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1 Introduction

Tensor approximation methods play a central role in the numerical solution of
high dimensional problems arising in a wide range of applications. The reader
is referred to the monograph [9] and surveys [11,5,13,1] for an introduction to
tensor numerical methods and an overview of recent developments in the field.
Low-rank tensor formats based on subspaces are widely used for complexity
reduction in the representation of high-order tensors. Two of the most popular
formats are the Tucker format and the Hierarchical Tucker format [8] (HT for
short). It is possible to show that the Tensor Train format [14], introduced
originally by Vidal [15], is a particular case of the HT format (see e.g. Chapter
12 in [9]). In the framework of topological tensor spaces, first results have been
obtained on the existence of a best approximation in each fixed set of tensors
with bounded rank [3]. In particular, this allows to construct, on a theoretical
level, iterative methods for nonlinear convex optimisation problems over re-
flexive tensor Banach spaces [4]. More generally, this is a crucial property for
proving the stability of algorithms using tree-based tensor formats.

The Tucker and the HT formats are completely characterised by a rooted
tree together with a finite sequence of natural numbers associated to each
vertex of the tree, denominated the tree-based rank. Each number in the tree-
based rank is associated with a class of subspaces of fixed dimension. It can
be shown that for a given tree, every element in the tensor space possesses a
unique tree-based rank. In consequence, given a tree, a tensor space is a union
of sets indexed by the tree-based ranks. It allows to consider for a given tree
two kinds of sets in a tensor space: the set of tensors of fixed tree-based rank
and the set of tensors of bounded tree-based rank.

This paper provides new results on the representation of tensors in general
tree-based Tucker formats, in particular on a characterisation of minimal sub-
spaces compatible with a given tree. It also provides a definition of topological
tensor spaces associated with a given tree, and provides new results on the
existence of best approximations from sets of tensors with bounded tree-based
rank.

The paper is organised as follows. In Section 2 , we introduce the tree-
based tensors as a generalisation, at algebraic level, of the hierarchical tensor
format. Moreover, we provide a new characterisation of the minimal subspaces
of tree-based tensors extending the previous results obtained in [3], and intro-
duce the definition of tree-based rank. Another main result of this section is
Theorem 1, which provides a characterisation for the representation for the set
of tensors with fixed tree-based rank. In Section 3 we introduce a definition
of topological tensor spaces in tree-based format, with the introduction of a
norm at each vertex of the tree. Finally in Section 3, we prove the existence of
best approximations from sets of tensors with bounded tree-based rank under
some assumptions on the norms that are weaker than the ones introduced in
[3].
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2 Algebraic tensors in the tree-based format

2.1 Preliminary definitions and notations

Let D = {1, 2, . . . , d} be a finite index set, and let Vj (1 ≤ j ≤ d), be vector
spaces. Concerning the definition of the algebraic tensor space

VD := a

d
⊗

j=1

Vj ,

we refer to Greub [6]. As underlying field we choose R, but the results hold also
for C. The suffix ‘a’ in a⊗

d
j=1 Vj refers to the ‘algebraic’ nature. By definition,

all elements of V are finite linear combinations of elementary tensors v =
⊗d

j=1vj (vj ∈ Vj) .
For vector spaces Vj and Wj over R, let linear mappings Aj : Vj → Wj

(1 ≤ j ≤ d) be given. Then the definition of the elementary tensor

A =

d
⊗

j=1

Aj : VD = a

d
⊗

j=1

Vj −→ WD = a

d
⊗

j=1

Wj

is given by

A





d
⊗

j=1

vj



 :=
d

⊗

j=1

(Ajvj) . (1)

Note that (1) uniquely defines the linear mapping A : VD → WD. We recall
that L(V,W ) is the space of linear maps from V into W, while V ′ = L(V,R) is
the algebraic dual of V . For normed spaces, L(V,W ) denotes the continuous
linear maps, while V ∗ = L(V,R) is the topological dual of V .

2.2 Minimal subspaces in tensor representations

For a given α ∈ 2D \ {∅, D}, we let Vα := a

⊗

j∈α Vj , with the convention
V{j} = Vj for all j ∈ D. The algebraic tensor space VD is identified with
Vα⊗aVαc , where αc = D\α. For a tensor v ∈ VD = Vα⊗aVαc , the minimal
subspace Umin

α (v) ⊂ Vα of v is defined by the properties that v ∈ Umin
α (v)⊗a

Vα and v ∈ Uα ⊗a Vα implies Umin
α (v) ⊂ Uα. Here we use the notation

Umin
{j} (v) = Umin

j (v), and we adopt the convention Umin
D (v) = span{v}. We

recall some useful results on minimal subspaces (see Section 2.2 in [3]).

Proposition 1 Let v ∈ VD. For any α ∈ 2D \ {∅, D}, there exists a unique
minimal subspace Umin

α (v), where dimUmin
α (v) < ∞. Furthermore, it holds

dimUmin
α (v) = dimUmin

αc (v).

The relation between minimal subspaces is as follows (see Corollary 2.9 of [3]).



4 Antonio Falcó et al.

Proposition 2 Let v ∈ VD. For any α ∈ 2D with #α ≥ 2 and a non-trivial
partition Pα of α, it holds

Umin
α (v) ⊂ a

⊗

β∈Pα

Umin
β (v) .

Let PD be a given non-trivial partition of D. The algebraic tensor space
VD = a

⊗d
j=1 Vj is identified with a

⊗

α∈PD
Vα . By definition of the minimal

subspaces Umin
α (v), α ∈ PD, we have

v ∈ a

⊗

α∈PD

Umin
α (v) .

For a given α ∈ PD with #α ≥ 2 and a non-trivial partition Pα of α, we also
have

v ∈





a

⊗

β∈Pα

Umin
β (v)



⊗a





a

⊗

δ∈PD\{α}

Umin
δ (v)



 .

The following result gives a characterisation of minimal subspaces.

Proposition 3 Let v ∈ VD and let α be a subset of D with #α ≥ 2 and
Pα be a non-trivial partition of α. Assume that Vα and Vβ, for β ∈ Pα, are
normed spaces. Then for each β ∈ Pα, it holds

Umin
β (v) = span







(

idβ ⊗ ϕ(α\β)
)

(vα) : vα ∈ Umin
α (v), ϕ(α\β) ∈ a

⊗

γ∈Pα\{β}

V∗
β







Proof First observe that VD = Vα⊗aVαc =
(

a

⊗

β∈Pα
Vβ

)

⊗aVαc . From [3,

Theorem 2.17], we have Umin
α (v) =

{

(idα ⊗ϕ(αc))(v) : ϕ(αc) ∈ V∗
αc

}

. Since
v ∈ Vα ⊗ Umin

αc (v), we can replace V∗
αc by the larger space Umin

αc (v)∗, and
obtain

Umin
α (v) =

{

(idα ⊗ϕ(αc))(v) : ϕ(αc) ∈ Umin
αc (v)∗

}

.

In a similar way and again from [3, Theorem 2.17], we also prove that for any
β ∈ Pα, it holds

Umin
β (v) =







(idβ ⊗ϕ(βc))(v) : ϕ(βc) ∈





a

⊗

γ∈Pα\{β}

Umin
γ (v)∗



⊗a U
min
αc (v)∗







.

Take vα ∈ Umin
α (v). Then there exists ϕ(αc) ∈ Umin

αc (v)∗ such that vα =
(

idα ⊗ϕ(γ)
)

(v). Now, for ϕ(α\β) ∈ a

⊗

γ∈Pα\{β}
Umin
γ (v)∗ , we have

(

idβ ⊗ϕ(α\β)
)

(vα) =
(

idβ ⊗ϕ(α\β) ⊗ϕ(αc)
)

(v),
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and hence
(

idβ ⊗ϕ(α\β)
)

(vα) ∈ Umin
β (v). This proves a first inclusion. Now

for β ∈ Pα, take vβ ∈ Umin
β (v), then there exists

ϕ(βc) ∈



a

⊗

γ∈Pα\{β}

Umin
γ (v)∗



⊗a U
min
αc (v)∗

such that vβ =
(

idβ ⊗ϕ(βc)
)

(v). Then ϕ(βc) =
∑r

l=1ψ
(α\β)
l ⊗ φ

(αc)
l , where

φ
(αc)
l ∈ Umin

αc (v)∗ and ψ
(α\β)
l ∈ a

⊗

γ∈Pα\{β}
Umin
γ (v)∗ , for 1 ≤ l ≤ r. Thus,

vβ =
(

idβ ⊗ϕ(βc)
)

(v) =
r

∑

i=1

(

idβ ⊗ψ
(α\β)
i ⊗ φ

(αc)
i

)

(v)

=

r
∑

i=1

(

idβ ⊗ ψ
(α\β)
i

)(

(idα ⊗ φ
(αc)
i )(v)

)

.

Observing that (idα⊗φ
(αc)
l )(v) ∈ Umin

α (v), we obtain the other inclusion. ⊓⊔

2.3 Algebraic tensor spaces in the tree-based format

Definition 1 A tree TD is called a dimension partition tree of D if

(a) all vertices α ∈ TD are non-empty subsets of D,
(b) D is the root of TD,
(c) every vertex α ∈ TD with #α ≥ 2 has at least two sons and the set of sons

of α, denoted S(α), is a non-trivial partition of α,
(d) every vertex α ∈ TD with #α = 1 has no son and is called a leaf.

The set of leaves is denoted by L(TD). A straightforward consequence of
Definition 1 is that the set of leaves L(TD) coincides with the singletons of
D, i.e., L(TD) = {{j} : j ∈ D} and hence it is the trivial partition of D.
We remark that for a tree TD such that S(D) 6= L(TD), S(D) is a non-trivial
partition of D.

We denote by level(α), α ∈ TD, the levels of the vertices in TD, which
are such that level(D) = 0 and for any pair α, β ∈ TD such that β ∈ S(α),
level(β) = level(α) + 1. The depth1 of the tree TD is defined as depth(TD) =
maxα∈TD

level(α).

Definition 2 For a tensor space VD and a dimension partition tree TD, the
pair (VD, TD) is called a representation of the tensor space VD in tree-based
format, and is associated with the collection of spaces {Vα}α∈TD\D.

Example 1 (Tucker format) In Figure 1, D = {1, 2, 3, 4, 5, 6} and

TD = {D, {1}, {2}, {3}, {4}, {5}, {6}}.

Here depth(TD) = 1. This corresponds to the Tucker format.

1 By using the notion of edge, that is, the connection between one vertex to another,
then our definition of depth coincides with the classical definition of height, i.e. the longest
downward path between the root and a leaf.
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{1, 2, 3, 4, 5, 6}

{6}{5}{4}{3}{2}{1}

Fig. 1 Tuker format: dimension partition tree depth(TD) = 1 with S(D) = L(TD).

Example 2 In Figure 2, D = {1, 2, 3, 4, 5, 6} and

TD = {D, {1, 2, 3}, {4, 5}, {1}, {2}, {3}, {4}, {5}, {6}}.

Here depth(TD) = 2.

{1, 2, 3, 4, 5, 6}

{6}{4, 5}

{5}{4}

{1, 2, 3}

{3}{2}{1}

Fig. 2 A dimension partition tree with depth(TD) = 2.

Let N0 := N∪{0} denote the set of non-negative integers. For each v ∈ VD,

we have that (dimUmin
α (v))α∈2D\{∅} is in N

2#D−1
0 .

Definition 3 For a given partition dimension tree TD overD, and for each v ∈
VD, we define its tree-based rank by the tuple rankTD

(v) := (dimUmin
α (v))α∈TD

∈

N
#TD

0 .

Definition 4 We will say that r := (rα)α∈TD
∈ N#TD is an admissible tuple

for TD, if there exists v ∈ VD such that dimUmin
α (v) = rα for all α ∈ TD. We

will denote the set of admissible ranks for the representation (VD, TD) of the
tensor space VD by

AD(VD, TD) := {(dimUmin
α (v))α∈TD

: v ∈ VD}.

2.4 The set of tensors in tree-based format with fixed or bounded tree-based
rank

Definition 5 Let TD be a given dimension partition tree and fix some tuple
r ∈ AD(VD, TD). Then the set of tensors of fixed tree-based rank r is defined
by

FT r(VD, TD) :=
{

v ∈ VD : dimUmin
α (v) = rα for all α ∈ TD

}

(2)

and the set of tensors of tree-based rank bounded by r is defined by

FT ≤r(VD, TD) :=
{

v ∈ VD : dimUmin
α (v) ≤ rα for all α ∈ TD

}

. (3)
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For r, s ∈ N
#TD

0 we write s ≤ r if and only if sα ≤ rα for all α ∈ TD. Then
fo a fixed r ∈ AD(VD, TD), we have

FT ≤r(VD, TD) :=
⋃

s≤r

s∈AD(VD ,TD)

FT s(VD, TD). (4)

We point out that in [2] is introduced a representation ofVD in Tucker format.
Letting TTucker

D be the Tucker dimension partition tree (see example 1) and
given r ∈ AD(VD, TTucker

D ), we define the set of tensors with fixed Tucker rank
r by

Mr(VD) := FT r(VD, TTucker
D ) =

{

v ∈ VD : dimUmin
k (v) = rk, k ∈ L(TTucker

D )
}

.

Then

VD =
⋃

r∈AD(VD,TTucker
D

)

Mr(VD).

2.5 The representation of tensors in tree based format with fixed tree based
rank

Before stating the next result we recall the definition of the ‘matricisation’ (or
‘unfolding’) of a tensor in a finite-dimensional setting.

Definition 6 Let α be a finite set of indices, Pα be a non-trivial partition of
α, and r = (rµ)µ∈Pα

∈ N#Pα . For β ∈ Pα, we define a map Mβ

Mβ : R×µ∈Pα
rµ → R

rβ×(
∏

µ∈Pα\{β} rµ),
C(iµ)µ∈Pα

7→ Ciβ ,(iµ)µ∈Pα\{β}

,

which is an isomorphism. Given C ∈ R×µ∈Pα
rµ we have that C ∈ Mr

(

R×µ∈Pα
rµ
)

if and only if rankMβ(C) = rβ for each β ∈ Pα, or equivalentlyMβ(C)Mβ(C)T ∈
GL(Rrβ ) for β ∈ Pα.

The next result gives us a characterisation of the tensors in FT r(VD, TD).

Theorem 1 Let TD be a dimension partition tree over D with depth(TD) = d.
Given r ∈ AD(VD, TD) then the following statements are equivalent.

(a) v ∈ FT r(VD, TD).

(b) Given {u
(k)
ik

: 1 ≤ ik ≤ rk} a fixed basis of Umin
k (v) for k ∈ L(TD),

v =
∑

1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

⊗

α∈S(D)

u
(α)
iα

, (5)
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for a unique C(D) ∈ Mr(R
×β∈S(D) rβ ) and where for each µ ∈ TD \ {D}

such that S(µ) 6= ∅, there exists a unique C(µ) ∈ R
rµ××β∈S(µ) rβ such that

rankMµ(C
(µ)) = dimUmin

µ (v) = rµ, and the set {u
(µ)
iµ

: 1 ≤ iµ ≤ rµ}, with

u
(µ)
iµ

=
∑

1≤iβ≤rβ
β∈S(µ)

C
(µ)
iµ,(iβ)β∈S(µ)

⊗

β∈S(µ)

u
(β)
iβ

(6)

for 1 ≤ iµ ≤ rµ, is a basis of Umin
µ (v).

Proof (b) clearly implies (a). Now consider v ∈ FT r(VD, TD). Since v ∈
⊗

α∈S(D) U
min
α (v), there exists a unique C(D) ∈ R

×β∈S(D) rβ such that

v =
∑

1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

⊗

α∈S(D)

u
(α)
iα

,

where {u
(α)
iα

: 1 ≤ iα ≤ rα} is a fixed basis of Umin
α (v) for α ∈ S(D). Since

rankMα(C
(D)) = dimUmin

α (v) = rα for each α ∈ S(D), we have that C(D) ∈

Mr(R
×β∈S(D) rβ ). Now, for each µ ∈ TD \ {D} such that S(µ) 6= ∅, thanks to

Proposition 2, we have

Umin
µ (v) ⊂ a

⊗

β∈S(µ)

Umin
β (v) .

Consider {u
(µ)
iµ

: 1 ≤ iµ ≤ rµ} a basis of Umin
µ (v) and {u

(β)
iβ

: 1 ≤ iβ ≤ rβ} a

basis of Umin
β (v) for β ∈ S(µ) and 1 ≤ iµ ≤ rµ. Then, there exists a unique

C(µ) ∈ R
rµ×(×β∈S(α) rβ) such that

u
(µ)
iµ

=
∑

1≤iβ≤rβ
β∈S(µ)

C
(µ)
iµ,(iβ)β∈S(µ)

⊗

β∈S(µ)

u
(β)
iβ

,

for 1 ≤ iµ ≤ rµ. Since {u
(µ)
iµ

: 1 ≤ iµ ≤ rµ} is a basis, then

rankMµ(C
(µ)) = dimUmin

µ (v) = rµ, (7)

holds for each µ ∈ TD \ {D} such that S(µ) 6= ∅. Then (c) holds. ⊓⊔

3 Topological tensor spaces in the tree-based format

First, we recall the definition of tensor Banach spaces.
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Definition 7 We say that V‖·‖ is a Banach tensor space if there exists an
algebraic tensor spaceV and a norm ‖·‖ on V such that V‖·‖ is the completion
of V with respect to the norm ‖·‖, i.e.

V‖·‖ := ‖·‖

d
⊗

j=1

Vj = a

⊗d

j=1
Vj

‖·‖

.

If V‖·‖ is a Hilbert space, we say that V‖·‖ is a Hilbert tensor space.

Next, we give some examples of Banach and Hilbert tensor spaces.

Example 3 For Ij ⊂ R (1 ≤ j ≤ d) and 1 ≤ p < ∞, the Sobolev spaceHN,p(Ij)
consists of all univariate functions f from Lp(Ij) with bounded norm2

‖f‖N,p;Ij
:=

( N
∑

n=0

∫

Ij

|∂nf |p dx

)1/p

,

whereas the space HN,p(I) of d-variate functions on I = I1×I2× . . .×Id ⊂ R
d

is endowed with the norm

‖f‖N,p :=
(

∑

0≤|n|≤N

∫

I

|∂nf |p dx
)1/p

with n ∈ Nd
0 being a multi-index of length |n| :=

∑d
j=1 nj . For p > 1 it is

well known that HN,p(Ij) and HN,p(I) are reflexive and separable Banach
spaces. Moreover, for p = 2, the Sobolev spaces HN (Ij) := HN,2(Ij) and
HN (I) := HN,2(I) are Hilbert spaces. As a first example,

HN,p(I) = ‖·‖N,p

d
⊗

j=1

HN,p(Ij)

is a Banach tensor space. Examples of Hilbert tensor spaces are

L2(I) = ‖·‖0,2

d
⊗

j=1

L2(Ij) and HN (I) = ‖·‖N,2

d
⊗

j=1

HN (Ij) for N ∈ N.

In the definition of a tensor Banach space ‖·‖

⊗

j∈D Vj we have not fixed
whether the Vj , for j ∈ D, are complete or not. This leads us to introduce the
following definition.

Definition 8 Let D be a finite index set and TD be a dimension partition tree
over D. Let (Vj , ‖ · ‖j) be a normed space such that Vj‖·‖j

is a Banach space

obtained by the completion of Vj , for j ∈ D, and consider a representation
{Vα}α∈TD\{D} of the tensor space VD = a

⊗

j∈D Vj where for each α ∈ TD \

2 It suffices to have in (8) the terms n = 0 and n = N. The derivatives are to be understood
as weak derivatives.
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L(TD) we have a tensor spaceVα = a

⊗

β∈S(α)Vβ . If for each α ∈ TD\L(TD)

there exists a norm ‖ · ‖α defined on Vα such that Vα‖·‖α
= ‖·‖α

⊗

β∈S(α)Vβ

is a tensor Banach space, we say that {Vα‖·‖α
}α∈TD\{D} is a representation of

the tensor Banach space VD‖·‖D
= ‖·‖D

⊗

j∈D Vj in the topological tree-based
format.

For α ∈ TD \ L(TD),

Vα‖·‖α
= ‖·‖α

⊗

j∈α

Vj = ‖·‖α

⊗

β∈S(α)

Vβ .

Example 4 Figure 3 gives an example of a representation in the topological
tree-based format for an anisotropic Sobolev space.

Lp(I1)⊗a HN,p(I2)⊗a HN,p(I3)
‖·‖123

HN,p(I2) ⊗a HN,p(I3)
‖·‖23

HN,p(I3)HN,p(I2)

Lp(I1)

Fig. 3 A representation in the topological tree-based format for the tensor Banach space

Lp(I1)⊗a HN,p(I2)⊗a HN,p(I3)
‖·‖123

. Here ‖ · ‖23 and ‖ · ‖123 are given norms.

Remark 1 Observe that the example in Figure 4 is not included in the defini-
tion of the topological tree-based format. Moreover, for a tensor v ∈ Lp(I1)⊗a

(HN,p(I2) ⊗‖·‖23
HN,p(I3)), we have Umin

23 (v) ⊂ HN,p(I2) ⊗‖·‖23
HN,p(I3).

However, in the topological tree-based representation of Figure 3, for a given
v ∈ Lp(I1)⊗aH

N,p(I2)⊗aH
N,p(I3) we have U

min
23 (v) ⊂ HN,p(I2)⊗aH

N,p(I3),
and hence Umin

23 (v) ⊂ Umin
2 (v) ⊗a U

min
3 (v).

The difference between the tensor spaces involved in Figure 3 and Figure
4 is given by the fact that since

HN,p(I2)⊗a H
N,p(I3) ⊂ HN,p(I2)⊗a HN,p(I3)

‖·‖23

then

Lp(I1)⊗a HN,p(I2)⊗a HN,p(I3)
‖·‖123

⊂ Lp(I1)⊗a HN,p(I2)⊗a HN,p(I3)
‖·‖23

.

A desirable property for the tensor product is that if ‖ · ‖α for each α ∈
TD \ L(TD) is a norm on the tensor space a

⊗

β∈S(α) Vβ‖·‖β
, then

‖·‖α

⊗

β∈S(α)

Vβ‖·‖β
= ‖·‖α

⊗

β∈S(α)

Vβ = ‖·‖α

⊗

j∈α

Vj (9)
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Lp(I1)⊗a HN,p(I2)⊗a HN,p(I3)
‖·‖23

‖·‖123

HN,p(I2)⊗a HN,p(I3)
‖·‖23

HN,p(I3)HN,p(I2)

Lp(I1)

Fig. 4 A representation for the tensor Banach space

Lp(I1)⊗a HN,p(I2)⊗a HN,p(I3)
‖·‖23

‖·‖123

, using a tree. Here ‖ · ‖23 and ‖ · ‖123
are given norms.

must be true. To precise these ideas, we introduce the following definitions
and results.

Let ‖·‖j , 1 ≤ j ≤ d, be the norms of the vector spaces Vj appearing in

VD = a

⊗d
j=1 Vj . By ‖·‖D we denote the norm on the tensor space VD. Note

that ‖·‖D is not determined by ‖·‖j , for j ∈ D, but there are relations which

are ‘reasonable’. Any norm ‖·‖ on a

⊗d
j=1 Vj satisfying

∥

∥

∥

⊗d

j=1
vj

∥

∥

∥ =
∏d

j=1
‖vj‖j for all vj ∈ Vj (1 ≤ j ≤ d) (10)

is called a crossnorm. As usual, the dual norm of ‖·‖ is denoted by ‖·‖∗. If ‖·‖

is a crossnorm and also ‖·‖∗ is a crossnorm on a

⊗d
j=1 V

∗
j , i.e.,

∥

∥

∥

⊗d

j=1
ϕ(j)

∥

∥

∥

∗

=
∏d

j=1
‖ϕ(j)‖∗j for all ϕ(j) ∈ V ∗

j (1 ≤ j ≤ d) , (11)

then ‖·‖ is called a reasonable crossnorm.

Remark 2 Eq. (10) implies the inequality ‖
⊗d

j=1 vj‖ .
∏d

j=1 ‖vj‖j which

is equivalent to the continuity of the multilinear tensor product mapping3

between normed spaces:

⊗

:
d

×
j=1

(

Vj , ‖·‖j

)

−→

(

a

d
⊗

j=1

Vj , ‖·‖

)

, (12)

defined by
⊗

((v1, . . . , vd)) =
⊗d

j=1 vj , the product space being equipped
with the product topology induced by the maximum norm ‖(v1, . . . , vd)‖ =
max1≤j≤d ‖vj‖j.

3 Recall that a multilinear map T from ×d

j=1(Vj , ‖ · ‖j) equipped with the product
topology to a normed space (W, ‖ · ‖) is continuous if and only if ‖T‖ < ∞, with

‖T‖ := sup
(v1,...,vd)

‖(v1,...,vd)‖≤1

‖T (v1, . . . , vd)‖ = sup
(v1,...,vd)

‖v1‖1≤1,...,‖vd‖d≤1

‖T (v1, . . . , vd)‖ = sup
(v1,...,vd)

‖T (v1, . . . , vd)‖

‖v1‖1 . . . ‖vd‖d
.
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The following result is a consequence of Lemma 4.34 of [9].

Lemma 1 Let (Vj , ‖ · ‖j) be normed spaces for 1 ≤ j ≤ d. Assume that ‖ · ‖

is a norm on the tensor space a

⊗d
j=1 Vj‖·‖j

such that the tensor product map

⊗

:
d

×
j=1

(

Vj‖·‖j
, ‖·‖j

)

−→

(

a

d
⊗

j=1

Vj‖·‖j
, ‖·‖

)

(13)

is continuous. Then (12) is also continuous and

‖·‖

d
⊗

j=1

Vj‖·‖j
= ‖·‖

d
⊗

j=1

Vj

holds.

Definition 9 Assume that for each α ∈ TD \L(TD) there exists a norm ‖ · ‖α
defined on a

⊗

β∈S(α) Vβ‖·‖β
. We will say that the tensor product map

⊗

is

TD-continuous if the map

⊗

: ×
β∈S(α)

(Vβ‖·‖β
, ‖ · ‖β) →





a

⊗

β∈S(α)

Vβ‖·‖β
, ‖ · ‖α





is continuous for each α ∈ TD \ L(TD).

The next result gives the conditions to have (9).

Theorem 2 Assume that we have a representation {Vα‖·‖α
}α∈TD\{D} in the

topological tree-based format of the tensor Banach space VD‖·‖D
= ‖·‖D

⊗

α∈S(D) Vα ,

such that for each α ∈ TD\L(TD), the norm ‖·‖α is also defined on a

⊗

β∈S(α) Vβ‖·‖β

and the tensor product map
⊗

is TD-continuous. Then

‖·‖α

⊗

β∈S(α)

Vβ‖·‖β
= ‖·‖α

⊗

β∈S(α)

Vβ = ‖·‖α

⊗

j∈α

Vj ,

holds for all α ∈ TD \ L(TD).

Proof From Lemma 1, if the tensor product map

⊗

: ×
β∈S(α)

(Vβ‖·‖β
, ‖ · ‖β) −→ (a

⊗

β∈S(α)

Vβ‖·‖β
, ‖ · ‖α)

is continuous, then

‖·‖α

⊗

β∈S(α)

Vβ‖·‖β
= ‖·‖α

⊗

β∈S(α)

Vβ ,

holds. Since Vα = a

⊗

β∈S(α) Vβ = a

⊗

j∈α Vj , the theorem follows. ⊓⊔
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Example 5 Assume that the tensor product maps

⊗

: (Lp(I1), ‖·‖0,p;I1)×(HN,p(I2)⊗‖·‖23
HN,p(I3), ‖·‖23) → (Lp(I1)⊗a(H

N,p(I2)⊗‖·‖23
HN,p(I3)), ‖·‖123)

and
⊗

: (HN,p(I2), ‖·‖N,p;I2)×(HN,p(I3), ‖·‖N,p;I3) → (HN,p(I2)⊗aH
N,p(I3), ‖·‖23)

are continuous. Then the trees of Figure 3 and Figure 4 are the same.

4 On the best approximation in FT ≤r(VD)

Now we discuss about the best approximation problem in FT ≤r(VD). For this,
we need a stronger condition than the TD-continuity of the tensor product.
Grothendieck [7] named the norm ‖·‖∨ introduced below the injective norm.

Definition 10 Let Vi be a Banach space with norm ‖·‖i for 1 ≤ i ≤ d. Then

for v ∈ V = a

⊗d
j=1 Vj define the norm ‖·‖∨(V1,...,Vd)

, called the injective
norm, by

‖v‖∨(V1,...,Vd)
:= sup

{

|(ϕ1 ⊗ ϕ2 ⊗ . . .⊗ ϕd) (v)|
∏d

j=1 ‖ϕj‖∗j
: 0 6= ϕj ∈ V ∗

j , 1 ≤ j ≤ d

}

.

(14)

It is well known that the injective norm is a reasonable crossnorm (see
Lemma 1.6 in [12] and (10)-(11)). Further properties are given by the next
proposition (see Lemma 4.96 and 4.2.4 in [9]).

Proposition 4 Let Vi be a Banach space with norm ‖·‖i for 1 ≤ i ≤ d, and

‖ · ‖ be a norm on V := a

⊗d
j=1 Vj . The following statements hold.

(a) For each 1 ≤ j ≤ d introduce the tensor Banach space

Xj := ‖·‖∨(V1,...,Vj−1 ,Vj+1,...,Vd)

⊗

k 6=j

Vk .

Then

‖ · ‖∨(V1,...,Vd) = ‖ · ‖∨(Vj ,Xj) (15)

holds for 1 ≤ j ≤ d.
(b) The injective norm is the weakest reasonable crossnorm on V, i.e., if ‖·‖

is a reasonable crossnorm on V, then

‖·‖ & ‖·‖∨(V1,...,Vd)
. (16)

(c) For any norm ‖·‖ on V satisfying ‖·‖∨(V1,...,Vd)
. ‖·‖ , the map (12) is

continuous, and hence Fréchet differentiable.
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In Corollary 4.4 in [3] the following result, which is re-stated here using the
notations of the present paper, is proved as a consequence of a similar result
showed for tensors in Tucker format with bounded rank.

Theorem 3 Let VD = a

⊗

j∈D Vj and let {Vαj ‖·‖αj
: 2 ≤ j ≤ d} ∪ {Vj‖·‖j

:

1 ≤ j ≤ d} for d ≥ 3, be a representation of a reflexive Banach tensor space
VD‖·‖D

= ‖·‖D

⊗

j∈D Vj , in topological tree-based format such that

(a) ‖ · ‖D & ‖ · ‖∨(V1‖·‖j
,...,Vd‖·‖d

),

(b) Vαd
= Vd−1 ⊗a Vd, and Vαj

= Vj−1 ⊗a Vαj+1 , for 2 ≤ j ≤ d− 1, and
(c) ‖ · ‖αj

:= ‖ · ‖∨(V j−1 ‖·‖j−1
,...,Vd‖·‖d

) for 2 ≤ j ≤ d.

Then for each v ∈ VD‖·‖D
there exists ubest ∈ FT ≤r(VD) such that

‖v− ubest‖D = min
u∈FT ≤r(VD)

‖v − u‖D.

It seems clear that tensor Banach spaces as we show in Example 4 are
not included in this framework. So a natural question is to ask if for a rep-
resentation in the topological tree-based format of a reflexive Banach space
the statement of Theorem 3 is also true. To prove this, we will reformulate
some of the results given in [3]. In the aforementioned paper, the milestone to
prove the existence of a best approximation is the extension of the definition
of minimal subspaces for tensors v ∈ VD‖·‖D

\VD. To do this the authors use

a result similar to the following lemma (see Lemma 3.8 in [3]).

Lemma 2 Let Vj‖·‖j
be a Banach space for j ∈ D, where D is a finite index

set, and α1, . . . , αm ⊂ 2D \ {D, ∅}, be such that αi ∩ αj = ∅ for all i 6= j and
D =

⋃m
i=1 αi. Assume that if #αi ≥ 2 for some 1 ≤ i ≤ m, then Vαi ‖·‖αi

is

a tensor Banach space. Consider the tensor space

VD := a

m
⊗

i=1

Vαi ‖·‖αi

endowed with the injective norm ‖ · ‖∨(Vα1 ‖·‖α1
,...,Vαm ‖·‖αm

). Fix 1 ≤ k ≤

m, then given ϕ[αk]
∈ a

⊗

i6=k V
∗
αi ‖·‖αi

the map idαk
⊗ ϕ[αk]

belongs to

L
(

VD,Vαk ‖·‖αk

)

. Moreover, idαk
⊗ϕ[αk] ∈ L(VD

‖·‖,
,Vαk ‖·‖αk

) for any

norm satisfying
‖ · ‖ & ‖ · ‖∨(Vα1 ‖·‖α1

,...,Vαm ‖·‖αm
).

Let {Vα‖·‖α
}α∈TD\{D} be a representation of the Banach tensor space

VD‖·‖D
= ‖·‖D

⊗

j∈D Vj , in the topological tree-based format and assume

that the tensor product map
⊗

is TD-continuous. From Theorem 2, we may
assume that we have a tensor Banach space

Vα‖·‖α
= ‖·‖α

⊗

β∈S(α)

Vβ‖·‖β
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for each α ∈ TD \ L(TD), and a Banach space Vj‖·‖j
for j ∈ L(TD). Let

α ∈ TD \ L(TD). To simplify the notation we write for A,B ⊂ S(α)

‖ · ‖∨(A) := ‖ · ‖∨({Vδ‖·‖δ
:δ∈A}),

and
‖ · ‖∨(A,∨(B)) := ‖ · ‖∨({Vδ‖·‖δ

:δ∈A},XB)

where
XB := ‖·‖∨(B)

⊗

β∈B

Vβ‖·‖β
.

From Proposition 4(a), we can write

‖ · ‖∨(S(α)) = ‖ · ‖∨(β,∨(S(α)\β))

for each β ∈ S(α). From now on, we assume that

‖ · ‖α & ‖ · ‖∨(S(α)) for each α ∈ TD \ L(TD), (17)

holds. Recall that Proposition 4(c) implies that the tensor product map
⊗

is
TD-continuous. Since ‖ · ‖α & ‖ · ‖∨(β,∨(S(α)\β)) holds for each β ∈ S(α), the
tensor product map

⊗

: (Vβ‖·‖β
, ‖ · ‖β)×





‖·‖∨(S(α)\β)

⊗

δ∈S(α)\{β}

Vδ‖·‖δ
, ‖ · ‖∨(S(α)\β)



 → (Vα‖·‖α
, ‖ · ‖α)

is also continuous for each β ∈ S(α). Moreover, by Theorem 2,

Vα‖·‖α
= ‖·‖α

⊗

β∈S(α)

Vβ‖·‖β
= ‖·‖α

⊗

β∈S(α)

Vβ = ‖·‖α

⊗

j∈α

Vj ,

holds for each α ∈ TD \ L(TD). Observe, that V∗
α‖·‖α

⊂ V∗
α for all α ∈ S(D).

Take VD = a

⊗

j∈D Vj . Since ‖ · ‖D & ‖ · ‖∨(S(D)), from Lemma 2 and
Proposition 3, we can extend for v ∈ VD‖·‖D

\VD, the definition of minimal

subspace for each α ∈ S(D) as

Umin
α (v) :=







(idα ⊗ϕ[α])(v) : ϕ[α] ∈ a

⊗

β∈S(D)\{α}

V∗
β







.

Observe that (idα ⊗ϕ[α]) ∈ L(VD‖·‖D
,Vα‖·‖α

). Recall that if v ∈ VD and

α /∈ L(TD), from Proposition 2, we have Umin
α (v) ⊂ a

⊗

β∈S(α) U
min
β (v) ⊂

a

⊗

β∈S(α) Vβ . Moreover, by Proposition 3, for β ∈ S(α) we have

Umin
β (v) = span







(idβ ⊗ϕ[β])(vα) : vα ∈ Umin
α (v) and ϕ[β] ∈ a

⊗

δ∈S(α)\{β}

V∗
δ







= span







(idβ ⊗ϕ[β]) ◦ (idα ⊗ϕ[α])(v) : ϕ[α] ∈ a

⊗

µ∈S(D)\{α}

V∗
µ and ϕ[β] ∈ a

⊗

δ∈S(α)\{β}

V∗
δ







.
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Thus, (idα ⊗ϕ[α])(v) ∈ Umin
α (v) ⊂ Vα ⊂ Vα‖·‖α

, and hence

(idβ ⊗ϕ[β]) ◦ (idα ⊗ϕ[α])(v) ∈ Umin
β (v) ⊂ Vβ ⊂ Vβ‖·‖β

,

when #β ≥ 2. However, if v ∈ VD‖·‖D
\VD then (idα ⊗ϕ[α])(v) ∈ Umin

α (v) ⊂

Vα‖·‖α
. Since ‖ · ‖α & ‖ · ‖∨(S(α)) also by Lemma 2 we have idβ ⊗ϕ[β] ∈

L(Vα‖·‖α
,Vβ‖·‖β

). In consequence, a natural extension of the definition of

minimal subspace Umin
β (v), for v ∈ VD‖·‖D

\VD, is given by

Umin
β (v) := span







(idβ ⊗ϕ[β]) ◦ (idα ⊗ϕ[α])(v) : ϕ[α] ∈ a

⊗

µ∈S(D)\{α}

V∗
µ and ϕ[β] ∈ a

⊗

δ∈S(α)\{β}

V∗
δ







.

To simplify the notation, we can write

(idβ ⊗ ϕ[β,α])(v) := (idβ ⊗ϕ[β]) ◦ (idα ⊗ϕ[α])(v)

where ϕ[β,α] := ϕ[α] ⊗ ϕ[β] ∈
(

a

⊗

µ∈S(D)\{α} V
∗
µ

)

⊗a

(

a

⊗

δ∈S(α)\{β} V
∗
δ

)

and (idβ ⊗ϕ[β,α]) ∈ L(VD‖·‖D
,Vβ‖·‖β

). Proceeding inductively, from the root

to the leaves, we define the minimal subspace Umin
j (v) for each j ∈ L(TD)

such that there exists η ∈ TD \ {D} with j ∈ S(η) as

Umin
j (v) := span

{

(idj ⊗ϕ[j,η,...,β,α])(v) : ϕ[j,η,...,β,α] ∈ Wj

}

,

where

Wj :=



a

⊗

µ∈S(D)\{α}

V∗
µ



⊗a



a

⊗

δ∈S(α)\{β}

V∗
δ



⊗a· · ·⊗a



a

⊗

k∈S(η)\{j}

V ∗
k



 .

With this extension the following result can be shown (see Lemma 3.13 in [3]).

Lemma 3 Let {Vα‖·‖α
}α∈TD\{D} be a representation of the Banach tensor

space VD‖·‖D
= ‖·‖D

⊗

j∈D Vj , in the topological tree-based format and assume

that (17) holds. Let {vn}n≥0 ⊂ VD‖·‖D
with vn ⇀ v, and µ ∈ TD \ ({D} ∪

L(TD)). Then for each γ ∈ S(µ) we have

(idγ ⊗ϕ[γ,µ,··· ,β,α])(vn) ⇀ (idγ ⊗ϕ[γ,µ,··· ,β,α])(v) in Vγ‖·‖γ
,

for all ϕ[γ,µ,··· ,β,α] ∈
(

a

⊗

µ∈S(D)\{α} V
∗
µ

)

⊗a

(

a

⊗

δ∈S(α)\{β} V
∗
δ

)

⊗a · · · ⊗a
(

a

⊗

η∈S(µ)\{γ} V
∗
η

)

.

Then in a similar way as Theorem 3.15 in [3] the following theorem can be
shown.
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Theorem 4 Let {Vα‖·‖α
}α∈TD\{D} be a representation of the Banach tensor

space VD‖·‖D
= ‖·‖D

⊗

j∈D Vj , in the topological tree-based format and assume

that (17) holds. Let {vn}n≥0 ⊂ VD‖·‖D
with vn ⇀ v, then

dimUmin
α (v)

‖·‖α

= dimUmin
α (v) ≤ lim inf

n→∞
dimUmin

α (vn),

for all α ∈ TD \ {D}.

Now, following the proof of Theorem 4.1 in [3] we obtain the final theorem.

Theorem 5 Let VD = a

⊗

j∈D Vj and let {Vα‖·‖α
}α∈TD\{D} be a represen-

tation of a reflexive Banach tensor space VD‖·‖D
= ‖·‖D

⊗

j∈D Vj in the topo-

logical tree-based format and assume that (17) holds. Then the set FT ≤r(VD)
is weakly closed in VD‖·‖D

and hence for each v ∈ VD‖·‖D
there exists ubest ∈

FT ≤r(VD) such that

‖v− ubest‖D = min
u∈FT ≤r(VD)

‖v − u‖D.
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