‖0
‖v‖0

<∞.

Remark 3.6. We will frequently encounter Assumption 3.5 in the following sections. We will discuss
sufficient conditions for this assumption to be satisfied in part II of this series. We will see that this
assumption is not necessarily satisfied. In fact, we conjecture that there are functions u ∈ H1(Ω) which
do not satisfy the statement of Theorem 3.7. The proof of this, however, seems to be not trivial.

Proposition 3.7. Let u ∈ H1(Ω) and assume 3.5 is satisfied. Then, it holds u ∈ ‖·‖1

⊗d
j=1 U

min
j (u).

Proof. Since u ∈ H1(Ω), by (2.1), u ∈ H1(Ωj) ⊗‖·‖ej

(

a
⊗

k 6=j L
2(Ωk)

)

. The space Umin
j (u) ⊂ H1(Ωj)

is a closed subspace of the Hilbert space H1(Ωj). Thus, Umin
j (u) ∈ G(H1(Ωj)). Moreover, ‖ · ‖ej is a

uniform crossnorm. This holds for any 1 ≤ j ≤ d and thus by [5, Theorem 6.29] we obtain

u ∈
d
⋂

k=1

Umin
k (u)⊗‖·‖ek



a

⊗

j 6=k

L2(Ωj)



 .

Next, following the arguments of [5, Theorem 6.28], consider the orthogonal projection P j : H1(Ωj) →

Umin
j (u). Let Pj := P j ⊗

(

⊗d
k 6=j idk

)

. This is a linear continuous mapping from H1(Ωj) ⊗‖·‖ej
(

a
⊗

k 6=j L2(Ωk)
)

to Umin
j (u)⊗‖·‖ej

(

a
⊗

k 6=j L
2(Ωk)

)

, with ‖Pj‖ = ‖P j‖ = 1 (since ‖ · ‖ej is a uniform

crossnorm).

Take a sequence {un}n∈N ⊂ Umin
j (u)⊗a

(

a
⊗

k 6=j L
2(Ωk)

)

such that limn→∞ ‖u− un‖ej = 0. Clearly,

Pj(un) = un and

‖u− Pju‖ej ≤ ‖u− un‖ej + ‖un − Pju‖ej = ‖u− un‖ej + ‖Pj(un − u)‖ej
≤ 2‖u− un‖ej .

Taking the limit with n, we obtain u = Pju.
Since this holds for any 1 ≤ j ≤ d, we get

u =





d
∏

j=1

Pj



u =





d
⊗

j=1

P j



u.(3.3)

Next, we require a separable representation for u that converges in H1(Ω). This is possible for H1(Ω)
by choosing a complete H1(Ω)-orthonormal system of elementary tensor products (e.g., a Fourier basis)
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or an H1(Ω) Riesz basis of wavelets. Let {
⊗d

j=1 ψ
j
kj

: (kj)
d
j=1 ∈ Nd} be such a system. Then, there

exists a sequence u = (uk)k∈Nd ∈ ℓ2(N
d) such that

u = lim
n→∞

n
∑

k1=1

· · ·
n
∑

kd=1

uk

d
⊗

j=1

ψjkj ,(3.4)

with convergence in ‖ · ‖1. Since ‖ · ‖ej ≤ ‖ · ‖1, 1 ≤ j ≤ d, (3.4) converges in ‖ · ‖ej for all 1 ≤ j ≤ d
as well. Thus, by (3.3) and Assumption 3.5

u =





d
⊗

j=1

P j



u = lim
n→∞

n
∑

k1=1

· · ·
n
∑

kd=1

uk

d
⊗

j=1

P j(ψjkj ),

for any 1 ≤ i ≤ d and with convergence in H1(Ω). We take

un :=
∑n

k1=1 · · ·
∑n

kd=1 uk

⊗d
j=1 P

j(ψjkj ). Clearly, un ∈ a
⊗d

j=1 U
min
j (u) and by above limn→∞ ‖u −

un‖1 = 0. This completes the proof. �

4. H1-Error Analysis of L2-SVD

The singular value decomposition can be utilized to obtain spaces Umin
j (u) and low-rank approx-

imations therein. Interestingly, the resulting spaces are not necessarily the same depending on the
interpretation of u ∈ H1(Ω). In the following we restrict the exposition to d = 2.

If we consider u ∈ L2(Ω), then u can be identified with a compact operator from L2(Ω2) to L
2(Ω1)

such that

u[w] =

∫

Ω2

u(·, y)w(y)dy.(4.1)

for w ∈ L2(Ω2). The adjoint u
∗ : L2(Ω1) → L2(Ω2) is given by u∗[v] =

∫

Ω1
u(x, ·)v(x)dx, for v ∈ L2(Ω1).

Thus, a left singular vector ψ of u satisfies uu∗[ψ] =
∫

Ω2
u(·, y)

∫

Ω1
u(x, y)ψ(x)dxdy = λψ, for some λ ∈

R+, and the accompanying right singular vector satisfies u∗u[φ] =
∫

Ω1
u(x, ·)

∫

Ω2
u(x, y)φ(y)dydx = λφ.

Since u is a compact operator, we can find an L2-orthonormal system of left and right singular
vectors, which we denote by {ψk}k∈N and {φk}k∈N, respectively, and the corresponding singular values

by {σ00k =
√

λ00k }k∈N, sorted by decreasing values such that u = limr→∞
∑r

k=1 σ
00
k ψk ⊗φk, in ‖ · ‖0. We

have the identities U1(u) = span
{

ψk : k ∈ N, σ00k > 0
}

,

U2(u) = span
{

φk : k ∈ N, σ00k > 0
}

. The SVD provides both optimal low-rank approximations of given
rank and an error estimator in the sense that

‖u−
r
∑

k=1

σ00k ψk ⊗ φk‖0 = inf
g∈Rr(L2(Ω))

‖u− g‖0,

‖u−
r
∑

k=1

σ00k ψk ⊗ φk‖
2
0 =

∞
∑

k=r+1

(σ00k )2.

For the case u 6∈ L2(Ω1) ⊗a L
2(Ω2), λ

00
k > 0 for all k ∈ N. Otherwise, we only require finitely many

ψk’s and φk’s. Letting
γk =

1
λ00
k

∫

Ω2

∂
∂xu(·, y)

∫

Ω1
u(x, y)ψk(x)dxdy, we have that

‖γk‖
2
0 =

1

(λ00k )2

∫

Ω1

(∫

Ω2

∂

∂x
u(s, y)

∫

Ω1

u(x, y)ψk(x)dxdy

)2

ds(4.2)

≤
1

(λ00k )2

∫

Ω1

(

∫

Ω2

∂

∂x
u(s, y)

(
∫

Ω1

u2(x, y)dx

)1/2(∫

Ω1

ψ2
k(x)dx

)1/2

dy

)2

ds

≤
1

(λ00k )2
‖ψk‖

2
0

∫

Ω1

(

(∫

Ω2

(
∂

∂x
u(s, y))2dy

)1/2(∫

Ω2

∫

Ω1

u2(x, y)dxdy

)1/2
)2

ds

=
1

(λ00k )2
‖u‖20

∥

∥

∥

∥

∂

∂x
u

∥

∥

∥

∥

2

0

,
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and for all ϕ ∈ C∞
c (Ω1)
∫

Ω1

ϕ(s)γk(s) =

∫

Ω1

ϕ(s)
1

λ00k

∫

Ω2

∂

∂x
u(s, y)

∫

Ω1

u(x, y)ϕk(x)dxdyds

=
1

λ00k

∫

Ω2

∫

Ω1

ϕ(s)
∂

∂s
u(s, y)ds

∫

Ω1

u(x, y)ϕk(x)dxdy

= −
1

λ00k

∫

Ω2

∫

Ω1

d

ds
ϕ(s)u(s, y)ds

∫

Ω1

u(x, y)ϕk(x)dxdy

= −

∫

Ω1

d

ds
ϕ(s)

1

λ00k

∫

Ω2

u(s, y)

∫

Ω1

u(x, y)ϕk(x)dxdyds

= −

∫

Ω1

d

ds
ϕ(s)ψk(s)ds,(4.3)

so that γk =
d
dxψk. Analogously for φk,

d

dx
φk =

1

λ00k

∫

Ω1

∂

∂y
u(x, ·)

∫

Ω2

u(x, y)φk(y)dydx.

Thus, ψk ∈ H1(Ω1), φk ∈ H1(Ω2) for all k ∈ N and, consistently with Lemma 3.4, U1(u) ⊂ H1(Ω1)
and U2(u) ⊂ H1(Ω2). The best rank r approximation in L2,

ur :=

r
∑

k=1

σ00k ψk ⊗ φk,(4.4)

makes sense in H1 and we can consider the error ‖u− ur‖1.

Theorem 4.1. Let u ∈ H1(Ω) and ur be its best rank r approximation in L2 defined by (4.4). We have

‖ur‖
2
1 =

r
∑

k=1

(σ00k )2

(

1 +

∥

∥

∥

∥

d

dx
ψk

∥

∥

∥

∥

2

0

+

∥

∥

∥

∥

d

dy
φk

∥

∥

∥

∥

2

0

)

(4.5)

If

lim
r→∞

‖ur‖1 <∞(4.6)

then ‖u− ur‖1 → 0 and

‖u− ur‖
2
1 =

∞
∑

k=r+1

(σ00k )2

(

1 +

∥

∥

∥

∥

d

dx
ψk

∥

∥

∥

∥

2

0

+

∥

∥

∥

∥

d

dy
φk

∥

∥

∥

∥

2

0

)

.(4.7)

Proof. Clearly, if ur converges to some ũ ∈ H1(Ω), u = ũ a.e. by the simple inequality

‖u− ũ‖0 ≤ inf
r∈N

{‖u− ur‖0 + ‖ũ− ur‖1} = 0.(4.8)

We have

‖ur‖
2
1 =

∥

∥

∥

∥

∥

r
∑

k=1

σ00k ψk ⊗ φk

∥

∥

∥

∥

∥

2

1

=

r
∑

k,l=1

σ00k σ
00
l 〈ψk ⊗ φk, ψl ⊗ φl〉1

=
r
∑

k,l=1

σ00k σ
00
l

(

〈ψk ⊗ φk, ψl ⊗ φl〉0 +

〈

d

dx
ψk ⊗ φk,

d

dx
ψl ⊗ φl

〉

0

+

〈

ψk ⊗
d

dy
φk, ψl ⊗

d

dy
φl

〉

0

)

=

r
∑

k,l=1

σ00k σ
00
l

(

δklδkl +

∥

∥

∥

∥

d

dx
ψk

∥

∥

∥

∥

2

0

δkl + δkl

∥

∥

∥

∥

d

dy
φk

∥

∥

∥

∥

2

0

)

=
r
∑

k=1

(σ00k )2

(

1 +

∥

∥

∥

∥

d

dx
ψk

∥

∥

∥

∥

2

0

+

∥

∥

∥

∥

d

dy
φk

∥

∥

∥

∥

2

0

)

.
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Thus, (‖ur‖
2
1)r∈N is a positive increasing sequence. If (4.6) holds, then (‖ur‖

2
1)r∈N converges. Then, for

m ≥ r ‖um − ur‖
2
1 = ‖um‖

2
1 − ‖ur‖

2
1, which proves that ur is Cauchy and therefore converges. Taking

the limit and by (4.8), we obtain ‖u− ur‖1 → 0. The proof of (4.7) follows similarly as above. �

Remark 4.2. Equation (4.7) is thus a recipe for constructing low-rank approximations via the L2-SVD
but with error control in H1. Assumption (4.6) particularly holds when u is a numerical approximation
to the solution of a PDE.

We can not expect (4.6) to hold in general. Specifically, in (4.2) we applied twice the Cauchy-Schwarz
inequality, which is known to be sharp. Since λ00k = (σ00k )2, this would imply that (4.6) is not satisfied
and ur diverges in H1(Ω). On the other hand, we can think of cases where (4.6) is satisfied, such as in
the case of a Fourier basis.

We ask what are the possible conditions on ψk and φk for (4.6) to be satisfied? Note that this condition
is similar to well-known estimates from approximation theory, specifically approximation via wavelets
or, more generally, multi-scale approximation. There sufficient conditions include the existence of a
uniformly bounded family of projectors that satisfy direct and inverse inequalities.

Translated into our setting, sufficient conditions for (4.6) look as follows. Define the subspaces
Sl := span

{

ψk : 1 ≤ k ≤ 2l
}

⊂ Umin
1 (u), l ∈ N0. We require the Jackson (direct) inequality to be

satisfied

inf
vl∈Sl

‖f − vl‖0 . 2−sl‖f‖1, ∀f ∈ Umin
1 (u),

for some s > 1 and the Bernstein (indirect) inequality ‖vl‖1 . 2s̄l‖vl‖0, for all vl ∈ Sl, for some s̄ > 1.
Analogously for the space generated by the φk’s. For more details we refer to [13, Theorem 5.12] and
[2].

We conclude this part by extending the result to d ≥ 2. Let u ∈ H1(Ω) with Ω = ×d
j=1Ωj,

x = (x1, . . . , xd) ∈ Ω. Then, for any 1 ≤ i ≤ d, we can consider the integral operator

ui : L
2(Ωi) → L2(×

j 6=i

Ωj), ui[w] =

∫

Ωi

u(·, . . . , xi, . . . , ·)w(xi)dxi, w ∈ L2(Ωi).

As before, we can consider the singular vectors {ψik : k ∈ N}, and the corresponding eigenvalues
{λik ∈ R+ : k ∈ N}. The derivatives are given by

d

dxi
ψik =

∫

×j 6=i Ωj

∂

∂xi
u(. . . , xi−1, ·, xi+1, . . .)

∫

Ωi

u(x)ψik(xi)dx.

with the familiar estimate
∥

∥

∥

d
dxi
ψik

∥

∥

∥

0
≤ 1

λi
k

‖u‖0

∥

∥

∥

∂
∂xi
u
∥

∥

∥

0
. The identity

Ui(u) = span

{

ψik : k ∈ N, σik =
√

λik > 0

}

, 1 ≤ i ≤ d,

holds. Define the subspace Bi
ri := span

{

ψik : 1 ≤ k ≤ ri
}

, and the corresponding L2-orthogonal pro-

jector P iri : L
2(Ωi) → Bi

ri , for 1 ≤ i ≤ d. Then, for r = (r1, . . . , rd) ∈ Nd, define

Pr :=
d
⊗

j=1

P jrj , and ur := Pru.(4.9)

The projection Pr is the HOSVD projection from Theorem 2.11. Before we proceed, we require the
following lemma, which is an extension of Theorem 4.1.

Lemma 4.3. Let u ∈ H1(Ω) and Pj
rj = id1 ⊗ · · · ⊗ P jrj ⊗ · · · ⊗ idd . We have

‖Pj
rju‖

2
ej =

rj
∑

k=1

(σjk)
2

(

1 +

∥

∥

∥

∥

d

dx
ψjk

∥

∥

∥

∥

2

0

)

.

If limrj→∞ ‖Pj
rju‖ej <∞, then ‖u− Pj

rju‖ej → 0 and

‖u− Pj
rju‖

2
ej =

∞
∑

k=rj+1

(σjk)
2

(

1 +

∥

∥

∥

∥

d

dx
ψjk

∥

∥

∥

∥

2

0

)
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Proof. We consider the matricisation

M{j}(u) : H
ej → H1(Ωj)⊗‖·‖(1,0) L

2(×
i 6=j

Ωi).

This is a linear isometric isomorphism since ‖ · ‖ej and ‖ · ‖(1,0) are canonical norms (induced by the

same norms). The space H1(Ωj)⊗‖·‖(1,0) L
2(×i 6=j Ωi) is a Hilbert tensor space of order 2 equipped with

the canonical norm, with the H1 norm on the left and L2 norm on the right. Thus, we can apply
Theorem 4.1 to M{j}(u) and the statement follows. �

For the H1 error we get the following result. Remark 4.2 applies here as well.

Theorem 4.4. Let u ∈ H1(Ω) and ur be defined by (4.9). We have

1

d

d
∑

j=1

rj
∑

k=1

(σjk)
2 ≤ ‖ur‖

2
1 ≤

d
∑

j=1

rj
∑

k=1

(σjk)
2

(

1 +

∥

∥

∥

∥

d

dx
ψjk

∥

∥

∥

∥

2

0

)

.(4.10)

Define the constants Γj(rj) := sup
v∈Bj

rj

‖v‖1
‖v‖0

. If

lim
minj rj→∞

d
∑

j=1

rj
∑

k=1

(σjk)
2



1 +

∥

∥

∥

∥

d

dx
ψjk

∥

∥

∥

∥

2

0

+
∑

i 6=j

Γ2
i (ri)



 <∞(4.11)

then ‖u− ur‖1 → 0 and

‖u− ur‖
2
1 ∼

d
∑

j=1

∞
∑

k=rj+1

(σjk)
2

(

1 +

∥

∥

∥

∥

d

dx
ψjk

∥

∥

∥

∥

2

0

)

.(4.12)

Proof. Let Pj
rj be defined as in Lemma 4.3. The projection

∏d
i 6=j P

i
ri is orthogonal in the ‖ · ‖ej norm.

The lower bound in (4.10) is an immediate consequence of [5, Theorem 10.3]. For the upper bound we
get by applying Lemma 4.3

‖Pru‖
2
1 ≤

d
∑

j=1

‖Pru‖
2
ej

=

d
∑

j=1

∥

∥

∥

∥

∥

∥





d
∏

i 6=j

Pi
ri



Pj
rju

∥

∥

∥

∥

∥

∥

2

ej

≤
d
∑

j=1

∥

∥

∥
Pj
rju
∥

∥

∥

2

ej
=

d
∑

j=1

rj
∑

k=1

(σjk)
2

(

1 +

∥

∥

∥

∥

d

dx
ψjk

∥

∥

∥

∥

2

0

)

.

Next, observe that we can bound the ‖ · ‖1 norm of P jrj as follows

‖P jrjv‖1 ≤ Γj(rj)‖|P
j
rjv‖0 ≤ Γj(rj)‖v‖0 ≤ Γj(rj)‖v‖1,

for any v ∈ H1(Ωj). Thus, since ‖ · ‖ej is a uniform crossnorm on Hej , ‖Pj
rj‖ej = ‖P jrj‖1, so that we

can bound ‖Pj
rj‖1 ≤ Γj(rj).

Let um := Pmu be an HOSVD approximation as in (4.9) withmj > rj for all j. Then, since
∏d
i 6=j P

i
ri

is orthogonal w.r.t. ‖ · ‖ej and applying again Lemma 4.3, we have

‖um − ur‖
2
1 ≤

d
∑

j=1

‖(Pm − Pr)u‖
2
ej

≤
d
∑

j=1







∥

∥

∥

∥

∥

∥

(Pj
mj

− Pj
rj )

d
∏

i 6=j

Pi
riu

∥

∥

∥

∥

∥

∥

ej

+

∥

∥

∥

∥

∥

∥

Pj
mj





d
∏

i 6=j

Pi
mi

−
d
∏

i 6=j

Pi
ri



u

∥

∥

∥

∥

∥

∥

ej







2

≤ 2

d
∑

j=1

mj
∑

k=rj+1

(σjk)
2

(

1 +

∥

∥

∥

∥

d

dx
ψjk

∥

∥

∥

∥

2

0

)

+ Γ2
j(mj)

∑

i 6=j

mi
∑

k=ri+1

(σik)
2.

If (4.11) holds, then ur is a Cauchy sequence in H1 and by uniqueness of the limit we must have
‖u− ur‖1 → 0.
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Finally, we show the bounds in (4.12). The mapping id =
⊗d

j=1 idj is an orthogonal projection in

the ‖ · ‖ej norm and Im
(

∏d
i 6=j P

i
ri

)

⊂ Im (id). Thus, for any 1 ≤ j ≤ d

‖(id− Pr)u‖
2
1 ≥ ‖(id− Pr)u‖

2
ej

=

∥

∥

∥

∥

∥

∥



id−





d
∏

i 6=j

Pi
ri



Pj
rj



u

∥

∥

∥

∥

∥

∥

2

ej

≥
∥

∥

∥(id− Pj
rj )u

∥

∥

∥

2

ej
=

∞
∑

k=rj+1

(σjk)
2

(

1 +

∥

∥

∥

∥

d

dx
ψjk

∥

∥

∥

∥

2

0

)

,

where the last equality is due to Lemma 4.3. This shows the lower bound in (4.12).
For the upper bound

‖(id− Pr)u‖
2
1 ≤

d
∑

j=1

‖(id− Pr)u‖
2
ej

=
d
∑

j=1

∥

∥

∥

∥

∥

∥

(id−
d
∏

i 6=j

Pi
ri)u

∥

∥

∥

∥

∥

∥

2

ej

+

∥

∥

∥

∥

∥

∥

d
∏

i 6=j

Pi
ri(id−Pj

rj )u

∥

∥

∥

∥

∥

∥

2

ej

≤
d
∑

j=1





∞
∑

k=rj+1

(σjk)
2 +

∞
∑

k=rj+1

(σjk)
2

(

1 +

∥

∥

∥

∥

d

dx
ψjk

∥

∥

∥

∥

2

0

)





=

d
∑

j=1

∞
∑

k=rj+1

(σjk)
2

(

2 +

∥

∥

∥

∥

d

dx
ψjk

∥

∥

∥

∥

2

0

)

.

This completes the proof. �
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