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Learning with tree tensor networks: complexity estimates and model

selection

Bertrand Michel and Anthony Nouy∗

Abstract

In this paper, we propose and analyze a model selection method for tree tensor networks in an em-
pirical risk minimization framework. Tree tensor networks, or tree-based tensor formats, are prominent
model classes for the approximation of high-dimensional functions in numerical analysis and data sci-
ence. They correspond to sum-product neural networks with a sparse connectivity associated with a
dimension partition tree T , widths given by a tuple r of tensor ranks, and multilinear activation func-
tions (or units). The approximation power of these model classes has been proved to be near-optimal
for classical smoothness classes. However, in an empirical risk minimization framework with a limited
number of observations, the dimension tree T and ranks r should be selected carefully to balance estima-
tion and approximation errors. In this paper, we propose a complexity-based model selection strategy
à la Barron, Birgé, Massart. Given a family of model classes, with different trees, ranks and tensor
product feature spaces, a model is selected by minimizing a penalized empirical risk, with a penalty
depending on the complexity of the model class. After deriving bounds of the metric entropy of tree
tensor networks with bounded parameters, we deduce a form of the penalty from bounds on suprema
of empirical processes. This choice of penalty yields a risk bound for the predictor associated with the
selected model. For classical smoothness spaces, we show that the proposed strategy is minimax optimal
in a least-squares setting. In practice, the amplitude of the penalty is calibrated with a slope heuristics
method. Numerical experiments in a least-squares regression setting illustrate the performance of the
strategy for the approximation of multivariate functions and univariate functions identified with tensors
by tensorization (quantization).

1 Introduction

Typical tasks in statistical learning include the estimation of a regression function or of posterior probabil-
ities for classification (supervised learning), or the estimation of the probability distribution of a random
variable from samples of the distribution (unsupervised learning). These approximation tasks can be for-
mulated as a minimization problem of a risk functional R(f) whose minimizer f⋆ is the target (or oracle)
function, and such that R(f)−R(f⋆) measures some discrepancy between the function f and f⋆. The risk
is usually defined as

R(f) = E(γ(f, Z)),

with Z = (X,Y ) for supervised learning or Z = X for unsupervised learning, and where γ is a contrast
function. For supervised learning, the contrast γ is usually chosen as γ(f, (x, y)) = ℓ(y, f(x)) where
ℓ(y, f(x)) measures some discrepancy between y and the prediction f(x) for a given realization (x, y) of
(X,Y ). In practice, given i.i.d. realizations (Z1, . . . , Zn) of Z, an approximation f̂M

n is obtained by the
minimization of an empirical risk

R̂n(f) =
1

n

n∑

i=1

γ(f, Zi)
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over a subset of functions M , also called a model class or hypothesis set. Assuming that the risk admits
a minimizer fM over M , the error R(f̂M

n ) − R(f⋆) can be decomposed into two contributions: an ap-
proximation error R(fM ) −R(f⋆) which quantifies the best we can expect from the model class M , and
an estimation error R(f̂M

n ) − R(fM ) which is due to the use of a limited number of observations. For a
given model class, a first problem is to understand how these errors behave under some assumptions on
the target function. When considering an increasing sequence of model classes, the approximation error
decreases but the estimation error usually increases. Then strategies are required for the selection of a
particular model class.

In many applications, the target function f⋆(x) is a function of many variables x = (x1, . . . , xd). For
applications in image or signal classification, x may be an image (with d the number of pixels or patches) or
a discrete time signal (with d the number of time instants) and f⋆(x) provides a label to a particular input
x. For applications in computational science, the target function may be the solution of a high-dimensional
partial differential equation, a parameter-dependent equation or a stochastic equation. In all these appli-
cations, when d is large and when the number of observations is limited, one has to rely on suitable model
classes M of moderate complexity that exploit specific structures of the target function f⋆ and yield an ap-
proximation f̂M

n with low approximation and estimation errors. Typical examples of model classes include
additive functions f1(x1)+ · · ·+fd(xd), sums of multiplicative functions

∑m
k=1 f

k
1 (x1) · · · fk

d (xd), projection
pursuit f1(w

T
1 x) + · · · + fm(wT

mx), or feed-forward neural networks σL ◦ fL ◦ . . . ◦ σ1 ◦ f1(x) where the fk
are affine maps and the σk are given nonlinear functions.

In this paper, we consider the class of functions in tree-based tensor format, or tree tensor networks.
These model classes are well-known approximation tools in numerical analysis and computational physics
and have also been more recently considered in statistical learning. They are particular cases of feed-
forward neural networks with an architecture given by a dimension partition tree and multilinear activation
functions (see [26, 14]). For an overview of these tools, the reader is referred to the monograph [22] and
the surveys [30, 6, 25, 12, 13]. Some results on the approximation power of tree tensor networks can be
found in [32, 20, 5] for multivariate functions, or in [24, 23, 2, 3] for tensorized (or quantized) functions.
A tree-based tensor format is a set of functions

MT
r (H) = {f ∈ H : rankα(f) ≤ rα, α ∈ T},

where T is a dimension partition tree over {1, . . . , d}, r = (rα) ∈ N
|T | is a tuple of integers and H is a finite

dimensional tensor space of multivariate functions (e.g., polynomials, splines), which is a tensor product
feature space. A function f in MT

r (H) have a α-rank rankα(f) bounded by rα, that means it admits a
representation

f(x) =
rα∑

k=1

gαk (xα)h
αc

k (xαc)

for some functions gαk and hα
c

k of complementary groups of variables. The function f admits a representation
as a composition of multilinear functions. For instance, for the dimension tree of Figure 1a,

f(x) = f1,...,8
(
f1,2,3,4

(
f1,2,3(f1(φ1(x1)), f

2,3(f2(φ2(x2)), f
3(φ3(x3)))), f

4(φ4(x4))
)
,

f5,6,7,8
(
f5,6,7(f5,6(f5(φ5(x5)), f

6(φ6(x6))), f
7(φ7(x7))), f

8(φ8(x8))
))

where φν(xν) ∈ R
nν is a vector of nν features in the variable xν , and fα is a multilinear map with values

in R
rα . It corresponds to the neural network illustrated on Figure 2.

The main contribution of the paper is a complexity-based strategy for the selection of a model class
in an empirical risk minimization framework. Given a family of model classes Mm = MTm

rm (Hm), m ∈ M,
associated with different trees Tm, ranks rm and background approximation spaces Hm, and given the

2



{1, 2, 3, 4, 5, 6, 7, 8}

{1, 2, 3, 4} {5, 6, 7, 8}

{1, 2, 3}

{4}

{5, 6, 7}

{8}{1}

{2, 3} {5, 6}

{7}{2} {3} {5} {6}

(a) Dimension tree T .

1

3 3

4

5

5

65

3 8

34 3 4 8

(b) rα, α ∈ T .

Figure 1: Dimension tree T over {1, . . . , 8} (a) and ranks r = (rα)α∈T (b).

Figure 2: Neural network corresponding to the format MT
r (H) with the tree T and ranks r of Figure 1,

and nν = 10 features per variable.

corresponding predictors f̂m that minimize the empirical risk, we propose a strategy to select a particular
model m̂ with a guaranteed performance. For that purpose, we make use of the model selection approach
of Barron, Birgé and Massart (see [28] for a general introduction to the topic) where m̂ is obtained by
minimizing a penalized empirical risk

R̂n(f̂m) + pen(m)

with a penalty function pen(m) derived from complexity estimates of the model classes Mm, of the form
pen(m) ∼ O(

√
Cm/n) (up to logarithmic terms) in a general setting, or of the form pen(m) ∼ O(Cm/n)

(again up to logarithmic terms) in a bounded least-squares setting where faster convergence rates can be
obtained. In particular, we find that our strategy is minimax adaptive over Sobolev spaces. In practice, the
penalty is taken of the form pen(m) = λ

√
Cm/n (or pen(m) = λCm/n in a bounded regression setting),

where λ is calibrated with the slope heuristics method proposed in [10]. The family of models can be
generated by adaptive learning algorithms such as the ones proposed in [18, 17].

Note that our method is a ℓ0 type approach. Convex regularization methods would be an interesting
alternative route to follow. A straightforward convexification of tensor formats consists in using the sum
of nuclear norms of unfoldings (see, e.g., [33] for Tucker format) but this is known to be far from optimal
from a statistical point of view [31]. A convex regularization method based on the tensor nuclear norm has
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been proposed for the Tucker format, or shallow tensor network, which comes with theoretical guarantees
(see [35]). However, there is no straightforward extension of this approach to general tree tensor networks.

The outline of the paper is as follows. In Section 2, we describe the model class of tree tensor networks
(or tree-based tensor formats) in the case of vector-valued functions, which generalizes the classical defini-
tion for real-valued functions [22, 16] and allows considering applications such as multiclass classification.
In Section 3, we provide estimates of the metric and bracketing entropies in Lp spaces for tree tensor
networks Mm with bounded parameters. In Section 4, we derive bounds for the estimation error in a
classical empirical risk minimization framework. These bounds are derived from concentration inequalities
for empirical processes. In Section 5, we present the complexity-based model selection approach and we
derive risk bounds for particular choices of penalty, first in a general setting and then in the bounded
least-squares setting. Then we present the practical aspects of the approach, which includes the slope
heuristics method for penalty calibration and the exploration strategies for the generation of a sequence
of model classes and associated predictors. Finally in Section 6, we present some numerical experiments
that validate the proposed model selection strategy.

2 Tree tensor networks

We consider functions f(x) = f(x1, . . . , xd) defined on a product set X = X1 × . . .×Xd and with values in
R
s. Typically, Xν is a subset of R or R

dν but it could be a set of more general objects (sequences, functions,
graphs...).

2.1 Tensor product feature space

For each ν ∈ {1, . . . , d}, we introduce a finite-dimensional space Hν of functions defined on Xν . We let
{φν

iν
: iν ∈ Iν} be a basis of Hν , with Iν = {1, . . . , nν}. The functions φν

iν
(xν) may be polynomials, splines,

wavelets, kernel functions, or more general functions that extract nν features from a given input xν ∈ Xν .
We let φν : Xν → R

nν be the associated feature map defined by φν(xν) = (φν
1(xν), . . . , φ

ν
nν
(xν))

T ∈ R
nν .

The functions φi(x) = φ1
i1
(x1) . . . φ

d
id
(xd), i ∈ I = I1 × . . . × Id, form a basis of the tensor product space

H = H1 ⊗ . . .⊗Hd. A function f ∈ H admits a representation

f(x) =
∑

i∈I

aiφi(x) =

n1∑

i1=1

. . .

nd∑

id=1

ai1,...,idφ
1
i1(x1) . . . φ

d
id
(xd), (1)

where a ∈ R
I = R

n1×...×nd is an algebraic tensor (or multi-dimensional array) of size n1 × . . . × nd. The
map φ from X to R

I which associates to x the elementary tensor φ(x) = φ1(x1)⊗ . . .⊗φd(xd) ∈ R
I defines

a tensor product feature map.
A function f defined on X with values in R

s whose components fk (1 ≤ k ≤ s) are in H is identified
with an element of the product space Hs, which is itself identified with the space H1 ⊗ . . . ⊗ Hd ⊗ R

s of
tensors of order d+ 1.

2.2 Tree-based ranks and related tensor formats

For any α ⊂ {1, . . . , d} := D, we introduce the tensor space Hα =
⊗

ν∈αHν of functions defined on
Xα = ×ν∈αXν , and for x ∈ X , we let xα = (xν)ν∈α ∈ Xα denote the group of variables α. We denote by
αc = D \ α. We use the conventions H∅ = R and HD = H.

Definition 2.1. The α-rank of a function f : X → R
s, denoted rankα(f), is the minimal integer rα such

that

f(x) =

rα∑

k=1

gαk (xα)h
αc

k (xαc) (2)
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for some functions gαk : Xα → R and hαk : Xαc → R
s.

The above definition generalizes the classical notion of α-rank for vector-valued functions. It coincides
with the classical notion of α-rank when f : X → R

s is seen as a real-valued function of s + 1 variables
defined on X1× . . .×Xd×{1, . . . , s}. A function f ∈ Hs admits a representation (2) with functions gαk ∈ Hα

and hα
c

k ∈ Hs
αc . For f 6= 0, we have rank∅(f) = 1 and 1 ≤ rankD(f) ≤ s.

We let T be a dimension partition tree over D, with root D and leaves {ν}, 1 ≤ ν ≤ d. For a node
α ∈ T , we denote by S(α) the set of children of α. For any node α, we have either S(α) = ∅ (for leaf
nodes) or S(α) ≥ 2 (for interior nodes). We denote by L(T ) the set of leaves of T , and by I(T ) = T \L(T )
its interior nodes. For an interior node α ∈ I(T ), S(α) forms a partition of α. The T -rank of a function
f is the tuple rankT (f) = (rankα(f))α∈T . The number of nodes of a dimension partition tree over D is
bounded as |T | ≤ 2d− 1.

Given a tuple r ∈ N
|T | we introduce the model class MT

r (Hs) of functions in Hs with T -rank bounded
by r,

MT
r (Hs) = {f ∈ Hs : rankT (f) ≤ r}.

A function f ∈ MT
r (Hs) admits the representation

f(x) =

rD∑

kD=1

ckDg
D
kD

(x)

where the ckD are vectors in R
s and where the functions gDkD ∈ H are defined recursively. For any interior

node α ∈ I(T ), the functions gαkα admit the representation

gαkα(xα) =
∑

1≤kβ≤rβ
β∈S(α)

Cα
kα,(kβ)β∈S(α)

∏

β∈S(α)

gβkβ (xβ),

where Cα ∈ R
rα×(×β∈S(α)rβ). For a leaf node α ∈ L(T ), the functions gαkα ∈ Hα admit the representation

gαkα(xα) =
∑

iα∈Iα

Cα
kα,iαφ

α
iα(xα).

We let C∅ denote the matrix whose columns are the vectors ckD . We introduce the tree T ⋆ = T ∪ ∅
and we use the conventions r∅ = s and S(∅) = D. A function f in MT

r (Hs) therefore admits an explicit
representation

fk(x) =
∑

iα∈Iα

α∈L(T )

∑

1≤kβ≤rβ
β∈T

C∅
k,kD

∏

α∈T\L(T )

Cα
kα,(kβ)β∈S(α)

∏

α∈L(T )

Cα
kα,iα

∏

α∈L(T )

φα
iα(xα) (3)

where the set of parameters (Cα)α∈T ⋆ form a tree network of tensors, and Cα ∈ R
{1,...,rα}×Iα := R

Kα
,

where Iα = {1, . . . , rD} for α = ∅, Iα = ×β∈S(α){1, . . . , rβ} for α ∈ I(T ) or Iα = {1, . . . , nα} for α ∈ L(T ).
We let RH,T,r be the map which associates to a set of tensors (Cα)α∈T ⋆ the function f = RH,T,r((C

α)α∈T ⋆)
defined by (3), so that

MT
r (Hs) = {f = RH,T,r((C

α)α∈T ⋆) : Cα ∈ R
Kα

, α ∈ T ⋆}.

From the representation (3), we obtain the following

Lemma 2.2. The map Rr,T,H is a multilinear map from the product space×α∈T ⋆ R
Kα

to Hs.

Remark 2.3. If rD = s, the parameter C∅ ∈ R
s×s can be chosen as the identity matrix, so that the

parameters of a function in MT
r (Hs) are reduced to the set of tensors (Cα)α∈T . This includes the classical

case of tree-based tensor formats for real-valued functions (s = rD = 1). In this situation, we let T ⋆ = T .
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2.3 Tree tensor networks as compositions of multilinear functions

A function f in MT
r (Hs) admits a representation in terms of compositions of multilinear functions. For a

given α ∈ T , we let gα(xα) = (gαkα(xα))1≤kα≤rα ∈ R
rα . The matrix C∅ ∈ R

s×rD is linearly identified with a

linear map f∅ from R
rD to R

s. Therefore, a function f in MT
r (Hs) admits the representation

f(x) = f∅(gD(x)).

For any α ∈ I(T ), the tensor Cα can be linearly identified with a multilinear map

fα : ×
β∈S(α)

R
rβ → R

rα

defined by

fα
kα((z

β)β∈S(α)) =
∑

1≤kβ≤rβ
β∈S(α)

Cα
kα,(kβ)β∈S(α)

∏

β∈S(α)

zβkβ

for zβ ∈ R
rβ . Therefore, gα admits the representation

gα(xα) = fα((gβ(xβ)β∈S(α)). (4)

For a leaf node α ∈ L(T ), the tensor Cα can be linearly identified with a linear map fα : R
nα → R

rα , and

gα(xα) = fα(φα(xα)). (5)

Therefore, a function f in MT
r (Hs) can be parametrized by a tree network of linear or multilinear maps

f = (fα)α∈T ⋆ (identified with the tree tensor network (Cα)α∈T ⋆).

We denote by Fα the space of linear maps from R
rD to R

s for α = ∅, the space of multilinear maps from

×β∈S(α) R
rβ to R

rα for α ∈ I(T ), or the space of linear maps from R
nα to R

rα for a leaf node α ∈ L(T ).
We denote by

FT,r := ×
α∈T ⋆

Fα

the parameter space and by RH,T,r the representation map which associates to a network f = (fα)α∈T ⋆ ∈
FT,r the function f . Then

MT
r (Hs) = {RH,T,r(f) : f ∈ FT,r}.

Since Fα is linearly identified with R
Kα

for all α ∈ T ⋆, we deduce the following property from Lemma 2.2.

Lemma 2.4. The map RH,T,r is a multilinear map from the product space FT,r =×α∈T ⋆ Fα to the space
of functions defined on X .

2.4 Representation complexity

When interpreting a tensor (or function) network f ∈ FT,r as a neural network, a classical measure of
complexity if the number of neurons, which is the sum of ranks rα, α ∈ T ⋆. This leads to a first measure
of complexity of a function f = RH,T,r(f) defined by

complN (f) =
∑

α∈T ⋆

rα.

From an approximation or statistical perspective, a more natural measure of complexity for a function
f ∈ MT

r (Hs) is its representation complexity, that is the dimension of the corresponding parameter space
FT,r, or the number of weights of the corresponding sum-product neural network. We let Nα = dim(Fα),
with Nα = srD for α = ∅, Nα = rαnα for α ∈ L(T ) and Nα = rα

∏
β∈S(α) rβ for α ∈ T ⋆ \ L(T ). Then the

representation complexity of a function f = RH,T,r(f) is

complC(f) := C(T, r,Hs) =
∑

α∈T ⋆

Nα = srD +
∑

α∈I(T )

rα
∏

β∈S(α)

rβ +
∑

α∈L(T )

rαnα. (6)
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Remark 2.5. If rD = s, the function f∅ : R
s → R

s can be taken as the identity map, so that the parameters
of MT

r (Hs) are reduced to the set of functions f = (fα)α∈T . In this case, we let T ⋆ = T , and the complexity
is

complC(f) := C(T, r,Hs) =
∑

α∈T

Nα =
∑

α∈I(T )

rα
∏

β∈S(α)

rβ +
∑

α∈L(T )

rαnα. (7)

Another measure of complexity of f = RH,T,r(f) can be defined as

complS(f) =
∑

α∈T ⋆

‖fα‖ℓ0 , (8)

where ‖fα‖ℓ0 is the number of non-zero entries in the tensor Cα associated with the multilinear map fα.
This measure of complexity takes into account a possible sparsity in tensors or in the corresponding sum-
product neural network. We note that complS(f) ≤ complC(f). These different measures of complexity
lead to the definition of different approximation tools and corresponding approximation classes, see [2, 3]
for tensor networks, and [19] for similar results on ReLU or RePU neural networks.

2.5 Normalized parametrization

A function f ∈ MT
r (Hs) admits infinitely many equivalent parametrizations. From the multilinearity of

the representation map RH,T,r (see Lemma 2.4), it is clear that the model class MT
r (Hs) is a cone, i.e.

cMT
r (Hs) ⊂ MT

r (Hs) for any c ∈ R, and that given some norms ‖ · ‖Fα on the spaces Fα, α ∈ T ⋆, we have

MT
r (Hs) = {cf : c ∈ R, f ∈ MT

r (Hs)1},

where MT
r (Hs)1 are elements of MT

r (Hs) with bounded parameters, defined by

MT
r (Hs)1 = {f = RH,T,r(f) : f = (fα)α∈T ⋆ ∈ FT,r :, ‖fα‖Fα ≤ 1, α ∈ T ⋆}. (9)

3 Metric entropy of tree tensor networks

We assume that the sets Xν are equipped with finite measures µν , for all ν ∈ D = {1, . . . , d}, and the set X
is equipped with the product measure µ = µ1 ⊗ . . .⊗ µd. For 1 ≤ p ≤ ∞, we consider the space Lp

µ(X ;Rs)
of measurable functions defined on X with values in R

s, with bounded norm ‖ · ‖p,µ defined by

‖f‖pp,µ =

∫

X
‖f(x)‖ppdµ(x) for 1 ≤ p < ∞, or ‖f‖∞,µ = µ- ess sup

X
|f |.

We also consider the space L∞(X ;Rs) of functions defined on X with values in R
s, with bounded norm

‖f‖∞ = sup
x∈X

|f(x)|.

In the following, we denote by Lλ(X ;Rs) the space Lp
µ(X ;Rs) equipped with the norm ‖·‖p,µ when λ = (p, µ)

or the space L∞(X ;Rs) equipped with the norm ‖ · ‖∞ when λ = ∞. If Hν ⊂ Lλ(Xν) for all ν ∈ D, then
H ⊂ Lλ(X ) and Hs ⊂ Lλ(X ;Rs).

3.1 Continuity of the parametrization

We here study the continuity properties of the representation map RH,T,r as a map from FT,r = ×α∈T ⋆Fα

to Hs ⊂ Lλ(X ;Rs), with λ = (p, µ) or λ = ∞. We consider norms ‖ · ‖Fα on space Fα, α ∈ T ⋆, and the
product norm ‖ · ‖F over FT,r defined by

‖(fα)α∈T ⋆‖FT,r
= max

α∈T ⋆
‖fα‖Fα .

From the multilinearity of RH,T,r (Lemma 2.4), we easily deduce the following property.
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Lemma 3.1. Assuming H ⊂ Lλ(X ), with either λ = (p, µ) or λ = ∞, the multilinear map RH,T,r from
FT,r to Hs ⊂ Lλ(X ;Rs) is continuous and such that for all f = RH,T,r((f

α)α∈T ⋆) in MT
r (Hs),

‖f‖λ ≤ Lλ

∏

α∈T ⋆

‖fα‖Fα

for some constant Lλ < ∞ independent of f defined by

Lλ = sup
f=RH,T,r((fα)α∈T⋆ )

‖f‖λ∏
α∈T ⋆ ‖fα‖Fα

. (10)

We denote by B(Fα) the unit ball of Fα and by B(FT,r) the unit ball of F . The set MT
r (Hs)1 defined

by (9) is such that
MT

r (Hs)1 = RH,T,r(B(FT,r)). (11)

We then deduce that the map RH,T,r is Lipschitz continuous on the set MT
r (Hs)1.

Lemma 3.2. Assuming H ⊂ Lλ(X ), with either λ = (p, µ) or λ = ∞, for all f = RH,T,r(f) and
f̃ = RH,T,r(f̃) in MT

r (Hs)1,

‖f − f̃‖λ ≤ Lλ

∑

α∈T ⋆

‖fα − f̃α‖Fα ≤ Lλ|T ⋆|‖f − f̃‖FT,r
.

Proof. Denoting by {α1, . . . , αK} the elements of T ⋆, we have f − f̃ =
∑K

k=1RH,T,r(f̃
α1 , · · · , fαk −

f̃αk , · · · , fαK ). Them from Lemma 3.1, we obtain

‖f − f̃‖λ ≤ Lλ

K∑

k=1

‖fαk − f̃αk‖Fαk

∏

i<k

‖f̃αi‖Fαi

∏

i>k

‖fαi‖Fαi , (12)

and we conclude by noting that ‖fα‖Fα ≤ 1 and ‖f̃α‖Fα ≤ 1 for all α ∈ T ⋆.

3.2 Metric entropy

The metric entropy H(ǫ,K, ‖ · ‖X) of a compact subset K of a normed vector space (X, ‖ · ‖X) is defined
as

H(ǫ,K, ‖ · ‖X) = logN(ǫ,K, ‖ · ‖X),

with N(ǫ,K, ‖ · ‖X ) the covering number of K, which is the minimal number of balls of radius ǫ (for ‖ · ‖X)
necessary to cover K. We have the following result on the metric entropy of tensor networks with bounded
parameters.

Proposition 3.3. Assuming that H ⊂ Lλ(X ), with either λ = ∞ or λ = (p, µ), 1 ≤ p ≤ ∞, the metric
entropy of the model class

MT
r (Hs)R = {cf : c ∈ R, |c| ≤ R, f ∈ MT

r (Hs)1} (13)

in Lλ(X ;Rs) is such that

H(ǫ,MT
r (Hs)R, ‖ · ‖λ) ≤ C(T, r,Hs) log(3ǫ−1RLλ|T ⋆|).

Proof. The covering number of the unit ballB(Fα) of theNα-dimensional space Fα is such thatN(ǫ,B(Fα), ‖·
‖Fα) ≤ (3ǫ−1)Nα . Then the unit ball B(FT,r) of the product space FT,r equipped with the product topol-
ogy has a covering number N(ǫ,B(FT,r), ‖ · ‖FT,r

) ≤ ∏
α∈T ⋆ N(ǫ,B(Fα), ‖ · ‖Fα) ≤ (3ǫ−1)C(T,r,Hs) with

C(T, r,Hs) =
∑

α∈T ⋆ Nα. From the Lipschitz continuity of RH,T,r on MT
r (Hs)1 (Lemma 3.2), we deduce

that N(ǫ,MT
r (Hs)1, ‖ · ‖λ) ≤ (3ǫ−1Lλ|T ⋆|)C(T,r,Hs), from which we deduce that N(ǫ,MT

r (Hs)R, ‖ · ‖λ) ≤
(3ǫ−1RLλ|T ⋆|)C(T,r,Hs), which ends the proof.
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If f1 and f2 are two functions from Lp
µ(X ;Rs), the collection of functions f ∈ Lp

µ(X ;Rs) such that
f1 ≤ f ≤ f2 almost everywhere is denoted by [f1, f2] and called a bracket with extremities f1 and f2.
The diameter of the bracket [f1, f2] for the norm ‖ · ‖p,µ is given by ‖f2 − f1‖p,µ. The bracketing number
N[](ǫ,K, ‖ · ‖p,µ) of a set K is defined as the minimal number of brackets with diameters less than ǫ which
are necessary to cover K. The corresponding bracketing entropy is defined as

H[](ǫ,K, ‖ · ‖p,µ) := logN[](ǫ,K, ‖ · ‖p,µ).
Lemma 3.4. For any 1 ≤ p ≤ ∞ and any compact set K in Lp(X ;Rs),

H[](ǫ,K, ‖ · ‖p,µ) ≤ H(
ǫ

2
µ(X )−1/p,K, ‖ · ‖∞,µ),

where µ(X ) is the mass of the measure µ, and µ(X )−1/p = 1 for p = ∞.

Proof. Let γ = ǫ
2µ(X )−1/p and let N be a γ-net of K for the norm ‖ · ‖∞,µ with cardinal N(γ,K, ‖ · ‖∞,µ).

Then for any f ∈ K, there exists a f̃ ∈ N such that ‖f − f̃‖∞,µ ≤ γ, which implies that f is in the bracket
[f̃−γ, f̃+γ] with diameter ‖2γ‖p,µ = 2γµ(X )1/p = ǫ. Then the collection of brackets {[f̃−γ, f̃+γ] : f̃ ∈ N}
with diameters ǫ covers K, which implies N[](ǫ,K, ‖ · ‖p,µ) ≤ N(γ,K, ‖ · ‖∞,µ), which ends the proof.

From Proposition 3.3 and Lemma 3.4, we directly deduce the following result.

Proposition 3.5. For any 1 ≤ p ≤ ∞, the set MT
r (Hs)R defined in (13) has a bracketing entropy

H[](ǫ,M
T
r (Hs)R, ‖ · ‖p,µ) ≤ C(T, r,Hs) log(6ǫ−1µ(X )1/pRL∞,µ|T ⋆|),

with µ(X )−1/p = 1 for p = ∞.

3.3 A particular choice of norms

Assume that H ⊂ Lλ(X ), with either λ = (p, µ) or λ = ∞. The continuity constant Lλ of the map RH,T,r

defined by (10) depends on λ, the norms on Fα, the chosen basis for H and also on the measure µ when
λ = (p, µ). We here introduce a particular choice of norms and basis functions which allows to bound the
continuity constant Lλ. We consider on the space F ∅ of linear maps from R

rD to R
s the norm (with p = ∞

when λ = ∞)

‖f∅‖F ∅ = max
z∈R

rD

‖f∅(z)‖p
‖z‖p

,

which coincides with the classical matrix p-norm. For any interior node α ∈ I(T ), we introduce a norm
‖ · ‖Fα over the space Fα of multilinear maps fα :×β∈S(α) R

rβ → R
rα , defined by

‖fα‖Fα = max
(zβ)β∈S(α)∈×β∈S(α) R

rβ

‖fα((zβ)β∈S(α))‖p∏
β∈S(α) ‖zβ‖p

.

For a leaf node α ∈ L(T ), we introduce a norm ‖ · ‖Fα over the space Fα of linear maps fα : R
nα → R

rα ,
defined by

‖fα‖Fα = max
zα∈Rnα

‖fα(zα)‖p
‖zα‖p

. (14)

We assume that for any ν ∈ D, the feature map φν : Xν → R
nν is such that ‖φν‖λ = 1. For λ = (∞, µ)

(resp. λ = ∞), that means that basis functions φν
iν (xν) have a unit norm in L∞,µ(Xν) (resp. L∞(Xν)).

For p < ∞, that means that
∑nν

i=1 ‖φν
i ‖pp,µ = 1, which can be obtained by rescaling basis functions so that

‖φν
i ‖p,µ = n

−1/p
ν .

Proposition 3.6. Assume H ⊂ Lλ(X ), with either λ = (p, µ) or λ = ∞. With the above choice of norms
and normalization of basis functions (with p = ∞ when λ = ∞), the continuity constant Lλ defined by
(10) is such that Lλ ≤ 1, and for all 1 ≤ q ≤ p, Lq,µ ≤ µ(X )1/q−1/pLλ ≤ µ(X )1/q−1/p.

Proof. See Appendix A.1.
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4 Risk bounds for empirical risk minimization

In this section, we analyze the estimation error for tree tensor networks obtained by empirical risk mini-
mization. We consider as fixed the approximation space H, the tree T and the rank r ∈ N

|T |. We assume
that H ⊂ L∞,µ(X ), with X equipped with a finite measure µ. We consider the model class MT

r (Hs)R := M
of tree tensor networks with bounded parameters, with the norms defined in Section 3.3 for λ = (∞, µ)
(p = ∞). We denote by CM = C(T, r,Hs) the representation complexity of M defined by (6) (or (7) when
rD = s). We consider a risk

R(f) = E(γ(f, Z)),

where Z is a random variable taking values in Z and where γ : R
X × Z → R is some contrast function.

The minimizer of the risk over measurable functions defined on X is the target function f⋆. For f random
(depending on the data), E(γ(f, Z)) shall be understood as an expectation EZ(γ(f, Z)) w.r.t. Z (conditional
to the data).

Example 4.1. For supervised learning, we consider a random variable Z = (X,Y ), with Y a random
variable with values in R

s, X a X -valued random variable with probability law µ. The contrast is chosen as
γ(f, (x, y)) = ℓ(y, f(x)) with ℓ a loss function measuring a discrepancy between y and the prediction f(x).

Example 4.2. For the problem of estimating the probability distribution of a random variable X, we
consider Z = X and s = 1.

Given the model class M , we denote by fM a minimizer over M of the risk R, and by f̂M
n a minimizer

over M of the empirical risk

R̂n(f) =
1

n

n∑

i=1

γ(f, Zi),

which is seen as an empirical process over M . We introduce the excess risk

E(f) = R(f)−R(f⋆).

The excess risk for the estimator f̂M
n satisfies

E(f̂M
n ) = E(fM ) +R(f̂M

n )−R(fM ), (15)

where E(fM ) is the best approximation error in M and R(f̂M
n ) − R(fM ) is the estimation error. Using

the optimality of f̂M
n , we obtain that the estimation error satisfies

R(f̂M
n )−R(fM) ≤ R̂n(f

M )−R(fM )− R̂n(f̂
M
n ) +R(f̂M

n ) := R̄n(f
M )− R̄n(f̂

M
n ), (16)

where R̄n(f) is the centered empirical process

R̄n(f) = R̂n(f)−R(f) =
1

n

n∑

i=1

γ(f, Zi)− E(γ(f, Z)). (17)

To obtain bounds of the estimation error, it remains to quantify the fluctuations of the centered empirical
process R̄n(f).

4.1 Concentration inequalities for empirical processes

We here apply classical results to control the fluctuations of the supremum of the empirical process R̄n(f)
over the model class M .

Assumption 4.3 (Bounded contrast). Assume that γ is uniformly bounded over M ×Z, i.e.

|γ(f, Z)| ≤ B (18)

holds almost surely for all f ∈ M , with B a constant independent of f .
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The above assumption yields a classical concentration inequality for the empirical process R̄n(f).

Lemma 4.4. Under assumption 4.3, we have that

P(R̄n(f) > ǫB) ∨ P(R̄n(f) < −ǫB) ≤ e−n ǫ2

2 (19)

holds for all f ∈ M .

Proof. We have R̂n(f) − R(f) = 1
n

∑n
i=1 A

f
i − E(Af ), where the Af

i = γ(f, Zi) are i.i.d. copies of the
random variable Af = γ(f, Z). From Assumption 4.3, we have that |Af | ≤ B almost surely, so that Af is
subgaussian with parameter B2 and the result simply follows from Hoeffding’s inequality.

A stronger assumption is required to obtain a uniform concentration inequality for the empirical process
R̄n(f) over M .

Assumption 4.5. Assume that γ(·, Z) is Lipschitz continuous over M ⊂ L∞,µ(X ;Rs), i.e.

|γ(f, Z)− γ(g, Z)| ≤ L‖f − g‖∞,µ (20)

holds almost surely for all f, g ∈ M , with L a constant independent of f and g.

Lemma 4.6. Under Assumptions 4.3 and 4.5, we have that

P( sup
f∈M

R̄n(f) > 2ǫB) ∨ P( inf
f∈M

R̄n(f) < −2ǫB) ≤ N ǫB
2L
e−

nǫ2

2 , (21)

where N ǫB
2L

= N( ǫB2L ,M, ‖ · ‖∞,µ) is the covering number of M at scale ǫB
2L , and

logN ǫB
2L

≤ CM log
(
6LB−1R|T ⋆|ǫ−1

)
.

Proof. See Appendix A.2.

Lemma 4.7. Under Assumptions 4.3 and 4.5,

E( sup
f∈M

|R̄n(f)|) ≤ 4B
√

CM

√
2 log((β ∨ e)

√
n)

n
.

with β = 6LB−1R|T ⋆|.
Proof. See Appendix A.2.

4.2 Risk bounds for the minimizer of the empirical risk

From the properties of the centered empirical process, we can now derive upper bounds of the estimation
error in probability and in expectation.

Proposition 4.8. Under Assumptions 4.3 and 4.5, the estimation error satisfies

P(R(f̂M
n )−R(fM ) > 2ǫB) ≤ 2eCM log(βǫ−1)−nǫ2

2 ,

where β = 6LB−1R|T ⋆|. Moreover,

E(R(f̂M
n )−R(fM )) ≤ 4B

√
CM

√
2 log((β ∨ e)

√
n)

n
,

and thus

E(E(f̂M
n )) ≤ E(fM) + 4B

√
CM

√
2 log((β ∨ e)

√
n)

n
.
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Proof. See Appendix A.2.

Proposition 4.9. Under Assumptions 4.3 and 4.5, for any t > 0, with probability larger than 1− exp(−t),

sup
f∈M

−R̄n(f) ≤ 4B
√

CM

√
2 log(6LB−1R|T ⋆|√n)

n
+ 2B

√
t

2n
. (22)

Moreover, with probability larger than 1− exp(−t),

E(f̂M
n ) ≤ E(fM ) + 8B

√
CM

√
2 log(6LB−1R|T ⋆|√n)

n
+ 4B

√
t

2n
. (23)

Proof. See Appendix A.2.

Example 4.10 (Least-squares bounded regression). We consider the least-squares regression setting with
γ(f, Z) = ‖Y −f(X)‖2ℓ2 . Let µ be the distribution of X. The excess risk E(f) = R(f)−R(f⋆) = ‖f−f⋆‖22,µ
admits f⋆(x) = E(Y |X = x) as a minimizer. We assume that ‖Y ‖ℓ∞ ≤ R almost surely. For all f ∈ M ,
we have γ(f, Z) ≤ s‖Y − f(X)‖2ℓ∞ ≤ 2s(‖Y ‖2ℓ∞ + ‖f‖2∞), so that 0 ≤ γ(f, Z) ≤ B almost surely, with
B = 4sR2. Also, it holds almost surely

|γ(f, Z)− γ(g, Z)| = |(2Y − f(X)− g(X), f(X) − g(X))ℓ2 |
≤ ‖2Y − f(X)− g(X)‖ℓ1‖f(X) − g(X)‖ℓ∞
≤ s(2‖Y ‖ℓ∞ + ‖g‖∞,µ + ‖f‖∞,µ)‖f − g‖∞,µ.

Then for all f, g ∈ M , |γ(f, Z)−γ(g, Z)| ≤ L‖f−g‖∞,µ with L = 4sR. The constant β from Proposition 4.8
is β = 6|T ⋆|.

Example 4.11 (L2 density estimation). We consider the estimation of the probability law ν of X. Assum-
ing that ν admits a density f⋆ with respect to the measure µ, and assuming f⋆ ∈ L2

µ(X ), we consider the
contrast γ(f, x) = ‖f‖22,µ − 2f(x), so that E(f) = R(f)−R(f⋆) = ‖f − f⋆‖22,µ admits f⋆ as a minimizer.
We assume that µ is a finite measure on X and that f⋆ is uniformly bounded by R. Then |γ(f,X)| ≤ B
almost surely with B = R(µ(X )R + 2). Also, for all f, g ∈ M , we have almost surely

|γ(f,X)− γ(g,X)| = |‖f‖22,µ − ‖g‖22,µ − 2(f(X)− g(X))|

≤ |
∫

(f − g)(f + g)dµ|+ 2‖f − g‖∞,µ

≤ (‖f + g‖1,µ + 2)‖f − g‖∞,µ

≤ L‖f − g‖∞,µ

with L = 2(µ(X )R + 1). Since 1/R ≤ L/B ≤ 2/R, the constant β from Proposition 4.8 is such that
6|T ⋆| ≤ β ≤ 12|T ⋆|.

4.3 Improved risk bounds for least squares contrasts

In this section, we provide an improved excess risk bound in the specific case of least squares contrasts.
Our results come from Talagrand Inequalities and generic chaining bounds ; we follow the presentation
given in the book of [27]. The excess risk bound given below strongly relies on the link between the excess
risk and the variance of the excess loss (see Inequality (??) in the proof of Proposition 4.12), as explained
in Chapter 5 of [27] and Chapter 8 in [28].

Let γ be either the least squares contrast in the bounded regression setting (as described in Exam-
ple 4.10, with s = 1), or the least squares contrast for density estimation (as described in Example 4.11).
In particular, note that in the regression setting it is assumed that ‖Y ‖ℓ∞ ≤ R almost surely.
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As before, we consider the model class M = MT
r (H)R of tree tensor networks with bounded parameters.

Contrary to the two previous subsections, it is now assumed thatH ⊂ L∞(X ) equipped with the norm ‖·‖∞
and we still use the normalization of the parameters with λ = ∞ (p = ∞) introduced in Section 3.3. Note
that L∞(X ) ⊂ L∞,µ(X ), where µ is the distribution of the Xi’s in the regression setting (see Example 4.10)
or the reference measure for density estimation (see Example 4.11). In particular, in this setting ‖f‖∞,µ ≤
‖f‖∞ < ∞ for any f ∈ H.

Proposition 4.12. Under the previous assumptions, there exists an absolute constant A and a constant
κ such that for any ε ∈ (0, 1] and any t > 0, with probability at least 1−A exp(−t), it holds

E(f̂M
n ) ≤ (1 + ε)E(fM ) +

κR2

n

[
aTCM

ε2
log+

(
nε2

aTCM

)
+

t

ε

]
(24)

where aT = 1 + log+
(
3|T ⋆|
4e

)
, and κ depends on linearly on µ(X )1. Then by integrating according to t, we

obtain that for any ε ∈ (0, 1],

EE(f̂M
n ) ≤ (1 + ε)E(fM ) +

κR2

n

[
aTCM

ε2
log+

(
nε2

aTCM

)
+

A
ε

]
.

Proof. See Appendix A.2.1.

Note that the term aT is upper bounded by a term of the order of log d because |T ∗| ≤ 2d. Thus the
constants in the risk bound (24) does not explode with the dimension d in regression. Note however that
in density estimation, the constant κ depends linearly on the mass µ(X ) of the reference measure, which
may grow exponentially with d.

5 Model selection for tree tensor networks

We now consider a family of approximation spaces Hm = Hs
m ⊂ L∞,µ(X ), m ∈ M, with X equipped with

a finite measure µ, as in Sections 4.1 and 4.2. Let (Mm)m∈M be a given family of tree tensor networks with
Mm = MTm

rm (Hm)R and where the parameters are bounded according to the norms defined in Section 3.3
for λ = (∞, µ) (p = ∞). Each model m has a particular tree Tm, a rank rm, an approximation space Hm,
and a radius R. We denote by Cm = C(Tm, rm,Hm) the corresponding representation complexity. For
some m ∈ M, we let fm be a minimizer of the risk over Mm,

fm ∈ arg min
f∈Mm

R(f),

and f̂m be a minimizer of the empirical risk over Mm,

f̂m ∈ arg min
f∈Mm

R̂n(f).

At this stage of the procedure, we have at hand a family of predictors f̂m and our goal is to provide a
strategy for selecting a good predictor. To this aim, we make use of the model selection approach of Barron,
Birgé and Massart. More precisely, we adapt a general theorem from [28] to our problem. Similar model
selection strategies can be found in [34, 21, 11], see also [9] for an application to the selection of principal
curves.

Given some penalty function pen : M → R
+, we define m̂ as the minimizer over M of the criterion

crit(m) := R̂n(f̂m) + pen(m), (25)

and we finally select the predictor f̂m̂.

1With µ(X ) = 1 for regression.
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Assumption 5.1. We consider a family of positive weights (xm)m∈M over the family of models such that

Σ =
∑

m∈M

exp(−xm) < ∞.

This assumption and the choice of the weights is the discussed further in Section 5.3.

5.1 A general model selection for tree tensor network

We follow a standard strategy that corresponds to the so-called Vapnik’s structural minimization of the
risk method (see for instance [28, Section 8.2]) to choose the penalty function and derive a risk bound for
the estimator selected by the criterion (25). By definition of m̂, for any m ∈ M,

Rn(f̂m̂) + pen(m̂) ≤ Rn(f̂m) + pen(m) ≤ Rn(fm) + pen(m).

Therefore,
Rn(f̂m̂) ≤ Rn(fm) + pen(m)− pen(m̂)

and thus
R(f̂m̂) + R̄n(f̂m̂) ≤ R(fm) + R̄n(fm) + pen(m)− pen(m̂),

where R̄n(f) is the centered empirical process defined in (17). We finally derive the following upper bound
on the excess risk

E(f̂m̂) ≤ E(fm) + R̄n(fm)− R̄n(f̂m̂)− pen(m̂) + pen(m). (26)

We now provide a risk bound for a model selection strategy based on the criterion (25) with a suitable
choice of penalty.

Theorem 5.2. Under Assumptions 4.3, 4.5 and 5.1, if the penalty is such that

pen(m) ≥ λm

√
Cm

n
+ 2B

√
xm
2n

, (27)

with

λm = 4B

√
2 log(6LB−1R|Tm|⋆√n),

then the estimator f̂m̂ selected according to the criterion (25) satisfies the following risk bound

E(E(f̂m̂)) ≤ inf
m∈M

{E(fm) + pen(m)}+BΣ

√
π

2n
.

Proof. See Appendix A.3.

Theorem 5.2 gives a strong justification for using a penalty proportional to
√

Cm/n, at least for not
too large family of models. However, it is known that the Vapnik’s structural minimization of the risk
may lead to suboptimal rates of convergence. For instance, in the bounded regression setting, it is known
that a penalty proportional to the VapnikChervonenkis dimension (typically in O(Cm/n) leads to minimax
rates of convergence in various setting (see for instance Chapter 12 in [21]) whereas Vapnik’s structural
minimization of the risk (typically with penalty in O(

√
Cm/n)) is too pessimistic to provide fast rates of

convergence. Note that the approach of [21] is based on a truncation strategy which is not easy to calibrate
in practice. In the next section, we give an improved model selection result for least squares inference.
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5.2 Oracle inequalities for least squares inference on tree tensor networks

In this section, we give an improved model selection result for least squares inference based on Proposi-
tion 4.12. This corresponds to the approach presented in Sections 8.3 and 8.4 of [28] or in Section 6.3 of
[27].

We consider least squares density estimation and least squares bounded regression (s = 1) in the same
framework as Section 4.3: we now consider a family of approximation spaces Hm ⊂ L∞(X ) with s = 1 and
equipped with the norm ‖ · ‖∞. We use the same normalization of the parameters with p = ∞ (λ = ∞) as
introduced in Section 3.3. As before we consider a family of tree tensor networks (Mm)m∈M where each
model Mm = MTm

rm (Hm)R has a particular tree Tm, a rank rm, an approximation space Hm, and a radius
R.

Theorem 5.3. In the setting of Proposition 4.12 and under Assumption 5.1, there exists numerical con-
stants K1 and K2 and K3 such that if the penalty satisfies

pen(m) = K1R
2

[
amCm

nε2
log

nε2

amCm
+

xm
nε

]

with am = 1+log+
(
3|T ⋆

m|
4e

)
, then the estimator f̂m̂ selected according to the penalized criterion (25) satisfies

the following oracle inequality

EE(f̂m̂) ≤ 1 + ε

1− ε
inf

m∈M

{
E(fm) +K2R

2

[
amCm

nε2
log

nε2

amCm
+

xm
nε

]}
+

K3R
2Σ

n

1 + ε

ε(1 − ε)
. (28)

Proof. The proof is adapted from Theorem 6.5 in [27], see Appendix A.3.

This theorem provides an improved oracle inequality bound with a penalty in Cm
n , up to logarithmic

terms. In Section 5.4, we will derive adaptive optimal rates of convergence (in the minimax sense) from
this model selection result. In Section 6 we illustrate how to calibrate the penalty in practice using the
slope heuristics method.

5.3 Choosing the weights in the penalty function

The weights xm represent the price to pay for the richness of the model collection, when there are many
models with the same complexity Cm. A typical choice for the weights is xm = x(Cm) with a weight
function x such that

x(c) ≥ βc+ log(Nc),

whereNc = |{m ∈ M : Cm = c}| is the number of models with complexity c, and β some positive constant.
With such a choice, Σ =

∑
m∈M exp(−xm) =

∑
c≥1Nc exp(−x(c)) ≤ (eβ − 1)−1, so that Assumption 5.1 is

satisfied. With such a weight function, if the model collection is not too rich, the weight xm is comparable
to or smaller than the complexity Cm.

We restrict the following analysis to the case where the approximation space is fixed: Hm = Hs for any
m ∈ M and we only consider binary trees, for which |Tm| = 2d− 1.

We first assume that the binary tree T is fixed and we need to upper bound the number Nc of models
having the complexity c to define the weights. According the definition of the representation complexity
given in Section 2.4, a format with complexity c satisfies

c =
∑

α∈T ⋆

Nα = srD +
∑

α∈I(T )

rα
∏

β∈S(α)

rβ +
∑

α∈L(T )

rαnα. (29)
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The number of triplets of integers (k1, k2, k3) such that the product k1k2k3 is less than an integer qα is
clearly less than q2α. So, the number of formats such that Nα = qα for any α ∈ T ⋆ is less than

∏

α∈T ⋆

q2α ≤



(
∏

α∈T ⋆

qα

)1/|T ⋆|


2|T ⋆|

≤
[

1

|T ⋆|
∑

α∈T ⋆

qα

]2|T ⋆|

≤
[

c

|T ⋆|

]2|T ⋆|

.

Moreover, the number of tuple of integers (qα)α∈T ⋆ satisfying
∑

α∈T ⋆ qα = c is
(c+|T ⋆|

c

)
. For a fixed binary

tree, the number Nc of all possible formats of complexity c is thus such that

Nc ≤
(
c+ |T ⋆|

c

)[
c

|T ⋆|

]2|T ⋆|

.

Using the inequality

log

(
k

ℓ

)
≤ ℓ(1 + log

k

ℓ
), (30)

and the fact that |T ⋆| ≤ Cm for any model m in the collection, we obtain

log(Nc) ≤ c(1 + log(
c+ |T ⋆|

c
)) + 2|T ⋆| log( c

|T ⋆|) ≤ c(1 + log(2)) + 4d log(c) . c.

Then for a given binary tree T , we finally take a weight function

x(c) = ηc (31)

for some η > 0. In the situation where all the formats of the collection rely on a same tree T , using the
weight function given in (31), Theorem 5.3 shows that we can use a penalty proportional to Cm.

Leaving aside the computational aspects for the moment (see Section 5.6), we now consider the situation
where the formats of the collection rely on several possible trees T . The number of binary dimension
partition trees (or full binary trees) with d leaves is the Catalan number 1

d

(2d−2
d−1

)
. The number Nc of

possible formats of complexity c based on all possible binary dimension partition trees with d leaves is thus
such that

Nc ≤
1

d

(
2d− 2

d− 1

)(
c+ 2d

c

)[ c

2d

]4d
.

Using again Inequality (30) and the fact that |T ⋆| = 2d ≤ Cm for any model m in the collection, we obtain
Nc ≤ d(1 + log(2)) + c(1 + log(2)) + 4d log(c) . c and we finally propose the weight function

x(c) = ηc (32)

for some η > 0. In the situation where a large number of trees has been explored, we still can use penalties
proportional to the format complexity Cm.

5.4 Approximation and minimax rates of tree tensor networks

For each dimension ν ∈ {1, . . . , d}, we consider approximation tools (Hν,pν )pν∈N for functions of the variable
xν , and we let (Hp)p∈Nd be the corresponding approximation tool for multivariate functions, where Hp =
H1,p1 ⊗ . . .⊗Hd,pd .

For adaptive methods in p and r (with fixed tree T ), we define an approximation tool

Φ = (Φc)c∈N, Φc = {f = RHp,T,r(f) : f ∈ FT,r : r ∈ N
r, p ∈ N

d, compl(f) ≤ c},

where compl(f) is a measure of complexity of the network f , and Φc is the set of functions with associated
network with complexity less than c.

16



For tree adaptive methods, we define the sets Φc as

Φc = {f = RHp,T,r(f) : f ∈ FT,r : T ∈ T , r ∈ N
r, p ∈ N

d, compl(f) ≤ c},

where T is a collection of possible dimension trees.
The best approximation error by a tensor network with complexity less than c is defined by

ec(f
⋆) = inf

f∈Φc

R(f)−R(f⋆).

Then given a growth function γ : N → N, an approximation class for tree tensor networks can be defined
as the set

Aγ = {f⋆ : sup
c≥1

γ(c)ec(f
⋆) < ∞},

which corresponds to functions that can be approximated with tree tensor networks with a convergence in
O(γ(c)−1).

The approximation class Aγ depends on the measure of complexity of the network, and on wether or
not tree adaptation is considered. Natural measures of complexity of a network f are the representation
complexity complC(f) = C(T, r,Hp) or the sparse representation complexity complS(f) (see Section 2.4).

When considering the complexity measure compl = complC , we easily derive from Theorem 5.2 or 5.3
upper bounds on the rates of convergence of our model selection procedure for functions in Aγ by balancing
the penalty term and the approximation term in the risk bounds.

Next we provide examples that shows that minimax rates can be achieved by tensor networks for
classical smoothness classes. In all examples, we consider a least-squares setting with real valued functions
(s = 1), where R(f)−R(f⋆) is the squared L2 norm of f − f⋆.

5.4.1 Multivariate functions

Sobolev spaces of multivariate functions. Consider a function f⋆ in the Sobolev space Hr, r ∈ N,
of functions on (0, 1)d or the d-dimensional torus T

d, and optimal approximation tools (Hν,pν )pν∈N for
univariate Sobolev functions (e.g., splines or trigonometric polynomials). For any fixed tree T , and when

considering the representation complexity measure complC , we have ec(f
⋆) = O(c−

2r
d )(see, e.g., [5]), and

therefore Hr is included in Aγ with γ(c) = c
2r
d . In the setting of Theorem 5.3, for f⋆ in the Sobolev

space Hr over (0, 1)d, and when considering the family of all possible formats, we find that the rate of

convergence of f̂m̂ is of order n− 2r
2r+d log(n)

2r
2r+d which is known to be the minimax rate of convergence over

Hr (up to the logarithmic term). Our model selection procedure (with variable p and r) therefore achieves
minimax rates for Sobolev spaces of any order, and is thus minimax adaptive to the regularity over Sovolev
spaces.

Sobolev spaces of multivariate functions with dominating mixed smoothness. Consider a func-
tion f⋆ in the mixed Sobolev space Hr

mix, r ∈ N, on the d-dimensional torus T
d, and optimal approximation

tools (Hν,pν )pν∈N for univariate Sobolev functions on T (e.g., trigonometric polynomials). For a fixed binary

tree T , when considering the complexity measure complC , we have ec(f
⋆) = O(c−

2r
3 log(c)dr) (see [32, 5]),

and therefore, the space Hr
mix is included in Aγ with γ(c) = c

2r
3 log(c)−dr. In the bounded regression

framework of Theorem 5.3, our model selection procedure shows a rate of convergence upper bounded

by n− 2r
3+2r (log n)rd. To our knowledge, the minimax rates of convergence over mixed Sobolev spaces are

unknown for regression. However, the results of [29] for Gaussian white noise model as well as the results

of [1] for density estimation suggest that these rates should be of the order of n− 2r
1+2r , up to a logarithmic

term. In fact, the minimax rate can not be obtained by our strategy since the rate of approximation error
in O(c−

2r
3 ) (up to logarithmic terms) is not the optimal rate of convergence which is in O(c−2r) (up to

logarithmic terms), the latter rate being achieved by hyperbolic cross approximation [15].
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An optimal rate should probably be achieved with tree tensor networks by further exploiting sparsity
in the tensors, and using the corresponding measure of complexity complS. Indeed, optimal approximation
rates should be obtained by shallow tensor networks (associated with a trivial tree) with a sparse tensor
CD with O(c) non zero entries, and a sparsity pattern based on hyperbolic crosses. Then noting that such
a shallow network (which is a canonical tensor format with rank O(c)) can be encoded within a tree tensor
network with sparse tensors and the same overall complexity complS in O(c), minimax rates (up to log
terms) should probably be obtained for mixed Sobolev space Hr

mix for any tree T , when combined with an
estimate of the metric entropy of sets Φc with the complexity measure complS .

5.4.2 Univariate functions

Tree tensor networks can be used for the approximation of univariate functions after identification of
a function f ∈ L2(0, 1) with an order-d tensor (or d-variate function) in R

2 ⊗ . . . ⊗ R
2 ⊗ L2(0, 1) :=

(R2)⊗d ⊗ L2(0, 1), see Section 6.1 or [2] for a more general setting. By considering an approximation
subspace S in L2(0, 1), say S = Pm, we define a tensor subspace (R2)⊗d⊗Pm = Hd,m, which is isometrically
identified with the space of univariate splines of degree m over a uniform partition of [0, 1] into 2d intervals.

An approximation tool is then defined by considering tensor networks in the tensor spaces Hd,m with
variable d and fixed m. In [2], the authors consider tensor networks associated with linear trees, that is the
tensor train format (or equivalently, recurrent sum-product neural networks). The variable d setting can
be interpreted as the tree adaptive setting presented above, where the family of trees T = {Td : d ∈ N},
with Td the linear tree over {1, . . . , d} with interior nodes {1, . . . , ν}, 2 ≤ ν ≤ d.

The following results are based on results from [3, Main results 3.1, 3.2 and 3.4] for Sobolev, Besov or
analytic functions.

Sobolev spaces of univariate functions. For functions f⋆ in the Sobolev space Hr of univariate
functions on (0, 1), and when considering the complexity measure complC , the approximation error ec(f

⋆) =
O(c−2r) achieves the best possible approximation rate2, that is Hr is included in Aγ with γ(r) = n2r for any

r ∈ N. Together with Theorem 5.3, we find that f̂m̂ achieves a convergence in n− 2r
2r+1 (up to logarithmic

term). This shows that our model selection procedure (with variable d and fixed m, in particular m = 0)
achieves minimax rates (up to logarithmic terms) for Sobolev spaces of any order r (without adapting the
degree m to the regularity of f⋆).

Besov spaces. Near optimal approximation rates are also obtained for Besov spaces of univariate
functions on (0, 1). More presicely, consider a function f⋆ in the Besov space Bα

τ,τ , with α > 0 and
τ = (r + 1/2)−1 the Sobolev embedding number.

When considering the complexity measure complC , we have Bα
τ,τ ⊂ Aγ with γ(c) = cα−ǫ for arbitrary

ǫ > 0 and all α > 0 (which is close to half of the rate obtained with optimal approximation tools, e.g.

free knot splines). Together with Theorem 5.3, we find that f̂m̂ achieves a convergence in n−α−ǫ
α+1 (up to

logarithmic term), which are close (but not equal to) minimax rates in n− 2α
2α+1 (up to log terms).

Note that when considering the complexity measure complS , we show Bα
τ,τ ⊂ Aγ with γ(c) = c2α−ǫ for

arbitrary ǫ > 0, which is arbitrarily close to optimal approximation rates. Therefore, a strategy taking
into account sparsity of tensors could be able to achieve rates arbitrarily close to minimax rates for Besov
spaces Bα

τ,τ of arbitrary smoothness α (without the need of adapting m to the regularity of f⋆).

Analytic functions. For a function f⋆ analytic on an open interval containing [0, 1] and when considering

the complexity measure complC , the approximation error converges exponentially fast as ec(f
⋆) = O(ρ−c2/3)

for some ρ > 1. That means f⋆ ∈ Aγ with γ(c) = ρc
2/3

. Together with Theorem 5.3, we find that f̂m̂

2also obtained by other tools such as splines of degree greater than r-1
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achieves a convergence in n−1 log(n) (up to logarithmic term). This is known to be the minimax rate for
nonparametric estimation of analytic densities [8].

5.5 Slope heuristics for penalty calibration

The aim of the slope heuristics method proposed by Birgé and Massart [10] is precisely to calibrate penalty
function for model selection purposes. See [7] and [4] for a general presentation of the method. This method
has shown very good performances and comes with mathematical guarantees in various settings among
other for non parametric Gaussian regression with i.i.d. error terms, see [10, 4] and references therein. The
slope heuristics have several versions (see [4]).

The aim is to tune the constant λ in a penalty of the form pen(m) = λpenshape(m) where penshape is a
known penalty shape. Let m̂(λ) be the model selected by penalized criterion with constant λ:

m̂(λ) ∈ argminm∈M

{
R̂n(f̂m) + λpenshape(m)

}
.

Let Cm denote the complexity of the model. The complexity jump algorithm consists of the following
steps:

1. Compute the function λ 7→ m̂(λ),

2. Find the constant λ̂cj > 0 that corresponds to the highest jump of the function λ 7→ Cm̂(λ),

3. Select the model m̂ = m̂(2λ̂cj) such that

m̂ ∈ arg min
m∈M

{
R̂n(f̂m) + 2λ̂cjpenshape(m)

}
.

5.6 Exploration strategy

The exploration of all possible model classes MT
r (Hs) with a complexity bounded by some c is intractable

since the number of such models is exponential in the number of variables d. Therefore, strategies should
be introduced to propose a set of candidate model classes Mm, m ∈ M.

In practice, a possible approach is to rely on adaptive learning algorithms from [18] (see also [17]) that
generate predictors f̂m (minimizing the empirical risk) in a sequence of model classes.

5.6.1 Fixed tree

For a fixed tree T , the proposed algorithm generates a sequence of model classes Mm = MT
rm(Hs

m) with
increasing ranks rm, m ≥ 1, by successively increasing the α-ranks for nodes α associated with the highest
(estimated) truncation errors

inf
rankα(f)≤rm,α

R(f)−R(f⋆).

For each m, the background approximation space is taken as Hm := Hpm = H1,pm,1 ⊗ . . .⊗Hd,pm,d
, where

for each dimension ν ∈ {1, . . . , d}, (Hν,k)k∈N is a given approximation tool (e.g., polynomials, wavelets).
Exploring all possible tuples pm is again a combinatorial problem. The algorithm proposed in [18, 17]
relies on a validation approach for the selection of a particular tuple. Note that a complexity-based model
selection method could also be considered for the selection of a tuple pm.
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5.6.2 Variable tree

Although the set of possible dimension trees over {1, . . . , d} is finite, exploring this whole set of dimension
trees is intractable for high and even moderate d. In [18], a stochastic algorithm has been proposed for
optimizing the dimension tree for the compression of a tensor. This tree optimization algorithm has been
combined with the rank-adaptive strategy discussed above. The resulting algorithm generates a sequence
of predictors in tree tensor networks associated with different trees. In the numerical experiments, we
use this learning algorithm with tree adaptation to generate a set of candidate trees. Then the learning
algorithm with rank adaptation but fixed tree is used with each of these trees.

6 Numerical experiments

In this section, we illustrate the proposed model selection approach for supervised learning problems in a
least-squares regression setting. Y is a real-valued random variable (s = 1) defined by

Y = f⋆(X) + ǫ

where ǫ is independent of X and has zero mean and standard deviation γσ(f⋆(X)). The parameter γ
therefore controls the noise level in relative precision.

For a given training sample, we use the learning strategies described in Section 5.6 that generate a
sequence of predictors f̂m, m ∈ M, associated with a certain collection of models M (which depends on
the training sample). Given a set of predictors f̂m, m ∈ M, we denote by m̂⋆ the index of the model that
minimizes the risk over M, i.e.

m̂⋆ ∈ arg min
m∈M

R(f̂m).

The model m̂⋆ is the oracle model in M for a given training sample.
We also denote by m̂(λ) the model such that

m̂(λ) ∈ argminm∈M

{
R̂n(f̂m) + λpenshape(m)

}
,

where penshape(m) = Cm/n, and by m̂ = m̂(2λ̂cj) the model selected by our model selection strategy, where

λ̂cj is calibrated with the complexity jump algorithm (see Section 5.5).

We consider two different types of problems: the approximation of univariate functions defined on
(0, 1), identified with a multivariate function through tensorization (Section 6.1), and the approximation
of multivariate functions defined on a subset of R

d (Section 6.2).

For a given function f , the risk R(f) is evaluated using a sample of size 105 independent of the training
sample. Statistics of complexities and risks (such as the expected complexity E(Cm̂) or the expected risk
E(R(f̂m̂))) are computed using 20 different training samples.

6.1 Tensorized function

Here we consider tree tensor networks for the approximation of a univariate function in L2(0, 1), see
Section 5.4.2 and [2, 3] for a general presentation. A function f defined on (0, 1) can be linearly identified
with a function f = Tl(f) of l + 1 variables defined on {0, 1}l × (0, 1) such that

f(x) = Tl(f)(i0, . . . , il−1, y) for x = 2−l(
l−1∑

k=0

ik2
k + y).
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The map Tl is called the tensorization map at level l. This allows to isometrically identify the space L2(0, 1)
with the tensor space R

2⊗ . . .⊗R
2⊗L2(0, 1) of order d = l+1. Then we consider the approximation space

Hl = R
2 ⊗ . . .⊗ R

2 ⊗ P0 of d-variate functions f(i0, . . . , il, y) independent of the variable y. The space Hl

is linearly identified with the space of piecewise constant functions on the uniform partition of (0, 1) into
2l intervals. Then we consider model classes Ml,T,r = {f : Tl(f) ∈ MT

r (Hl)}, which are piecewise constant
functions whose tensorized version Tl(f) is in a particular tree-based tensor format.

In the following experiments, for each l ∈ {1, . . . , 12}, we consider a fixed linear binary tree T (with
interior nodes {1, . . . , k}, 1 ≤ k ≤ l + 1) and use the rank adaptive learning algorithm (Section 5.6.1) to
produce a sequence of 25 approximations with increasing ranks.

Three functions f⋆(x) are considered. The first function f⋆(x) =
√
x is analytic on the open interval

(0, 1) and its derivative has a singularity at zero. The second function f⋆(x) = 1
1+x is analytic on a larger

interval including [0, 1]. The third function is in the Sobolev space H2(0, 1). For all functions, the proposed
model selection approach shows a very good performance. It selects with high probability a model with a
risk very close to the risk of the oracle f̂m̂⋆ .

6.1.1 Tensorized function f⋆(x) =
√
x

We consider the function f⋆(x) =
√
x which is analytic on the open interval (0, 1), with a singular derivative

at zero. We observe on Figures 3 and 4 that the model selection approach selects a model close to optimal
for different sample size n and noise level. Tables 1 and 2 show expectations of complexities and errors
for the selected estimator and illustrate the very good performance of the approach when compared to the
oracle.
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(a) Function λ 7→ Cm̂(λ), λ
cj (red).
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(b) Points (Cm,R(f̂m), m ∈ M, and selected model
(red).

Figure 3: Slope heuristics for the tensorized function f⋆(x) =
√
x with n = 200 and γ = 0.001.

n E(Cm̂⋆) E(Cm̂) E(R(f̂m⋆)) E(R(f̂m̂))

100 123.2 91.6 1.6e-05 5.0e-05
200 163.8 165.0 3.0e-06 5.1e-06
500 182.2 182.6 9.2e-07 1.2e-06
1000 190.2 228.5 7.1e-07 1.4e-06

Table 1: Expectation of complexities and risks of the model selected by the slope heuristics, with the
function f⋆(x) =

√
x and different values of n and γ = 0.001.
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Figure 4: Slope heuristics for the tensorized function f⋆(x) =
√
x with n = 1000 and γ = 0.0001.

γ E(Cm̂⋆) E(Cm̂) E(R(f̂m⋆)) E(R(f̂m̂))

10−3 190.2 228.5 7.1e-07 1.4e-06
10−4 242.8 251.4 1.5e-07 2.1e-07
10−5 219.8 267.4 1.3e-07 2.4e-07
0 218.6 258.6 1.1e-07 2.1e-07

Table 2: Expectation of complexities and risks of the model selected by the slope heuristics, with the
function f⋆(x) =

√
x and different values of γ and n = 1000.
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6.1.2 Tensorized function f⋆(x) = 1
1+x .

We consider the function f⋆(x) = 1
1+x which is analytic on the interval (−1,∞) including [0, 1]. Figures 5

and 6 illustrate the good behaviour of the model selection approach for different sample size and noise
level. Tables 3 and 4 show expectations of complexities and errors for the selected estimator and illustrate
again the very good performance of the approach when compared to the oracle.
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Figure 5: Slope heuristics for the tensorized function f⋆(x) = 1
1+x with n = 200 and γ = 0.001.
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Figure 6: Slope heuristics for the tensorized function f⋆(x) = 1
1+x with n = 1000 and γ = 0.0001.
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n E(Cm̂⋆) E(Cm̂) E(R(f̂m⋆)) E(R(f̂m̂))

100 88.0 83.0 9.3e-07 1.0e-06
200 97.3 92.8 6.4e-07 6.6e-07
500 92.9 124.4 5.8e-07 6.9e-07
1000 108.4 107.5 5.3e-07 5.3e-07

Table 3: Expectation of complexities and risks of the model selected by the slope heuristics, with the
function f⋆(x) = 1

1+x , different values of n and γ = 0.001.

γ E(Cm̂⋆) E(Cm̂) E(R(f̂m⋆)) E(R(f̂m̂))

10−3 108.4 107.5 5.3e-07 5.3e-07
10−4 159.3 151.1 6.9e-09 6.9e-09
10−5 152.0 182.2 1.6e-09 1.9e-09
0 156.8 155.8 1.6e-09 1.6e-09

Table 4: Expectation of complexities and risks of the model selected by the slope heuristics, with the
function f⋆(x) = 1

1+x , different values of γ and n = 1000.
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6.1.3 Tensorized function f⋆(x) = g(g(x))2 with g(x) = 1− 2|x− 1
2 |.

We consider the function f⋆(x) = g(g(x))2 with g(x) = 1−2|x− 1
2 |, which is in the Sobolev space H2(0, 1).

Figures 7b and 8 illustrate again the good behaviour of the model selection approach for different sample
size and noise level. And Tables 3 and 4 again illustrate again the very good performance (in expectation)
for the selected estimator of the approach when compared to the oracle.
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Figure 7: Slope heuristics for the tensorized function f⋆(x) = (g(g(x)))2 with n = 200 and γ = 0.001.
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Figure 8: Slope heuristics for the tensorized function f⋆(x) = (g(g(x)))2 with n = 1000 and γ = 0.0001.

n E(Cm̂⋆) E(Cm̂) E(R(f̂m⋆)) E(R(f̂m̂))

200 176.4 181.6 6.3e-07 1.6e-06
500 188.2 198.8 3.9e-07 4.1e-07
1000 196.6 233.8 3.2e-07 3.5e-07

Table 5: Expectation of complexities and risks for the function f⋆(x) = (g(g(x)))2, different values of n
and γ = 0.001.
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γ E(Cm̂⋆) E(Cm̂) E(R(f̂m⋆)) E(R(f̂m̂))

10−3 196.6 233.8 3.2e-07 3.5e-07
10−4 195.8 205.8 1.7e-07 1.7e-07
10−5 191.0 226.6 1.7e-07 1.8e-07
0 194.0 232.6 1.7e-07 1.9e-07

Table 6: Expectation of complexities and risks of the model selected by the slope heuristics, with the
function f⋆(x) = (g(g(x)))2, different values of γ and n = 1000.

6.2 Multivariate functions

6.2.1 Corner peak function

We consider the function

f⋆(X) =
1

1 +
∑d

ν=1 ν
−2Xν

with d = 10, where the Xν ∼ U(0, 1) are i.i.d. uniform random variables. The function f⋆ is analytic
on [0, 1]d. We use the fixed balanced binary tree T of Figure 9. Figures 10 and 11 illustrate the very
good behaviour of the model selection approach for a sample size n = 1000 and noise level γ = 0.001,
where the best model appears to be always selected. In Tables 7 and 8, we observe that the expectation
of complexities and errors for the selected estimator (for different values of n and γ), which are of the are
of the same order as for the oracle.

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{1, 2, 7, 8, 9, 10}

{7, 8, 9, 10}

{7, 8}

{7}{8}

{9, 10}

{9}{10}

{1, 2}

{1} {2}

{3, 4, 5, 6}

{3, 4}

{3} {4}

{5, 6}

{5} {6}

Figure 9: Corner peak function. Dimension tree T .

n E(Cm̂⋆) E(Cm̂) E(R(f̂m⋆)) E(R(f̂m̂))

100 124.1 73.7 2.1e-06 1.1e-05
500 286.7 291.3 9.8e-11 1.0e-10
1000 286.2 293.8 6.6e-11 6.7e-11

Table 7: Expectation of complexities and risks selected by the slope heuristics, with the Corner peak
function, different values of n and γ = 10−5.
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Figure 10: Slope heuristics for the Corner peak function with n = 1000 and γ = 0.001.
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Figure 11: Slope heuristics for the Corner peak function with n = 1000 and γ = 0.001, superposition of 10
different samples.

γ E(Cm̂⋆) E(Cm̂) E(R(f̂m⋆)) E(R(f̂m̂))

10−2 95.5 79.8 5.4e-05 5.5e-05
10−3 143.1 143.1 5.4e-07 5.4e-07
10−4 223.2 193.7 5.9e-09 6.0e-09
10−5 286.2 293.8 6.6e-11 6.7e-11
0 598.7 538.4 2.5e-15 1.8e-14

Table 8: Expectation of complexities and risks selected by the slope heuristics, with the Corner peak
function, different values of γ and n = 1000.
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6.2.2 Borehole function

We consider the function

g(U1, . . . , U8) =
2πU3(U4 − U6)

(U2 − log(U1))(1 +
2U7U3

(U2−log(U1))U2
1U8

+ U3
U5

)

which models the water flow through a borehole as a function of 8 independent random variables U1 ∼
N (0.1, 0.0161812), U2 ∼ N (7.71, 1.0056), U3 ∼ U(63070, 115600), U4 ∼ U(990, 1110), U5 ∼ U(63.1, 116),
U6 ∼ U(700, 820), U7 ∼ U(1120, 1680), U8 ∼ U(9855, 12045). Then we consider the function

f⋆(X1, . . . ,Xd) = g(g1(X1), . . . , g8(X8)),

where gν are functions such that Uν = gν(Xν), with Xν ∼ N (0, 1) for ν ∈ {1, 2}, and Xν ∼ U(−1, 1) for
ν ∈ {3, . . . , 8}. Function f⋆ is thus defined on X = R

2 × [−1, 1]6. As univariate approximation tools, we
use polynomial spaces Hν,pν = Ppν (Xν), ν ∈ D.

We use the exploration strategy described in Section 5.6.1. More precisely, we first run a learning
algorithm with tree adaptation from an initial binary tree drawn randomly, with n = 100 samples. The
learning algorithm visited the 9 trees plotted in Figure 12. Then for each of these trees, we start a learning
algorithm with fixed tree and rank adaptation. Figures 13 to 15 illustrate the behaviour of the model
selection strategy for different sample size n. Table 9 shows the expectation of complexities and risks. The
model selection approach shows very good performances, except for very small training size n = 100, where
the approach selects a model rather far from the optimal one (in terms of expected risk and complexity).

n E(Cm̂⋆) E(Cm̂) E(R(f̂m⋆)) E(R(f̂m̂))

100 132.1 63.4 6.9e-06 9.3e-04
200 149.7 156.0 3.0e-08 1.1e-07
500 144.7 178.2 1.0e-08 1.8e-08
1000 154.1 194.2 8.3e-09 1.2e-08

Table 9: Borehole function. Expectation of complexities and risks. γ = 10−6, different n.
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Figure 12: Borehole function. The path of 9 trees generated by the tree adaptive learning algorithm.
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Figure 13: Slope heuristics for Borehole function with n = 100 and γ = 10−6.
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Figure 14: Slope heuristics for Borehole function with n = 200 and γ = 10−6.
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Figure 15: Slope heuristics for Borehole function with n = 1000 and γ = 10−6.
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[9] Gérard Biau and Aurélie Fischer. Parameter selection for principal curves. IEEE Transactions on
Information Theory, 58(3):1924–1939, 2012.
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A Proofs

A.1 Proofs of Section 3

Proof of Proposition 3.6. Let f = RH,T,r((f
α)α∈T ⋆) and let λ = (p, µ), 1 ≤ p ≤ ∞, or λ = ∞ (with p = ∞

when λ = ∞). For x ∈ X , we first note that

‖f(x)‖λ = ‖f∅(gD(x))‖λ ≤ ‖f∅‖F ∅‖gD(x)‖λ.

Then for any interior node α ∈ I(T ), we have

‖gα(xα)‖λ = ‖fα((gβ(xβ))β∈S(α))‖λ ≤ ‖fα‖Fα

∏

β∈S(α)

‖gβ(xβ)‖λ,

and for any leaf node α ∈ L(T ),

‖gα(xα)‖λ = ‖fα(φα(xα))‖λ ≤ ‖fα‖Fα‖φα(xα)‖λ.

We deduce that
‖f(x)‖λ ≤

∏

α∈T ⋆

‖fα‖Fα

∏

1≤ν≤d

‖φν(xν)‖λ,

and therefore, since µ is a product measure and from the particular normalization of functions φν , we
obtain

‖f‖λ ≤
∏

α∈T ⋆

‖fα‖Fα

∏

1≤ν≤d

‖φν‖λ =
∏

α∈T ⋆

‖fα‖Fα ,

which proves that Lλ ≤ 1. Finally for 1 ≤ q ≤ p, we note that

µ(X )1/p−1/q‖f‖q,µ ≤ ‖f‖p,µ ≤ ‖f‖∞,

which yields Lq,µ ≤ µ(X )1/q−1/pLλ.

A.2 Proofs of Section 4

Proof of Lemma 4.6. Let γ = ǫB
2L and let N be a γ-net of M for the ‖ · ‖∞,µ-norm, with cardinal N ǫB

2L
.

Using Lemma 4.4 and a union bound argument, we obtain

P(sup
g∈N

R̄n(g) > ǫB) ∨ P( inf
g∈N

R̄n(g) < −ǫB) ≤ N ǫB
2L
e−

nǫ2

2 .

For any f ∈ M , there exists a g ∈ N such that ‖f − g‖∞,µ ≤ γ. Noting that

R̄n(f) = R̄n(g) + R̂n(f)− R̂n(g) +R(g) −R(f),

we deduce from Assumption 4.5 that

R̄n(f) ≤ R̄n(g) + 2L‖f − g‖∞,µ ≤ sup
g∈N

R̄n(g) + ǫB,

and
R̄n(f) ≥ R̄n(g) − 2L‖f − g‖∞,µ ≥ inf

g∈N
R̄n(g)− ǫB.

This implies that
P( sup

f∈M
R̄n(f) > 2ǫB) ≤ P(sup

g∈N
R̄n(f) > ǫB),

and
P( inf

f∈M
R̄n(f) < −2ǫB) ≤ P( inf

g∈N
R̄n(f) < −ǫB),

which yields (21). The bound on N ǫB
2L

directly follows from Proposition 3.3 and Proposition 3.6.
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Proof of Lemma 4.7. We have

E( sup
f∈M

|R̄n(f)|) =
∫ ∞

0
P( sup

f∈M
|R̄n(f)| > t)dt

= 2B

∫ ∞

0
P( sup

f∈M
|R̄n(f)| > 2ǫB)dǫ.

Let β = 6LB−1R|T ⋆|. Then, according to Lemma 4.6, for any δ > 0,

E( sup
f∈M

|R̄n(f)|) ≤ 2B

[
δ +

∫ ∞

δ
2(βǫ−1)CM e−n ǫ2

2 dǫ

]
,

= 2B

[
δ + 2βCM

∫ ∞

nδ2/2

(
2u

n

)−CM/2

e−u 1√
2nu

du

]

≤ 2B
[
δ + 2n−1βCM δ−CM−1e−nδ2/2

]
,

By taking

δ =

√
2CM

n
log((β ∨ e)

√
n),

we have

n−1βCM δ−CM−1e−nδ2/2 = n−1βCM δ−CM−1(β ∨ e)−CMn−
CM
2

≤ δ−CM−1n−
CM
2

−1

= δ(δ2n)−
CM
2

−1

= δ(2CM log((β ∨ e)
√
n))−

CM
2

−1

≤ δ

where we have used the fact that 2CM log((β ∨ e)
√
n) ≥ 1. Then

E( sup
f∈M

|R̄n(f)|) ≤ 4Bδ,

which concludes the proof.

Proof of Proposition 4.8. Starting from (16), we obtain

R(f̂M
n )−R(fM ) ≤ R̄n(f

M)− R̄n(f̂
M
n ) ≤ sup

f∈M
R̄n(f)− inf

f∈M
R̄n(f).

Then using Lemma 4.6, we deduce

P(R(f̂M
n )−R(fM ) > 2ǫB) ≤ P( sup

f∈M
R̄n(f) > ǫB) + P( inf

f∈M
R̄n(f) < −ǫB) ≤ 2N ǫB

2L
e−

nǫ2

2 ,

with logN ǫB
2L

≤ CM log(βǫ−1). In the same way for the expectation bound, we have

E(R(f̂M
n )−R(fM )) ≤ E(R̄n(f

M )− R̄n(f̂
M
n )) ≤ E( sup

f∈M
|R̄n(f)|)

and the result directly follows from Lemma 4.7.
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Proof of Proposition 4.9. The two inequalities come from standard application of the bounded differ-
ence Inequality, see for instance Theorem 5.1 in [28]. The bounded difference inequality applied to
supf∈M −R̄n(f) = supf∈M R(f)− R̂n(f) gives that with probability larger than 1− exp(−t),

sup
f∈M

−R̄n(f) ≤ E( sup
f∈M

−R̄n(f)) + 2B

√
t

2n
.

Inequality 22 directly derives from this inequality and Lemma 4.7. Next, Inequality (16) gives that

E(f̂M
n ) ≤ E(fM ) + 2 sup

f∈M
|R̄n(f)|.

We finally prove the risk bound (23) by applying the bounded difference Inequality to supf∈M |R̄n(f)| and
Lemma 4.7 again.

A.2.1 Proof of Proposition 4.12

The proof follows the presentation of [27]. The least-squares contrast γ corresponds either to the regression
contrast or the density estimation contrast. Under the assumptions of the proposition, in both frameworks
the oracle function satisfies ‖f⋆‖∞ ≤ R.

• We first prove the proposition in the case where R = 1, by assuming for the moment that M = M1 =
MT

r (Hs)1. For the regression framework, it is also assumed for the moment that ‖Y ‖ℓ∞ ≤ 1 almost surely.
Note that we also have ‖f⋆‖∞ ≤ 1.

• For the least-squares regression contrast (see Example 4.10), we have γ(f, Z) = ‖Y − f(X)‖2ℓ2 . For
all f ∈ M1, it gives γ(f, Z) ≤ ‖Y − f(X)‖2ℓ∞ ≤ 2(‖Y ‖2ℓ∞ + ‖f‖2∞), so that 0 ≤ γ(f, Z) ≤ B almost surely,
with B = 4. The distribution of the random variable X is denoted µ. Then

E((γ(f, Z)− γ(f⋆, Z))2) = E [(f⋆(X)− f(X)) (2Y − f(X)− f⋆(X))]2

= E [(f⋆(X)− f(X)) (2(Y − f⋆(X)) + f⋆(X) − f(X))]2

= E [(f⋆(X)− f(X)) (2(Y − f⋆(X))]2 + E [f⋆(X)− f(X)]4

≤ (4‖Y − f⋆(X)‖2ℓ∞ + ‖f⋆ − f‖2∞)‖f − f⋆‖22,µ
≤ 8‖f − f⋆‖22,µ = 2B‖f − f⋆‖22,µ,

where the last inequality has been obtained using ‖Y − f⋆(X)‖ℓ∞ = ‖Y − E(Y |X)‖ℓ∞ ≤ 1. Let γ1 = γ/B.
We have 0 ≤ γ1 ≤ 1 and the normalized excess risk satisfies

E1(f) := E [γ1(f, Z)− γ1(f
⋆, Z)] =

1

B
‖f − f⋆‖22,µ =

1

B
E(f)

and

E([γ1(f, Z)− γ1(f
⋆, Z)]2) ≤ D‖f − f⋆‖22,µ

with D = 2
B = 1

2 .

• We now consider the density estimation framework with γ(f, x) = ‖f‖22,µ−2f(x). According to Example

4.11, |γ(f,X)| ≤ B = µ(X ) + 2. The excess risk satisfies E(f) = ‖f⋆ − f‖22,µ and

E([γ(f, Z)− γ(f⋆, Z)])2 = E(
[
‖f‖22,µ − ‖f⋆‖22,µ + 2(f⋆(X) − f(X))

]2
)

≤ (‖f‖22,µ − ‖f⋆‖22,µ)2 + 4(‖f‖22,µ − ‖f⋆‖22,µ)〈f⋆ − f, f⋆〉2,µ + 4‖f − f⋆‖22,µ
= (‖f‖22,µ − ‖f⋆‖22,µ)(‖f‖22,µ − ‖f⋆‖22,µ + 4〈f⋆ − f, f⋆〉2,µ) + 4‖f − f⋆‖22,µ
= 〈f − f⋆, f + f⋆〉2,µ〈f − f⋆, f − 3f⋆〉2,µ + 4‖f − f⋆‖22
= 〈f − f⋆, f + f⋆〉2,µ‖f − f⋆‖22 − 〈f − f⋆, f + f⋆〉2,µ〈f − f⋆, 2f⋆〉2,µ + 4‖f − f⋆‖22,µ.
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We have 〈f − f⋆, f + f⋆〉2,µ ≤ ‖f‖22,µ ≤ µ(X ), ‖f⋆‖1,µ = 1 ≤ µ(X )1/2 and ‖f⋆‖22,µ ≤ ‖f⋆‖∞,µ‖f⋆‖1,µ ≤ 1.
Then

E((γ(f, Z)− γ(f⋆, Z))2) ≤ (µ(X ) + 2‖f + f⋆‖2,µ‖f⋆‖2,µ + 4)‖f − f⋆‖22,µ
≤ (µ(X ) + 2µ(X ) + 2 + 4)‖f − f⋆‖22,µ
= 3(µ(X ) + 2)‖f − f⋆‖22,µ
= 3B‖f − f⋆‖22,µ.

Let γ1 =
1
2B (γ +B). Then 0,≤ γ1(f,X) ≤ 1 almost surely for any f ∈ M1. Moreover,

E1(f) := E [γ1(f, Z)− γ1(f
⋆, Z)] =

1

2B
E(f)

and

E((γ1(f, Z)− γ1(f
⋆, Z))2) ≤ D‖f − f⋆‖22,µ

with D = 3
4B ≤ 3

12 , where we have used µ(X ) ≥ 1.

• For δ > 0, we introduce

ωn(δ) = ωn(M1, f
⋆, δ) = E sup

f∈M1 | ‖f−fM1‖22,µ≤δ/D

∣∣∣∣∣
1

n

n∑

i=1

γ1(f, Zi)− E(γ1(f, Z))

∣∣∣∣∣

Following [27] (Section 4.1 p.57), we introduce the sharp transformation ♯ of the function ω:

ω♯
n(ε) = inf

{
δ > 0 , sup

σ≥δ

ωn(σ)

σ
≤ ε

}
.

According to Proposition 4.1 in [27], there exists absolute constants κ1 and A such that for any ε ∈ (0, 1]
and any t > 0, with probability at least 1−A exp(−t),

E1(f̂M1
n ) ≤ (1 + ε)E1(fM1) +

1

D
ω♯
n

(
ε

κ1D

)
+

κ1D

ε

t

n
. (33)

The sharp transformation is monotonic: if Ψ1 ≤ Ψ2 then Ψ♯
1 ≤ Ψ♯

2 (see Appendix A.3 in [27]). Thus it
remains to find an upper bound on the sharp transformation of an upper bound on ωn.

• We use standard symmetrization and contraction arguments for Rademacher variables. The Rademacher
process indexed by the class M1 is defined by

Radn(f) =
1

n

∑

i=1

nεif(Xi)

where the εi’s are i.i.d. Rademacher random variables (that is, εi takes the values +1 and −1 with
probability 1/2 each) independent of the Xi’s. By the symmetrization Inequality (see for instance Theorem
2.1 in [27]),

ωn(δ) ≤ 2E sup
f∈M1 | ‖f−fM1‖22,µ≤δ/D

∣∣Radn
(
γ(f, ·)− γ(fM1 , ·)

)∣∣ .

We introduce the function

Ψn(δ) = E sup
f∈M1 | ‖f−fM1‖22,µ≤δ

∣∣Radn(f − fM1)
∣∣ .
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For bounded regression, using the contraction Lemma with Lipschitz constant equal to 2, (see for instance
Theorem 2.3 in [27]),

ωn(δ) ≤ 8Ψn(δ/D).

In the density estimation setting, we have γ(f, Z) = ‖f‖22,µ−2f(Z) and since the fluctuations of a constant
function are obviously zero, we obtain

ωn(δ) ≤ 4E sup
f∈M1 | ‖f−fM1‖22,µ≤δ/D

∣∣Radn(f − fM1)
∣∣

≤ 4Ψn(δ/D). (34)

• We now introduce the subset of the L2 ball centered at fM1

M1(δ, f
⋆) = {f − fM1 | f ∈ M1 , ‖f − fM1‖22,µ ≤ δ}.

In the density estimation setting, the empirical measure is νn. We also denote by νn the empirical measure
in the regression setting (take ν = µ). The constant function F = 2 is an envelop for M1(δ, f

⋆) and
‖F‖2,νn = 2. According to Proposition 3.3,

H (ε,M1(δ, f
⋆), ‖ · ‖2,νn) ≤ CM log

(
3|T ⋆|L2,νn

ε

)
1ε≤2 ν⊗n-almost surely,

where L2,νn is defined by (10) for the measure νn and for p = 2. According to Proposition 3.6, L2,νn

satisfies
L2,νn ≤

√
νn(X )L∞,νn = L∞,νn .

Here it is assumed that H ⊂ L∞(X ) equipped with the norm ‖ · ‖∞. According to Proposition 3.6 we have
L∞,νn ≤ L∞ ≤ 1, thus L2,νn ≤ 1 and

H (ε,M1(δ, f
⋆), ‖ · ‖2,νn) ≤ CM

[
log

(
4e

ε

)
+ log+

(
3|T ⋆|
4e

)]
1ε≤4

≤ CM

[
1 + log+

(
3|T ⋆|
4e

)]
log

(
4e

ε

)
1ε≤4

≤ CM aT h

(
2

ε

)

with aT = 1 + log+
(
3|T ⋆|
4e

)
and h(u) := log (2eu) 1u≥ 1

2
. We are now in position to apply Theorem A.1,

which is given at the end of this section. We can take σ2 = δ in Theorem A.1 because Eν(g
2(X)) ≤ δ for

g ∈ M1(δ, f
⋆). Thus, there exists an absolute constant κ2 > 0 such that

Ψn(δ) ≤ κ2

[√
δ

n
CMaTh

(
2√
δ

)
∨
(
2

n
CMaTh

(
2√
δ

))]
.

For regression, it can be easily checked that (see also Example 3 p.80 in [27])

Ψ♯
n(ε) ≤ κ2

CMaT
ε2n

log

(
16e2ε2

κ2CMaT

)
.

Similar calculations hold for density estimation. Together with Inequalities (33) and (34), and according
to the properties of the sharp transformation (see Appendix A.3 in [27]), it gives that with probability at
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least 1−A exp(−t),

E1(f̂M1
n ) ≤ (1 + ε)E1(fM1) +

1

D

(
8Ψn

( ·
D

))♯( ε

κ1D

)
+

κ1D

ε

t

n

≤ (1 + ε)E1(fM1) + (8Ψn)
♯

(
ε

κ1

)
+

κ1D

ε

t

n

≤ (1 + ε)E1(fM1) + κ3
aTCM

ε2n
log

(
κ4ε

2

aTCM

)
+

κ1D

ε

t

n
,

where κ3 and κ4 are absolute constants. This completes the proof for R = 1, by rewriting the risk bound
for the excess risk E = BE1.
• We now consider the more general situation where M = MT

r (Hs)R with R ≥ 1. We first consider
regression. We now assume that ‖Y ‖ℓ∞ ≤ R almost surely. Let f⋆, fM and f̂M defined as in Section 4
for the observations Z1, . . . , Zn. We consider the least squares regression problem for the normalized data
(X1, Y1/R), . . . , (Xn, Yn/R) with the functional set M1. For this problem the oracle f⋆

1 satisfies f⋆
1 = f⋆/R,

the best approximation fM1
on M1 satisfies f

M1
= fM/R and the least squares estimator f̂M1

also satisfies
f̂M1

= f̂M/R. The risk bound (24) is valid for the normalized data (with R = 1) and it directly gives (24)
for R ≥ 1. The same method applies for proving the risk bound in the density estimation case.

A.2.2 An adaptation of Theorem 3.12 in [27]

We consider the same framework as in [27]. We observe X1, . . . ,Xn according to the distribution ν and let
νn be the empirical measure. Let F be a function space. Assume that the functions in F are uniformly
bounded by a constant U and let F ≤ U denote a measurable envelop of F . We assume that σ2 is a
number such that

sup
f∈F

Eνf
2 ≤ σ2 ≤ ‖F‖2,ν .

Let h : [0,∞) 7→ [0,∞) be a regularly varying function of exponent 0 ≤ α < 2, strictly increasing for
u ≥ 1/2 and such that h(u) = 0 for 0 ≤ u < 1/2.

Next result is an adaptation of Theorem 3.12 in [27] which provides a better control on the constant
κh > 0 when multiplying the metric entropy function by a constant. In particular in this version the
constant κh > 0 depends only on h and not on c.

Theorem A.1 (Theorem 3.12 in [27]). Let c > 0. If, for all ε > 0 and n ≥ 1,

logN (ε,F , ‖ · ‖2,νn) ≤ ch

(‖F‖2,νn
ε

)
ν⊗n-almost surely,

then there exists a constant κh > 0 that depends only on h such that

E sup
f∈F

|Rn(f)| ≤ κh

[
σ√
n

√
ch

(‖F‖2,ν
σ

)
∨ U

n
ch

(‖F‖2,ν
ε

)]
.

Proof. The proof of Theorem 3.12 of [27] starts by applying Theorem 3.11 of [27]. As in [27] we assume
without loss of generality that U = 1. In our context it gives

E := E sup
f∈F

|Rn(f)| ≤ C
√
cn−1/2

E

∫ 2σn

0

√
h

(‖F‖2,νn
ε

)
dε

where σn = supf∈F
∑n

i=1 f(Xi)
2 and where C is an universal numerical constant. By following the lines

of the proof of [27], we find that E satisfies the following inequation

E ≤ √
cκh,1n

−1 +
√
cκh,2n

−1/2σ

√
h

(‖F‖2,ν
σ

)
+
√
cκh,3n

−1/2
√
E

√
h

(‖F‖2,ν
σ

)
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where κh,1, κh,2 and κh,3 are positive numerical constants which only depends on the function h (see the
proof of Koltchinskii for the expression of these three constants). Solving this inequation completes the
proof.

A.3 Proofs of Section 5

Proof of Theorem 5.2. According to Inequality (22) of Proposition 4.9, for any t > 0 and any m ∈ M, one
has with probability larger than 1− exp(−t),

sup
f∈Mm

−R̄n(f) ≤ λm

√
Cm

n
+ 2B

√
t

2n
.

Then with probability larger than 1−∑m∈M exp(−xm − t) = 1− Σexp(−t), it holds

−R̄n(f̂m̂) ≤ sup
f∈Mm̂

−R̄n(f) ≤ λm̂

√
Cm̂

n
+ 2B

√
t+ xm̂
2n

,

which together with (26) implies that

E(f̂m̂) ≤ E(fm) + R̄n(fm) + λm̂

√
Cm̂

n
+ 2B

√
xm̂
2n

− pen(m̂) + pen(m) + 2B

√
t

2n

holds for all m ∈ M. Then, with the condition (27) on the penalty function, the upper bound

E(f̂m̂) ≤ E(fm) + R̄n(fm) + pen(m) + 2B

√
t

2n

holds for all m ∈ M simultaneously, with probability larger than 1 − Σexp(−t). Next, integrating with
respect to t gives

E

[
0 ∨

(
E(f̂m̂)− E(fm)− R̄n(fm)− pen(m)

)]
≤ 2BΣ

√
2π

n

1

4
.

Finally, since R̄n(fm) has zero mean, for any m ∈ M,

E(E(f̂m̂)) ≤ E(fm) + pen(m) +BΣ

√
π

2n
,

and we conclude by taking the infimum over m ∈ M.

Proof of Theorem 5.3. The proof is adapted from Theorem 6.5 in [27], which corresponds to a alternative
statement of Theorem 8.5 in [28]. We follow the lines of Section 6.3 in [27] (p.107-108).

We first consider the case R = 1 and we consider the normalized contrast γ1 and the normalized risk
E1 as for the proof of Proposition 4.12. We have shown that

E [γ1(f, Z)− γ1(f
⋆, Z)]2 ≤ D‖f − f⋆‖22

where D does not depend on the model Mm. Next, it has also been shown in the proof of Proposition 4.12,
that for ε ∈ (0, 1],

ω♯
n(ε) ≤ κ

amCM

nε2
log+

(
nε2

amCM

)

with am = 1+ log+
(
3|T ⋆

m|
4e

)
and where κ is an absolute constant. We consider the penalized criterion (25)

with a penalty of the form

pen(m) = κ1
amCm

nε2
log+

nε2

amCm
+ κ2

xm
nε

.
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Theorem 6.5 of [27] can be applied here with δ̄εn(m) = δ̃εn(m) = δ̂εn(m) = κamCm
nε2

log nε2

amCm
+K xm+t

nε (and
thus pm = 0 in the theorem) and we also note that for any t > 0 the penalty can be rewritten

pen(m) = K1

[
amCm

nε2
log

nε2

amCm
+

xm + t

nε

]
.

Finally, according to Theorem 6.5 in [27], there exist numerical constants K1, K2 and K3 such that for
any t > 0,

P

(
E1(f̂m̂) ≤ 1 + ε

1− ε
inf

m∈M

{
E1(f̂m̂) +K2

[
amCm

nε2
log

nε2

amCm
+

xm + t

nε

]})
≤ K3

∑

m∈M

exp(−t− xm)

Under Assumption 5.1, we easily derive the oracle bound (28) by rewriting it for the constrast γ and then
by integrating this probability bound with respect to t. This bound generalizes to the case R ≥ 1 as in the
proof of Proposition 4.12
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