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Abstract

In this paper, we propose a new splitting algorithm for dynamical low-rank approxi-
mation motivated by the fibre bundle structure of the set of fixed rank matrices. We first
introduce a geometric description of the set of fixed rank matrices which relies on a natural
parametrization of matrices. More precisely, it is endowed with the structure of analytic
principal bundle, with an explicit description of local charts. For matrix differential equa-
tions, we introduce a first order numerical integrator working in local coordinates. The
resulting algorithm can be interpreted as a particular splitting of the projection operator
onto the tangent space of the low-rank matrix manifold. It is proven to be exact in some
particular case. Numerical experiments confirm this result and illustrate the robustness of
the proposed algorithm.

Keywords: Dynamical low-rank approximation, matrix manifold, matrix differential equation, splitting
integrator

2010 AMS Subject Classifications: 15A23, 65F30, 65L05, 65L20

1 Introduction
High-dimensional dynamical systems arise in variety of applications as quantum chemistry,
physics, finance and uncertainty quantification, to name a few. Discretization of such prob-
lems with traditional numerical methods often leads to complex numerical problems usually un-
tractable, in particular if they depend on parameters. Model Order Reduction (MOR) methods
aim at reducing the complexity of such problems by projecting the solution onto low-dimensional
manifolds. In this paper, we particularly focus on dynamical low-rank methods. Such methods
have been considered for low-rank approximation of time-dependent matrices [14, 5, 7] with pos-
sible symmetry properties [4], and tensors [13, 15, 11, 12] or more recently extended to parabolic
problems [1]. In the context of parameter-dependent partial differential equations, let us mention
also dynamical orthogonal approximation, in a Riemannian framework [17, 6, 16, 8, 9, 10], and
also dynamical reduced basis method [3].

Here, we focus on low-rank approximation of time-dependent matrices A(t) ∈ Rn×m. In-
troducing Ȧ(t) = d

dtA(t) the time derivative, the matrix A(t) is defined as the solution of the
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following Ordinary Differential Equation (ODE)

Ȧ(t) = F (A(t), t), A(0) = A0, (1)

given A0 ∈ Rn×m and F : Rn×m × [0, T ] → Rn×m. Dynamical low-rank methods aim at
approximating at each instant t the matrix A(t) by the matrix Z(t) which belongs to the nonlinear
manifold of fixed rank matrices

Mr(Rn×m) = {Z ∈ Rn×m : rank(Z) = r},

where r � min(n,m) stands for the rank. When A(t) is known, Z(t) can be defined as the best
rank-r approximation solution of

Z(t) = arg min
W∈Mr(Rn×m)

‖A(t)−W‖, (2)

with ‖ · ‖ the Frobenius norm. In that case, Z is obtained through a Singular Value Decompo-
sition (SVD) of A(t) for each instant t. Nevertheless, as A is implicitly given by the dynamical
system (1), it is more relevant to introduce low-rank approximation using Ȧ. To that goal, the
approximation Z is classically obtained through its derivative Ż which satisfies the Dirac-Frenkel
variational principle

Ż(t) = arg min
δW∈TZ(t)Mr(Rn×m)

‖δW − F (Z(t), t)‖, (3)

given Z(0) = Z0 ∈ Mr(Rn×m) the best rank-r approximation of A(0) and TZ(t)Mr(Rn×m) the
tangent space toMr(Rn×m) at Z(t). Equivalently, Ż(t) corresponds to the orthogonal projection
of F (Z(t), t) (see Figure 1) on the solution dependent tangent space, i.e.

Ż(t) = PTZ(t)F (Z(t), t), Z(0) = Z0, (4)

where PTZ
denotes the projection onto TZ(t)Mr(Rn×m).

Mr(Rn×m)

F (Z(t))

Ż(t)
×

Z(t)

TZ(t)Mr(Rn×m)

Figure 1: Orthogonal projection on the tangent space TZ(t)Mr(Rn×m).

In view of MOR, the goal of low-rank methods is to approximate the solution A(t) of Equa-
tion (1) with Z(t) solution of Equation (4) which is cheaper to compute. However, in practice
additional difficulties appear for the numerical integration of Equation (4).
The first difficulty relies on the proper description of the manifold of fixed rank matricesMr(Rn×m).
In practice, a way to compute the rank-r matrix Z(t) is done through its parametrization

Z(t) = U(t)G(t)V (t)T , (5)

with U(t) ∈ Rn×r, V (t) ∈ Rm×r and G(t) ∈ Rr×r. Such a parametrization of the matrix Z(t)
is not unique. A way to dodge this undesirable property is to properly define the tangent space
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TZ(t)Mr(Rn×m). Given Z(0) = U(0)G(0)V (0)T , the matrix Z(t) admits a unique decomposition
of the form (5) when imposing the so-called gauge conditions on U, V (see [14, Proposition 2.1]).
In addition, the system (4) results in a system ODEs driving the evolution of the parameters
U,G, V .
The second difficulty appears when numerical integration is performed for solving the result-
ing system of ODEs governing the evolution of parameters U, V and G. Indeed in presence of
small singular values for Z(t), the matrix G(t) may be ill-conditioned. As consequence, classical
integration schemes may be unstable (see e.g. [11, Section 2.1]). Moreover, in case of overap-
proximation, i.e. when the approximation Z(t) has a rank r greater than the rank of the exact
solution A(t), these method fails since G(t) becomes singular. A possible way to address this
issue is regularize G such that it remains invertible. Nevertheless, it has the drawback to modify
the problem (then the approximate solution) and does not prevent ill-conditioning of G(t). In
[15] an explicit projection-splitting integrator is proposed to deal with numerical integration of
(4). It is based on a Lie-Trotter splitting of the projection operator PTZ(t)

. In addition to its sim-
plicity, it has the advantage to remains robust in case of small singular values and especially for
overapproximation as it avoids the inversion of G(t). The resulting method is fully explicit and
first order, extension to second order via Strang splitting scheme could be considered. Variants of
this algorithm have been proposed in [4] to integrate some symmetry properties. More recently
in [5]1, the authors derive a different robust algorithm for dynamical low-rank approximation.
When interested in higher order approximation, projection based methods [12], in the lines of
Riemaniann optimization, combined to explicit Runge-Kutta schemes could be considered. Such
methods work as follows. Perform one step of the numerical scheme leaving the manifold, and
then project on the manifold by means of retraction. The latter step is usually performed using
a r-terms truncated SVD.

In [3], the authors give a different geometric description of the fixed-rank matrix manifold and
the associated tangent space. This description combines a natural definition of the neighborhood
of Z together with explicit description of local charts such that the set Mr(Rn×m) is endowed
with the structure of analytic principal bundle [3, Theorem 4.1]. Moreover, it ensures that any
matrix in the neighborhood of a matrix Z (including itself) admits a unique representation in
the form UGV T . The main contribution of this paper is twofold. First, we revisit dynamical
low-rank approximation by using the geometric description of the matrix manifold given in [3].
The resulting system of ODEs on the parameters is shown to be related to the one obtained
in [14] but with no need of gauge conditions. Secondly, relying on this geometric description
of Mr(Rn×m), we derive a first order numerical integrator in local coordinates for solving (4)
that can be interpreted as a splitting integrator. It is proven to coincide with the so-called KSL
splitting algorithm introduced in [15] in the particular case where the flux F only depends on t.

The outline of the paper is as follows. We detail in Section 2 the proposed geometric de-
scription of the manifold of rank-r matrices. In Section 3 we describe a new splitting algorithm
relying on the proposed geometric description Finally, in Section 4, we confront the proposed
splitting algorithm to KSL splitting integrator [15] on several numerical test cases.

2 Dynamical low-rank approximation: a geometric approach
Dynamical low-rank approximation consists in approximating at each time t the matrix A(t)
by a matrix Z(t) ∈ Mr(Rn×m) that can be represented (in non-unique way) by means of the

1We have been aware of this reference while revising the present paper.
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factorization
Z = UGV T ,

with U ∈ Mr(Rn×r), V ∈ Mr(Rm×r) and G ∈ GLr with GLr the Lie group of r × r invertible
matrices. We present in Section 2.1 a geometric description of Mr(Rn×m). We restrict the
presentation to essential elements of geometry required thereafter. The interested reader could
consult the original paper [3] for further details. In Section 2.2 we discuss the interest of the
proposed description for dynamical low-rank approximation. Finally, we draw the link with the
geometric description proposed in [14] in Section 2.3.

2.1 Chart based geometric description of Mr(Rn×m)

Let Z = UGV T ∈ Mr(Rn×m). We consider U⊥ ∈ Mn−r(Rn×(n−r)), V⊥ ∈ Mm−r(Rn×(m−r)),
the matrices such that UT⊥U = 0 and V T⊥ V = 0. The neighborhood UZ of Z in Mr(Rn×m) is
defined as the set

UZ = {(U + U⊥X)H(V + V⊥Y )T : (X,Y,H) ∈ R(n−r)×r × R(m−r)×r ×GLr}.

Mr(Rn×m)

Manifold

UZ

•
×

W = (U + U⊥X)H(V + V⊥Y )T

Z = UGV T

Parameters

(X,Y )

H •

(0, 0)

G×

(R(n−r)×r × R(m−r)×r)×GLr

θZ

Figure 2: Representation of the local chart θZ that associates to W = (U +U⊥X)H(V +V⊥Y )T

in UZ ⊂Mr(Rn×m) the parameters (X,Y,H) ∈ R(n−r)×r × R(m−r)×r ×GLr .

We associate to the neighborhood UZ of Z the local chart θZ : UZ → R(n−r)×r ×R(m−r)×r ×
GLr (see Figure 2) which is given by

θZ(W ) = (U+
⊥W (V +)T (U+W (V +)T )−1, V +

⊥W
T (U+)T (V +WT (U+)T )−1, U+W (V +)T )

for any W ∈ UZ . Here U+ and V + stand for the Moore-Penrose pseudo-inverses 2 of U and V
respectively. This means that any matrix W belonging to the neighborhood UZ admits a unique
parametrization

W = θ−1Z (X,Y,H),

with parameters (X,Y,H) ∈ R(n−r)×r × R(m−r)×r ×GLr and where the map θ−1Z is defined by

θ−1Z (X,Y,H) = (U + U⊥X)H(V + V⊥Y )T .

In this description, the parameters are not longer U, V,G butX,Y,H. Note that θ−1Z (0, 0, G) = Z.

Such geometric description confers the setMr(Rn×m) the structure of an analytic manifold
and of a principal bundle [3, §4].

2For any A ∈ Rn×m, the Moore-Penrose pseudo inverse is given by A = (ATA)−1AT .
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Proposition 2.1. The set of fixed rank matrices Mr(Rn×m) equipped with the atlas An,m,r =
{(UZ , θZ) : Z ∈ Mr(Rn×m)} is an analytic r(n + m − r)-dimensional manifold modelled on
R(n−r)×r × R(m−r)×r × Rr×r. MoreoverMr(Rn×m) is an analytic principal bundle with typical
fiber GLr and base3 Gr(Rn)×Gr(Rm).

We now give a description of the tangent space to the manifold of rank-r matrices at Z de-
noted TZMr(Rn×m).

To that goal, we define the tangent map at Z ∈Mr(Rn×m) noted TZi by

TZi : R(n−r)×r × R(m−r)×r × Rr×r → Rn×m,
(δX, δY, δH) 7→ U⊥δXGV

T + UG(V⊥δY )T + UδHV T .

Then, the tangent space toMr(Rn×m) at Z is defined as the image through TZi of the tangent
space in the local coordinates 4 in R(n−r)×r × R(m−r)×r × Rr×r

TZMr(Rn×m) = {U⊥δXGV T + UG(V⊥δY )T + UδGV T : δX ∈ R(n−r)×r, δY ∈ R(m−r)×r, δG ∈ Rr×r}.

As stated in [3, Proposition 4.3], TZi is an isomorphism between TZMr(Rn×m) and R(n−r)×r×
R(m−r)×r × Rr×r.

Proposition 2.2. The tangent map TZi at Z is a linear isomorphism with inverse (TZi)
−1

given by

(TZi)
−1(δW ) = (U+

⊥ δW (V +)TG−1, V +
⊥ δW

T (U+)TG−T , U+δW (V +)T )

for δW ∈ Rn×m.

By Proposition 2.2, any tangent matrix δZ ∈ TZMr(Rn×m) admits a unique parametrization
of the form

δZ = TZi(δX, δY, δH) = U⊥δXGV
T + UG(V⊥δY )T + UδHV T , (6)

where (δX, δY, δH) ∈ R(n−r)×r × R(m−r)×r × Rr×r are uniquely given through

δX = U+
⊥ δZ(V +)TG−1,

δY = V +
⊥ δZ

T (U+)TG−T ,
δH = U+δZ(V +)T .

(7)

Remark 2.3. The tangent space could be decomposed into distinct pieces which are the vertical
tangent space

TVZMr(Rn×m) = {UδGV T : δG ∈ Rr×r},
and the horizontal tangent space

THZMr(Rn×m) = {U⊥δXGV T + UG(V⊥δY )T : δX ∈ R(n−r)×r, δY ∈ R(m−r)×r},

where TVZMr(Rn×m) is associated to the fiber and THZMr(Rn×m) to the base.
3Here Gr(Rp) = {Vr ⊂ Rp : dim(Vr) = r} denotes the Grassmann manifold.
4This means the tangent space to the local parameter space R(n−r)×r × R(m−r)×r × Rr×r at (0, 0, G).
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2.2 Dynamical low-rank approximation
In the context of dynamical low-rank approximation, we recall that Z is given through the
projected Equation (4). By definition of the tangent space (6), the tangent matrix is given by
Ż = TZi(Ẋ, Ẏ , Ḣ) where the parameters satisfies

(Ẋ, Ẏ , Ḣ) = TZi
−1 (PTZ

F (Z)) (8)

with
PTZ

F (Z) = P⊥U F (Z)PTV + PTU F (Z)(P⊥V )T + PUF (Z)PTV .

Here PU = UU+, PV = V V + denote the projections associated to U, V respectively, and their
related orthogonal projections P⊥U = I − PU , P⊥V = I − PV . Equation (8) yields equivalently to
the following system of ODEs on the parameters:

Ẋ = U+
⊥F (Z)(V +)TG−1,

Ẏ = V +
⊥ F (Z)T (U+)TG−T ,

Ḣ = U+F (Z)(V +)T .

(9)

The proposed geometrical description ensures that (8) admits a unique maximal solution Z
when the original problem is an autonomous dynamical system with vector field F [7, Theorem
2.6, Theorem 3.5]

Proposition 2.4. Assume F : Rn×m → Rn×m is a Cp vector field. Then (1) admits a unique
solution. Moreover, TZi

−1PTZ
F : Rn×m → R(n−r)×r × R(m−r)×r × Rr×r is a Cp vector field

which ensures that the dynamical system (8) also admits a unique solution.

2.3 Link with the geometric description introduced in [14].
In this section, we discuss the relation between the proposed geometric approach and the descrip-
tion introduced in [14] . In the latter, the non-uniqueness of the parametrization Z = UGV T is
avoided by computing the tangent matrix δZ in TZMr(Rn×m). Introducing

δZ = δUGV T + UδGV T + UGδV T (10)

together with the gauge conditions

UT δU = 0 and V T δV = 0, (11)

and assuming that U, V are orthogonal, then the parameter derivatives δU, δG, δV are uniquely
given [14, Proposition 2.1] by

δU = (I − UUT )δZV G−1,
δV = (I − V V T )δZTUG−T ,
δG = UT δZV.

(12)

This can be interpreted as constructing an isomorphism between

TZMr(Rn×m) and {(δG, δU, δV ) ∈ Rn×r × Rm×r × Rr×r : UT δU = 0, V T δV = 0}.

The geometric description proposed in Section 2.1 allows to recover (10)-(12). Indeed, by set-
ting (δU, δV, δG) = (U⊥δX, V⊥δZ, δH) in the definition (6) of the tangent matrix δZ, we get
(10). Moreover, the gauge conditions are naturally satisfied as UT δU = UTU⊥δX = 0, V T δV =
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V TV⊥δZ = 0. Finally, for U, V orthogonal we have UU+ = UUT , V V + = V V T and by multi-
plying the first and second equations of (7) by U⊥ and V⊥ respectively we recover (12).

Going back to dynamical low-rank approximation, when Z corresponds to the rank-r approx-
imation of a matrix A through Equation (4), we get from (12) the following system of ODEs
governing the evolution of the factors U,G, V ,

U̇ = (I − UUT )F (Z)V G−1,
V̇ = (I − V V T )F (Z)TUG−T ,
Ġ = UTF (Z)V.

(13)

Again, this system can be deduced from (9) by setting (U̇ , V̇ , Ġ) = (U⊥Ẋ, V⊥Ż, Ḣ) and assuming
that U, V orthogonal.

3 Projection splitting integrator schemes
In this section, we derive suitable schemes for numerical integration of the projected equation
(4). Two splitting methods are presented, first in an abstract semi-discretized framework in
Section 3.1 and then in their practical form in Section 3.2. Then, the relation between these two
practical algorithms is discussed.

3.1 Splitting integrators
3.1.1 Symmetric splitting method

We first consider the setting of the classical description [14] detailed in Section 2.3. To perform
time integration, a symmetric Lie-Trotter splitting method [15] is applied to Equation (3). This
integration scheme relies on a decomposition of the projection PTZ(t) as follows

PTZ(t) = Q1 −Q2 +Q3, (14)

where Q1, Q2 and Q3 are three projections respectively defined by

Q1A = APTV , Q2A = PUAP
T
V , Q3A = PUA, (15)

for any A ∈ Rn×m. Note that this splitting is not associated to a direct sum decomposition
of the tangent space. Using this splitting, one integration step from t0 to t1 starting from the
factorized rank-r matrix Z0 = Z(t0) under the form Z0 = U0G0V

T
0 reads as follows.

1. Integrate on [t0, t1] the n× r matrix differential equation

d

dt
(UG) = F ((UG)V T )V, V̇ = 0,

with initial conditions (UG)(t0) = U0G0, V (t0) = V0. Then set U1 and Ĝ1 such that
U1Ĝ1 = (UG)(t1).

2. Integrate on [t0, t1] the r × r matrix differential equation

Ġ = −UTF (UGV T )V, U̇ = 0, V̇ = 0,

with initial conditions G(t0) = Ĝ1, U(t0) = U1, V (t0) = V0. Set G̃1 = G(t1).
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3. Integrate on [t0, t1] the m× r matrix differential equation

d

dt
(V GT ) = F (U(V GT )T )TU, U̇ = 0,

with initial conditions (V G)T (t0) = V0G̃
T
1 , U(t0) = U1. Set V1 and G1 such that V1GT1 =

(V GT )(t1).

After these steps, the obtained approximation is Z(t1) = U1G1V
T
1 . Each step corresponds

to the integration of the right hand side of (4) associated to the projections Q1, Q2 and Q3

respectively (for details see [15, Lemma 3.1]).

Remark 3.1. This splitting algorithm works in the following order. First, it updates UG, then
G and finally V G. As we will discuss in Section 3.2, this particular choice allows to recover
exactness properties of the splitting scheme in the context of matrix approximation [15].

Remark 3.2. The inversion of G is avoided. This convenient choice allow to deal with the case
of over-approximation, in i.e. when the rank of the approximation Z is smaller then r.

3.1.2 Chart based splitting method

The second contribution of this paper is to propose a numerical integrator relying on the fibre
bundle structure of the manifold of fixed rank matrices proposed in Section 2.

Based on the chart description of Section 2.2, the guiding idea is to perform some update
of the parameters (X,Y,H), instead of (U,G, V ) directly, whose dynamic is governed by the
system of ODEs (9). Working in a fixed neighborhood UZ of Z, the matrices U, V,G are fixed
and Equation (9) writes equivalently

Ḣ = U+F (Z)(V +)T ,

ẊG = U+
⊥F (Z)(V +)T ,

Ẏ GT = V +
⊥ F (Z)T (U+)T .

(16)

Then, we integrate the system (16) from t0 to t1 in three steps. Letting U(t) = U(t0) +
U(t0)⊥X(t), V (t) = V (t0)+V (t0)⊥Y (t) and Z(t) = U(t)H(t)V (t)T , we start from (X(t0), Y (t0), H(t0)) =
(0, 0, G(t0)) and we proceed as follows.

1. Integrate on [t0, t1] the r × r matrix differential equation

Ḣ = U+F (Z)(V +)T , Ẋ = 0, Ẏ = 0,

with initial conditions X(t0) = 0, H(t0) = G(t0) and Y (t0) = 0. Set H1 = H(t1).

2. Integrate on [t0, t1] the n× r matrix differential equation

ẊH = U+
⊥F (Z)(V +)T , Ḣ = 0, Ẏ = 0,

with initial conditions X(t0) = 0, H(t0) = H1 and Y (t0) = 0. Then set X1 = X(t1).

3. Integrate on [t0, t1] the m× r matrix differential equation

Ẏ HT = V +
⊥ F (Z)T (U+)T , Ḣ = 0, Ẋ = 0.

with initial conditions X(t0) = X1, H(t0) = H1 and Y (t0) = 0. Then set Y1 = Y (t1).

8



After these three steps, we obtain an approximation Z(t1) := U1H1V
T
1 with U1 = U(t0) +

U(t0)⊥X1 and V1 = V (t0) + V (t0)⊥Y1.

In the lines of the previous method (see Section 3.1.1), the chart based method can be
interpreted as a Lie-Trotter splitting that relies on the following decomposition of the projection

PTZ(t) = P1 + P2 + P3, (17)

where P1, P2 and P3 are three projections respectively defined by

P1A = PUAP
T
V , P2A = P⊥U AP

T
V , P3A = PUA(P⊥V )T , (18)

for any A ∈ Rn×m. Note that, contrary to the symmetric splitting method, the proposed splitting
follows from a direct sum decomposition of the tangent space. Here each term Pi of the projection
is associated to the ODE solved at Step i. This point is discussed and detailed in the Appendix A.

Remark 3.3. As for the splitting method of Section 3.1.1, we avoid the inversion of matrix G
which allows to deal with overapproximation case where H is singular.

Remark 3.4. The symmetric splitting and the chart based methods differ by the update order.
Indeed, the chart based method first updates H and then X,Y (or equivalently G and then U, V ).
Moreover, Step 2 of the symmetric splitting method described in Section 3.1.1 can be interpreted
as a backward evolution problem that can be ill-conditionned, as pointed out in [1, Section 5]. In
the chart based method, the update of G at Step 1 is still a forward evolution problem due to our
splitting choice. Let us mention that other integration strategies have been recently proposed in
[1, 5].

3.2 Practical algorithms
Now, we provide practical formulation of those methods amenable for numerical use. To that
goal, let introduce preliminary notations. We consider a uniform discretization of the time in-
terval [0, T ], T > 0, containing K + 1 nodes 0 = t0 < t1 < t2 < · · · < tK where tk = k∆t
and ∆t = T

K . The matrix Zk is the approximation at each time step tk of Z computed on
[t0, t1] = [tk, tk+1] through the splitting methods given in Section 3.1. Explicit approximation of
the flux is performed leading the schemes summarized in the following algorithms.

Following the previous sections, we first introduce the KSL Algorithm (see Algorithm 3.5)
for the symmetric splitting scheme. Here, we adopt the original name given in [15], with the
following correspondence: K stands for UG, S for G and L for V GT .

Algorithm 3.5 (KSL algorithm). Given the initial rank-r approximation Z0 = U0G0(V 0)T ,
compute Zk ∈Mr(Rn×m) for k ∈ {1, ...,K} as follows.

• Start with U0 = Uk−1, G0 = Gk−1 and V0 = V k−1.

1. Set
(UG)1 = U0G0 + ∆tF (Z0, t

k−1)V0

and U1 and Ĝ1 such that U1Ĝ1 = (UG)1 (computed using QR).

2. Set
G̃1 = Ĝ1 −∆tUT1 F (U1Ĝ1V

T
0 , t

k−1)V0.

9



3. Set
(V GT )1 = V0G̃

T
1 + ∆tF (U1G̃1V

T
0 , t

k−1)TUT1

and V1 and G1 such that V1GT1 = (V GT )1 (computed using QR).

• Set Zk = U1G1V
T
1 .

Now, we give the chart based algorithm (see Algorithm 3.6) relying on the splitting introduced
in Section 3.1.2.

Algorithm 3.6 (Chart based algorithm). Given the initial rank-r approximation Z0 = U0G0(V 0)T ,
compute Zk ∈Mr(Rn×m) for k ∈ {1, ...,K} as follows.

• Set U0 = Uk−1, V0 = V k−1 and H0 = Gk−1.

1. Set
Ĥ1 = H0 + ∆t(U0)+F (U0G0V

T
0 , t

k−1)(V +
0 )T .

2. Set
(XH)1 = ∆t U0

+
⊥F (U0Ĥ1V

T
0 , t

k−1)(V +
0 )T

and U1 and H̃1 such that U1H̃1 = U0Ĥ1 + U0,⊥(XH)1 (computed using QR).

3. Set
(Y HT )1 = ∆t V0

+
⊥F (U1H̃1V

T
0 , t

k−1)T (U+
1 )T ,

and V1 and H1 such that V1HT
1 = V0H̃

T
1 + V0,⊥(Y HT )1 (computed using QR).

• Set Zk = U1H1V
T
1 .

Remark 3.7. For numerical stability, updates of U and V are performed with QR factorization
in both algorithms. Note that SV D should have been considered instead.

Remark 3.8. From practical point of view, the new algorithm is very similar to the KSL algo-
rithm in its implementation. The only practical differences are in the order of the update and
the sign in the update of G at Step 1, as discussed in Remark 3.4.

Remark 3.9. The proposed practical algorithms are only first order splitting methods. Higher
order extensions should be considered in the line of [15, Section 3.3.].

Remark 3.10. In the chart based algorithm, matrices U0⊥ and V0⊥ are not computed explicitly
in practice. Indeed, we directly compute U0,⊥(XH)1 and V0,⊥(Y HT )1 that only requires the
calculation of P⊥U0

= U0,⊥U
+
0,⊥ = I − PU0

and P⊥V0
= V0,⊥V

+
0,⊥ = I − PV0

.

Link between the two practical algorithms Here, we discuss the similarity of the two
proposed practical algorithms in the particular case where the flux F is independent of Z which
includes the particular case of matrix approximation where F (Z(t), t) := Ȧ(t) with A(t) ∈ Rn×m.

Lemma 3.11. In the case where the flux F is independent of Z meaning F (Z(t), t) := F (t),
the sequence of approximations {Zk}k ⊂Mr(Rn×m) provided by KSL algorithm and chart based
algorithm coincide.
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Proof. We assume that the explicit flux evaluation F (tk−1), required at each time step k of both
KSL and chart based algorithms, is noted F k−1 for the sake of presentation. For the sake of
comparison, the two algorithms are reformulated as follows in term of successive updates on
U,G, V and K,L. Approximations provided by the chart based algorithm are surrounded by a¯
symbol.
At step k, the KSL algorithm provides the following approximations

K1 = U0G0 + ∆tF k−1V0, (U1, Ĝ1) = QR(K1), (19)
G̃1 = Ĝ1 −∆tUT1 F

k−1V0, (20)
L1 = V0G̃

T
1 + ∆t(F k−1)TU1, (V1, G

T
1 ) = QR(L1). (21)

Meanwhile, the chart based algorithm gives

¯̂
G1 = G0 + ∆tUT0 F

k−1V0, (22)

K̄1 = U0
¯̂
G1 + ∆t(I − PU0

)F k−1V0, (Ū1,
¯̃G1) = QR(K̄1), (23)

L̄1 = V0
¯̃GT1 + ∆t(I − PV0)(F k−1)T Ū1, (V̄1, Ḡ

T
1 ) = QR(L̄1). (24)

Expending ¯̂
G1 in Equation (23) yields

K̄1 = U0
¯̂
G1 + ∆t(I − PU0

)F k−1V0 = U0G0 + ∆tU0U
T
0 F

k−1V0 + ∆t(I − U0U
T
0 )F k−1V0 = K1.

Then ¯̃G1 = Ĝ1 and Ū1 = U1. Using these equalities and injecting the expression of L1, we get

L1 = V0G̃
T
1 + ∆t(F k−1)TU1 = V0

¯̃GT1 −∆tV̄0V̄
T
0 (F k−1)T Ū1 + ∆t(F k−1)T Ū1 = L̄1

from which we deduce L1 = L̄1 then G1 = Ḡ1 and V1 = V̄1. This implies that Zk = Z̄k which
concludes the proof.

In [15], under the assumption that the set of matrices of bounded rank r is an invariant set for
the flow, it follows that the KSL method is first order accurate and exact. In consequence, under
the same assumptions from Lemma 3.11 the chart based method satisfies the same properties.

Proposition 3.12. Assume that A(t) ∈ Rn×m is a matrix with bounded rank r for all time t
and F (Z(t), t) := Ȧ(t). Setting ∆tF (tk−1) = A(tk)−A(tk−1), the chart based splitting algorithm
is exact, that is, Zk = A(tk).

Proof. The result follows from Lemma 3.11 and the property of exactness of the KSL algorithm
[15, Theorem 4.1] in that context.

Remark 3.13. Proposition 3.12 insures that both methods are exact, whereas they rely on two
different splitting methods, with different order of parameter updates. This may sound surpris-
ingly at first, as it has been demonstrated by numerical experiment that [15, §5.2] KLS variant 5

of the KSL algorithm provides less accurate approximations and loses exactness property.

4 Numerical results
In this section, we confront the two presented splitting algorithms namely KSL and chart based
algorithms for dynamical low-rank approximation in the context of matrix approximation, in
Section 4.1, and matrix dynamical systems arising from a parameter-dependent semi-discretized
viscous Burgers’s equation, in Section 4.1.

5For that variant, it means that UG, V GT and then G are updated.
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4.1 Matrix approximation
As first example, we consider the problem of approximating a matrix A(t) ∈ R100×100 on the
time interval [0, 1]. This matrix is given explicitly as

A(t) = etW1DetetW2 ,

where D is a diagonal matrix in R100×100 with non zero coefficients dii = 2−i, i ≤ 10, and
W1,W2 ∈ are two random skew symmetric matrices. Then, A(t) has a rank 10 whose non zero
singular values are σi(t) = et2−i, i ≤ 10.

The two algorithms are first applied with numerical flux taken equal to ∆tF (Zi, t
k−1) =

A(tk)−A(tk−1), where Zi stands for the approximation at Step i of the iteration k of the splitting
algorithms. In what follows, we study the behaviour of the approximation error ek = ‖A(tk)−Zk‖
at iteration k. Table 1 gives the values of maxk e

k for the two methods for r ∈ {10, 20}. We
observe that both methods are exact for r = 10, which is the rank of the exact solution. In
case of over-approximation with r = 20, the two methods are robust and again provide exact
approximation (up to machine precision).

KSL chart
r = 10 4.03.10−15 5.22.10−15

r = 20 5.36.10−15 3.77.10−15

Table 1: Matrix approximation with ∆tF (Zi, t
k−1) = A(tk) − A(tk−1): maximum over k of ek

for ∆t = 5 10−3, r ∈ {10, 20}.

Similar experiments are performed but considering the exact expression of the matrix deriva-
tive with F (Zi, t

k−1) = Ȧ(tk−1). Approximation error evolution is depicted on Figure 3.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

·10−2

tk

‖A
(t

k
)
−
Z

k
‖

r = 10

0 0.2 0.4 0.6 0.8 1
0

0.5

1

·10−2

tk

r = 20

KSL
chart

Figure 3: Matrix approximation with F (Zi, t
k−1) = Ȧ(tk−1): evolution of ek for ∆t = 5 10−3,

r ∈ {10, 20}.

Again, both methods give similar results for r ∈ {10, 20}, as shown on Figure 3 where the
error plots coincide either in case of overapproximation. However, for this choice of F (Zi, t

k−1),
both method are no longer exact. Here, the error increases with time up to approximatively 10−2

with r = 10 and 10−3 for r = 20. To quantify this error, we perform some convergence study
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with respect to ∆t and r. On Figure 4, we show the behaviour of the final approximation error
eK = ‖A(1)− ZK‖ for various rank r ∈ {4, 6, 8, 16, 32} and time step ∆t ∈ {10−5, ..., 10−1}.

10−5 10−4 10−3 10−2 10−1
10−5

10−4

10−3

10−2

10−1

100

∆t

‖A
(1

)
−

Z
K
‖ F

KSL

10−5 10−4 10−3 10−2 10−1
10−5

10−4

10−3

10−2

10−1

100

∆t

chart

r = 4
r = 8
r = 16
r = 32
c∆t

Figure 4: Matrix approximation with F (Zi, t
k−1) = Ȧ(tk−1) : final error eK for both algorithms

for different (r,∆t).

Figure 4 illustrates that the two methods are first order in time as expected. Indeed we
observe a linear decreasing of the error up to some stagnation value for r ≤ 8. This stagnation
is related to the low-rank approximation error as it decreases when r increases.

4.2 Parameter dependent problem
In the lines of [3], we consider the approximation of the parameter-dependent Burger’s viscous

equation in one dimension. To that goal, let Ω× I = (0, 1)× [0, 1] be a space time domain. We
seek u(·; ξ) the solution of

∂tu(x, t; ξ)− µ(ξ)∂2xxu(x, t; ξ) + u(t, x; ξ)∂xu(x, t; ξ) = f(x, t; ξ), on Ω× I, (25)

with the initial data u0(·, ξ) : Ω → R and supplemented with homogeneous Dirichlet boundary
conditions. The solution u(·; ξ) depends on the parameter ξ ∈ R3 through the viscosity µ(ξ) = ξ1,
the initial condition and the source term defined by means of the function f(·, ·; ξ) : Ω× I → R
given by

f(x, t; ξ) = ξ2 exp(−(x− 0.2)2/0.032) sin(ξ2πt)1[0.1,0.3](x).

The problem (25) is semi-discretized in space by means of finite difference (FD) schemes with
n nodes and m instances of the parameter ξ such that we get the following dynamical system

Ẋ(t) = LX(t) + h(X, t), X(0) = 0, (26)

where the solution X(t) is a matrix in Rn×m. The tensorized operator L = Dx ⊗Mξ is defined
by means of Dx ∈ Rn×n the discrete Laplacian obtained by second order centered FD scheme and
Mξ ∈ Rm×m a diagonal matrix whose non-zero coefficients are the m instances of ξ1. Moreover,
we define the matrix valued function h with entries [h(Z, t)]ij = Zij [CxZ]ij + f(xj , t; ξi) where
Cx ∈ Rn×n is the discrete version of the first derivative obtained by 1st order centered FD scheme.

We first confront the KSL and chart based algorithms for solving the discrete parameter
dependent Burger’s equation when one single parameter varies. Then, the multiple varying pa-
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rameter problem is studied.

4.2.1 Single parameter Burger’s problem

In this section, the parameter ξ1 takes its values in [0.01, 0.06] while the others are fixed to ξ2 = 4
and ξ3 = 0. We chose the following initial condition

u0(x; ξ) = sin(xξ1)e−100(x−10ξ1)
2

.

and set n = 100 and m = 60. For solving the matrix ODE given by Equation (26), we first
confront the chart based and KSL algorithms for various ranks, fixing ∆t = 10−4. The ap-
proximations obtained are compared to a reference solution noted {Xk

ref}Kk=0 computed with an
explicit Euler scheme with ∆t = 5.10−6. The time step ∆t is setting small enough to ensure
numerical stability since an explicit integration scheme is applied.

Figure 5 illustrates the behaviour of the numerical solution obtained with the chart based
algorithm at final time t = 1, and r = 20 for two different instances of the parameter ξ.

t = 1 ξ1 = 0.01 ξ1 = 0.06

Figure 5: Burgers’s equation: approximation for the chart method with r = 20 and ∆t = 10−4,
at final time t = 1 (left), for ξ1 = 0.01 (center) and ξ1 = 0.06 (right).

As we can observe on Figure (6), the approximations computed with the two methods are in
good agreement with the reference solution.
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Figure 6: Burgers’s equation: approximation for the chart based and KSL method compared to
the reference solution at final time for r = 20 and ∆t = 10−4 .
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Now, we compare the approximation error to the reference noted ek = ‖Xk
ref − Zk‖ for the

two splitting algorithms. On Figure 7, the evolution of ek for both algorithms is studied for dif-
ferent ranks. As we can observe, both methods seem to provide an approximation with similar
accuracy, except for ranks 15 and 20 where the chart based algorithm provides a slightly more
accurate approximation than the KSL algorithm. Note that the error does not necessary increase
with respect to time as classically observed for DLR approximation methods which is related to
the particular problem considered here.
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Figure 7: Burgers’s equation: evolution of ek for both algorithms for r ∈ {5, 8, 10, 12, 15, 20}.

This observation is confirmed by Figure 8 where we analyze the convergence with respect to
rank and time step. As we can see, the error eK = ‖XK

ref − ZK‖ decreases with respect to the
rank and time step, and is the smallest (by up to one order of magnitude) for the chart based
algorithm for larger rank.
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Figure 8: Burgers’s equation: error eK at final time for different (r,∆t).
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4.2.2 Multiple varying parameters Burger’s problem

To conclude this section, we illustrate the behavior of the two methods for the case where ξ
is a vector of independent random parameters uniformly distributed on [0.01, 0.06] × [2, 4] ×
[0.01, 0.1].Here, the initial condition is

u0(x; ξ) = ξ3e
−100(x−10ξ2)2 .

The numerical simulations are performed for m = 60 and n = 100. Here, the two KSL and
Chart methods are run with ∆t = 10−4 and compared to true numerical reference solution
{Xk

ref}Kk=0 obtained with the explicit Euler scheme with the same time step. The approximation
of numerical solution for the Burger’s problem computed with the Chart method with r = 20 is
plotted for two distinct realizations of the parameter ξ showing different features with respect to
parameter.

Figure 9: Burgers’s equation: approximation for the chart method with r = 20 and ∆t = 10−4

for two instances of ξ.

We represent on Figure 10 the approximation error at final time for the three approaches
with respect to r ∈ {5, 10, 12, 15, 20, 25, 30}. We clearly observe that the chart method provides
a better approximation than KSL for which the error seems to stagnate after r ≥ 12.

10 20 30

10−5

10−3

10−1

time

‖X
k r
e
f
−
Z

k
‖ F

KSL
chart

Figure 10: Burgers’s equation (multiple parameter case): error eK at final time for different r.
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5 Conclusion
In this paper, we have introduced and compared some geometry based algorithms for dynamical
low-rank approximation. Using a different geometry description of the set of fixed rank matrices
relying on charts, we generalized the description of [14]. Then, from this description we derive
a new splitting algorithm motivated by fibre bundle structure of the manifold of fixed rank
matrices. The resulting algorithm is proved to coincide with the KSL algorithm [15] in the
particular case of matrix approximation. Nevertheless, for more general problems arising from the
semi-discretization of parameter-dependent non-linear PDEs, the chart based algorithm seems
to outperform the KSL algorithm in some situation. Further work should be conducted for
derivation of rigorous error bounds in more general cases as well as high order extension using e.g.
Strang splitting variant. Moreover, the proposed splitting scheme is a first step towards designing
new algorithms integrating the geometric structure of the manifold of fixed rank matrices, by
working in neighborhoods. Especially, deriving a numerical scheme working alternatively in the
horizontal and vertical tangent spaces (as pointed out in Remark 2.3) is the object of future
research.

A Chart based splitting integrator
Following the same lines as in [15], we justify how the chart based method introduced in Section
3.1.2 can be interpreted as a splitting scheme relying on the projection decomposition (17) as the
sum of three contributions PTZ(t) = P1 + P2 + P3. One integration step of the splitting method
starting from t0 to t1 with initial guess Z(t0) = U(t0)G(t0)V (t0)T proceeds as follows.

(S1) Find Z ∈ UZ(t0) on [t0, t1] such that Ż = PUF (Z)PTV with initial condition Z(t0).

(S2) Find Z ∈ UZ(t0) on [t0, t1] such that Ż = P⊥U F (Z)PTV with initial condition given by final
condition of step (S1).

(S3) Find Z ∈ UZ(t0) on [t0, t1] such that Ż = PUF (Z)(P⊥V )T with initial condition given by
final condition of step (S2).

At each step (Si) of the splitting, Z belongs to the neighborhood of Z(t0). Thus it is given
by Z(t) = U(t)H(t)V (t)T with U(t) = U(t0)+U(t0)⊥X(t), Y (t) = V (t0)+V (t0)⊥Y (t) provided
by the ODE solved at Step i of the chart based splitting, as stated in the following proposition.

Proposition A.1. The solution of (S1) is given by Z with

Ḣ = U+F (Z)V T , Ẋ = 0, Ẏ = 0. (27)

with H(t0) = G(t0), X(t0) = 0 and Y (t0) = 0. Set

Letting H1 be the final condition of H from (S1), the solution of (S2) is given by Z with

ẊH = U+
⊥F (Z)(V +)T , Ẏ = 0, Ḣ = 0, (28)

with H(t0) = H1, X(t0) = 0 and Y (t0) = 0. Set X1 = X(t1).

Letting X1 be the final condition of X from (S2), the solution of (S3) is given by Z with

Ẏ HT = V +
⊥ F (Z)(U+)T , Ẋ = 0, Ḣ = 0, (29)

with H(t0) = H1, X(t0) = X1 and Y (t0) = 0.
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Proof. For each step (Si), Z admits the decomposition

Z = (U(t0) + U(t0)⊥X)H(V (t0) + V (t0)⊥Y )T

with derivative

Ż = U(t0)⊥ẊH(V (t0) + V (t0)⊥Y )T + (U(t0) + U(t0)⊥X)Ḣ(V (t0) + V (t0)⊥Y )T

+(U(t0) + U(t0)⊥X)H(V (t0)⊥Ẏ )T .

For (S1), the derivative satisfies Ż = PUF (Z)PTV . Then, multiplying on the left by U(t0)+ and
on the right by (V (t0)+)T the matrix Ż in both expressions leads to Ḣ = U+F (Z)(V +)T and
Ẋ = 0, Ẏ = 0.
Now let us turn to (S2). The derivative satisfies Ż = P⊥U F (Z)PTV . By multiplying on the right
by (V (t0)+)T , the equality is satisfied if ẊH = U+

⊥F (Z)(V +)T and Ẏ = 0, Ḣ = 0. The third
point of the lemma is obtained from (S3) in the same manner, by multiplying the equation
Ż = PUF (Z)(P⊥V )T on the left by (U(t0) + U(t0)⊥X1)+ and setting Ẋ = 0, Ḣ = 0.
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