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Abstract. We consider approximation rates of sparsely connected deep rectified linear unit
(ReLU) and rectified power unit (RePU) neural networks for functions in Besov spaces Bαq (Lp)
in arbitrary dimension d, on general domains. We show that deep rectifier networks with a fixed
activation function attain optimal or near to optimal approximation rates for functions in the Besov
space Bατ (Lτ ) on the critical embedding line 1/τ = α/d+ 1/p for arbitrary smoothness order α > 0.
Using interpolation theory, this implies that the entire range of smoothness classes at or above the
critical line is (near to) optimally approximated by deep ReLU/RePU networks.
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1. Introduction. Artificial neural networks (NNs) have become a popular tool
in various fields of computational and data science. Due to their popularity and good
performance, NNs motivated a lot of research in mathematics – especially in recent
years – in an attempt to explain the properties of NNs responsible for their success.

Although many aspects of NNs still lack a satisfactory mathematical explanation,
the expressivity or approximation theoretic properties of NNs are by now quite well
understood. By expressivity we mean the theoretical capacity of NNs to approximate
functions from different classes. We do not intend to give a literature overview on
this topic and instead refer to the recent survey in [15].

Contribution. In this work, we contribute to the existing body of knowledge on
the expressivity of NNs by showing that the very popular rectifier NNs can approx-
imate a wide range of smoothness classes in the Besov scale with (near to) optimal
complexity. In the context of this work, “optimality” refers to the notion of continuous
nonlinear widths1 introduced in [7]. For the approximation of functions in the Besov
space Bαq (Lp(Rd)), an approximation tool with a continuous parameter selection for
the approximand can achieve worst case approximation rates of at most α/d. To make
the distinction to existing results clear, we briefly review what is known by now about
the approximation of some more standard smoothness classes closely related to our
work. In all instances “complexity” is measured by the number of connections, i.e.,
non-zero weights.

In [19], it was shown that analytic functions on a compact product domain in
any dimension can be approximated in the Sobolev norm W k,∞ by ReLU and RePU
networks with close to exponential convergence. In [20], it was shown that ReLU
networks can approximate any Hölder continuous function with optimal complexity.
In [14], it was shown that functions in the Besov space Bαp (Lp(Ω)) on bounded Lip-

schitz domains Ω ⊂ Rd in any dimension can be approximated in the Lp-norm by
RePU networks with activation function of degree r & α with optimal complexity.
The spaces Bαp (Lp(Ω)) correspond to the vertical line in Figure 1, i.e., for p ≥ 1 these
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are either the same or slightly larger than the Sobolev spaces W k,p(Ω).

Fig. 1. DeVore diagram of smoothness spaces [6]. The Sobolev embedding line is the diagonal
with the points (1/τ, α) and (1/µ, r), i.e., for a fixed p and variable 1/τ , the diagonal is the line
α = d(1/τ−1/p) with slope d and offset −d/p. All points above the diagonal line correspond to Besov
spaces compactly embedded in Lp, points on the line may or may not be continuously embedded in
Lp, and points below the line are never embedded in Lp.

In [18], it was shown that functions in the Besov space Bατ (Lτ (I)), for α >
1/τ−1/p on bounded intervals I ⊂ R, can be approximated in the (fractional) Sobolev
W s,p(I)-norm with deep ReLU networks with near to optimal complexity. In [22],
the author shows that functions in Bατ (Lτ ([0, 1]d)) for α/d > 1/τ − 1/p and in Besov
spaces of dominating mixed smoothness can be approximated in Lp with deep ReLU
networks with near to optimal complexity. The space Bατ (Lτ (Ω)) for α/d > 1/τ −1/p
and Lipschitz domains Ω is above the critical embedding line of functions that barely
have enough regularity to be members of Lp, see the diagonal in Figure 1. Spaces
above this critical line are embedded in Lp, spaces on this line may or may not be
embedded in Lp, and spaces below this line are never embedded in Lp.

It was also shown in [18] that piecewise Gevrey functions can be approximated
with close to exponential convergence. Similar results for classical smoothness spaces
of univariate functions are contained in [5].

In this work, we show that functions in isotropic Besov spaces Bαq (Lτ (Ω)), for

α/d ≥ 1/τ − 1/p, q ≤ τ and Ω ⊂ Rd an (ε, δ)- or a Lipschitz domain (see Defini-
tions 1.2 and 1.3) in any dimension d ∈ N, can be approximated by RePU networks
with activation function of degree r ≥ 2 with optimal complexity for any α > 0. We
show the same for ReLU networks with near to2 optimal complexity. This completes
the picture for rectifier networks expressivity rates for classical isotropic smoothness
spaces in the sense that, with regard to Lp approximation, functions from any Besov
space on or above the embedding line (see Figure 1), with q ≤ τ , can be approxi-
mated by ReLU/RePU networks with (near to) optimal complexity, universal in the
smoothness order α.

Outline. We begin in Subsection 1.1 and Subsection 1.2 by reviewing the theo-
retical framework of our work. We then state the main result in Subsection 1.3 that
includes a summary of the results on isotropic Besov spaces. To keep the presentation
self-contained, we review previous results – that we require for our work – on ReLU
approximation in Section 2 and Besov smoothness classes in Section 3. Finally, in Sec-

2For any approximation rate arbitrarily close to optimal.
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tion 4 we derive the main result of this work, stated again in Theorem 4.3. The reader
familiar with results on ReLU/RePU approximation and wavelet characterizations of
Besov spaces can skip directly to Section 4.

Notation and Terminology. For quantities A,B ∈ R, we will use the notation
A . B if there exists a constant C that does not depend on A or B such that A ≤ CB.
Similarly for & and ∼ if both inequalities hold. We use N for natural numbers and
N0 := N ∪ {0}. We use supp(f) to denote the support of a function f ∈ Rd → R

supp(f) := {x ∈ Rd : f(x) 6= 0},

and | supp(f)| to denote the Lebesgue measure of this set. We use # to denote the
standard counting measure.

We denote by Lp(Ω) the Lebesgue space of real-valued p-integrable functions for
0 < p ≤ ∞ on open subsets Ω ⊂ Rd and by Hp(Ω) the real Hardy space (see [13]).
Recall that the real Hardy spaces are isomorphic to Lp for p > 1. In this work, we
will be referring to one of the following three types of domains Ω (see [1,10,16,21]).

Definition 1.1 (Special Lipschitz). We call an open set Ω ⊂ Rd a special
Lipschitz domain if there exists a Lipschitz function φ : Rd−1 → R with |φ(x1) −
φ(x2)| ≤M‖x1 − x2‖2 for some constant M > 0 such that

Ω =
{

(x, y) : x : Rd−1, y ∈ R and y > φ(x)
}
.

Definition 1.2 (Strong Local Lipschitz Condition). An open set Ω ⊂ Rd is said
to satisfy the strong local Lipschitz condition – also known as a minimally smooth
domain or simply Lipschitz – if there exists ε > 0, M > 0, a locally finite open cover
{Ui : i ∈ N} of ∂Ω, and, for each i a real-valued function fi of d− 1 variables, such
that

(i) for some finite R, every collection of R+ 1 of the sets Ui has empty intersec-
tion;

(ii) for every pair of points x, y ∈ Ω such that dist(x, ∂Ω),dist(y, ∂Ω) > ε and
‖x− y‖2 < ε, there exists i such that

x, y ∈ Vi := {z ∈ Ui : dist(z, ∂Ui) > ε} ;

(iii) each function fi satisfies a Lipschitz condition with constant M ;
(iv) for some Cartesian coordinate system (ξi,1, . . . , ξi,d) in Ui, Ω ∩ Ui is repre-

sented by the inequality

ξi,d < fi(ξi,1, . . . , ξi,d−1).

Definition 1.3 ((ε, δ)-Domain). An open set Ω is called an (ε, δ)-domain if for
any x, y ∈ Ω, satisfying ‖x − y‖2 ≤ δ, there exists a rectifiable path Γ ⊂ Ω of length
≤ C0‖x−y‖2 for some constant C0 > 0, connecting x and y, such that for each z ∈ Γ,

dist(z, ∂Ω) ≥ εmin {‖z − x‖2, ‖z − y‖2} .

The inclusions between the different domain types are as follows

special Lipschitz⇒ strong locally Lipschitz⇒ (ε, δ)-domain.

These domain types are not necessarily bounded and the special case Ω = Rd trivially
satisfies the strong local Lipschitz condition.
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Fig. 2. Example of a feed-forward neural network. On the left we have the input nodes marked
in red that represent input data to the network. The yellow nodes are the neurons that perform some
simple operations on the input. The edges between the nodes represent connections that transfer
(after possibly applying an affine transformation) the output of one node into the input of another.
The final green nodes are the output nodes. In this particular example the number of layers L is
three, with two hidden layers.

1.1. Neural Networks. We briefly introduce the mathematical description and
notation we use for NNs throughout this work. Specifically, we will only consider feed-
forward NNs. In Figure 2, we sketch a pictorial representation of a feed-forward NN.

Input values are passed on to the first layer of neurons after possibly undergoing
an affine transformation. In the neurons, an activation function is applied to the
transformed input values. The result again undergoes an affine transformation and is
passed to the next layer and so on, until the output layer is reached.

The number of inputs and outputs is typically determined by the intended appli-
cation. Specifying the architecture of such an NN amounts to choosing the number
of layers, the number of neurons in each hidden layer, the activation functions and
the connections or, equivalently, the position of the non-zero weights in the affine
transformations. The process of training then consists of determining said weights.

We formalize our description of the considered mathematical objects. Let L ∈ N
be the number of layers, N0 the number of inputs, NL the number of outputs and
N1, . . . , NL−1 the number of neurons in each hidden layer. A neural network Φ can
be described by the tuple

Φ := ((T1,σ1), . . . , , (TL−1,σL−1), (TL)),

where for each 1 ≤ l ≤ L, Tl is an affine transformation

Tl : RNl−1 → RNl , x 7→ Alx+ bl, Al ∈ RNl×Nl−1 , bl ∈ RNl ,(1.1)

and σl : RNl → RNl is a (nonlinear) function, usually applied component-wise as

x 7→ (σ
(1)
l (x1), . . . , σ

(Nl)
l (xNl)).

In this work we will use RePU activation functions, i.e.,

σ
(i)
l ∈ {IR, ρr}, ρr(t) := max{0, t}r, 1 ≤ l ≤ L− 1, r ∈ N.(1.2)

where IR : R → R is the identity map and for r = 1, ρ1 is referred to as the rectified
linear unit (ReLU). We allow for the possibility of a non-strict network, i.e., an acti-
vation function is either IR or ρr. Another possibility is a strict network where each
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activation function is necessarily ρr (with the exclusion of the output nodes). But, as
was shown in [14], the approximation theoretic properties of both are the same and
thus, for our work, it is irrelevant.

Let Aff(Nl−1, Nl) denote the set of affine maps as in (1.1) and NL(Nl, r) denote
the set of activation functions as in (1.2). For fixed N0, NL, define

RePUr,N0,NL :=⋃
L∈N

⋃
(N1,...,NL−1)∈NL−1

Aff(N0, N1)× NL(N1, r)× · · · × NL(NL−1, r)× Aff(NL−1, NL),

ReLUN0,NL := RePU1,N0,NL ,

and the realization map R : RePUr,N0,NL → (RNL)R
N0

by

R(Φ) := TL ◦ σL−1 ◦ · · ·σ1 ◦ T1.

1.2. Approximation Classes. In this work, we will derive results in the ap-
proximation theoretic framework introduced in [14]. Before we do so, let us first recall
the definition of approximation classes.

Let X be a quasi-normed linear space, Σn ⊂ X subsets of X for n ∈ N0 and
Σ := (Σn)n∈N0

an approximation tool. Define the best approximation error

E(f,Σn)X := inf
ϕ∈Σn

‖f − ϕ‖X .

With this we define approximation classes as

Definition 1.4 (Approximation Classes). For any f ∈ X and α > 0, define the
quantity

‖f‖Aαq :=

{(∑∞
n=1[nαE(f,Σn)X ]q 1

n

)1/q
, 0 < q <∞,

supn≥1[nαE(f,Σn)X ], q =∞.

The approximation classes Aαq of Σ = (Σn)n∈N0
are defined by

Aαq (X,Σ) :=
{
f ∈ X : ‖f‖Aαq <∞

}
.

The utility of using these classes comes to light only if the sets Σn satisfy certain
properties. This was discussed in detail in [14] and the relevant properties were
shown to hold for RePU networks.

We perform approximation in X = Lp(Ω) for 1 < p ≤ ∞, we comment on the
case 0 < p ≤ 1 in Remark 4.4. For the domain Ω, we require only the existence of
an extension operator bounded in the Besov norm. From [9, 10], we know this can
be ensured for (ε, δ)-domains and for Lipschitz domains, see also Theorem 3.1. We
abbreviate

E(f,Σn)X := E(f,Σn)X .

As a measure of complexity we will use the number of non-zero weights. For a given
Φ ∈ RePUr,d1,d2 for some d1, d2 ∈ N, the number of non-zero weights is

W (Φ) :=

L∑
l=1

‖Tl‖`0 , ‖Tl‖`0 := ‖Al‖`0 ,
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‖Al‖`0 being the number of non-zero weights of the matrix Al. With this we define
for any n ∈ N

RePUr,d1,d2n :=
{

Φ ∈ RePUr,d1,d2 : R(Φ) ∈ X, W (Φ) ≤ n
}
,

ReLUd1,d2n := RePU1,d1,d2
n .

The main result of this work then concerns the approximation classes

Aαq

(
X,RePUr,d,1

)
.(1.3)

1.3. Main Result. We summarize results on approximation of isotropic Besov
spaces – including this work – in Table 1.

X Domain Ω Smoothness Class Approximation Rate Reference

RePUr,d,1 ReLUd,1

Lp(Ω)
1 < p ≤ ∞

(ε, δ) or
Lipschitz

Bατ (Lτ (Ω))
α ≥ 1/τ − 1/p

α/d ∼ α/d this work

Lp(Ω)
0 < p ≤ ∞

[0, 1]d Bατ (Lτ (Ω))
α > 1/τ − 1/p

– ∼ α/d [22]

Lp(Ω)
0 < p ≤ ∞

bounded
Lipschitz

Bαp (Lp(Ω))
α < r+min(1, 1/p)

α/d α/d [14]

Table 1
Summary of approximation rates for isotropic Besov spaces with deep rectifier networks. Lip-

schitz refers to the strong locally Lipschitz condition from Definition 1.2. We use ∼ α/d to indicate
algebraic rates with an additional log term or, in other words, any rate strictly less than α/d can be
achieved.

The precise statements for the direct estimates can be found in Lemma 4.2. These
estimates imply a range of interpolated smoothness spaces that are continuously em-
bedded in the approximation classes from (1.3)

(Lp(Ω), Bαq (Lτ (Ω)))θ/α,q̄ ↪→ A
θ/d
q̄ (Lp(Ω),RePUr,d,1),

see the Theorem 4.3 and definitions in Subsection 3.1.
The required depth to achieve the optimal rates from Table 1 for RePU networks

with r ≥ 2 scales at most logarithmically in the smoothness order α and, in particular,
is independent of the approximation error. For ReLU networks, the required depth
scales at most logarithmically with the approximation error and at most log-linearly
with smoothness order α.

2. Preliminaries on Rectifier Network Approximation. In this section,
we review recent results on deep RePU approximation relevant for this work. We use
the notation defined in Subsection 1.1. The next theorem states that RePU networks
can efficiently reproduce or approximate multiplication.

Theorem 2.1 (Multiplication [14, 19, 23]). Let Md : Rd → R be the multiplica-

tion function x 7→
∏d
i=1 xi. Then, there exists a constant C such that
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(i) for r ≥ 2, and n := Cd, there exists a RePU network ΦM ∈ RePUr,d,1n such
that

Md = R(ΦM ),

where the depth of ΦM depends at most logarithmically on d.
(ii) For r = 1, any K > 0 and any 0 < ε < 1, and n := Cd log(dKd/ε), there

exists a ReLU network ΦεM ∈ ReLUd,1n with

‖Md −R(ΦεM )‖L∞([−K,K]d) ≤ ε,

where the depth is at most a constant multiple of (1 + log(d) log(dKd/ε)).

This in turn implies RePU networks can efficiently reproduce or approximate
piecewise polynomials.

Theorem 2.2 (Piecewise Polynomials [14,18,23]). Let v : R→ R be a piecewise
polynomial with Nv pieces, of maximum degree t ∈ N≥0 and with compact support of
measure S := | supp(v)| <∞. Then, there exists a constant C > 0 depending on Nv,
t and r such that

(i) for r ≥ 2 and any ε > 0, there exists a RePU network Φ ∈ RePUr,1,1C with

‖v −R(Φ)‖L∞(R) ≤ ε,

where the complexity of the network Φ is independent of ε, the depth is of the
order O(log(t)) and C = O(Nv log(t)).

(ii) For r = 1, the constant C additionally depends on S and ‖v‖L∞(R), and

for any 0 < ε < 1 there exists a ReLU network Φ ∈ ReLU1,1
n with n :=

C(1 + log(ε−1)) and the same support as v, such that

‖v −R(Φ)‖L∞(R) ≤ ε,

where the depth of the network is at most of the order O(t log(t) log(ε−1)) and
C = O(Nvt log(t)). For the special case t = 1, i.e., if v is piecewise linear, it
can be reproduced exactly with v = R(Φ) such that Φ ∈ ReLU1,1

C(1+Nv) and has

depth two.

The previous result states that RePU networks with r ≥ 2 can reproduce piece-
wise polynomials of any degree at the same asymptotic cost3. This suggests the
following saturation property.

Theorem 2.3 (Saturation Property [14]). For any r ≥ 2, α > 0, any d1, d2 ∈ N,
0 < p ≤ ∞ and Ω ⊂ Rd a Borel-measurable open set with nonzero measure, the
approximation spaces defined in Subsection 1.2 coincide

Aαq (Lp(Ω),RePU2,d1,d2) = Aαq (Lp(Ω),RePUr,d1,d2).

The saturation property will also be clearly visible in the main result of this work in
Theorem 4.3.

We conclude by pointing out that RePU networks can efficiently reproduce affine
systems, i.e., linear combinations of functions that are generated by dilating and
shifting a single mother function or, in some cases, a finite number of mother functions.

3Note that the constants will be, however, affected by the degree.
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A prominent example of affine systems are wavelets which will play an important role
for the main result in Theorem 4.3.

The reproduction of affine systems by NNs was studied in greater detail in [2]. In
the following we only mention the properties relevant for this work.

Theorem 2.4 (NN calculus [14]). For any r ≥ 1, the following properties hold.
(i) For any c ∈ R, n ∈ N, d1, d2 ∈ N and any Φ1 ∈ RePUr,d1,d2n , there exists

Φ2 ∈ RePUr,d1,d2n with

cR(Φ1) = R(Φ2),

where both Φ1 and Φ2 have the same depth.
(ii) For any n1, . . . , nN ∈ N, d1, d2 ∈ N and any Φ1 ∈ RePUr,d1,d2n1

, . . . ,ΦN ∈
RePUr,d1,d2nN , set C := min{d1, d2}(maxi depth(Φi) −mini depth(Φi)). Then,

for n := C +
∑N
i=1 ni, there exists Φ∑ ∈ RePUr,d1,d2n with

N∑
i=1

R(Φi) = R(Φ∑),

where the depth of Φ∑ is bounded by the maximal depth of all Φi’s.
(iii) For any n1, . . . , nN ∈ N, d, d1, . . . , dN ∈ N and any

Φ1 ∈ RePUr,d,d1n1
, . . . ,ΦN ∈ RePUr,d,dNnN ,

set K :=
∑N
i=1 di and C := min{d,K−1}(maxi depth(Φi)−mini depth(Φi)).

Then, for n := C +
∑N
i=1 ni, there exists Φ× ∈ RePUr,d,Kn with

(R(Φ1), . . . ,R(ΦN )) = R(Φ×),

where the depth of Φ× is bounded by the maximal depth of all Φi’s.
(iv) For any n1, n2 ∈ N, d1, d2, d3 ∈ N, any Φ1 ∈ RePUr,d1,d2n1

and any Φ2 ∈
RePUr,d2,d3n2

, there exists Φ ∈ RePUr,d1,d3n1+n2
such that

R(Φ2) ◦ R(Φ1) = R(Φ),

where the depth of Φ is simply the sum of the depths of Φ1 and Φ2.
(v) Let Da

b : Rd → Rd denote the affine transformation x 7→ ax − b for a ∈ R,

b ∈ Rd. Then, for any n ∈ N, d1, d2 ∈ N, any Φ1 ∈ RePUr,d,1n and any a ∈ R,
b ∈ Rd, there exists Φ2 ∈ RePUr,d,1n with

R(Φ1) ◦Da
b = R(Φ2),

where both Φ1 and Φ2 are of the same depth.

3. Besov Spaces and Wavelet Systems. In this section, we recall some clas-
sical results on (isotropic) Besov spaces and their characterization with wavelets. As
in Section 2, we focus mostly on results relevant to our work. For more details we
refer to, e.g., [3].
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3.1. Besov Spaces. Let Ω ⊂ Rd, h ∈ Rd and τh a translation operator
(τhf)(x) := f(x+h), I : Rd → Rd the identity operator and define the m-th difference

∆m
h := (τh − I)m := (τh − I) ◦ . . . ◦ (τh − I)︸ ︷︷ ︸

m times

, m ∈ N.

We use the notation

∆m
h (f, x,Ω) :=

{
(∆m

h f)(x), if x, x+ h, . . . , x+ rh ∈ Ω,

0, otherwise.

The modulus of smoothness of order m is defined for any t > 0 as

ωm(f, t,Ω)X = sup
|h|≤t

‖∆m
h (f, ·,Ω)‖X ,

where |h| denotes the standard Euclidean 2-norm. Finally, the Besov quasi-semi-norm
is defined for any 0 < q ≤ ∞, any α > 0 and m := bαc+ 1 by

|f |Bαq (X) :=


(∫ 1

0
[t−αωm(f, t,Ω)X ]q dt/t

)1/q

, 0 < q <∞,
supt>0 t

−αωm(f, t,Ω)X , q =∞.

Then, the (isotropic) Besov space is defined as

Bαq (X) :=
{
f ∈ X : |f |Bαq (X) <∞

}
.

and it is a (quasi-)Banach space that we equip with the (quasi-)norm

‖f‖Bαq (X) := ‖f‖X + |f |Bαq (X) , X = Lp(Ω),

‖f‖Bαq (X) := |f |Bαq (X) , X = Hp(Rd),

where Hp(Rd) is the real Hardy space.
The parameter α > 0 is the smoothness order, while the space X reflects the

measure of said smoothness. The secondary parameter q is less important and merely
provides a finer gradation of smoothness. For X = Lp(Ω), a few relationships are
rather straightforward

Bα1
q (Lp(Ω)) ↪→ Bα2

q (Lp(Ω)), α1 ≥ α2,

Bαq (Lp1(Ω)) ↪→ Bαq (Lp2(Ω)), p1 ≥ p2,

Bαq1(Lp(Ω)) ↪→ Bαq2(Lp(Ω)), q1 ≤ q2,

where ↪→ denotes a continuous embedding. For non-integer α > 0 and 1 ≤ p ≤ ∞,
Bαp (Lp(Ω)) is the fractional Sobolev space Wα,p(Ω). For integer α > 0, the Besov
space Bα∞(Lp(Ω)) is slightly larger than Wα,p(Ω). For p = q = 2, the Besov space
Bα2 (L2(Ω)) is the same as the Sobolev space Wα,2(Ω).

The Besov spaces Bατ (Lτ (Ω)), 1/τ = α/d+ 1/p are on the critical embedding line
(see Figure 1). Spaces above this line are embedded in Lp, spaces on this line may or
may not be embedded in Lp, and spaces below this line are never embedded in Lp. In
this sense, such Besov spaces are quite large as the functions on this line barely have
enough regularity to be members of Lp. It is well-known that optimal approximation



10 M. ALI, A. NOUY

– in the sense of continuous nonlinear widths (see also beginning of Section 1) – of
functions from such spaces with a continuous parameter selection can only be achieved
by nonlinear methods, see [7]. It is the main result of this work that RePU networks
achieve optimal approximation for these spaces, while ReLU networks achieve near to
optimal approximation.

To transfer results from Rd to more general domains, we will use the common
technique of extension operators.

Theorem 3.1 (Extension Operator [9, 10]). Let α > 0, 0 < p, q ≤ ∞ and let
Ω ⊂ Rd be an (ε, δ)-domain for 0 < p ≤ 1 and a strong locally Lipschitz domain for
1 < p ≤ ∞. Then, there exists an extension operator E : Bαq (Lp(Ω)) → Bαq (Lp(Rd))
such that Ef |Ω = f and

‖f‖Bαq (Lp(Ω)) ≤ ‖Ef‖Bαq (Lp(Rd)) ≤ C ‖f‖Bαq (Lp(Ω)) ,

where C depends only on d, α, p and the domain Ω.

We conclude by noting that Besov spaces combine well with interpolation. To be
precise, we briefly define interpolation spaces via the K-functional. Let X be a quasi-
normed space and Y be a quasi-semi-normed space with Y ↪→ X. The K-functional
is defined for any f ∈ X by

K(f, t,X, Y ) := inf
f=f0+f1

{‖f0‖X + t |f1|Y }, t > 0.

For 0 < θ < 1 and 0 < q ≤ ∞, define the quantity

|f |(X,Y )θ,q
:=

{(∫∞
0

[t−θK(f, t,X, Y )]q dt/t
)1/q

, 0 < q <∞,
supt>0 t

−θK(f, t,X, Y ), q =∞.

Then, the spaces

(X,Y )θ,q :=
{
f ∈ X : |f |(X,Y )θ,q

<∞
}
,

equipped with the (quasi-)norm

‖f‖(X,Y )θ,q
:= ‖f‖X + |f |(X,Y )θ,q

,

are interpolation spaces.
Besov spaces provide a relatively complete description of interpolation spaces in

the following sense: for 0 < θ < 1

(Lp(Ω),Wα(Lp(Ω)))θ,q = Bθαq (Lp(Ω)), 1 ≤ p ≤ ∞, 0 < q ≤ ∞,
(Bα1

q1 (Lp(Ω)), Bα2
q2 (Lp(Ω)))θ,q = Bαq (Lp(Ω)), 0 < α1 < α2, α := (1− θ)α1 + θα2,

0 < p, q, q1, q2 ≤ ∞,
(Lp(Ω), Bαq1(Lp(Ω)))θ,q = Bθαq (Lp(Ω)), 0 < p, q, q1 ≤ ∞.

For Besov spaces on the critical line with 1/τ = α/d+ 1/p, we obtain

(Lp(Ω), Bατ (Lτ (Ω)))θ,q = Bθαq (Lq(Ω)), if 1/q = θα/d+ 1/p.
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3.2. Wavelets. There are many possible wavelets constructions satisfying dif-
ferent properties depending on the intended application. Said constructions can be
rather technical, with the payoff being various favorable analytical and numerical fea-
tures. We do not intend to cover this topic in-depth and once again only pick out
the aspects required for this work. We proceed by briefly reviewing one-dimensional
wavelets constructions, after which we turn to wavelets on Rd. Our presentation is
somewhat abstract and therefore flexible, but we will also be more specific with some
aspects of the construction that we require in Section 4. For more details on the
subject we refer to [3].

The starting point of a wavelet construction is typically a multi-resolution analysis
(MRA), i.e., a sequence of closed subspaces Vj ⊂ Vj+1 of L2(R) that are nested,
dilation- and shift-invariant, dense in L2(R) and are all generated by a single4 scaling
function ϕ ∈ V0. To be more precise, we assume the system {ϕ(· − k) : k ∈ Z} is a
Riesz basis of V0 and therefore {ϕ(2j · −k) : k ∈ Z} is a Riesz basis of Vj . We use
the shorthand notation

ϕj,k := 2j/2ϕ(2j · −k),(3.1)

where the pre-factor 2j/2 normalizes ϕ in L2. Later we will redefine this to 2j/p for
normalization in Lp or Hp for any 0 < p ≤ ∞, with the convention 2j/∞ = 1. Here
Hp denotes the real Hardy space which coincides with Lp for p > 1, see [13] and
Remark 4.4.

Defining a projection Pj : L2(R)→ Vj is rather simple if {ϕ(·−k) : k ∈ Z} forms
an orthogonal basis of V0. Indeed, this property implies that {ϕj,k : k ∈ Z} forms an
orthogonal basis of Vj , and Pj can be chosen to be the orthogonal projection. However,
for numerical reasons, it is sometimes unpractical to construct scaling functions ϕ such
that {ϕ(· − k) : k ∈ Z} forms an orthogonal basis of V0 and without this property a
constructive definition of Pj is not straightforward.

A way-out are so-called bi-orthogonal constructions. A function ϕ̃ ∈ L2(R) is
dual to ϕ if it satisfies

〈ϕ(· − k), ϕ̃(· − l)〉L2 = δk,l, k, l ∈ Z,

where δk,l is the Kronecker delta. We then define the oblique projection Pj

Pjf :=
∑
k∈Z
〈f, ϕ̃j,k〉L2ϕj,k.

A representation of a function in Vj is typically referred to as a single-scale rep-
resentation. To switch to a multi-scale representation, we need to characterize the
so-called detail spaces defined through the projections

Qj := Pj+1 − Pj ,

with the detail spaces defined as Wj := Qj(L
2(R)). This is achieved by constructing

a wavelet ψ ∈ V1

ψ :=
∑
k∈Z

gkϕ(2 · −k),

4Multiple scaling functions are possible as well in which case such functions are referred to as
multi-wavelets, see [11].
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for some coefficients gk ∈ R such that

Nψ := #{k : gk 6= 0} <∞.

Any function f ∈ L2(R) can then be decomposed into a sequence of detail coeffi-
cients

f =
∑
j∈Z

∑
k∈Z

cj,kψj,k,(3.2)

where ψj,k is defined as in (3.1). To simplify notation, one typically introduces the
index set ∇ := Z× Z. Decomposition (3.2) then simplifies to

f =
∑
λ∈∇

cλψλ.

In order for the wavelets ψλ to characterize Besov spaces, they have to satisfy
certain assumptions.

Assumption 3.2 (Characterization). We assume the scaling function ϕ and its
dual ϕ̃ satisfy the following properties.

(W1) (Integrability) For some p′, p′′ ∈ [1,∞] such that 1/p′ + 1/p′′ = 1, we assume
ϕ ∈ Lp′(R) and ϕ̃ ∈ Lp′′(R).

(W2) (Polynomial Reproduction) We assume ϕ satisfies Strang-Fix conditions of
order L ∈ N or, equivalently, for any polynomial P ∈ PL−1 of degree L − 1,
we have P ∈ V0.

(W3) (Regularity) For some s > 0 and some 0 < τ, q ≤ ∞, we assume ϕ ∈
Bsq(L

τ (R)).

These conditions are sufficient to ensure Besov spaces can be characterized by the
decay of the wavelet coefficients for the case p ≥ 1 or given sufficient regularity. For
the case X = Hp(Rd) and 0 < p ≤ 1, we additionally require ϕ to satisfy5

Assumption 3.3 (Hardy Spaces). For 0 < p ≤ 1, assume ϕ satisfies
(H1) ϕ̂(0) = 1, Dβϕ̂(0) = 0 for every 1 ≤ |β| < max{[d(1/p− 1)] + 1, L}, where ϕ̂

denotes the Fourier transform of ϕ.

For N -term approximation results in the case p =∞, we additionally require

Assumption 3.4 (p =∞).
(A1) We assume ϕ has compact support and is s times continuously differentiable.

Finally, for our work we will require two additional conditions that are, however,
easy to satisfy for a variety of wavelet families.

Assumption 3.5 (Piecewise Polynomial). We additionally assume the scaling
function ϕ satisfies the following properties.

(P1) We assume ϕ has compact support.
(P2) We assume ϕ is piecewise polynomial.

An example of wavelet families that can be constructed to satisfy all of the as-
sumptions (W1)–(W3), (H1), (A1) and (P1)–(P2) are the CDF bi-orthogonal B-spline
wavelets from [4]. These constructions allow to choose an arbitrary polynomial re-
production degree L− 1, regularity order s and the resulting scaling function ϕ (and
consequently ψ as well) are compactly supported splines of degree L− 1.

5Weaker assumptions are also possible, see [17] for details.
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Finally, we briefly describe how to extend the above wavelets to the multivariate
case. There are several possible approaches for this, but we describe a specific tensor
product construction suitable for isotropic Besov spaces.

For x ∈ Rd, we define the tensor product scaling function as

φ(x) := ϕ(x1) · · ·ϕ(xd),

and in the same manner as before, but for a general 0 < p ≤ ∞,

φj,k,p(x) := 2dj/pφ(2jx− k), j ∈ Z, k ∈ Zd,(3.3)

with the convention 2dj/∞ = 1. Next, for e ∈ {0, 1}d \ {0}, we define

ψe(x) := ψe1(x1) · · ·ψed(xd),(3.4)

with the convention ψ1(xi) := ψ(xi) and ψ0(xi) = ϕ(xi), and ψej,k,p is defined as in
(3.3). Simplifying as before with

∇ := {(e, j, k) : e ∈ {0, 1}d \ {0}, j ∈ Z, k ∈ Zd},

we obtain the d-dimensional wavelet system

Ψ := {ψλ,p : λ ∈ ∇}.(3.5)

Finally, we define the fixed level sets

∇j := {λ = (e, j, k) ∈ ∇ : |λ| = j},

where we use the shorthand notation |λ| := |(e, j, k)| := j.

Theorem 3.6 (Characterization [3,17]). Let ϕ satisfy (W1) for some integrabil-
ity parameters p′, p′′, (W2) for order L and (W3) with smoothness order s for primary
parameter 0 < p ≤ p′ and any secondary parameter 0 < q ≤ ∞.

For α < min{s, L}, assume additionally either
(i) X = Lp(Rd), 0 < p ≤ ∞ and α > d(1/p− 1/p′),

(ii) or X = Hp(Rd), 0 < p ≤ 1 and (H1).
(iii) or X = Lp(Rd), 1 ≤ p ≤ ∞, ϕ bounded and compactly supported.
Then, if f =

∑
λ∈∇ cλ,pψλ,p is the wavelet decomposition of f , we have the norm

equivalence

|f |Bαq (X) ∼


(∑

j∈Z 2jαq
(∑

λ∈∇j |cλ,p|
p
)q/p)1/q

, 0 < q <∞,

supj∈Z 2jα
(∑

λ∈∇j |cλ,p|
p
)1/p

, q =∞.

Note the renormalization relationship

cλ,p = 2−|λ|d(1/p−1/q)cλ,q, 0 < p, q ≤ ∞(3.6)

and in particular cλ,p = 2−|λ|d(1/p−1/2)cλ,2 with cλ,2 = 〈f, ψ̃λ,2〉L2 , the inner product

with the L2-scaled dual wavelet ψ̃λ,2.
The above characterization implies the following approximation rates for best

N -term wavelet approximations.
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Theorem 3.7 (N -term Approximation [3,8,17]). Let 0 < p ≤ ∞ and let Ψ be a
wavelet system satisfying (W1)–(W3) with regularity s for Besov primary parameter
τ > 0, reproduction order L, 0 < α < min{s, L} and assume either

(i) X = Lp(Rd), 1 < p <∞ and d(1/p− 1/p′) < α,
(ii) or X = Lp(Rd), 1 < p <∞, ϕ is bounded and compactly supported,

(iii) or X = L∞(Rd), (A1) and d ≤ α ≤ min{s, L},
(iv) or X = Hp(Rd), 0 < p ≤ 1 and (H1).
Define the set of N -term wavelet expansions as

WN :=

{∑
λ∈Λ

cλ,pψλ,p : Λ ⊂ ∇, #Λ ≤ N

}
.

Then, for α/d ≥ 1/τ − 1/p, 0 < q ≤ τ ≤ p and any f ∈ Bαq (Y τ ), it holds

E(f,WN )X . N−α/d |f |Bαq (Y τ ) ,

where Y τ := Hτ (Rd) for 0 < p ≤ 1, Y τ := Lτ (Rd) for 1 < p ≤ ∞ and for p =∞ we
additionally assume f is continuous.

4. Optimal ReLU Approximation of Smoothness Classes. With the re-
sults from Section 2 and Section 3 we have all the tools necessary to derive approx-
imation rates for arbitrary Besov functions. As was reviewed in Section 3, Besov
spaces can be characterized by the decay of the wavelet coefficients, and N -term
approximations achieve optimal approximation rates for Besov functions.

In this section, we show that a RePU network can reproduce an N -term wavelet
expansion with O(N) complexity. More importantly, we also show that a ReLU net-
work can approximate an N -term wavelet expansion with O(N log(ε−1)) complexity,
where ε > 0 is the related approximation accuracy. Together with a stability esti-
mate, this will imply RePU and ReLU networks can approximate Besov functions of
arbitrary smoothness order with optimal or near to optimal rate, respectively.

Lemma 4.1 (Wavelet System Complexity). Let Ψ be a wavelet system as defined
in (3.5), with the one-dimensional scaling function ϕ : R→ R satisfying (P1) – (P2).
Then, for X = Lp(Rd), 0 < p ≤ ∞,

(i) for r ≥ 2, there exists a constant C > 0 depending on r, polynomial reproduc-
tion order L, dimension d, support of ϕ, ψ and ‖ϕ‖L∞(R), ‖ψ‖L∞(R), such that

for any ψλ ∈ Ψ and any ε > 0, there exists a RePU network Φελ ∈ RePUr,d,1C

with the same support as ψλ such that

‖ψλ − Φελ‖Lp(Rd) ≤ ε,

where the complexity of the network Φελ is independent of ε, the depth is at
most logarithmic in L and d.

(ii) For r = 1, there exists a constant C > 0 with dependencies as above, such
that for any ψλ ∈ Ψ and any 0 < ε < 1, there exists a ReLU network
Φελ ∈ ReLUd,1C(1+log(ε−1)) with the same support as ψλ such that

‖ψλ − Φελ‖Lp(Rd) ≤ ε,

where the depth of the network Φελ is at most logarithmic in ε−1, log-linear
in L and log-linear in d.
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Proof. We detail the proof for the case of ReLU networks (ii) as the proof for
RePU networks is analogous and more straightforward. In the following we will
frequently use the triangle inequality, i.e., assuming p ≥ 1. For 0 < p < 1, ‖·‖Lp(Rd) is
only a quasi-norm, i.e., the right-hand-side of the triangle inequality is to be multiplied
by a constant, and the corresponding complexities are to be adjusted accordingly.

First, due to (P1) – (P2), the mother wavelet ψ : R → R is a compactly sup-
ported piecewise polynomial. By Theorem 2.2, for any 0 < δ < 1, there exists
a ReLU network Φδψ ∈ ReLU1,1

C(1+log(δ−1)) with the same support as ψ such that

‖ψ−R(Φδψ)‖L∞(R) ≤ δ. The depth of Φδψ is at most logarithmic in δ−1 and log-linear
in the polynomial degree of ψ. A similar conclusion holds for the scaling function
ϕ : R→ R. For RePU networks, Φδψ has complexity independent of δ, with depth at
most logarithmic in the polynomial degree of ψ.

Second, recall the tensor product wavelet from (3.4): ψe(x) := ψe1(x1) · · ·ψed(xd),
where for each component either ψeν = ψ1 = ψ or ψeν = ψ0 = ϕ. Let Φδψ,

Φδϕ ∈ ReLU1,1
C(1+log(δ−1)) be the ReLU networks as above with C = O(L log(L)), ap-

proximating ψ and ϕ, respectively, with accuracy δ > 0 to be specified later. Then,
we form the tuple Φδ× ∈ ReLUd,dnδ as in Theorem 2.4 (iii)

R(Φδ×) = (R(Φδψe1 ), . . . ,R(Φδψed )),

with nδ := dC(1 + log(δ−1)) and where each Φψeν has either the depth of Φϕ or Φψ –
both of the same order as discussed above. The depth of Φδ× is then the same as the
maximal depth between Φδϕ and Φδψ – logarithmic in δ−1.

Next, for some different accuracy η > 0, we construct an approximate multiplica-
tion network ΦηM ∈ ReLUd,1nη with nη := Cd log(dKdη−1) as in Theorem 2.1 (ii), where
K := max{‖ϕ‖L∞(R) , ‖ψ‖L∞(R)}+ δ. This choice of K is justified by∥∥R(Φδψeν )

∥∥
L∞(Rd)

≤ δ + ‖ψeν‖L∞(R) ≤ K.(4.1)

Our final approximation Φεφ ∈ ReLUd,1nδ,η is defined by

R(Φεψe) := R(ΦηM ) ◦ R(Φδ×),(4.2)

where, according to Theorem 2.4 (iv), nδ,η = dC(1 + log(δ−1)) + Cd log(dKdη−1),
where as above C = O(L log(L)). The depth of Φεψe is the sum of the depths of ΦηM
and Φδ×, i.e., at most a multiple of (1 + log(d) log(dKdη−1) + L log(L) log(δ−1)).

We estimate the resulting error from which it will be clear how to choose δ, η > 0
and the resulting cost nδ,η. We introduce the auxiliary approximation R(Φ̃) := Md ◦
R(Φδ×) and the notation ψeνδ := R(Φδψeν ). Then,∥∥ψe −R(Φεψe)

∥∥
Lp(Rd)

≤
∥∥∥ψe −R(Φ̃)

∥∥∥
Lp(Rd)

+
∥∥∥R(Φ̃)−R(Φεψe)

∥∥∥
Lp(Rd)

.(4.3)

With S := | supp(ϕ) ∪ supp(ψ)|, for the second term we apply Theorem 2.1 (ii) and
obtain

∥∥∥R(Φ̃)−R(Φεψe)
∥∥∥
Lp(Rd)

≤
∥∥∥R(Φ̃)−R(Φεψe)

∥∥∥
L∞(Rd)

(∫
supp(R(Φ̃))∪supp(R(Φε

ψe
))

)1/p

≤ ηSd/p.(4.4)
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For the first term, we can write

ψe −R(Φ̃) =(ψeν − ψeνδ )⊗ ψe2 ⊗ · · · ⊗ ψed + ψe1δ ⊗ (ψe2 − ψe2δ )⊗ ψe3δ ⊗ · · · ⊗ ψ
ed

+ ψe1δ ⊗ · · · ⊗ ψ
ed−1

δ ⊗ (ψed − ψedδ ).

Thus, for estimating (4.3), by a triangle inequality∥∥∥ψe −R(Φ̃)
∥∥∥
Lp(Rd)

≤ dKd−1δ = d(max{‖ϕ‖L∞(R) , ‖ψ‖L∞(R)}+ δ)d−1δ.(4.5)

From (4.4) and (4.5), we set η := S−d/pε/2 and

δ := ε(max{1, ‖ϕ‖L∞(R) , ‖ψ‖L∞(R)})
1−d/(d2d) < 1.

With this δ, we can estimate

dKd−1δ ≤ d(max{‖ϕ‖L∞(R) , ‖ψ‖L∞(R)})
d−1(δ1/(d−1) + δd/(d−1))d−1

≤ d(max{‖ϕ‖L∞(R) , ‖ψ‖L∞(R)})
d−1(2δ1/(d−1))d−1

= d(max{‖ϕ‖L∞(R) , ‖ψ‖L∞(R)})
d−12d−1δ ≤ ε/2,

Thus, overall we obtain for (4.3)∥∥ψe −R(Φεψe)
∥∥
Lp(Rd)

≤ ε,

with number of nonzero weights

nε := nδ,η = dC(1 + log(δ−1)) + Cd log(dKdη−1) =

O
(
dL log(L)[d log(1 + max{‖ϕ‖L∞ , ‖ψ‖L∞}) + log(ε−1) + d log(S) + log(d)]

)
,

and, according to (4.2), depth at most a multiple of

1 + log(d) log(dKdη−1) + L log(L) log(δ−1) =

O
(
log(d)L log(L)[d log(1 + max{‖ϕ‖L∞ , ‖ψ‖L∞}) + log(ε−1) + d log(S) + log(d)]

)
.

Finally, we define Φελ ∈ ReLUd,1C(1+log(ε−1)) using Theorem 2.4 (i) and (v) such that

for λ = (e, j, k)

R(Φελ) = 2dj/pR(Φεψe) ◦D2j

k .

Note that the error bound for Φελ remains unchanged due to the normalization con-
stant 2dj/p.

With this we turn to direct estimates for networks.

Lemma 4.2 (Direct Estimates RePU/ReLU). Let X = Lp(Ω), 1 < p ≤ ∞,
f ∈ Bαq (Lτ (Ω)) with α, τ, q > 0 and

α/d ≥ 1/τ − 1/p, 0 < q ≤ τ ≤ p,

and assume Ω ⊂ Rd is an (ε, δ)-domain for τ ≤ 1 and a strong locally Lipschitz domain
for τ > 1. For p = ∞, assume additionally f is continuous with the convention
1/∞ = 0. Then,
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(i) for r ≥ 2, there exists a constant C > 0 such that

E(f,RePUr,d,1n )Lp(Ω) ≤ Cn−α/d ‖f‖Bαq (Lτ (Ω)) ,

for all n ∈ N. The constant C depends on r, α, τ , p, d and Ω. The networks
realizing these approximations have depth at most logarithmic in α and d.

(ii) For r = 1, there exists a constant C > 0 such that

E(f,ReLUd,1n )Lp(Ω) ≤ Cn−ᾱ/d ‖f‖Bαq (Lτ (Ω)) ,

for all n ∈ N and for any 0 < ᾱ < α. The constant C depends α, ᾱ, τ , p,
d and Ω. The networks realizing these approximations have depth at most
logarithmic in n, log-linear in α and log-linear in d.

Proof. Consider a wavelet system Ψ that satisfies (P1) – (P2), (W1) – (W3) and
(A1) for p =∞. Such a wavelet system can be constructed, e.g., as in [4] and we can
use Ψ for N -term approximations as in Theorem 3.7. We detail the proof for ReLU
networks in part (ii), part (i) follows analogously with fewer technicalities.

Let Ω = Rd and fN :=
∑
λ∈ΛN

cλ,p(f)ψλ with #ΛN ≤ N be a best N -term

wavelet approximation to f . For ε > 0 to be specified later, let Φελ ∈ ReLUd,1C(1+log(ε−1))

be the ReLU ε-approximation of ψλ from Lemma 4.1. Let ΦεN ∈ ReLUd,1CN(1+log(ε−1))

be a sum network implemented as in Theorem 2.4 (ii) such that

R(ΦεN ) =
∑
λ∈ΛN

cλ,p(f)R(Φελ).

From Theorem 2.4 (ii), the depth of ΦεN is the same as that of the Φελ’s. Then,

‖fN −R(ΦεN )‖Lp(Ω) ≤ ε
∑
λ∈ΛN

|cλ,p(f)|.

The sum of the coefficients is bounded by a Besov semi-norm of f as we show next.
We use the renormalization relationship from (3.6). First, we renormalize the

coefficients in Lτ , multiply by one and split the sum in two∑
λ∈ΛN

|cλ,p(f)| =
∑
λ∈ΛN

|cλ,τ (f)|2α|λ|2−|λ|(α−d[1/τ−1/p])

=
∑

λ∈ΛN , |λ|≥0

|cλ,τ (f)|2α|λ|2−|λ|(α−d[1/τ−1/p])

+
∑

λ∈ΛN , |λ|<0

|cλ,τ (f)|2α|λ|2−|λ|(α−d[1/τ−1/p]).

We abbreviate α∗ := d[1/τ − 1/p], where by assumption 0 < α∗ ≤ α. Next, if
τ < 1, we can estimate the first summand as∑

λ∈ΛN , |λ|≥0

|cλ,τ (f)|2α|λ|2−|λ|(α−d[1/τ−1/p]) =
∑

λ∈ΛN , |λ|≥0

|cλ,τ (f)|2α
∗|λ|

≤

( ∑
λ∈ΛN

|cλ,τ (f)|τ2α
∗|λ|τ

)1/τ

,
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and the second summand as∑
λ∈ΛN , |λ|<0

|cλ,τ (f)|2α|λ|2−|λ|(α−d[1/τ−1/p]) ≤
∑

λ∈ΛN , |λ|<0

|cλ,τ (f)|2−|λ|α

≤

( ∑
λ∈ΛN

|cλ,τ (f)|τ2|λ|ατ

)1/τ

,

and thus overall

∑
λ∈ΛN

|cλ,p(f)| ≤

( ∑
λ∈ΛN

|cλ,τ (f)|τ2α
∗|λ|τ

)1/τ

+

( ∑
λ∈ΛN

|cλ,τ (f)|τ2α|λ|τ

)1/τ

≤ 2 |f |Bατ (Lτ (Rd)) ,

where the last inequality is due to the characterization of the Besov semi-norm from
Theorem 3.6, the fact that α∗ ≤ α and the definition of the Besov semi-norm (see
Subsection 3.1).

If τ ≥ 1, we apply Hölder with 1 ≤ τ̄ ≤ ∞ such that 1/τ + 1/τ̄ = 1, the definition
and characterization of the Besov semi-norm together with α∗ ≤ α, and obtain∑

λ∈ΛN

|cλ,p(f)| ≤ 2N1/τ̄ |f |Bατ (Lτ (Rd)) .

Thus, we set either ε := N−α/d/2 for τ < 1 or ε := N−α/d−1/τ̄/2 for τ ≥ 1 and
obtain together with Theorem 3.7

‖f −R(ΦεN )‖Lp(Rd) . N−α/d |f |Bατ (Lτ (Rd)) .

Due to the definition of the Besov semi-norm, it is straightforward to extend this
to Besov semi-norms |f |Bαq (Lτ (Rd)) for any 0 < q ≤ τ (see also the discussion in

Subsection 3.1). The complexity of this network can be bounded by for the case
τ ≥ 1 as

n := CN(1 + log(ε−1)) = CN(1 + [α/d+ 1/τ̄ ] log(N)) . N1+δ,

for any δ > 0, or, equivalently,

‖f −R(ΦN )‖Lp(Rd) . n−ᾱ/d |f |Bαq (Lτ (Rd)) ,

for any 0 < ᾱ < α. The bound for the case τ < 1 is similar, omitting τ̄ . This shows
the statement for Ω = Rd.

For Ω ⊂ Rd an (ε, δ)-domain for 0 < τ ≤ 1 or a locally Lipschitz domain for
1 < τ ≤ ∞, we use the extension operator from Theorem 3.1 to obtain for any
f ∈ Bαq (Lτ (Ω))

E(f,ReLUd,1n )Lp(Ω) ≤ E(Ef,ReLUd,1n )Lp(Rd) . n−ᾱ/d |Ef |Bαq (Lτ (Rd))

. n−ᾱ/d ‖f‖Bαq (Lτ (Ω)) .

Finally, the direct estimates above immediately imply the main result of this
work.
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Theorem 4.3 (Direct Embeddings). Let X = Lp(Ω), 1 < p ≤ ∞, α, τ, q > 0
and

α/d ≥ 1/τ − 1/p, 0 < q ≤ τ ≤ p,

and assume Ω ⊂ Rd is an (ε, δ)-domain for τ ≤ 1 and a strong locally Lipschitz
domain for τ > 1. Then,

(i) for r ≥ 2 and 0 < θ < α, 0 < q̄ ≤ ∞, the following embeddings hold

Bαq (Lτ (Ω)) ↪→ Aα/d∞ (Lp(Ω),RePUr,d,1),

(Lp(Ω), Bαq (Lτ (Ω)))θ/α,q̄ ↪→ A
θ/d
q̄ (Lp(Ω),RePUr,d,1).

(ii) For r = 1 and 0 < θ < ᾱ, 0 < q̄ ≤ ∞, 0 < ᾱ < α, the following embeddings
hold

Bαq (Lτ (Ω)) ↪→ Aᾱ/d∞ (Lp(Ω),ReLUd,1),

(Lp(Ω), Bαq (Lτ (Ω)))θ/ᾱ,q̄ ↪→ A
θ/d
q̄ (Lp(Ω),ReLUd,1).

Remark 4.4 (Hardy Spaces Hp(Rd) and 0 < p ≤ 1). Theorem 3.6 provides best
N -term approximation rates for Besov spaces in the Hardy Hp-norm for 0 < p ≤
1. ReLU networks can reproduce piecewise linear one-dimensional wavelet systems
exactly and hence all the embeddings from Theorem 4.3 hold for r = 1 and the
homogeneous Besov space Bαq (Hτ (R)) instead of Bαq (Lτ (Ω)) for 0 < p ≤ 1 and 1/τ −
1/p ≤ α < 2.

For more general results one would require estimates as in Lemma 4.1 in the
Hp-norm. However, compactly supported, continuous, piecewise polynomials are not
necessarily in Hp. In order to ensure R(Φελ) is in Hp, we require additionally that the
approximands R(Φελ) have d(1/p− 1) vanishing moments for any ε and λ.

Furthermore, to extend results from Rd to general domains Ω, one requires con-
structing extension operators bounded in the homogeneous Besov norm. A detailed
investigation of the case of Hardy spaces is thus beyond the scope of this work.
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