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Learning high-dimensional probability distributions using

tree tensor networks

Erwan Grelier∗ Anthony Nouy† Régis Lebrun‡

Abstract

We consider the problem of the estimation of a high-dimensional probability dis-
tribution using model classes of functions in tree-based tensor formats, a particular
case of tensor networks associated with a dimension partition tree. The distribution
is assumed to admit a density with respect to a product measure, possibly discrete
for handling the case of discrete random variables. After discussing the representation
of classical model classes in tree-based tensor formats, we present learning algorithms
based on empirical risk minimization using a L2 contrast. These algorithms exploit
the multilinear parametrization of the formats to recast the nonlinear minimization
problem into a sequence of empirical risk minimization problems with linear models.
A suitable parametrization of the tensor in tree-based tensor format allows to obtain
a linear model with orthogonal bases, so that each problem admits an explicit expres-
sion of the solution and cross-validation risk estimates. These estimations of the risk
enable the model selection, for instance when exploiting sparsity in the coefficients
of the representation. A strategy for the adaptation of the tensor format (dimension
tree and tree-based ranks) is provided, which allows to discover and exploit some spe-
cific structures of high-dimensional probability distributions such as independence or
conditional independence. We illustrate the performances of the proposed algorithms
for the approximation of classical probabilistic models (such as Gaussian distribution,
graphical models, Markov chain).

Keywords: density estimation, high-dimensional approximation, tensor networks, hierar-
chical tensor format, tensor train format, neural networks.

1 Introduction

The approximation of high-dimensional functions is a typical task in statistics and machine
learning. We here consider the problem of the approximation of the probability distribution
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of a high-dimensional random vector X = (X1, . . . ,Xd), characterized by its density f(x)
with respect to a measure µ (here assumed to be a product measure, e.g. the Lebesgue
measure or another probability measure) or the function f(x) = P(X = x) for discrete
random variables (considered as a density with respect to a discrete measure). We assume
that we are given independent and identically distributed samples of X, which is a classical
setting in learning or statistics.

The approximation of a multivariate function f(x1, . . . , xd) is a challenging problem
when the dimension d is large or when the available information on the distribution (eval-
uations of the density function or samples from the distribution) is limited. This requires
to introduce model classes (or hypothesis sets) that exploit low-dimensional structures of
the function. Typical model classes for high dimensional density approximation include

• multiplicative models g1(x1) · · · gd(xd), which correspond to the hypothesis that the
components of X are independent,

• generalized multiplicative models
∏

α∈T gα(xα), where T is a collection of subsets
α ⊂ {1, . . . , d} and xα denotes the corresponding group of variables. These include
bayesian networks or more general graphical models,

• mixture models
∑K

k=1 γkgk(x) with
∑K

k=1 γk = 1 and the gk in suitable model classes
(possibly of different types). For example, a mixture of multiplicative models takes
the form

K∑

k=1

γkg
1
k(x1) · · · g

d
k(xd). (1)

Here, we consider the model classes of rank-structured functions, widely used in data anal-
ysis, signal and image processing and numerical analysis. The mixture of multiplicative
models (1) is a particular case of rank-structured functions associated with the canonical
notion of rank. Other classes of rank-structured approximations that have better approx-
imation power and that are more amenable for numerical computations can be defined by
considering different notions of rank. For any subset α of {1, . . . , d} := D, a natural notion
of α-rank of a function g(x), denoted by rankα(g), can be defined as the minimal integer
rα such that

g(x) =

rα∑

k=1

gαk (xα)g
αc

k (xαc)

for some functions of two complementary groups of variables. By considering a collection T
of subsets of D and a tuple r = (rα)α∈T , a model class T T

r (H) of rank-structured functions
can then be defined as

T T
r (H) = {g ∈ H : rankα(g) ≤ rα, α ∈ T},

where H is some function space. The particular case where T is a dimension partition
tree over D corresponds to the model class of functions in tree-based tensor format [7],
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which includes the Tucker format for a trivial tree, the hierarchical tensor format [11] for a
balanced binary tree, and the tensor train format [17] for a linear tree. These model classes
are also known as tree tensor networks. This particular choice for T provides T T

r (H)
with nice topological properties [7] and geometrical properties [18, 5, 6, 12]. Also, and
more importantly from a practical point of view, elements of T T

r (H) admit explicit and
numerically stable representations. The complexity of these representations is linear in
d and polynomial in the ranks, with a polynomial degree depending on the arity of the
tree. Model classes of tree-based formats have a high approximation power. However,
selecting an optimal tree and an optimal sequence of ranks (in the sense that it gives the
best performance in terms of the complexity) are challenging issues for which heuristic
approaches have been proposed. For more details on tree-based tensor formats and their
applications, the reader is referred to the monograph [10] and surveys [14, 13, 8, 16, 15, 1].

The outline of the article is as follows. In Section 2, we present the model class of
multivariate functions in tree-based tensor formats, a particular case of tensor networks
associated with a dimension partition tree. In Section 3, we discuss the representation of
probabilistic models in tensor formats, with a focus on classical models such as Markov
processes, graphical models and mixtures models. Section 4 describes learning algorithms
with tree-based tensor formats, with adaptation of the tree-based rank and dimension tree,
and possible exploitation of the sparsity in the parameters. Finally, Section 5 presents
numerical experiments that show the performances of the proposed algorithms.

2 Tree-based tensor formats

We consider the space L2
µ(X ) of square integrable functions defined on a product set X =

X1 × · · · × Xd equipped with a product measure µ = µ1 ⊗ · · · ⊗ µd. For 1 ≤ ν ≤ d, we
consider spaces Hν of functions in L2

µν
(Xν) and the algebraic tensor space H = H1⊗· · ·⊗Hd

composed by functions of the form

r∑

k=1

g1k(x1) · · · g
d
k(xd) (2)

for some r ∈ N and functions gνk ∈ Hν . A function g1(x1) · · · g
d(xd) := (g1 ⊗ · · · ⊗ gd)(x)

is called an elementary tensor. When spaces Hν are infinite dimensional, a tensor Banach
space is obtained by the completion of H with respect to a certain norm. If Hν = L2

µν
(Xν),

then we obtain the space L2
µ(X ) after completion with respect to its natural norm. Here-

after, we assume that spaces Hν are equipped with the canonical norm in L2
µν
(X ) and that

H is equipped with the canonical norm in L2
µ(X ).

The canonical rank of a function g ∈ H is the minimal integer r such that g can be
written in the form (2). The set of functions in H with canonical rank bounded by r is
denoted by Rr(H). An approximation in Rr(H) is called an approximation in canonical
tensor format. For an order-two tensor (d = 2), the canonical rank coincides with the
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classical and unique notion of rank. For higher-order tensors (d ≥ 3), there exist different
and natural notions of rank that will be introduced for defining tree-based tensor formats.

2.1 α-ranks

For a non-empty subset α in {1, . . . , d} := D and its complementary subset αc = D \ α, a
tensor g ∈ H can be identified with an element Mα(g) of the space of order-two tensors
Hα ⊗Hαc , where Hα =

⊗
ν∈α Hν . This is equivalent to identifying the function g(x) with

a bivariate function of the complementary groups of variables xα = (xν)ν∈α and xαc =
(xν)ν∈αc in x. The operator Mα is called the α-matricization operator. If rankα(g) = rα,
then g admits the representation

g(x) =

rα∑

i=1

gαi (xα)g
αc

i (xαc), (3)

for some functions gαi ∈ Hα and gα
c

i ∈ Hαc . A non-zero function g is such that rankD(g) =
1. The above definition of α-ranks yields the following properties.

Proposition 2.1. If α =
⋃

i∈I βi with {βi : i ∈ I} a collection of disjoint subsets of D,
then for any function g,

rankα(g) ≤
∏

i∈I

rankβi
(g).

Proposition 2.2. For two functions g and h, and for any α ⊂ D,

• rankα(g + h) ≤ rankα(g) + rankα(h),

• rankα(gh) ≤ rankα(g)rankα(h).

Example 2.3.

• g(x) = g1(x1) · · · g
d(xd) can be written g(x) = gα(xα)g

αc
(xαc), where gα(xα) =∏

ν∈α g
ν(xν). Therefore rankα(g) ≤ 1 for all α ⊂ D.

• g(x) =
∑r

k=1 g
1
k(x1) · · · g

d
k(xd) can be written

∑r
k=1 g

α
k (xα)g

αc

k (xαc) with gαk (xα) =∏
ν∈α g

ν
k(xν). Therefore, rankα(g) ≤ r for all α ⊂ D.

• g(x) = g1(x1) + · · ·+ gd(xd) can be written g(x) = gα(xα) + gα
c
(xαc), with gα(xα) =∑

ν∈α g
ν(xν). Therefore, rankα(g) ≤ 2 for all α ⊂ D.

• g(x) =
∏

α∈A gα(xα) with A a collection of disjoint subsets is such that rankα(g) = 1
for all α ∈ A, and rankγ(g) ≤

∏
α∈A,α∩γ 6=∅ rankα∩γ(g

α) for all γ.
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2.2 Tree-based tensor formats

For a collection T of non-empty subsets of D, we define the T -rank of g as the tuple
rankT (g) = {rankα(g) : α ∈ T}. Then, we define the set of tensors T T

r (H) with T -rank
bounded by r = (rα)α∈T by

T T
r (H) = {g ∈ H : rankT (g) ≤ r} .

A dimension partition tree T is a tree such that (i) all nodes α ∈ T are non-empty subsets
of D, (ii) D is the root of T , (iii) every node α ∈ T with #α ≥ 2 has at least two children
and the set of children of α, denoted by S(α), is a non-trivial partition of α, and (iv) every
node α with #α = 1 has no child and is called a leaf (see the example in Figure 1). The
level of a node α is denoted by level(α). The levels are defined such that level(D) = 0 and
level(β) = level(α) + 1 for β ∈ S(α). We let depth(T ) = maxα∈T level(α) be the depth of
T , and L(T ) be the set of leaves of T , which are such that S(α) = ∅ for all α ∈ L(T ).

{3} {7}

{1} {4} {2} {5}

{10}

{6} {8}

{9}

Figure 1: Example of a dimension partition tree over D = {1, . . . , 10}.
.

When T is a dimension partition tree, T T
r (H) is the set of tensors with tree-based rank

bounded by r, and an approximation in T T
r (H) is called an approximation in tree-based (or

hierarchical) tensor format [11, 6]. The trivial tree of depth 1 corresponds to the Tucker
format. A balanced tree of depth O(log2(d)) corresponds to the classical hierarchical tensor
format. A linear tree with depth d− 1 corresponds to the tensor train format.

A tree-based rank r is said admissible if T T
r (H) 6= ∅. Necessary conditions of admissi-

bility can be found in [5, Section 2.3]. In particular, rD has to be less than or equal to 1
for T T

r (H) to be non empty, and T T
r (H) is reduced to {0} if rD = 0.

2.3 Representation of tensors in tree-based format

We consider that the Hν are finite dimensional subspace of L2
µν
(Xν), 1 ≤ ν ≤ d (e.g.

a space of polynomials with bounded degree, a space of wavelets with finite resolution).
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Then, H is a finite-dimensional subspace of L2
µ(X ). Let {φν

i : i ∈ Iν} be a basis of Hν ,

and Nν = dim(Hν) = #Iν . For a multi-index i = (i1, . . . , id) ∈ I1 × · · · × Id := I, we let
φi(x) = φ1

i1
(x1) · · ·φ

d
id
(xd). Then the set of functions {φi : i ∈ I} is a basis of H and any

function g ∈ H can be written

g(x) =
∑

i1∈I1

· · ·
∑

id∈Id

gi1,...,idφ
1
i1(x1) · · · φ

d
id
(xd) =

∑

i∈I

giφi(x)

and identified with the set of coefficients g ∈ R
I1×···×Id = R

I . This defines a linear bijection
G : RI → H such that g = G(g). Also, we use the notation

g(x) = 〈Φ(x),g〉,

where 〈·, ·〉 is the canonical inner product on ℓ2(RI) and Φ(x) ∈ R
I is defined by

Φ(x) = Φ1(x1)⊗ · · · ⊗Φd(xd),

with Φν(xν) = (φν
iν (xν))iν∈Iν ∈ R

Iν . If {φν
i : i ∈ Iν} is an orthonormal basis of Hν , then

{φi : i ∈ I} is an orthonormal basis of H, and the L2
µ-norm of g coincides with the canonical

(Frobenius) norm ‖g‖ = 〈g,g〉1/2 of the tensor g, i.e. ‖g‖2L2
µ
= ‖g‖2. In this case, the map

G is a linear isometry.
A function g ∈ T T

r (H) is identified with g = G−1(g), such that

gi1,...,id =
∑

1≤kα≤rα
α∈T

∏

α∈T\L(T )

Cα
(kβ)β∈S(α),kα

∏

α∈L(T )

Cα
iα,kα

where
Cα ∈ R

Kα

, Kα := Iα × {1, . . . , rα},

with Iα = ×β∈S(α){1, . . . , rβ} for α /∈ L(T ).

The storage complexity (number of parameters) of a function g in T T
r (H) is

C(T, r) =
∑

α∈T\L(T )

rα
∏

β∈S(α)

rβ +
∑

α∈L(T )

dim(Hα)rα.

If rα = O(R) and dim(Hα) = O(N), then since #T = O(d), C(T, r) = O(dNR + (#T −
d− 1)Rs+1+Rs), where s = maxα∈T\L(T )#S(α) is the arity of the tree. For a binary tree,
s = 2 and #T = 2d− 1, so that C(T, r) = O(dNR + (d− 2)R3 +R2).

Remark 2.4 (Discrete set X ). If X = X1 × · · · × Xd is a finite or countable set and µ =∑
x∈X δx = µ1 ⊗ · · · ⊗ µd with µν =

∑
xν∈Xν

δxν , then the space Hν = L2
µν
(Xν) is identified

with ℓ2(Xν). If Xν = {xiνν : iν ∈ Iν}, the canonical basis φν
iν (x

jν
ν ) = 1iν=jν (which is equal

to 1 if iν = jν and 0 otherwise) is orthonormal in Hν . A function g(x) =
∑

i∈I giφi(x) is

then isometrically identified with the set of coefficients gi1,...,id = g(xi11 , . . . , x
id
d ).
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3 Representation of probabilistic models in tensor formats

In this section, we first discuss different types of representation of a probability distribution
using tree-based tensor formats, and provide some results on the relations between the
ranks of these representations. Then we provide several examples of standard probabilistic
models, and discuss their representation in tree-based tensor format.

3.1 Representation of a probability distribution

The probability distribution of the random variable X = (X1, . . . ,Xd) is characterized by
its cumulative distribution function F (x) = P(X ≤ x). In the following we assume that the
distribution admits a density f(x) with respect to a product measure µ = µ1 ⊗ · · · ⊗ µd on
R
d (e.g. the Lebesgue measure), such that

F (x) =

∫

{t≤x}
f(t)dµ(t).

This includes the case of a discrete random variable taking values in a finite or countable
set X = X1 × · · · × Xd, with measure ρ =

∑
x∈X P(X = x)δx, by letting f(x) := P(X = x)

and µ :=
∑

x∈X δx. In this case, f is identified with an element of RX = R
X1×···×Xd .

Proposition 3.1. Assume that the distribution F admits a density f with respect to a
product measure µ. Then for any α ⊂ D,

rankα(F ) ≤ rankα(f).

Moreover, if µ is the Lebesgue measure,

rankα(F ) = rankα(f).

Proof. If f(x) =
∑r

k=1 f
α
k (xα)f

αc

k (xαc), then F (x) =
∑r

k=1 F
α
k (xα)F

αc

k (xαc) with F β
k (xβ) =∫

{tβ≤xβ}
fβ
k (tβ)dµβ(tβ) for β = α and αc. This implies rankα(F ) ≤ rankα(f). If µ is the

Lebesgue measure and F (x) =
∑r

k=1 F
α
k (xα)F

αc

k (xαc), then almost everywhere, f(x) =∑r
k=1 f

α
k (xα)f

αc

k (xαc) with fβ
k (xβ) = ∂xν1

· · · ∂xν#β
F β
k (xβ), β = {ν1, . . . , ν#β}. This im-

plies rankα(F ) ≥ rankα(f).

Remark 3.2. Note that the above framework and results can be extended to the case where
a random variable Xν is either continuous or discrete, by letting µν be either the Lebesgue
measure or a discrete measure.

For 1 ≤ ν ≤ d, let us denote by Fν : Xν → [0, 1] the marginal cumulative distribution
function of Xν . By Sklar’s theorem, there exists a copula C : [0, 1]d → [0, 1] such that

F (x) = C(F1(x1), . . . , Fd(xd)).
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Proposition 3.3. For all α ⊂ D, if C is a copula of X,

rankα(F ) ≤ rankα(C).

If F admits a density f with respect to the Lebesgue measure, then X admits a unique
copula C with density c and

rankα(F ) = rankα(C) = rankα(f) = rankα(c).

Proof. If C(u) =
∑r

k=1C
α
k (uα)C

αc

k (uαc), then F (x) =
∑r

k=1C
α
k (uα)C

αc

k (uαc) with uν =
Fν(xν). This implies rankα(F ) ≤ rankα(C). If F admits a density with respect to the
Lebesgue measure, then C(u) = F (F−1

1 (u1), . . . , F
−1
d (ud)), and if F (x) =

∑r
k=1 F

α
k (xα)F

αc

k (xαc),
then C(u) =

∑r
k=1 F

α
k (xα)F

αc

k (xαc) with xν = F−1
ν (uν). This implies rankα(C) ≤ rankα(F ),

and therefore rankα(F ) = rankα(C). The other equalities are deduced from proposition
3.1.

3.2 Mixtures

Consider a random variable X = (X1, . . . ,Xd) which is a mixture of m random variables
Zi = (Zi

1, . . . , Z
i
d) with weights γi, 1 ≤ i ≤ m, such that

∑m
i=1 γi = 1. Let f and f i denote

the densities with respect to a product measure µ of the probability distributions of X and
Zi respectively. We have

f(x) =

m∑

i=1

γif
i(x).

From Proposition 2.2, we know that for any α ⊂ D, rankα(f) ≤
∑m

i=1 rankα(f
i), therefore,

for any tree T ,

rankT (f) ≤
m∑

i=1

rankT (f
i).

Assuming that Zi has independent components Zi
k with densities f i

k, we have f i(x) =
f i
1(x1) · · · f

i
d(xd) with rankα(f

i) = 1 for any α, and therefore, for any tree T , rankT (f) ≤ m.
Assume now that the function f i is represented in a tree based format with tree T i. For any
α ⊂ D, there exists a subset T i

α of T i which forms a partition of α, and from Proposition
2.1, we have rankα(f

i) ≤
∏

β∈T i
α
rankβ(f

i), and therefore

rankα(f) ≤
m∑

i=1

∏

β∈T i
α

rankβ(f
i) := Rα.

Then a dimension tree for the representation of f could be chosen to minimize the com-
plexity C(T,R) using the above upper bound R = (Rα)α∈T of the T -rank of f .
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3.3 Markov processes

Consider a discrete time Markov process X = (X1, . . . ,Xd) whose density is given by

f(x) = fd|d−1(xd|xd−1) · · · f2|1(x2|x1)f1(x1),

where f1 is the density of X1 and fi|i−1(·|xi−1) is the density of Xi knowing Xi−1 = xi−1.
Let mi be the rank of the bivariate function (t, s) 7→ fi|i−1(t|s), i = 2, . . . , d.

Let
T = {{1, . . . , d}, {1}, . . . , {d}, {1, 2}, . . . , {1, . . . , d− 1}}

be the linear tree of Figure 2a. We note that rank{1}(f) = rank(f2|1) = m2, rank{d}(f) =
rank(fd|d−1) = md and for 2 ≤ ν ≤ d − 1, rank{ν}(f) ≤ rank(fν|ν−1)rank(fν+1|ν) =
mνmν+1. Also, for 1 < ν < d, we have that rank{1,...,ν}(f) = rank(fν+1|ν). Letting m =
maxi mi, we deduce that f has a representation in tree-based format with complexity in
O(m4). Note that the choice of tree is here crucial. Indeed, a different ordering of variables
may lead to ranks growing exponentially with the dimension d. For instance, consider the
tree T̃ represented in Figure 2b, with T̃ = {σ(α) : α ∈ T} with the permutation

σ = (1, 3, . . . , 2

⌊
d+ 1

2

⌋
− 1, 2, 4, . . . , 2

⌊
d

2

⌋
).

For α = {1, 3, . . . , 2k+1}, with k ≤ ⌊d+1
2 ⌋−1, we have rankα(f) ≤ m2m3 · · ·m2k+2 ≤ m2k+1

if 2k + 1 < d, and rankα(f) ≤ m2m3 · · ·m2k+1 ≤ m2k if 2k + 1 = d. Therefore, the repre-
sentation in the corresponding tree-based format has a complexity in O(m2d−2). Example
3.4 presents a Markov process for which the tree-based rank exhibits such a behavior.
Therefore, when the structure of the Markov process is not known, a procedure for find-
ing a suitable tree should be used (see Section 4.4 for the description of a tree adaptation
algorithm).

Example 3.4 (Discrete state space Markov process). We consider the discrete time discrete
state space Markov process X = (X1, . . . ,X8), where each random variable Xν takes values
in Xν = {1, . . . , 5}. The distribution of X writes

f(i1, . . . , i8) := P(X1 = i1, . . . ,X8 = i8) = f8|7(i8|i7) · · · f2|1(i2|i1)f1(i1)

with f1(i1) = 1/5 for all i1 ∈ X1, and for ν = 1, . . . , d − 1, fν+1|ν(iν+1|iν) = P ν
iν ,iν+1

the (iν , iν+1) component of a randomly chosen rank-2 transition matrix P ν . We then have
rank(fν+1|ν) = m = 2 for ν = 1, . . . , d− 1.

We first compute a representation of f in tree-based format with the tree T depicted
in Figure 2a (using Algorithm 3 in [9] at precision 10−13), the obtained α-ranks are shown
in Figure 3a. We then compute a representation of f in tree-based format with the tree T̃ de-
picted in Figure 2b, to obtain the α-ranks shown in Figure 3b. We see that maxα∈T rankα(f) =
4 = m2 whereas maxα∈T̃ rankα(f) = 128 = 27 = md−1. As a consequence, the storage com-

plexity of the representation is equal to 240 with T , and to 35088 with T̃ , more than 146
times larger.
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{1, . . . , d}

{1} {2}

{d− 1}

{d}

(a) Linear dimension tree T .

{1, . . . , d}

{1} {3}

{2⌊d+1
2 ⌋ − 1}

{2}

{4}

{2⌊d2⌋}

(b) Linear dimension tree T̃ .

Figure 2: Examples of linear dimension trees.

3.4 Graphical models

Let us consider a graphical model with a density of the form

f(x) =
∏

β∈C

gβ(xβ)

where C ⊂ 2D represents the cliques of a graph G with nodes {1}, . . . , {d}.
Consider α ⊂ D. First note that if α ∈ C, then rankα(gα) = 1. Also, for a clique β such

that either β ⊂ α or β ⊂ αc, rankα(gβ) = 1. Then let Cα be the set of cliques that intersect
both α and αc,

Cα = {β ∈ C : β ∩ α 6= ∅, β ∩ αc 6= ∅}.

Since C \ Cα = {β ∈ C : β ⊂ αc or β ⊂ α}, and from Proposition 2.2, we have

rankα(f) = rankα(
∏

β∈Cα

gβ) ≤
∏

β∈Cα

rankα(gβ).

Assuming that the α-ranks of all functions gβ are bounded by m, we have

rankα(f) ≤ m#Cα := Rα.

For the representation of f in tree-based tensor format, a tree T could be chosen such that
it minimizes the complexity C(T,R), with R = (Rα)α∈T the above upper bound of the
T -rank of f .

Example 3.5. An example of graphical model is provided in Figure 4. The dimension is
d = 10. Here we consider discrete random variables Xν taking N = 5 possible instances,
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(b) α-ranks when using T̃ .

Figure 3: Obtained α-ranks when representing the Markov process of Example 3.4 in tree-
based format with two different linear dimension trees.
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Figure 4: Example of graphical model.

so that f(x) = P(X = x) is identified with a tensor of size Nd = 510 = 9765625. It has the
form

f(x) = g1,2,3,7(x1, x2, x3, x7)g3,4,5,6(x3, x4, x5, x6)g4,8(x4, x8)g8,9,10(x8, x9, x10).

We first consider the random binary tree of Figure 5 and compute a representation of the
graphical model (using Algorithm 3 in [9] at precision 10−13) in the corresponding tree-based
format. We observe a storage complexity of 10595875, higher than the storage complexity
of the full tensor. After the tree optimization (with Algorithm 8 provided in [9]), we obtain
the tree in Figure 6 with a storage complexity of 3275.

11



{4}

{8} {2}

{10}

{3} {6}

{9}

{7} {1}

{5}
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(b) Representation ranks.

Figure 5: Representation in tree-based format with an initial random tree. The storage
complexity is 10595875.
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(b) Representation ranks.

Figure 6: Representation in tree-based format after tree optimization. The storage com-
plexity is 3275.
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4 Learning with tree-based tensor format

In this section, we describe a learning algorithm for estimating a probability distribution
of a random vector X from independent samples of this distribution. We assume that the
distribution of X has a density f with respect to a measure µ over X (possibly discrete).

We introduce a contrast function γ : L0
µ(X )×X → R and the associated risk functional

R : L0
µ(X ) → R defined by

R(g) = E(γ(g,X)), (4)

such that the minimizer of R over the set of µ-measurable functions is the density f .
Given independent samples {xi}

n
i=1 of X, an approximation gMn of the density is then

obtained by minimizing the empirical risk

Rn(g) =
1

n

n∑

i=1

γ(g, xi)

over a certain model class M , here a class of functions in tree-based tensor format.

Remark 4.1 (Quasi-Monte Carlo integration). If X can be written X = h(U), with U ∼
U([0, 1]d), such that samples xi of X can be generated from samples ui of U , the expectation
E(g(X)) of a function g, when it exists, can be estimated by a Quasi-Monte Carlo estimator

E(g(X)) ≈
1

n

n∑

i=1

g(h(ui)),

where the ui are taken from of a deterministic low-discrepancy sequence, such as the Sobol
or the Halton sequence (see e.g. [3]). Such an estimator converges in O((log n)d−1/n),
which is asymptotically better than the O(n−1/2) of the standard Monte Carlo estimator.

Choosing the contrast function as

γ(g, x) = ‖g‖2L2
µ
− 2g(x), (5)

with ‖ · ‖L2
µ

the natural norm in L2
µ, leads to

R(g) = R(f) + ‖f − g‖2L2
µ
,

so that the minimization of R(g) is equivalent to the minimization of the distance (in L2
µ

norm) between g and the density f . For the minimization of the empirical risk over the
class of functions in tree-based formats, with an adaptation of the ranks and possibly of
the dimension tree, we will adapt the algorithms proposed in [9].
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Remark 4.2 (Maximum likelihood estimation). Choosing the contrast function equal to
γ(g, x) = − log(g(x)) leads to

R(g) = −

∫

X
log(g(x))f(x)dµ(x) = R(f) +DKL(f‖g)

with DKL(f‖g) the Kullback-Leibler divergence between f and g (with reference measure µ).
The empirical risk minimization then corresponds to the maximum likelihood estimation.

Remark 4.3. We recall that the present framework applies to the case of a discrete random
variable X taking values in a set X = X1 × · · · × Xd, with measure ρ =

∑
x∈X P(X = x)δx,

by letting f(x) := P(X = x) and µ :=
∑

x∈X δx. A function g ∈ L2
µ(X ) is identified with an

algebraic tensor g ∈ R
X with a norm

‖g‖2L2
µ
=
∑

x∈X

g(x)2 = ‖g‖2ℓ2(X ),

where ‖ · ‖ℓ2(X ) is the canonical (Frobenius) norm on R
X .

4.1 Empirical risk minimization with a fixed tree-based format

We here consider the problem of density estimation in a tensor format T T
r (H) with fixed

dimension tree T and tree-based rank r.
A function g ∈ T T

r (H) admits the following parametrized representation

g(x) = Ψ(x)((Cα)α∈T ),

where Ψ(x) is a multilinear map and Cα ∈ R
Kα

, with Kα = Iα × {1, . . . , rα}. For a given
α ∈ T , the function g can be written

g(x) = Ψα(x)(Cα) = 〈Ψα(x), Cα〉ℓ2 =
∑

iα∈Kα

Ψα
iα(x)C

α
iα , (6)

with Ψα(x) a linear map depending on (Cβ)β∈T\{α}, 〈·, ·〉ℓ2 the canonical inner product on

R
Kα

and Ψα(x) = (Ψα
iα(x))iα∈Kα a tensor of the same size as Cα. The parametrization

of a tensor is not unique and it is possible to obtain a representation (6) where the set of
functions Ψα

iα(x) forms an orthonormal system in L2
µ, so that

‖g‖2L2
µ
= ‖Cα‖

2
ℓ2 :=

∑

iα∈Kα

(Cα
iα)

2. (7)

This orthonormality property improves the numerical stability of learning algorithms, and
yields better statistical properties and cross-validation error estimates.
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The empirical risk minimization problem writes

min
(Cα)α∈T

1

n

n∑

i=1

γ(Ψ(·)((Cα)α∈T ), xi) (8)

and can be solved with an alternating minimization algorithm, successively solving the
following linear problem on Cα, with the Cβ, β ∈ T \ {α}, fixed:

min
Cα∈RKα

1

n

n∑

i=1

γ(Ψα(·)(Cα), xi). (9)

Using the contrast function (5) and (7), this problem becomes

min
Cα∈RKα

‖Cα‖2ℓ2 −
2

n

n∑

i=1

〈Ψα(xi), C
α〉ℓ2

and admits for solution

Cα =
1

n

n∑

i=1

Ψα(xi).

4.2 Sparsity exploitation and model selection

Exploiting sparsity in the tensors (Cα)α∈T of the representation of a function g ∈ T T
r (H)

may be relevant.
For a node α ∈ T , we let J be a given subset of Kα (a sparsity pattern). Using the

contrast function (5), the solution of the problem

min
Cα∈RKα

Cα
iα

=0, ∀iα /∈J

‖Cα‖
2
ℓ2 −

2

n

n∑

i=1

〈Ψα(xi), C
α〉ℓ2 (10)

is

Cα,J
iα

=
1

n

n∑

k=1

Ψα
iα(xk)1iα∈J ,

with 1iα∈J equal to 1 when iα ∈ J , and 0 otherwise. This means that the solution of (10)
is simply the solution of the unconstrained problem (9) where the components with indices
iα /∈ J are set to zero.

We introduce sparsity in the tensor Cα using two strategies (working set or threshold-
ing), both yielding L solutions Cα,1, . . . , Cα,L associated with different sparsity patterns
J1, . . . ,JL.

• (Working-set strategy) We assume that there exists a natural increasing sequence
Iα1 ⊂ · · · ⊂ IαL = Iα, and we take Jl = {(iα, k) : iα ∈ Iαl , 1 ≤ k ≤ rα} for 1 ≤ l ≤ L.
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• (Thresholding strategy) Denoting by a1 > · · · > aL the ordered sequence of the values
taken by |Cα

iα
|, iα ∈ Kα, the sparsity patterns are defined by Jl =

{
iα ∈ Kα : |Cα

iα
| ≥ al

}
,

for 1 ≤ l ≤ L.

We wish to select, among the different solutions Cα,l associated with the sparsity pat-
terns Jl, the one, denoted by Cα,⋆, that minimizes the risk R(Ψα(·)(Cα,l)). The risk can
be estimated, using a sample V independent of the training sample S, by

RV (Ψ
α(·)(Cα,l)) =

1

#V

∑

x∈V

γ(Ψα(·)(Cα,l), x).

However, one usually does not wish to use a sample V for the sole purpose of model selection,
that could have been otherwise used for the learning process. Cross-validation offers a way
of estimating the risk without the need of an independent sample. A leave-one-out estimator
of the risk writes

Rloo

n (Ψα(·)(Cα,l)) =
1

n

n∑

i=1

R{xi}(Ψ
α(·)(Cα,l,−i)),

with, using the orthonormality conditions,

Cα,l,−i
iα

=
1

n− 1

n∑

k=1
k 6=i

Ψα
iα(xk)1iα∈Jl

,

the solution of the empirical risk minimization problem using the training set S \ {xi},

min
Cα∈RKα

Cα
iα

=0, ∀iα /∈J

‖Cα‖
2
ℓ2 −

2

n− 1

n∑

j=1
j 6=i

〈Ψα(xj), C
α〉ℓ2 .

The following proposition provides an explicit expression of the leave-one-out risk estimate
as a function of Cα,l. It is a special case for p = 1 of the result of [2, Prop. 2.1] for the
leave-p-out estimator.

Proposition 4.4. The leave-one-out estimator of the risk can be expressed as

Rloo

n (Ψα(·)(Cα,l)) =
−n2

(n− 1)2
‖Cα,l‖2ℓ2 +

2n− 1

n(n− 1)2

n∑

i=1

∑

iα∈Jl

Ψα
iα(xi)

2

=
1

n(n− 1)

∑

iα∈Jl




n∑

i=1

Ψα
iα(xi)

2 −
n

n− 1

∑

i 6=j

Ψα
iα(xi)Ψ

α
iα(xj)


 .
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4.3 Tree-based rank adaptation

In Section 4.1, the computed approximation g is in T T
r (H), with both the tree-based rank

r and dimension tree T given. However, when the dimension d is large or the size n of the
training sample is small, the choice of the tree-based rank can be crucial. We use the rank
adaptation strategy of [9, Algorithm 5] that incrementally increases ranks associated with a
subset of nodes of the dimension tree, selected with a criterion based on truncation errors.

At step m, given an approximation gm in T T
rm(H) with rank rm, the algorithm selects

the ranks to increase by estimating the truncation errors

ηα(f, r
m
α ) = min

rankα(g)≤rmα
R(g) −R(f), (11)

and by increasing the ranks associated with the nodes α with high truncation errors. When
using a L2 risk,

ηα(f, r
m
α ) = min

rankα(g)≤rmα
‖f − g‖2L2

µ
=
∑

k>rmα

(σα
k (f))

2,

where σα
k (f) denotes the k-th α-singular value of f (see [10, Section 8.3] for more details

about the higher-order singular value decomposition of a tensor). The ranks associated
with the nodes α yielding the highest truncation errors are then increased by one. In
practice, we estimate the truncation errors ηα(f, r

m
α ) by computing the α-singular values of

an approximation g̃m of f with α-ranks r̃mα ≥ rmα , which are such that

η(g̃m, rmα )2 =

r̃mα∑

k=rmα +1

(σα
k (g̃

m))2.

Then, choosing a parameter θ ∈ [0, 1], we increase by one the α-ranks associated with the
nodes α in

Tθ = {α ∈ T̂ : ηα(g̃
m, rmα ) ≥ θmax

β∈T
ηβ(g̃

m, rmβ )}

where T̂ ⊂ T is the subset of nodes for which the α-rank can be increased by one without
violating the admissibility conditions. The approximation g̃m is computed using as initial
values the parameters of the tensor gm + c, with c = Ψ(x)((C̃α)α∈T ) ∈ T T

r̃ (H) a correction
of gm obtained by solving the problem

min
c∈T T

r̃

Rn(g
m + c)

which is equivalent to

min
c∈T T

r̃

‖c‖2L2
µ
−

2

n

n∑

i=1

c(xi) + 2

∫

X
c(x)gm(x)dµ(x).
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As in the previous section, this problem is solved using an alternating minimization algo-
rithm which consists in minimizing alternatively on each parameter C̃α, α ∈ T . For a given
α, using a representation of c(x) = 〈Ψα(x), C̃α〉ℓ2 with orthonormal functions {Ψα

i (x)}i∈Kα

depending on the fixed parameters C̃β, β ∈ T \ {α}, the minimization problem is

min
C̃α∈RKα

‖C̃α‖2ℓ2 −
2

n

n∑

i=1

〈Ψα(xi), C̃
α〉ℓ2 + 2

∫

X
〈Ψα(x), C̃α〉ℓ2g

m(x)dµ(x). (12)

The solution of (12) is

C̃α =
1

n

n∑

i=1

Ψα(xi)− Sα, (13)

with Sα such that

〈Sα, C̃α〉ℓ2 =

∫

X
〈Ψα(x), C̃α〉ℓ2g

m(x)dµ(x),

that is

Sα =
∑

iβ∈Iβ

β∈L(T )

∑

1≤kβ≤r̃mβ
β/∈S(α)∪{α}

∑

1≤lβ≤rmβ
β∈T

∏

β /∈L(T )∪{α}

C̃β
(kν)ν∈S(β),kβ

∏

β/∈L(T )

Cβ
(lν)ν∈S(β),lβ

∏

β∈L(T )

C̃β
iβ ,kβ

Cβ
iβ ,lβ

if α ∈ T \ L(T ), and

Sα =
∑

iβ∈Iβ

β∈L(T )\{α}

∑

1≤kβ≤r̃mβ
β∈T\{α}

∑

1≤lβ≤rmβ
β∈T

∏

β /∈L(T )

C̃β
(kν)ν∈S(β),kβ

Cβ
(lν)ν∈S(β),lβ

∏

β∈L(T )\{α}

C̃β
iβ ,kβ

Cβ
iβ ,lβ

Cα
iα,lα

if α ∈ L(T ). In the above expressions, a summation over β /∈ J means over β ∈ T \ J .
In the numerical experiments, we will only consider a rank-one correction c, which means

r̃α = 1 for all α and C̃β = 1 for all β /∈ L(T ). Then the truncation errors are estimated
with η(g̃m, rmα )2 = (σα

rmα +1(g̃
m))2.

4.4 Dimension tree adaptation

As seen in Section 3, the choice of dimension tree T can have a strong influence on the T -
rank r of the representation of some probabilistic models, hence on their complexity C(T, r).
Furthermore, the dimension tree yielding the smallest complexity can carry information
about the dependence structure of the represented probabilistic model.

In order to try to recover the optimal tree in terms of storage complexity, we use the
stochastic algorithm 8 in [9]. Starting from a tree T and a representation of a function
f ∈ T T

r (H), it explores the set of trees of given arity (the maximal number of children among
all the nodes of the tree) and returns a function g ∈ T T ⋆

r⋆ (H) with C(T ⋆, r⋆) ≤ C(T, r),
such that ‖f − g‖L2

µ
≤ ε‖f‖L2

µ
for a given tolerance ε. This algorithm performs a sequence
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of permutations of pairs of nodes using efficient linear algebra (contractions of tensors and
truncated singular value decompositions of matricizations with an accuracy depending on
the sought tolerance ε).

In order to reduce the storage complexity of the representation of a function, one ought
to perform permutations removing the nodes associated with high ranks, and adding nodes
associated with small ranks. This, as well as the complexity of the computations needed to
permute two given nodes, are the criteria used by the stochastic algorithm to choose which
nodes to permute.

Example 4.5. The tree adaptation algorithm allows the transition from the linear dimen-
sion tree 7a to the balanced tree 7e (of same arity) by performing a sequence of permutations
of pairs of nodes displayed in Figures 7b to 7e. The transition between the trees 7a and 7b
removed the node {1, 2, 3} and added the node {3, 4}.

5 Numerical examples

In this section, we illustrate the performance of the proposed algorithm for learning prob-
ability distributions.

Contrast function and reference measure. In all examples, we consider the L2 con-
trast function γ(g, x) = ‖g‖2L2

µ
− 2g(x). The reference measure µ is always a product

measure and X = X1 × · · · × Xd. For examples involving discrete random variables, we
consider µ =

∑
x∈X δx, so that L2

µ(X ) is identified with ℓ2(X ). For continuous random
variables, µ is taken as the Lebesgue measure or a uniform probability measure on X when
X is a compact set.

Approximation spaces. In the case of discrete random variables with a finite set X , we
let H = L2

µ(X ) so that there is no discretization error, and we use a canonical basis (see
Remark 2.4). In the case of continuous random variables, for each dimension ν = 1, . . . , d,
we introduce a finite dimensional space Hν in L2

µν
(Xν) and use orthonormal bases of Hν

(e.g. polynomials, wavelets). We exploit sparsity in the leaf tensors (Cα)α∈L(T ) by using
the working-set strategy presented in Section 4.1. For polynomial bases, we use the natural
sequence of candidate patterns associated with spaces of polynomials with increasing degree.
For wavelets bases, we use a sequence of candidate patterns associated with wavelets spaces
with increasing resolution.

Tensor formats. We only consider tensor formats associated with binary dimension par-
tition trees. When using the algorithm with tree-based rank and tree adaptation, the
starting dimension tree is always a linear tree (such as in Figure 2a), where the dimensions
ν = 1, . . . , d are randomly assigned to the leaf nodes.
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{1, . . . , 8}

{1, . . . , 7}

{1, . . . , 6}

{1, . . . , 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

{6}

{7}

{8}

(a) Original tree.

{1, . . . , 8}

{1, . . . , 7}

{1, . . . , 6}

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

{5}

{6}

{7}

{8}

(b) Permutation of the nodes {1, 2} and {4}.

{1, . . . , 8}

{1, . . . , 7}

{1, . . . , 6}

{1, 2, 3, 4}

{1, 2}

{1}{2}

{3, 4}

{3}{4}

{5, 6}

{5} {6}

{7}

{8}

(c) Permutation of the nodes {1, . . . , 4} and {6}.

{1, . . . , 8}

{1, . . . , 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

{5, 6, 7, 8}

{7}

{5, 6, 8}

{8}

{5, 6}

{5}{6}

(d) Permutation of the nodes {1, . . . , 4} and {8}.

{1, . . . , 8}

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

{5, 6, 7, 8}

{5, 6}

{5} {6}

{7, 8}

{7} {8}

(e) Final tree, permutation of the nodes {5, 6} and {7}.

Figure 7: Example of a sequence of nodes permutations for a transition from a linear tree
to a balanced tree in dimension 8.

Error measures. The quality of the obtained approximation g is assessed by estimating
the risk by

RStest
(g) = ‖g‖2L2

µ
−

2

#Stest

∑

x∈Stest

g(x),
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with Stest a sample of X, independent of S, as well as, when f can be evaluated, by
computing the relative error

ε(g) =

(∑
x∈Sε

(f(x)− g(x))2∑
x∈Sε

(f(x))2

)1/2

,

with Sε a sample from µ if µ is a probability measure, or from 1
µ(X )µ when µ is a finite

measure (e.g. when µ is the Lebesgue measure over a compact set X ). In the case of
discrete random variables, a function f in R

X is identified with a multi-dimensional array,
and Sǫ corresponds to a sample of the entries of the array.

5.1 Truncated multivariate normal distribution

We first consider the estimation of the density of a random vector X = (X1, . . . ,X6)
following a truncated normal distribution with zero mean and covariance matrix Σ. Its
support is X = ×6

ν=1[−5σν , 5σν ], with σ2
ν = Σνν . The reference measure µ is the Lebesgue

measure on X and the density to approximate is such that

f(x) ∝ exp

(
−
1

2
xTΣ−1x

)
1x∈X . (i)

In each dimension ν, we use polynomials of maximal degree 50, orthonormal in L2(−5σν , 5σν).

5.1.1 Groups of independent random variables

We consider the following covariance matrix

Σ =




2 0 0.5 1 0 0.5
0 1 0 0 0.5 0
0.5 0 2 0 0 1
1 0 0 3 0 0
0 0.5 0 0 1 0
0.5 0 1 0 0 2




. (Σ1)

Up to a permutation (3, 6, 1, 4, 2, 5) of its rows and columns, it can be written




2 1 0.5 0 0 0
1 2 0.5 0 0 0
0.5 0.5 2 1 0 0
0 0 1 3 0 0
0 0 0 0 1 0.5
0 0 0 0 0.5 1
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so that one can see that the random variables (X1,X3,X4,X6) and (X2,X5) are indepen-
dent, as well as X4 and (X3,X6). Therefore, the density has the form

f(x) = f1,3,4,6(x1, x3, x4, x6)f2,5(x2, x5) = f4|1(x4|x1)f1,3,6(x1, x3, x6)f2,5(x2, x5).

Then one can then expect that, when approximating the density of X in tree-based for-
mat, a suitable dimension tree T would contain the nodes {2, 5} and {1, 3, 4, 6}, since
rank{2,5}(f) = rank{1,3,4,6}(f) = 1. If we further assume that f1,3,6 has low ranks, it would
contain the nodes {3, 6} and {1, 4}, since rank{3,6}(f) = rank{3,6}(f1,3,6) and rank{1,4}(f) =
rank{1,4}(f1,3,6) (see a possible tree in Figure 8).

{1, 2, 3, 4, 5, 6}

{1, 3, 4, 6}

{1, 4}

{1} {4}

{3, 6}

{3} {6}

{2, 5}

{2} {5}

Figure 8: Example of expected tree T for the approximation of (i) with covariance matrix
(Σ1) in tree-based tensor format with tree adaptation.

Table 1 shows the results obtained with the learning algorithm with different sizes of
training set. We notice that, as expected, RStest

(g) and ε(g) decrease with n. Figure 10
shows that, on average, the convergence of ε(g) is approximately in n−1/2. This convergence
is better than the one expected (and observed in practice) when using a second-order kernel
estimator, in n−1/5. On Figure 9, we observe the obtained tree (associated with the smallest
error over 10 trials) for different training sample sizes n. For n ≥ 104, the algorithm yields
a tree with the expected nodes (see discussion above).

n RStest
(g) × 10−2 ε(g) T C(T, r)

102 [−5.50, 119] [0.53, 4.06] Fig. 9a [311, 311]
103 [−7.29,−5.93] [0.22, 0.47] Fig. 9b [311, 637]
104 [−7.60,−6.85] [0.11, 0.33] Fig. 9c [521, 911]
105 [−7.68,−7.66] [0.04, 0.07] Fig. 9c [911, 1213]
106 [−7.70,−7.69] [0.01, 0.01] Fig. 9c [1283, 1546]

Table 1: Ranges over 10 trials of the obtained results for the learning of (i) with covariance
matrix (Σ1), with different training sample sizes n.
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(a) n = 102.
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(b) n = 103.
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{2, 5}

{2} {5}

(c) n = 104, 105, 106.

Figure 9: Dimension trees T obtained after computing an approximation in tree-based
tensor format of (i) with covariance matrix (Σ1), using different training sample sizes n.
The displayed trees are associated with the smallest error over 10 trials.

102 103 104 105 106

10−3

10−2

10−1

100

n

ε(g)

n−1/2

Figure 10: Convergence with the training sample size n for the approximation of (i) with
covariance matrix (Σ1).
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5.1.2 Band-diagonal covariance matrix

We now consider the following covariance matrix

Σ =




2 1/5 0 0 1/4 0
1/5 2 0 0 0 0
0 0 2 0 1/3 1/2
0 0 0 2 0 1

1/4 0 1/3 0 2 0
0 0 1/2 1 0 2




(Σ2)

which is, after applying the permutation σ = (4, 6, 3, 5, 1, 2), a band diagonal matrix




2 1 0 0 0 0
1 2 1/2 0 0 0
0 1/2 2 1/3 0 0
0 0 1/3 2 1/4 0
0 0 0 1/4 2 1/5
0 0 0 0 1/5 2




.

The vector (Xσ(1), . . . ,Xσ(6)) therefore represents a Markov process and the density f has
the following form

f(x) = f2|1(x2|x1)f1|5(x1|x5)f5|3(x5|x3)f3|6(x3|x6)f6|4(x6|x4).

Given this structure, one might expect the density of X to be efficiently and accurately
represented in tree-based tensor format with one of the linear trees of Figure 11 or any tree
containing the same internal nodes.

{1, 2, 3, 4, 5, 6}

{1, 3, 4, 5, 6}

{3, 4, 5, 6}

{3, 4, 6}

{4, 6}

{4} {6}

{3}

{5}

{1}

{2}

{1, 2, 3, 4, 5, 6}

{1, 2, 3, 5, 6}

{1, 2, 3, 5}

{1, 2, 5}

{1, 2}

{2} {1}

{5}

{3}

{6}

{4}

Figure 11: Example of expected trees T for the approximation of (i) with covariance matrix
(Σ2) in tree-based tensor format.
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Table 2 shows the results obtained when using the learning algorithm to approximate
the density of X. We can see that the risk and error decrease when the size of the training
sample increases, with a convergence rate of about n−2/5. Figure 12 shows the obtained
trees (associated with the smallest error over 10 trials) for different sizes of training sets.
We observe that except for n = 102, the algorithm yields trees that contain most of the
expected internal nodes.

n RStest
(g) × 10−2 ε(g) T C(T, r)

102 [−4.21, 1.91] [0.58, 1.11] Fig. 12a [311, 311]
103 [−5.88,−5.13] [0.26, 0.45] Fig. 12b [311, 579]
104 [−6.27,−5.58] [0.08, 0.34] Fig. 12c [311, 830]
105 [−6.30,−6.27] [0.03, 0.07] Fig. 12c [724, 1012]
106 [−6.31,−6.31] [0.01, 0.02] Fig. 12c [961, 1359]

Table 2: Obtained results for the learning of (i) with covariance matrix (Σ2), with different
training sample sizes n.
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(a) n = 102.
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{6} {4}

{3}

{1, 2, 5}

{1}

{2, 5}

{2} {5}

(b) n = 103.

{1, 2, 3, 4, 5, 6}

{1, 3, 4, 5, 6}

{3, 4, 5, 6}

{3, 4, 6}

{4, 6}

{4} {6}

{3}

{5}

{1}

{2}

(c) n = 104, 105, 106.

Figure 12: Dimension trees T obtained after computing an approximation in tree-based
tensor format of (i) with covariance matrix (Σ2) using different training sample sizes n.
The displayed trees are associated with the smallest error over 10 trials.

5.2 Markov chain process

In this section, we study the discrete time discrete state space Markov process of Example
3.4. We recall that X = (X1, . . . ,X8), where each random variable Xν takes values in
Xν = {1, . . . , 5}. The distribution of X writes

f(i1, . . . , i8) = P(X1 = i1, . . . ,X8 = i8) = fd|d−1(i8|i7) · · · f2|1(i2|i1)f1(i1) (14)

with f1(i1) = 1/5 for all i1 ∈ X1, and for ν = 1, . . . , d − 1, fν+1|ν(iν+1|iν) = Piν ,iν+1 the
(iν , iν+1) component of a randomly chosen rank-2 transition matrix P , independent of the
dimension ν.

As shown in Example 3.4, the choice of the tree has a great impact on the storage
complexity of the representation of the Markov process. We then expect the adaptive
learning algorithm to compute an approximation of f with a tree containing the same
internal nodes as in Figure 2a. Table 3 shows the ranges over 10 trials of the obtained
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results. One can notice that, even though the algorithm did not recover an optimal tree
for the representation of the Markov chain, it is able, with a sample size high enough, to
represent it with dimension trees including most of the internal nodes yielding the smallest
α-ranks, limiting the complexity of the representation.

n RStest
(g) ε(g) T C(T, r)

103 [−2.22,−1.25] [0.49, 0.75] Fig. 13a [47, 109]
104 [−2.85,−2.04] [0.16, 0.55] Fig. 13b [72, 298]
105 [−2.93,−2.91] [0.04, 0.08] Fig. 13c [294, 519]
106 [−2.93,−2.93] [0.01, 0.02] Fig. 13d [384, 1010]

Table 3: Ranges over 10 trials of the obtained results for the learning of (14), with different
training sample sizes n.

{1, 2, 3, 4, 5, 6, 7, 8}

{3, 4, 5, 6, 7}
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{3} {4}
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{1, 2}

{1} {2}

(a) n = 103.
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{5} {4}
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{1} {2}
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{7} {8}

(b) n = 104.
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{6}
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{7} {8}

(c) n = 105.
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{7}
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(d) n = 106.

Figure 13: Dimension trees T obtained after computing an approximation in tree-based
tensor format of (14), using different training sample sizes n. The displayed trees are
associated with the smallest error over 10 trials.
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5.3 Graphical model with discrete random variables

We consider the graphical model already studied in Example 3.5, in dimension d = 10,
represented in Figure 4. The random variable Xν takes values in Xν = {1, 2, 3, 4, 5},
1 ≤ ν ≤ d, so that f(i) = P(X = i) is defined by

f(i1, . . . , i10) = f1,2,3,7(i1, i2, i3, i7)f3,4,5,6(i3, i4, i5, i6)f4,8(i4, i8)f8,9,10(i8, i9, i10). (15)

The tensors fα are randomly selected under the constraint that any of their matricization
has a rank equal to 3.

Representing this function in tree-based tensor format with the binary tree in Figure 5
yields a storage complexity of 117027, whereas using the tree in Figure 6, which exhibits the
dependence structure of the graphical model, leads to a representation with a storage com-
plexity of 675. We then expect our algorithms to be able to learn f with a tree representing
its dependence structure.

Table 4 shows the ranges over 10 trials of the obtained results. We observe that, even
though the obtained errors are high, the algorithm is able to provide approximations of f
with a tree that exhibits the dependence structure of the graphical model (for instance by
containing the nodes {1, 2, 3, 7}, {4, 8} or {4, 8, 9, 10}, which are cliques of the graph of f).

n RStest
(g) ε(g) T C(T, r)

103 [−1.08,−1.04] [0.53, 0.55] Fig. 14a [59, 99]
104 [−1.36,−1.13] [0.30, 0.49] Fig. 14b [72, 421]
105 [−1.48,−1.43] [0.10, 0.20] Fig. 14c [496, 885]
106 [−1.49,−1.42] [0.07, 0.22] Fig. 14d [373, 813]

Table 4: Ranges over 10 trials of the obtained results for the learning of (15), with different
training sample sizes n.
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Figure 14: Dimension trees T obtained after computing an approximation in tree-based
tensor format of (15), using different training sample sizes n. The displayed trees are
associated with the smallest error over 10 trials.
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6 Conclusion

We have proposed algorithms for learning high-dimensional probability distributions in tree-
based tensor formats. The tree-based rank and dimension tree adaptation strategies enable
the computation of approximations with trees that exhibit the dependence structure of the
distribution.

Different contrast functions could be used for learning a probabilistic distribution. How-
ever, this calls for a modification of the proposed rank-adaptation strategy, since the rank
selection procedure as well as the computation of a correction depend on the choice of the
contrast function.

Also, the proposed algorithms should be modified to be able to work efficiently with large
data sets, for instance by using subsampling methods as in stochastic gradient methods.
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