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Abstract. Under certain conditions, an element of a tensor product space can be identified with a
compact operator and the singular value decomposition (SVD) applies to the latter. These conditions
are not fulfilled in Sobolev spaces. In the previous part of this work (part I), we introduced some
preliminary notions in the theory of tensor product spaces. We analyzed low-rank approximations in
H

1 and the error of the SVD performed in the ambient L2 space.
In this work (part II), we continue by considering variants of the SVD in norms stronger than the

L
2-norm. Overall and, perhaps surprisingly, this leads to a more difficult control of the H

1-error. We
briefly consider an isometric embedding of H1 that allows direct application of the SVD to H

1-functions.
Finally, we provide a few numerical examples that support our theoretical findings.

1. Introduction

A function u in the tensor product H = H1 ⊗H2 of two Hilbert spaces H1 and H2 may be identified
with a compact operator Tu : H2 → H1. This identification is possible when the norm on H is not
weaker than the injective norm, i.e., in a certain sense the norm on H is compatible with the norms on
H1 and H2. In such a case we can decompose u as

u =

∞
∑

k=1

σkψk ⊗ φk,(1.1)

for a non-negative non-increasing sequence {σk}k∈N and orthonormal systems {ψk}k∈N ⊂ H1 and
{φk}k∈N ⊂ H2. This is the well known singular value decomposition (SVD) and it provides low-rank
approximations via

inf
rank(vr)≤r

‖u− ur‖2H =

∥

∥

∥

∥

∥

u−
r
∑

k=1

σkψk ⊗ φk

∥

∥

∥

∥

∥

2

H

=

∞
∑

k=r+1

σ2k,

if, e.g., ‖ · ‖H is the canonical norm on a Hilbert tensor space.
IfH is the Sobolev space of once weakly differentiable functions, the above assumption is not satisfied

and there is no SVD for a function u ∈ H1 in general. The focus of this work is to explore variants of the
SVD in different ambient spaces in the H1-norm. In part I, we showed that low-rank approximations
in the Tucker format in H1 exist. More precisely,

Theorem 1.1. Tr
(

a
⊗d

j=1H
1(Ωj)

)

is weakly closed and therefore proximinal in H1(Ω).

We also showed under which conditions

u ∈ ‖·‖1
d
⊗

j=1

Umin
j (u),

i.e., u belongs to the tensor product of its minimal subspaces. Finally, we analyzed the H1-error of the
L2-SVD for a general order d ≥ 2.
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In this part, we consider the intersection space structure of H1

H1(Ω1 × Ω2) =

(

H1(Ω1)⊗ L2(Ω2)

)

∩
(

L2(Ω1)⊗H1(Ω2)

)

=: H(1,0) ∩H(0,1).

We analyze the H1-error of the H(1,0)- and H(0,1)-SVDs. We also consider an isometric embedding of
H1 into a space which allows the direct application of the SVD.

The paper is organized as follows. In Section 2, we consider the H(1,0)- and H(0,1)-SVDs and gen-
eralizations to higher dimensions. In Section 3, we consider the SVD in higher-dimensional spaces of
mixed smoothness, exponential sum approximations and an isometric embedding of H1 that allows a
direct application of the SVD. We conclude in Section 4 with some simple numerical experiments with
different types of low-rank approximations. Section 5 summarizes the results of part I and part II.

2. SVD in H(1,0) and H(0,1)

Before we proceed with analyzing SVDs in H(1,0) and H(0,1), we consider the corresponding singular
values and compare them to L2-singular values.

2.1. H(1,0) and H(0,1) Singular Values. We consider a function u ∈ H1(Ω) as an element of the

intersection space u ∈ H(1,0) ∩H(0,1). We first consider u as a Hilbert Schmidt operator u : L2(Ω2) →
H1(Ω1) defined by

u[w] =

∫

Ω2

u(·, y)w(y)dy, w ∈ L2(Ω2).

The difference to simply viewing u as an L2 integral kernel arises when we consider the adjoint u∗ :
H1(Ω1) → L2(Ω2)

u∗[v] =
∫

Ω1

u(x, ·)v(x) + ∂

∂x
u(x, ·) d

dx
v(x)dx, v ∈ H1(Ω1).

The corresponding left and right singular functions ψ1
k ∈ H1(Ω1) and φ0k ∈ L2(Ω2) are respectively

given by

uu∗[ψ1
k] =

∫

Ω2

u(·, y)
∫

Ω1

u(x, y)ψ1
k(x) +

∂

∂x
u(x, y)

d

dx
ψ1
k(x)dxdy = λ10k ψ

1
k,

and

u∗u[φ0k] =
∫

Ω1

u(x, ·)
∫

Ω2

u(x, y)φ0k(y)dydx

+

∫

Ω1

∂

∂x
u(x, ·)

∫

Ω2

∂

∂x
u(x, y)φ0k(y)dydx = λ10k φ

0
k,(2.1)

with the corresponding singular values σ10k =
√

λ10k sorted in decreasing order. Note that, unlike in the

previous subsection, in general φ0k 6∈ H1(Ω2). To guarantee this we would have to require u ∈ H1
mix(Ω).

This means that the sum ur =
∑r

k=1 σ
10
k ψ

1
k ⊗ φ0k does not make sense in H1(Ω) in general, only in

H(1,0).
Similarly, we can interpret u ∈ H1(Ω) as a Hilbert Schmidt operator

u : H1(Ω2) → L2(Ω1) defined by

u[w] =

∫

Ω2

u(·, y)w(y) + ∂

∂y
u(·, y) d

dy
w(y)dy, w ∈ H1(Ω2),

with an adjoint u∗ : L2(Ω1) → H1(Ω2) given by u∗[v] =
∫

Ω1
u(x, ·)v(x)dx, v ∈ L2(Ω1). The corre-

sponding singular functions ψ0
k ∈ L2(Ω1) and φ

1
k ∈ H1(Ω2) satisfy

uu∗[ψ0
k] =

∫

Ω2

u(·, y)
∫

Ω1

u(x, y)ψ0
k(x)dxdy

+
∂

∂y
u(·, y)

∫

Ω1

∂

∂y
u(x, y)ψ0

k(x)dxdy = λ01k ψ
0
k,

and

u∗u[φ1k] =
∫

Ω1

u(x, ·)
∫

Ω2

u(x, y)φ1k(y) +
∂

∂y
u(x, y)

d

dy
φ1k(y)dydx = λ01k φ

1
k,(2.2)
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where σ01k =
√

λ01k are the corresponding singular values, sorted in decreasing order. We make the

following immediate observation.

Proposition 2.1. Let u ∈ H1(Ω) and let
∑∞

k=1 σ
00
k ψk ⊗ φk,

∑∞
k=1 σ

10
k ψ

1
k ⊗ φ0k and

∑∞
k=1 σ

01
k ψ

0
k ⊗ φ1k

be the SVD of u interpreted as an element of H(0,0), H(1,0) and H(0,1) respectively. Then, we have for
all r ≥ 0

∞
∑

k=r+1

(σ00k )2 ≤
∞
∑

k=r+1

(σ10k )2 ≤
∞
∑

k=r+1

(σ00k )2‖ψk‖21,

∞
∑

k=r+1

(σ00k )2 ≤
∞
∑

k=r+1

(σ01k )2 ≤
∞
∑

k=r+1

(σ00k )2‖φk‖21.

Proof. The first statement is given by

∞
∑

k=r+1

(σ10k )2 = inf
v∈Rr(H1(Ω1)a⊗L2(Ω2))

‖u− v‖2(1,0)

≥ inf
v∈Rr(L2(Ω1)a⊗L2(Ω2))

‖u− v‖2(0,0) =
∞
∑

k=r+1

(σ00k )2,

and
∞
∑

k=r+1

(σ10k )2 = inf
v∈Rr(H1(Ω1)a⊗L2(Ω2))

‖u− v‖2(1,0) ≤
∥

∥

∥u−
r
∑

k=1

σ00k ψk ⊗ φk

∥

∥

∥

2

(1,0)

=

∞
∑

k=r+1

(σ00k )2‖ψk‖21.

Analogously for the second statement. �

Note that the upper bounds in Proposition 2.1 do not necessarily hold component-wise, i.e., the
inequalities σ10k ≤ σ00k ‖ψk‖1, do not hold in general. This is due to the fact that when estimating the
injective norm

∥

∥

∥

∥

∥

∞
∑

k=r+1

σ00k ψk ⊗ φk

∥

∥

∥

∥

∥

∨(H1(Ω1),L2(Ω2))

,

the functions ψk are not orthonormal in H1(Ω1) and the sequence {σ00k ‖ψk‖1}k∈N is not necessarily
decreasing.

Naturally, we can ask whether we can derive a bound of the sort

∞
∑

k=r+1

(σ00k )2‖ψk‖21 .
∞
∑

k=r+1

(σ10k )2γ(k),

for some sequence γ(k). Though we do not believe this is possible without further assumptions, we
can nonetheless improve the bounds. This indicates that indeed the quantities σ10k and σ00k ‖ψk‖1 are
closely related. This will later be confirmed by numerical observations.

Theorem 2.2. Let u ∈ H1(Ω) and assume the L2-SVD u =
∑∞

k=1 σ
00
k ψk ⊗ φk converges in H1(Ω).

Then, we have

σ10r = ‖ψ1
r‖−1/20

( ∞
∑

k=1

(σ00k )4|
〈

ψ1
r , ψ

0
k

〉

1
|2
)1/4

≥ σ00r

(
〈

ψ1
r , ψr

〉

1

‖ψ1
r‖0

)1/2

,

σ01r = ‖φ1r‖−1/20

( ∞
∑

k=1

(σ00k )4|
〈

φ1r , φ
0
k

〉

1
|2
)1/4

≥ σ00r

(
〈

φ1r, φr
〉

1

‖φ1r‖0

)1/2

.

Proof. We consider the L2-SVD u =
∑∞

k=1 σ
00
k ψk ⊗ φk. u is identified with an operator u : L2(Ω2) →

H1(Ω1). For any w ∈ L2(Ω2),
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u[w] =
∑∞

k=1 σ
00
k 〈w,φk〉0 ψk, converges inH1(Ω1) and for any v ∈ H1(Ω1), u

∗[v] =
∑∞

k=1 σ
00
k 〈v, ψk〉1 φk,

convergences in L2(Ω2). Thus,

uu∗[v] =
∞
∑

k=1

σ00k

〈 ∞
∑

l=1

σ00l 〈v, ψl〉1 φl, φk
〉

0

ψk

=

∞
∑

k=1

∞
∑

l=1

σ00k σ
00
l 〈v, ψl〉1 〈φl, φk〉0 ψk

=

∞
∑

k=1

(σ00k )2 〈v, ψk〉1 ψk.

On the other hand, utilizing the H(1,0)-SVD of u, we have
uu∗[v] =

∑∞
k=1(σ

10
k )2

〈

v, ψ1
k

〉

ψ1
k, and thus

uu∗[v] =
∞
∑

k=1

(σ00k )2 〈v, ψk〉1 ψk =
∞
∑

k=1

(σ10k )2
〈

v, ψ1
k

〉

ψ1
k.

Substituting v = ψ1
r , we obtain

∑∞
k=1(σ

00
k )2

〈

ψ1
r , ψk

〉

1
ψ0
k = (σ10r )2ψ1

r , since {ψ1
k}k∈N are H1(Ω1)-

orthonormal. Finally, taking the L2(Ω1)-norm of both sides and since {ψk}k∈N are L2(Ω1)-orthonormal,
we obtain
∑∞

k=1(σ
00
k )4|

〈

ψ1
r , ψk

〉

|2 = (σ10r )4‖ψ1
r‖20. The statement for σ01r follows analogously by identifying u with

an operator from H1(Ω2) to L
2(Ω1). This completes the proof. �

The factors in the bounds in Theorem 2.2 reflect how ψ1
r , normalized in H1(Ω1), scales w.r.t. ψr,

normalized in L2(Ω1). For instance, if {ψr}r∈N behaves like Fourier or wavelet basis, then ψ1
r ∼

‖ψr‖−11 ψr. In this case, the right hand side in Theorem 2.2 evaluates to σ00r

(

〈ψ1
r ,ψr〉

1

‖ψ1
r‖0

)1/2

∼ σ00r ‖ψr‖1.
This leads precisely to the upper bound of Proposition 2.1. Analogous conclusions hold when considering
σ00r , φ1r and φr.

Extending the results of this subsection to d > 2 using HOSVD singular values and, e.g., the Tucker
format is straightforward. Since we can consider matricizations w.r.t. to each 1 ≤ j ≤ d separately,
the analysis effectively reduces to the case d = 2. Difficulties arise only when considering simultaneous
projections in different components of the tensor product space. There we have to assume the rescaled
singular values converge, as was done in part I of this work.

2.2. H(1,0) and H(0,1) projections. Given the singular functions
{ψ1

k}k∈N and {φ1k}k∈N associated with H(1,0) and H(0,1) SVDs of u respectively, we consider the finite
dimensional subspaces

B1
r := span

{

ψ1
k : 1 ≤ k ≤ r

}

⊂ Umin
1 (u),(2.3)

B2
r := span

{

φ1k : 1 ≤ k ≤ r
}

⊂ Umin
2 (u),

and the corresponding H1-orthogonal projections

Pr : H
1(Ω1) → B1

r , Qr : H
1(Ω2) → B2

r .(2.4)

The tensor product Pr ⊗Qr is well defined on H1(Ω1)⊗a H
1(Ω2), and on this space it holds

Pr ⊗Qr = (Pr ⊗ id2)(id1⊗Qr) = (id1⊗Qr)(Pr ⊗ id2).(2.5)

However, the interpretation is problematic when considering Pr⊗Qr on the closure ofH1(Ω1)⊗aH
1(Ω2)

. Take, e.g., the projection Pr⊗id2. This is an orthogonal projection onH(1,0) and we have (Pr⊗id2)u =
∑r

k=1 σ
10
k ψ

1
k ⊗ φ0k. But in general (Pr ⊗ id2)u 6∈ H(0,1), unless u ∈ H1(Ω1) ⊗a H

1(Ω2). Thus, the
subsequent application id1 ⊗Qr does not necessarily make sense and is not continuous.

Notice the difference with the projections P 1
r and P 2

r for L2-SVD from part I (for d = 2 and
r1 = r2 = r). First, we had P 1

r ⊗ id2 u = id1 ⊗P 2
r u = P 1

r ⊗P 2
r u, since both the left and right projections

already give the best rank r approximation in L2. Second, we required only L2-orthogonality, thus
preserving H1-regularity in the image. Thus, P 1

r ⊗P 2
r made sense on H1(Ω), although the sequence of

projections does not necessarily converge in H1(Ω). To that end, we had to additionally assume in part
I the convergence of the rank-r approximations ur, or convergence of the rescaled L2-singular values.
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In the present case, although we obtain optimality in the stronger ‖·‖(1,0)-norm, we lose convergence
or possibly even boundedness in the ‖ · ‖(0,1)-norm. Thus, we can ask ourselves if Pr is bounded from

L2(Ω1) to L
2(Ω1), i.e., if Pr ∈ L

(

L2(Ω1), L
2(Ω1)

)

?
Specifically, what are the minimal assumptions - if any - that we require in order to achieve this?

The next example shows that indeed even for simple projections this property is not guaranteed.

Example 2.3. Let Ω1 = (0, 1) and consider the space H1
0 (0, 1). We know H1

0 (0, 1) →֒ C(0, 1). Consider
g ∈ H1

0 (0, 1) → R defined by g[f ] := f(0.5), ∀f ∈ H1
0 (0, 1). Clearly, g is a linear functional. Moreover,

since any such f is absolutely continuous, g is bounded in the ‖ · ‖1-norm. Thus, g ∈ (H1
0 (0, 1))

∗. By
the Riesz representation theorem, there exists a unique g̃ ∈ H1

0 (0, 1), such that g[f ] = 〈f, g̃〉1, for all
f ∈ H1

0 (0, 1).
Define the one dimensional subspace U = span {g̃}. The corresponding H1-orthogonal projection P

is given by Pv = ‖g̃‖−21 〈v, g̃〉1 g̃ = ‖g̃‖−21 v(0.5)g̃. Consider the sequence

vn(x) :=











1 + (n+ 1)(x − 0.5), if 0.5− 1
n+1 ≤ x < 0.5,

1 + (n+ 1)(0.5 − x), if 0.5 ≤ x ≤ 0.5 + 1
n+1 ,

0, otherwise,

n ∈ N. Clearly, vn ∈ H1
0 (0, 1) for any n ∈ N, ‖vn‖0 ≤

√

2
n+1 −→ 0, and Pvn = ‖g̃‖−21 g̃ 6= 0, for all

n ∈ N. Thus, P can not be continuous in L2.

A closer look at the preceding example shows that such a function g̃ ∈ H1
0 (0, 1) differentiated twice

yields the delta distribution. Therefore, it can not be in H2(Ω1). On the other hand, if the function
has H2-regularity, as the next statement shows, we can indeed obtain boundedness in L2.

Lemma 2.4. Let u ∈ H1(Ω). In addition, assume the second unidirectional derivatives of u exist in

the distributional sense and are bounded, i.e.,
∥

∥

∥

∂2

∂x2
u
∥

∥

∥

0
<∞,

∥

∥

∥

∂2

∂y2
u
∥

∥

∥

0
<∞. Finally, assume u satisfies

either zero Dirichlet or zero Neumann boundary conditions. Then, the projections defined in (2.4) can
be bounded as

‖Prv‖1 ≤
√
2‖v‖0

(

r
∑

k=1

‖ψ1
k‖20 +

∥

∥

∥

∥

d2

dx2
ψ1
k

∥

∥

∥

∥

2

0

)1/2

,

‖Qrw‖1 ≤
√
2‖w‖0

(

r
∑

k=1

‖φ1k‖20 +
∥

∥

∥

∥

d2

dy2
φ1k

∥

∥

∥

∥

2

0

)1/2

.

Proof. One can easily verify that ψ1
k and φ1k are twice weakly differentiable for any k ∈ N. For any

v ∈ H1(Ω1), we can write Prv =
∑r

k=1

〈

v, ψ1
k

〉

1
ψ1
k. The coefficients can be written as

〈

v, ψ1
k

〉

1
=

∫

Ω1

v(x)ψ1
k(x)dx+

∫

Ω1

d

dx
v(x)

d

dx
ψ1
k(x)dx

=

∫

Ω1

v(x)ψ1
k(x)dx−

∫

Ω1

v(x)
d2

dx2
ψ1
k(x)dx,

where the boundary term vanishes due to the boundary conditions. Thus, we get

‖Prv‖21 =
r
∑

k=1

|
〈

v, ψ1
k

〉

1
|2 ≤

r
∑

k=1

(

‖v‖0‖ψ1
k‖0 + ‖v‖0

∥

∥

∥

∥

d2

dx2
ψ1
k

∥

∥

∥

∥

0

)2

≤ 2‖v‖20
r
∑

k=1

(

‖ψ1
k‖20 +

∥

∥

∥

∥

d2

dx2
ψ1
k

∥

∥

∥

∥

2

0

)

.

Analogously for Qr. This completes the proof. �

Note that in principle the assumption on the boundary conditions can be replaced or avoided, as
long as we can estimate the appearing boundary term. The assumption can be avoided entirely by
using an estimate for the L∞-norm via the Gagliardo-Nirenberg inequality, although this would yield
a crude estimate and dimension dependent regularity requirements.
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Under the conditions of Lemma 2.4, we can assert that Pr ⊗Qr is indeed continuous. Since ‖ · ‖(0,1)
is a uniform crossnorm

‖Pr ⊗Qr‖(0,1) = ‖Pr‖0‖Qr‖1 ≤
√
2

(

r
∑

k=1

‖ψ1
k‖20 +

∥

∥

∥

∥

d2

dx2
ψ1
k

∥

∥

∥

∥

2

0

)1/2

,

and similarly for ‖ · ‖(1,0). Thus, Pr ⊗ Qr ∈ L
(

H1(Ω),H1(Ω)
)

. By density, we can uniquely extend

Pr ⊗Qr onto H1(Ω) and the identity (2.5) holds.
One might argue that requiring Pr and Qr to be continuous in L2 is unnecessary, since we only need

that the mappings Pr ⊗ id2 : H1(Ω) → H(0,1), and id1 ⊗Qr are continuous. The following example
shows that indeed Pr ⊗ id2 need not be continuous even on elementary tensor products, if Pr is not L

2

continuous.

Example 2.5. Take P to be the projection from Example 2.3. Consider the same sequence {vn}n∈N ⊂
H1

0 (0, 1) as in Example 2.3. Take another sequence wn ∈ H1
0 (0, 1) as

wn(y) :=











(n+ 1)−1/2 + (n + 1)1/2(y − 0.5), if 0.5 − n−1 ≤ y < 0.5,

(n+ 1)−1/2 + (n + 1)1/2(0.5 − y), if 0.5 ≤ y < 0.5 + n−1,

0, otherwise.

Then,

‖wn‖20 ≤ 2(n+ 1)−2,

‖wn‖21 ≤ 2(n+ 1)−2 + 2(n + 1)(n + 1)−1 = 2(n + 1)−2 + 2,

‖wn‖21 ≥ 2.

Thus, since ‖ · ‖(0,1) is a crossnorm

‖(P ⊗ id2)(vn ⊗wn)‖(0,1) = ‖Pvn‖0‖wn‖1 ≥ 2‖Pv1‖0 > 0, ∀n ∈ N.

On the other hand

‖vn ⊗ wn‖21 ≤ ‖vn ⊗ wn‖2(10) + ‖vn ⊗ wn‖2(01) = ‖vn‖21‖wn‖20 + ‖vn‖20‖wn‖21
≤ [2(n + 1)−1 + 2(n + 1)][2(n + 1)−2] + [2(n + 1)−1][2(n + 1)−2 + 2]

= [4(n + 1)−3 + 4(n + 1)−1] + [4(n + 1)−3 + 4(n + 1)−1] −→ 0.

Hence, P ⊗ id2 is not continuous on H1(Ω) even on H1(Ω1)⊗a H
1(Ω2).

To summarize our findings, let us define the finite dimensional subspacesW 1
r := span

{

ψ0
k : 1 ≤ k ≤ r

}

,

W 2
r := span

{

φ0k : 1 ≤ k ≤ r
}

, Under the assumptions of Lemma 2.4, W 1
r ⊂ H1(Ω1) andW

2
r ⊂ H1(Ω2).

This can also be observed by, e.g., considering (2.1) and integrating the second term by parts. We can
estimate the H1 error as follows.

Theorem 2.6. Let the assumptions of Lemma 2.4 be satisfied. Moreover, define the constants

L(r) := sup
v∈B1

r

‖v‖1
‖v‖0

sup
v∈B1

r

‖v‖2
‖v‖1

, R(r) := sup
w∈B2

r

‖w‖1
‖w‖0

sup
w∈B2

r

‖w‖2
‖w‖1

.

Then, the projection error is bounded as

1√
2

( ∞
∑

k=r+1

(σ10k )2 + (σ01k )2

)1/2

≤ ‖u− (Pr ⊗Qr)u‖1

≤
( ∞
∑

k=r+1

(1 + 2r2R(r)2)(σ10k )2 + (1 + 2r2L(r)2)(σ01k )2

)1/2

.

Proof. For the lower bound observe first that

‖u− (Pr ⊗Qr)u‖21 ≥
1

2

(

‖u− (Pr ⊗Qr)u‖2(1,0) + ‖u− (Pr ⊗Qr)u‖2(0,1)
)

.
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Since Pr ⊗ id2 u is the optimal rank r approximation in the ‖ · ‖(1,0)-norm, we can further estimate

‖u− (Pr ⊗Qr)u‖2(1,0) ≥ ‖u− (Pr ⊗ id2)u‖2(1,0) =
∞
∑

k=r+1

(σ10k )2,

and similarly for id1⊗Qr. This gives the lower bound.
For the upper bound, since Pr ⊗ id2 is orthogonal in the ‖ · ‖(1,0)-norm, we get

‖u− (Pr ⊗Qr)u‖2(1,0)
= ‖u− (Pr ⊗ id2)u‖2(1,0) + ‖Pr ⊗ id2[u− (id1⊗Qr)u]‖2(1,0).

To estimate the latter term, recall that (Pr ⊗ id2)u ∈ B1
r ⊗aW

2
r . Thus, we can find some {vi}ri=1 in B1

r

and {wi}ri=1 in W 2
r such that

er := Pr ⊗ id2[u− (id1 ⊗Qr)u] =
r
∑

k=1

vi ⊗ wi.(2.6)

Thus, we estimate further

‖er‖2(1,0) ≤
(

r
∑

k=1

‖vi‖1‖wi‖0
)2

≤
(

r
∑

k=1

L1(r)‖vi‖0‖wi‖1
)2

,

where L1(r) := supv∈B1
r

‖v‖1
‖v‖0 . Taking the infimum over all representations (2.6) of er, we obtain

‖er‖2(1,0) ≤ L1(r)
2‖er‖2∧(0,1), where ‖ · ‖∧(0,1) is the projective norm on L2(Ω1)⊗aH

1(Ω2). Let {σek}rk=1

denote the singular values of er : H1(Ω2) → L2(Ω1). Then, since the projective norm corresponds to
the nuclear norm of the operator er (see also [5, Remark 4.116])

‖er‖2∧(0,1) ≤
(

r
∑

k=1

σek

)2

≤ r

r
∑

k=1

(σek)
2 = r‖er‖2(0,1).

In summary, ‖er‖2(1,0) ≤ L1(r)
2r‖er‖2(0,1). Finally, to bound Pr ⊗ id2, we apply Lemma 2.4

‖Pr ⊗ id2 ‖(0,1) ≤
√
2

(

r
∑

k=1

‖ψ1
k‖20 +

∥

∥

∥

∥

d2

dx2
ψ1
k

∥

∥

∥

∥

2

0

)1/2

≤
√
2

(

r
∑

k=1

‖ψ1
k‖20 +

∥

∥

∥

∥

d

dx
ψ1
k

∥

∥

∥

∥

2

0

+

∥

∥

∥

∥

d2

dx2
ψ1
k

∥

∥

∥

∥

2

0

)1/2

=
√
2

(

r
∑

k=1

‖ψ1
k‖22

‖ψ1
k‖21

)1/2

≤
√
2
√
rL2(r),

since ψ1
k are H1 normalized and L2(r) := supv∈B1

r

‖v‖2
‖v‖1 . Thus,

‖u− (Pr ⊗Qr)u‖2(1,0) ≤
∞
∑

k=r+1

(σ10k )2 + 2L1(r)
2L2(r)

2r2‖u− id1 ⊗Qr‖2(0,1)

=

∞
∑

k=r+1

(σ10k )2 + 2L(r)2r2
∞
∑

k=r+1

(σ01k )2.

Analogously we can estimate the ‖ · ‖(0,1) error. This completes the proof. �

To conclude this section, we extend the preceding result to d > 2. Unfortunately, unlike in the case
for higher-order L2-SVD in part I, the upper bound will depend exponentially on d. When performing
an L2-SVD in d dimensions, the corresponding one dimensional projectors are L2-optimal. Thus, when
considering the tensor product Pr of the projectors w.r.t. the ‖ · ‖ej -norm for any 1 ≤ j ≤ d, only one
factor in Pr is sub-optimal.

On the other hand, when the corresponding projectors are H1-optimal and we consider the tensor
product Pr of the projectors, all but one factor are sub-optimal, yielding a constant that scales with
an exponent of d− 1. Of course, for d = 2 this is not obvious.
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Before we proceed we introduce some notations to formalize the statement. In analogy to (2.3), we
define the finite dimensional subspaces

Bj
r := span

{

ψ1
k : 1 ≤ k ≤ r

}

⊂ Umin
j (u), 1 ≤ j ≤ d,

where ψjk are theH
1-singular functions in the j-th dimension (left singular functions of uj : L

2(×k 6=j Ωk) →
H1(Ωj)). In principle we can take different ranks r in each dimension, which only results in a more

cumbersome notation for the bound. We consider the H1-projectors P jr : H1(Ωj) → B
j
r , and the corre-

sponding tensorized versions Pj
r = P

j
r ⊗

(

⊗

i 6=j idi
)

. We introduce the index sets Ij := {1, . . . , d}\{j},
1 ≤ j ≤ d, and the following sequence of sets

I
j
1 = ∅,

Ij ⊃ I
j
i ⊃ I

j
i−1, #Iji = #Iji−1 + 1 i = 2, . . . , d.(2.7)

Note that the sets in this sequence are not unique. Apart from the first and the last sets, there are
finitely many possible combinations for the intermediate sets.

Theorem 2.7. Let u ∈ H1(Ω) and the assumptions of Lemma 2.4 hold. I.e., we assume u is twice
weakly differentiable in each dimension. As before, we introduce the regularity factors

Cj(r) = sup
vj∈Bj

r

‖vj‖1
‖vj‖0

sup
vj∈Bj

r

‖vj‖2
‖vj‖1

.

Take any sequence of sets {Iji }di,j=1 as in (2.7). Then, the H1-error of the HOSVD projection can be
estimated as

∥

∥

∥

∥

∥

∥

u− (

d
∏

j=1

Pj
r )u

∥

∥

∥

∥

∥

∥

1

≤







d
∑

j=1

∞
∑

k=r+1

(σjk)
2







d
∑

i=1

(
√
2r)2(i−1)

∏

l∈Ij
i

Cl(r)
2













1/2

.(2.8)

Proof. The result can be obtained by “peeling off” projectors. Observe that similar to Theorem 2.6 we
can write

∥

∥

∥

∥

∥

∥

u− (
d
∏

j=1

Pj
r )u

∥

∥

∥

∥

∥

∥

2

ek

=
∥

∥

∥
u− Pk

r u
∥

∥

∥

2

ek
+

∥

∥

∥

∥

∥

∥

Pk
r [u− (

d
∏

j 6=k
Pj
r )u]

∥

∥

∥

∥

∥

∥

2

ek

=
∞
∑

m=r+1

(σkm)
2 +

∥

∥

∥

∥

∥

∥

Pk
r [u− (

d
∏

j 6=k
Pj
r )u]

∥

∥

∥

∥

∥

∥

2

ek

,

for some 1 ≤ k ≤ d. For the latter term we apply the same arguments as in Theorem 2.6 and obtain
∥

∥

∥

∥

∥

∥

Pk
r [u− (

d
∏

j 6=k
Pj
r )u]

∥

∥

∥

∥

∥

∥

2

ek

≤ 2r2Ck(r)
2

∥

∥

∥

∥

∥

∥

u− (
d
∏

j 6=k
Pj
r )u

∥

∥

∥

∥

∥

∥

2

ei

,

for some i 6= k. Next, we repeat this for i. I.e., for some l 6∈ {k, i}
∥

∥

∥

∥

∥

∥

u− (
d
∏

j 6=k
Pj
r )u

∥

∥

∥

∥

∥

∥

2

ei

=
∞
∑

m=r+1

(σim) +

∥

∥

∥

∥

∥

∥

Pi
r[u− (

d
∏

j 6∈{k,i}
Pj
r )u]

∥

∥

∥

∥

∥

∥

2

ei

≤
∞
∑

m=r+1

(σim) + 2r2Ci(r)
2

∥

∥

∥

∥

∥

∥

u− (

d
∏

j 6∈{k,i}
Pj
r )u

∥

∥

∥

∥

∥

∥

2

el

.

The arbitrary order of choosing i, l, . . . until we are left with just one projector leads to the arbitrary

sequence of sets Iji in (2.8). This completes the proof. �

3. Alternative Forms of Low-Rank Approximation in H1

In this section we investigate alternative approaches for low-rank approximation with error control
in H1.
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3.1. Spaces of Mixed Smoothness. Consider again a function u ∈ H1(Ω1)⊗aH
1(Ω2) viewed as an

operator u : H1(Ω2) → H1(Ω1). Completing H1(Ω1)⊗aH
1(Ω2) w.r.t. the canonical norm ‖ · ‖mix leads

to H1
mix(Ω). For d = 2 we have the inclusions H2(Ω) ⊂ H1

mix(Ω) ⊂ H1(Ω). Thus, assuming additionally
u ∈ H1

mix(Ω) is not a severe regularity restriction. In particular solutions to elliptic PDEs will often

satisfy this assumption. However, for general d ≥ 2, we have the inclusions Hd(Ω) ⊂ H1
mix(Ω) ⊂ H1(Ω).

As the dimension grows, the regularity restriction becomes more and more severe. Nonetheless, there
are important examples where such assumptions are valid, e.g., for the solution to the Schrödinger
equation, see [6, Chapter 6].

One can ask if we can exploit the SVD w.r.t. the ‖·‖mix-norm in higher dimensions without assuming
dimension dependent regularity. To this end, for general d ≥ 2, we consider u ∈ H1(Ω) such that all

mixed derivatives of order 2 exist, i.e., ∂2

∂xi∂xj
u, 1 ≤ i, j ≤ d, i 6= j, exist in the weak sense and are

L2-integrable. Define the spaces Vj := H1(Ωj)⊗a H
1(×i 6=j Ωi), with the corresponding norm

‖u‖2mix,j := ‖u‖20 +
d
∑

i=1

∥

∥

∥

∥

∂

∂xi
u

∥

∥

∥

∥

2

0

+
∑

i 6=j

∥

∥

∥

∥

∂2

∂xj∂xi
u

∥

∥

∥

∥

2

0

.

A new intersection space is defined via V :=
⋂d
j=1Vj, ‖·‖2V :=

∑d
j=1 ‖·‖2mix,j. In each Vj there exists an

optimal rank r approximation w.r.t. the ‖·‖mix,j-norm that we call ujr. We can define the corresponding

minimal subspaces asM j
r := Umin

j (ujr) ⊂ H1(Ωj), dimM
j
r = r. TheH1-orthogonal projection is denoted

by P jr : H1(Ωj) →M
j
r .We consider the HOSVD projection Pr :=

⊗d
j=1 P

j
r . As before, for simplicity we

take r constant and independent of j, but in principle the extension to different rj is straightforward.
Before we proceed, we briefly justify why such a projection makes sense on V.

Lemma 3.1. Let Aj : Xj → Yj be linear and continuous operators between Hilbert spaces Xj and Yj ,

1 ≤ j ≤ d. Define X := a
⊗d

j=1Xj

‖·‖X
, Y := a

⊗d
j=1 Yj

‖·‖Y
, where ‖ · ‖X and ‖ · ‖Y are the canonical

norms induced by the Hilbert spaces Xj and Yj . Then, the operator A :=
⊗d

j=1Aj : X → Y, is well
defined, i.e., can be uniquely extended to a continuous operator on X. For the operator norm we get

‖A‖ =
∏d
j=1 ‖Aj‖.

Proof. One can follow the same arguments as in [5, Proposition 4.127]. �

Since P jr : H1(Ωj) → H1(Ωj) is bounded and by applying the preceding lemma, we note that

Pj
r := P jr ⊗





⊗

i 6=j
idi



 : Vj → Vi,(3.1)

is bounded for any 1 ≤ i ≤ d and any 1 ≤ j ≤ d. Thus, the projections from (3.1) are well defined on
V, commute and the composition Pr is well defined as well.

We are now ready to derive an error estimate for the HOSVD projection. Unfortunately, we can
only slightly improve the bound in (2.8), as the next statement shows. Once again, we will require the
projections above to be bounded in L2. This will lead to a higher regularity requirement u ∈ H3(Ω).

Proposition 3.2. Let d > 2, u ∈ H3(Ω) and u satisfy Dirichlet or Neumann boundary conditions as
in 2.4. As before, we define the regularity factors

Dj(r) := sup
vj∈Mj

r

‖vj‖2
‖vj‖1

.

Let I = (1, . . . , d) be an ordered tuple with the indexing convention I(j) = j. Denote by Sd(I) the
set of all possible permutations of I1.

1We use a slight abuse of notation for the permutation group.
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Then, with the shorthand notation jc := {1, . . . , d} \ {j} for any 1 ≤ j ≤ d, we can estimate the
HOSVD projection error as

‖u− Pru‖1

≤ 2r
d−2

2 min
J∈Sd(I)

d
∑

j=1









max
i∈(J(j))c

∏

k=J(1),...,J(j−1),
k 6=i

Dk(r)









·
[ ∞
∑

k=r+1

(σ
J(j)
k )2

]1/2

where {σjk}k∈N, 1 ≤ j ≤ d, are the HOSVD singular values.

Proof. See Appendix A. �

The above bound is similar in nature to 2.7. In both cases the exponential dependance on d arises
since d− 1 H1-orthogonal projections involved in Pr are sub-optimal.

We conclude this subsection by providing bounds for the H1-error using H1
mix-singular values. We

derive the result for d = 2. Unlike in for higher-order L2-SVD in part I, this result does not possess an
elegant generalization to d > 2 for the same reason the statements above introduce factors depending
exponentially on the dimension.

Let d = 2 and {σ11k }k∈N denote the singular values associated with the H1
mix-SVD. Let {ψmix

k }k∈N
and {φmix

k }k∈N denote the corresponding left and right singular functions. Then, the best rank r

approximation w.r.t. ‖ · ‖mix is given by ur =
∑r

k=1 σ
11
k ψ

mix
k ⊗ φmix

k .

Proposition 3.3. For u ∈ H1
mix

(Ω) we have the following upper and lower
bounds for the H1 error

‖u− ur‖21 ≤
∞
∑

k=r+1

(σ11k )2(‖φ1k‖20 + ‖ψ1
k‖20),

‖u− ur‖21 ≥
1

2

∞
∑

k=r+1

(σ11k )2(‖φ1k‖20 + ‖ψ1
k‖20).

Proof. The proof follows the same lines as the one of [1, Theorem 4.1]. �

3.2. Exponential Sums. One can reformulate the problem of low-rank approximations in H1 as a
problem on sequence spaces. This point of view is particularly close to numerical application and,
in essence, has already been applied in previous works, as we will demonstrate below. For ease of
exposition we will consider Fourier bases. But in principle any multiscale Riesz basis could be used,
e.g., wavelets.

Let u ∈ H1([−π, π]2) be a 2π-periodic function. Then, u can be expanded in the Fourier basis as
u(x, y) = 1

2π

∑

k,m∈Z ckme
ikxeimy, where we also know that

∑

k,m∈Z |ckm|2(1 + k2 +m2) <∞.

Since the Fourier basis is orthonormal in L2, performing an SVD of the sequence {ckm}k,m∈Z, we
implicitly obtain an L2-SVD of u. Since the Fourier basis is orthogonal in H1 as well, we can simply
rescale and perform an SVD on the resulting sequence. However, this time with error control in H1.

More precisely,

u(x, y) =
1

2π

∑

k,m∈Z
ckme

ikxeimy =
1

2π

∑

k,m∈Z
ckm

√
1 + k2 +m2

√
1 + k2 +m2

eikxeimy.

Performing the ℓ2-SVD of {ckm
√
1 + k2 +m2}k,m∈Z,

ckm
√
1 + k2 +m2 =

∑∞
l=1 σlv

l
kw

l
m, we obtain

u(x, y) =
1

2π

∞
∑

l=1

σl
∑

k,m∈Z

1√
1 + k2 +m2

vlke
ikxwlme

imy .

The remaining issue is that the functions
∑

k,m∈Z
1√

1+k2+m2
vlke

ikxwlme
imy, are not separable due to the

scaling term 1√
1+k2+m2

. On the other hand, the latter can be approximated to any desired accuracy



SINGULAR VALUE DECOMPOSITION IN SOBOLEV SPACES: PART II 11

by exponential sums (see also [5, Chapter 9.7.2]), which in turn are separable. We approximate in the
form

1√
1 + k2 +m2

≈
∑

ν∈Z
Eδ(k, ν)Eδ(m, ν),(3.2)

where δ > 0 controls the accuracy of the approximation. Finally, we get the separable representation

u(x, y) ≈ 1

2π

∞
∑

l=1

σl
∑

ν∈Z

(

∑

k∈Z
Eδ(k, ν)vlke

ikx

)(

∑

m∈Z
Eδ(m, ν)wlme

imy

)

,

where the approximation can be performed to any accuracy δ > 0. A finite representation involves trun-
cating the Fourier basis representation w.r.t. k and m, truncating the exponential sum approximation
w.r.t. ν, and truncating to a low-rank representation w.r.t. l. If we denote the number of Fourier basis
terms in each dimension by n, the number of exponential sum terms by p and the rank bound by r,
then the overall complexity for such a representation is O(rn2p), with a rank of the final representation
bounded by rn.

In principle, the same type of SVD was applied in [4]. There the authors constructed an adaptive
wavelet solver based on inexact Richardson iterations for elliptic equations. They introduced a separable
exponential sum preconditioner, which approximates the scaling coefficients similar to (3.2). The
properly scaled coefficients of the numerical solution were then truncated via HOSVD. This is implicitly
equivalent to the procedure above.

A similar approach was performed in [3] and [2]. In [3] the authors controlled the error only in L2

but generally observed convergence in H1 as well. This is consistent with our analysis for the L2-SVD
in part I.

3.3. Sobolev Functions as Operators. Until now we considered low-rank approximations for u ∈
H1(Ω) by using the L2-SVD, H(1,0)-SVD, H(0,1)-SVD andH1

mix-SVD. In all cases we required additional
regularity assumptions and the error estimates involved singular values and scaling factors. One could
ask if there is a natural interpretation of u ∈ H1(Ω) that fully exploits the intersection space structure
without any additional assumption.

For simplicity we consider the case d = 2 and the space H1(Ω) ∼= H(1,0) ∩H(0,1), where on the right
hand side we use the intersection norm ‖ · ‖2∩ := ‖ · ‖2(1,0) + ‖ · ‖2(0,1). The structure of the norm suggests

it is more appropriate to consider a direct sum space. Thus, we define H2D := H(1,0) × H(0,1), with
the corresponding natural norm ‖ · ‖22D := ‖ · ‖2(1,0) + ‖ · ‖2(0,1). We can continuously embed H1(Ω) into

this space via the linear isometry H1(Ω) →֒ H2D, u 7→ (u, u), ‖u‖1 ∼ ‖(u, u)‖2D . The space H1(Ω)
represents the “diagonal” of H2D. To see how u can represent an operator, we further embed H2D into
a space of Hilbert Schmidt operators

HS
(

L2(Ω2)×H1(Ω2),H
1(Ω1)× L2(Ω1)

)

,

by identifying (u1, u2) ∈ H2D with a map (u1, u2)[(w, v)] := (u1[w], u2[v]), ‖(u1, u2)‖2D = ‖(u1, u2)‖HS.

To see the norm identity, consider again the H(1,0)- and H(0,1)-SVDs, u1 =
∑∞

k=1 σ
10
k ψ

1
k ⊗ φ0k, u2 =

∑∞
k=1 σ

01
k ψ

0
k ⊗ φ1k. Since {φ0k}k∈N and {φ1k}k∈N are complete orthonormal systems for L2(Ω2) and

H1(Ω2), respectively, {(φ0k, 0), (0, φ1k)}k∈N is a complete orthonormal system for
L2(Ω2)×H1(Ω2). Analogously for {(ψ1

k, 0), (0, ψ
0
k)}k∈N. Applying (u1, u2) to this orthonormal system

we get

(u1, u2)[(φ
0
i , 0)] =

( ∞
∑

k=1

σ10k
〈

φ0i , φ
0
k

〉

0
ψ1
k, 0

)

= σ10i (ψ1
i , 0),

(u1, u2)[(0, φ
1
i )] =

(

0,

∞
∑

k=1

σ01k
〈

φ1i , φ
1
k

〉

1
ψ0
k

)

= σ01i (0, ψ0
i ).

Let {σ∪k }k∈N represent the sorted union of the singular values {σ10k }k∈N and {σ01k }k∈N. Then, by the
above, the SVD of (u1, u2) is given by (u1, u2) =

∑∞
k=1 σ

∪
kψk ⊗ φk, where

ψk ⊗ φk =

{

(ψ1
l , 0)⊗ (φ0l , 0), if σk = σ10l ,

(0, ψ0
l )⊗ (0, φ1l ), if σk = σ01l .



12 SINGULAR VALUE DECOMPOSITION IN SOBOLEV SPACES: PART II

The extension to d > 2 is straightforward. In summary, H2D seems like a natural space for low-rank
approximations for u ∈ H1(Ω) and in which u can be interpreted as a Hilbert Schmidt operator without
any additional assumptions.

The issue remains, however, that low-rank approximations in H2D involve a pair of approximations:
one for the left and one for the right derivative. If we require a single low-rank approximation, we would
have to project onto the “diagonal” of H2D. This essentially involves the application of the inverse of
the Laplacian, which is not separable.

A general approach might be to reformulate a problem given in H1(Ω) into a problem in H2D and
solve the latter in a low-rank format to obtain a solution being a tuple of low-rank approximantions.
In a last step, one could apply an approximate, efficient and problem independent projection onto the
diagonal to obtain a low-rank approximation ur ∈ H1(Ω). Though natural, it is unclear to us if and
how the interpretation as u ∈ H2D is of practical use.

4. Numerical Experiments

In this section we verify our findings with a few toy examples. First, we consider a function u ∈
H1([−π, π]2), expand this function in Fourier bases and truncate the expansion

u(x, y) =
1

2π

∑

k,m∈Z
ckme

−ikxe−imy ≈ un(x, y) =
1

2π

n
∑

k=−n

n
∑

m=−n
ckme

−ikxe−imy.

Then, we perform an SVD of un. This situation is prototypical for a numerical method, where the
current numerical approximation un (with possibly high ranks) is truncated to a low-rank approximation
ũn. We are particularly interested in the behavior of the singular values and comparisons with L2 and
H1 errors.

We consider two functions. First, u(x, y) = (x2 + y2)0.3, which has a singularity in the derivatives at
x = y = 0. Second, u(x, y) = |x + y|0.6, which has a singularity along the anti-diagonal x = −y. The
results are displayed in 4.1.

The singular values of the first function decay faster. For the second function, since the singularity
is not axis aligned, we expect bad separability. We plot both the L2 and H1 errors of the L2-SVD.
We also plot the H1-error of the projection (Pr ⊗Qr)u from (2.5). In both cases (Pr ⊗Qr)u does not
improve the error of the L2-SVD.

Moreover, we also compare this with the best possible approximation in the following sense. We
take the eigenfunctions generated by all SVDs: L2-eigenfunctions of the L2-SVD, H1-eigenfunctions
of the H(1,0)-, H(0,1)-SVDs and L2-eigenfunctions of the H(1,0)-, H(0,1)-SVDs. Then, we perform an
H1-orthogonal projection onto the space of tensor products spanned by all possible combinations of
these eigenfunctions. Of course, such a procedure is not feasible in higher dimensions, it serves merely
to illustrate our point. We denote this by “H1 error optimal approximation”.

As can be seen in the plot for the second function, all possible projections are the same as the best
possible one. This is consistent with expectation. In fact, all of the eigenspaces mentioned above are
the same, i.e., the eigenfunctions are linearly dependent. Recall the definition of the three possible
eigenspaces:

U
j
I (un) := span

{

ϕ(un) : ϕ =

2
⊗

k=1

ϕk, ϕj = idj , ϕk ∈ (L2(Ωk))∗, k 6= j)

}‖·‖0

,

U
j
II(un) := span

{

ϕ(un) : ϕ =

2
⊗

k=1

ϕk, ϕj = idj , ϕk ∈ (L2(Ωk))∗, k 6= j)

}‖·‖1

,

U
j
III(un) := span

{

ϕ(un) : ϕ =
2
⊗

k=1

ϕk, ϕj = idj , ϕk ∈ (H1(Ωk))∗, k 6= j)

}‖·‖0

.

Since un ∈ H1(Ω1) ⊗a H
1(Ω2), by [1, Lemma 3.1] (see also [5, Remark 6.32]), U jI (un) = U

j
II(un) =

U
j
III(un). From a theoretical perspective, the truly difficult cases are when u ∈ H1(Ω) but is not

in H1(Ω1) ⊗a H
1(Ω2). Only in such cases the minimal subspaces depend on the topology of the
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ambient space. In particular, this means that if u ∈ H1(Ω) is a numerical approximation, most of the
assumptions in the previous section hold2.

We use an error estimator for the H1-error

e(r) =

(

n
∑

k=r+1

(σ10k )2 + (σ01k )2

)1/2

,(4.1)

where {σ10k }k∈N and {σ01k }k∈N are the singular values from Proposition 2.1. The projections Pr, Qr are
from Section 2.2. As can be seen in both plots, this error estimator lies perfectly on the H1-error. This
is consistent with [1, Theorem 4.1] and Theorem 2.2.

0 5 10 15 20 25 30 35 40 45 50 55

rank

10 -10

10 -8

10 -6

10 -4

10 -2

100

102

lo
g(

er
ro

r)

0 5 10 15 20 25 30 35 40 45 50 55

rank

10 -2

10 -1

100

101

102

lo
g(

er
ro

r)

Figure 4.1. Low rank approximations for truncated Fourier series of u(x, y) = (x2 +
y2)0.3 (top), u(x, y) = |x+ y|0.6 (bottom).

These findings suggest that we can compute a low-rank approximation for un by performing an L2-
SVD and truncating based on the error estimator in (4.1) to control the error in H1. In the following
we do just that. We consider the weak formulation of the Poisson equation −∆u = f. We compute a

2With sufficient regularity of the basis functions, all assumptions hold.
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Galerkin approximation un ≈ u, and truncate this approximation to ũn such that

‖u− un‖1 ≤ ‖u− ũn‖1 ≤ 2‖u − un‖1.
We increase the discretization size n, i.e., the number n2 of basis functions. The results are displayed
in 4.2. The plotted errors are approximations to the exact errors ‖u − un‖1 and ‖u − ũn‖1. In both
cases the error bounds are fulfilled and the rank of ũn remains below 5.

100 101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

101

100 101 102 103 104
10 -2

10 -1

100

101

Figure 4.2. Galerkin solutions for reference functions u(x, y) = exp(cos(x) cos(y))
(top) and u(x, y) = |1− (x2 + y2)|0.95 (bottom).

5. Conclusion

We proposed and analyzed several variants of low-rank approximations of functions in Sobolev spaces.
In part I, we show that sets of functions with bounded Tucker (multi-linear) rank in Sobolev spaces are
weakly closed. Sobolev functions can be shown to be in the tensor product of their minimal subspaces
under certain conditions, such as additional regularity. However, we do not believe that this holds in
general. The L2-SVD preserves regularity of the decomposed functions and, under certain conditions,
we can quantify the H1 error in terms of the rescaled singular values.
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In part II, we show that the singular values of different SVDs are closely related. Lower and upper
bounds are obtained by simple scalings. We also analyze H1 minimal subspaces. The SVD in H(1,0)

does not preserve regularity and H1 bounds require additional smoothness. The resulting bounds are
worse than that of the L2-SVD. Similar bounds apply to spaces of lower order mixed smoothness for
d > 2. This indicates the L2-SVD performs better for low-rank approximations than variants of SVDs
involving Sobolev spaces.

Numerical experiments are consistent with the analytical findings. Differences between minimal
subspaces w.r.t. to different norms arise only when considering functions in Sobolev spaces that are not
in the algebraic tensor spaces. For constructing low-rank approximations of numerical solutions, the
different types of minimal subspaces do not add information. However, the singular values of H(1,0)-
and H(0,1)-SVDs are better suited to estimate the H1 error and, for numerical purposes, it seems the
best recipe are low-rank approximations built from L2-SVDs but with H(1,0) and H(0,1) singular values
used for H1-error control.

Finally, we briefly mentioned alternatives. Exponential sums are a well known technique already
utilized in previous works. On the other hand, if one pursues the viewpoint of Sobolev spaces being
intersection spaces, a natural approach would be to consider direct sum spaces. We briefly introduced
this viewpoint.

There are a few immediate open questions that arise in conclusion of this work. It would be inter-
esting to consider how the above analysis extends to hierarchical tensor formats (see [5, Chapter 11]).
Numerical experiments for high-dimensional problems with a fine or adaptive discretization should shed
more light on the performance of SVD in Sobolev spaces.
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Appendix A. Proof of 3.2

Proof. I. To begin, we consider the statement for J = I = (1, . . . , d). We have

‖u− Pru‖1 =

∥

∥

∥

∥

∥

∥



id−
d
∏

k=1

P kr

⊗

i 6=k
idi



u

∥

∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

∥

d
∑

j=1

j−1
∏

k=1

P kr

⊗

i 6=k
idi
(

u− Pj
ru
)

∥

∥

∥

∥

∥

∥

1

≤
d
∑

j=1

∥

∥

∥

∥

∥

∥

j−1
∏

k=1

P kr

⊗

i 6=k
idi
(

u− Pj
ru
)

∥

∥

∥

∥

∥

∥

1

≤
d
∑

j=1

∥

∥

∥

∥

∥

∥

j−1
∏

k=1

P kr

⊗

i 6=k
idi
(

u− Pj
ru
)

∥

∥

∥

∥

∥

∥

mix,j

=
d
∑

j=1

∥

∥

(

P 1
r ⊗ · · · ⊗ P j−1r ⊗ idj ⊗ · · · ⊗ idd

) (

u− Pj
ru
)∥

∥

mix,j

Thus, we need to bound the norm of the operator

P 1
r ⊗ · · · ⊗ P j−1r ⊗ idj ⊗ · · · ⊗ idd : Vj

‖·‖mix,j → Vj
‖·‖mix,j

.

Since ‖ · ‖mix,j is a uniform crossnorm on Vj
‖·‖mix,j , we only need to bound

P 1
r ⊗ · · · ⊗ P j−1r ⊗ idj+1⊗ · · · ⊗ idd : H

1(×
k 6=j

Ωk) → H1(×
k 6=j

Ωk).

II. To that end, we first check if P jr is bounded in L2. In order to describe the space M j
r , we

consider again the SVD of the operator u : H1(Ωj) → H1(×k 6=j Ωk). To shorten notation, we use

x∧j := (x1, . . . , xj−1, xj+1, . . . , xd) and x
∨
j := (. . . , xj , . . .). We have

u[v] =

∫

Ωj

u(x∨j )v(xj)dxj +
∫

Ωj

∂

∂xj
u(x∨j )

d

dxj
v(xj)dxj ,

3jochen.glueck@alumni.uni-ulm.de
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and

u∗[w] =
∫

×k 6=j Ωk

u(. . . , xj−1, ·, xj+1, . . .)w(x
∧
j )dx

∧
j

+
∑

i 6=j

∫

×k 6=j Ωk

∂

∂xi
u(. . . , xj−1, ·, xj+1, . . .)

∂

∂xi
v(x∧j )dx

∧
j .

The singular functions ψjk ∈ H1(Ωj) satisfy

u∗u[ψk] =
∫

×k 6=j Ωk

u(. . . , xj−1, ·, xj+1, . . .)

∫

Ωj

u(x)ψjk(xj)dxjdx
∧
j

+

∫

×k 6=j Ωk

u(. . . , xj−1, ·, xj+1, . . .)

∫

Ωj

∂

∂xj
u(x)

d

dxj
ψ
j
k(xj)dxjdx

∧
j

+
∑

i 6=j

∫

×k 6=j Ωk

∂

∂xi
u(. . . , xj−1, ·, xj+1, . . .)

∫

Ωj

∂

∂xi
u(x)ψjk(xj)dxjdx

∧
j

+
∑

i 6=j

∫

×k 6=j Ωk

∂

∂xi
u(. . . , xj−1, ·, xj+1, . . .)

∫

Ωj

∂2

∂xi∂xj
u(x∨j )

d

dxj
ψ
j
k(xj)dxjdx

∧
j

= λ
j
kψ

j
k,

where λjk = (σjk)
2. Since u ∈ H3(Ω), differentiating twice we get

λ
j
k

d2

dx2j
ψk =

∫

×k 6=j Ωk

∂2

∂x2j
u(. . . , xj−1, ·, xj+1, . . .)

∫

Ωj

u(x)ψjk(xj)dxjdx
∧
j

+

∫

×k 6=j Ωk

∂2

∂x2j
u(. . . , xj−1, ·, xj+1, . . .)

∫

Ωj

∂

∂xj
u(x)

d

dxj
ψ
j
k(xj)dxjdx

∧
j

+
∑

i 6=j

∫

×k 6=j Ωk

∂3

∂x2j∂xi
u(. . . , xj−1, ·, xj+1, . . .)

∫

Ωj

∂

∂xi
u(x)ψjk(xj)dxjdx

∧
j

+
∑

i 6=j

∫

×k 6=j Ωk

∂3

∂x2j∂xi
u(. . . , xj−1, ·, xj+1, . . .)

∫

Ωj

∂2

∂xi∂xj
u(x∨j )

d

dxj
ψ
j
k(xj)dxjdx

∧
j .

Thus, we can apply 2.4 and conclude

‖P jr v‖1 ≤
√
2rDj(r)‖v‖0, v ∈ H1(Ωj).

III. With the above we estimate further

‖
(

P 1
r ⊗ · · · ⊗ P j−1r ⊗ idj+1⊗ · · · ⊗ idd

)

v‖21
≤
∑

l 6=j
‖
(

P 1
r ⊗ · · · ⊗ P j−1r ⊗ idj+1⊗ · · · ⊗ idd

)

v‖2el

≤
∑

l 6=j

∏

k=1,...,j−1,
k 6=l

‖P kr ‖2H1←L2
‖v‖2l

≤ 4rd−2 max
l 6=j

∏

k=1,...,j−1,
k 6=l

Dk(r)
2‖v‖21.

IV. The last term in the error is simply
∥

∥

∥
u− Pj

ru
∥

∥

∥

2

mix,j
=
∑∞

k=r+1(σ
j
k)

2. Since the ordering J ∈ Sd(I)

can be chosen arbitrarily, the statement follows. �
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