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Abstract
Probabilistic Graphical Models form a class of compact representations of high-dimensional

probability distributions by decomposing these distributions in a set of multivariate factors (po-
tentials). Every exact algorithm (for probabilistic inference, MAP, etc.) operates on a specific
representation of these potentials. However complex probabilistic models often lead to very large
potentials which dramatically impact both the space and time complexities of these algorithms and
which can make inference in complex models intractable. In this paper we propose a new approach
based on low-rank tensor representation to approximate and operate with these potentials. The
low-rank tensor representation is used for the approximation of potentials with controlled precision
and an important reduction in the number of parameters. Every operator used in such algorithms
(multiplication, addition, projection, etc.) can be defined within this representation, leading to an
approximation framework where every algorithm for PGMs can be easily implemented. As an in-
stance of this framework, we present a classical message passing algorithm in Bayesian networks
using the tensor train format. By reducing significantly the computational complexity and the mem-
ory usage, the proposed approach makes probabilistic inference much more scalable. These results
are illustrated by experiments on dynamic Bayesian networks and classical Bayesian networks per-
formed using a Python implementation with TensorFlow, T3F and pyAgrum.
Keywords: Probabilistic Graphical Models; Approximate Inference; Tensor Decomposition;
Low-rank approximation; Tensor Train Format.

1. Introduction

The growing demand for explainable AI, as opposed to the concept of black box approaches used
in some machine learning fields, puts the probabilistic graphical models (PGMs) community for-
ward, PGM being, by nature, easier to understand by human experts. However, the growing number
of data tends to make inferences in PGM intractable, the space and time efficiency of algorithms
being directly linked to the complexity of the studied model. When exact algorithms suffer from
space complexity in large-scale models, approximate ones can only offer a trade-off between time
complexity and precision, sometimes without a guarantee of convergence toward a stationary distri-
bution. The use of low-rank tensor methods is a possible way to mitigate the curse of dimensionality
for discrete high-dimensional models.

In previous works, (Savicky and Vomlel, 2007) proposed to manipulate the structure of a Bayesian
network (BN) and use tensor rank-one decomposition to approximate some special forms of condi-
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tional probability tables (CPTs) and (Vomlel and Tichavský, 2014) use CP decomposition of tensors
corresponding to CPTs of threshold functions, exactly l-out-of-k functions, and their noisy counter-
parts. In a more general case, tensor methods combined with exact algorithms could provide a new
approach to deal with complex PGM in a controlled and tractable way. This approach is not limited
to Bayesian networks or to inference algorithms. Every representation of a high-dimensional multi-
variate function as a product of multivariate factors, every algorithm that operates on a commutative
semiring of such multivariate factors are limited by the dimension of these very factors and then
could benefit from this compact representation with controlled approximation. As an example of
the use of low-rank tensor representation for PGM, we propose in this paper to focus on probabilistic
inference in Bayesian networks using the tensor train format.

The outline of the paper is as follows. In Section 2, we briefly introduce Bayesian networks,
describe a basic tree-based inference algorithm for computing posterior and marginal probabilities
and show how it could benefit from low-rank tensor methods in terms of memory consumption and
computational complexity. In Section 4, we present an algorithm using the tensor train format to
approximate potentials in probabilistic graphical models such as Bayesian networks and Dynamic
Bayesian networks. Finally, in Section 5, we present promising results of such an approach.

2. Bayesian Networks : Model and Algorithm

2.1 Bayesian Networks

A Bayesian network provides a compact representation of the joint probability distribution of a set
of random variables. These appear in the form of nodes in a directed acyclic graph (DAG), denoted
G, where the absence of arcs represents some conditional independencies. When the variables
are discrete, each node is associated with a CPT that contains the conditional probabilities of the
random variable with respect to its parents. A Bayesian network B is associated with (G,Θ) where
Θ denotes the set of all parameters of conditional probability distribution of each variable v given
their parents πv in G : P (v|πv). For any graph G, let V(G) express the set of its vertices and E(G)
the set of its edges.

2.2 Message-Passing Protocol in Junction Trees

An inference based on a message-passing algorithm uses a secondary structure called a Junction
Tree, denoted T , where variables are grouped into cliques (orange nodes in Figure 1) connected by
separators (in green) such that when two cliques Ci and Cj are connected by a path, Ci ∩Cj is a
subset of every clique and separator on the path. The set of nodes adjacent to a node i is denoted by
Adj(i), i.e., Adj(i) := {k ∈ V(T ) : (i, k) ∈ E(T )}.
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Figure 1: A BN (a) and a junction tree derived from it (b)
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The complexity of an inference in a BN is NP-Hard (Cooper, 1990), growing exponentially in
the tree-width of the network, the tree-width being related to the size of its largest clique determined
by the products of the domains of its variables (Robertson and Seymour, 1986).

Algorithms, such as Shafer-Shenoy (Shenoy and Shafer, 1990), Hugin (Jensen et al., 1990) or
Lazy Propagation (Madsen and Jensen, 2013), are based on a message passing protocol between
adjacent nodes of the junction tree. For (i, j) ∈ E(T ) we denote ψi→j the potential associated with
the separator Sij which represents the message from i to j over Sij . Since messages will be sent
in both directions, we need to distinguish ψi→j from ψj→i. In order to guarantee the correctness of
computations, the message-passing protocol needs that the message ψi→j should be sent only when
clique i has received messages from all of its neighbors except from j. Exchanging a message from
i to j in the junction tree will propagate toward j information that has been gathered in i.

One way to organize messages computations is to perform two phases, namely Collect and
Distribute from a predetermined root r ∈ V(T ). During the Collect phase, messages are sent
along edges from leaves toward r. During the Distribute phase, messages are sent from r towards
the leaves. After propagating all the messages, in order to have the joint posterior distribution
over the variables in Ci up to some normalization constant, all we need is to compute the product
φi ×

∏
(k,i)∈E(T ) ψk→i, where φi denotes the potential associated with the clique Ci.

To sum up, an exact inference with junction trees manipulates potentials with two operations,
a marginalization and a product (and a division in the case of Hugin), the limiting factor in its
feasibility being the size of the potentials. If a more compact representation of the information
contained in the potentials can be found and aforementioned operations can be redefined using such
an embedding, we could make a more scalable inference, at the cost of a controlled approximation.

3. Low-Rank Tensor Formats

Tensor methods have become a prominent tool for solving high-dimensional problems arising in
physics, financial mathematics, statistics, uncertainty quantification, data science, and many other
fields involving the approximation of high-dimensional functions or multidimensional arrays. For
an introduction to tensor methods and their applications in numerical analysis and machine learning,
the reader is referred to the monograph (Hackbusch, 2012) and the surveys (Kolda and Bader, 2009;
Nouy, 2017; Bachmayr et al., 2016; Cichocki et al., 2016, 2017; Ji et al., 2019).

Here we consider tensors in the sense of multidimensional arrays. We denote by Rn1×···×nd the
space of tensors of order d and size n1 × . . . × nd. The entries of a tensor T ∈ Rn1×···×nd are
denoted by T(i1, . . . , id), 1 ≤ iν ≤ nν , 1 ≤ ν ≤ d. The index iν is related to the ν-th mode of the
tensor. A tensor T can be identified with a vector vec(T) whose entries are vec(T)(i1, . . . , id) =
T(i1, . . . , id), with i1, . . . , id = id + (id−1 − 1)nd + . . .+ (i1 − 1)n2 . . . nd.

The number of entries of a tensor grows exponentially with the order d, and so does the storage
consumption and computational complexity of basic multilinear algebra operations between tensors.
For handling high-order tensors, it is therefore essential to consider structured tensor formats, such
as low-rank tensor formats.
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3.1 Tensor Ranks and Related Tensor Formats

For any subset α ⊂ {1, . . . , d} := D and its complementary subset αc = {1, . . . , d} \ α, a tensor
T can be identified with a matrixMα(T) whose entries are (up to a permutation of indices)

Mα(T)((iν)ν∈α, (iν)ν∈αc) = T(i1, . . . , id).

The map Mα, called the α-matricisation operator, is a bijection from Rn1×···×nd to RNα×Nαc ,
where Nβ =

∏
ν∈β nν . The rank of the matrix Mα(T) is called the α-rank of T, and denoted

rankα(T). By convention, the D-rank and ∅-rank of a tensor are equal to 1.
Letting S ⊂ 2D be a set of subsets of D, we define the S-rank of a tensor T as the tuple

(rankα(T))α∈S ∈ N|S|. For a given set S and a tuple r = (rα)α∈S , a tensor format T Sr is defined
as the set of tensors with S-rank less than r, T Sr = {T ∈ Rn1×···×nd : rankα(T) ≤ rα, α ∈ S}.

3.2 Tensor Train Format

The tensor train format has been introduced in (Oseledets, 2009; Oseledets and Tyrtyshnikov, 2009)
in the context of numerical analysis. It was already known in quantum physics as Matrix Product
State (see, e.g., (Schollwöck, 2011)). This format corresponds to the tensor format T Sr with S =
{∅, {1}, {1, 2}, . . . , {1, . . . , d − 1}, D}. Given a tuple of integers r = (r0, r1, . . . , rd), with r0 =
rd = 1, a tensor T in the tensor format T Sr admits the representation

T(i1, . . . , id) =

r1∑
k1=1

· · ·
rd−1∑

kd−1=1

T(1)(1, i1, k1) · · ·T(d)(kd−1, id, 1) (1)

where the T(i) ∈ Rri−1×ni×ri are order-3 tensors called TT cores. The minimal integers (r0, r1, . . . , rd)
such that T has a representation (of the form 1) is called the TT-rank of T.

Storage Complexity The storage complexity of a tensor with TT ranks bounded by R and mode
sizes bounded by N is in O(dNR2). This tensor format allows to circumvent the curse of dimen-
sionality for classes of tensors with TT-rank uniformly bounded or growing polynomially with d.

3.3 Approximation in Tensor Train Format

Every tensor have an exact representation in the tensor train format although without any com-
pression (possibly with high representation ranks). Many algorithms have been proposed for the
approximation of tensors in tensor train format. Algorithm 1, introduced in (Oseledets, 2011), al-
lows to obtain an approximation T′ of a given tensor T in the tensor train format with a prescribed
relative precision ε, i.e. ‖T−T′‖F ≤ ε ‖T‖F , where ‖·‖F denotes the Frobenius (or canonical)
tensor norm. The algorithm relies on standard singular value decompositions of matrices. For more
details on the tensor train format and its applications, see, e.g., (Gelß, 2017). The algorithm is here
described for the case where the input T is a multidimensional array but it can be easily adapted to
the case where the input is in the TT format.

4. Message Passing Algorithm using Tensor Train Format

Using the TT format seems to be a promising approach for an approximation of potentials in PGMs:
(i) an approximation with controlled precision can be obtained using Algorithm 1; (ii) an approxi-
mation can be found using an upper limit for TT ranks, allowing to easily control memory usage;
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Algorithm 1 Compress(T, ε) - Higher-order truncated SVD for the approximation in TT format
Input : Tensor T ∈ Rn1×···×nd and tolerance ε
Output Approximation T′ of T in TT format with cores U(1), . . . ,U(d) and ranks r0, . . . , rd

1: Set r0 = 1 and rd = 1. Set A ∈ Rr0×n1×...×nd such that A(1, i1, . . . , id) = T(i1, . . . , id)
2: for ν = 1, . . . , d− 1 do
3: A =M{1,2}(A) ∈ R(rν−1nν)×(nν+1...nd)

4: Compute SVD of A, i.e. A = UΣV T with Σ = diag(σ1, . . . , σd) ∈ Rs×s, U ∈ R(rν−1nν)×s and V ∈ R(nν+1...nd)×s

5: Set rν ≤ s to the smallest index such that σ2
rν+1

+ . . .+ σ2
s ≤ ε2/(d− 1)

6: Discard rows and columns of U,Σ, and V corresponding to singular values σrν+1 , . . . , σs

7: Define the ν-th core U(ν) =M−1
{1,2}(U) ∈ Rrν−1×nν×rν

8: Define A =M−1
{1}(ΣV

T ) ∈ Rrν×nν+1×...×nd

9: Define the d-th core U(d) =M−1
{1}(A)

(iii) in order to limit tensors manipulation when computing the product of potentials, we can use an
explicit order on the cores. We propose here to use a topological order of the nodes in the DAG.

In order to compute the product between a clique and a separator as well as the marginalization
of a potential and, therefore, define a new version of the Shafer-Shenoy algorithm using tensors in
TT format we have to introduce some of the classical operations in tensor algebra.

4.1 Operations Between Tensors

We here recall some definitions of elementary operations between tensors (see, e.g., (Lee and Ci-
chocki, 2018; Hackbusch, 2012) for more details).

Kronecker product. The Kronecker product (denoted ⊗) of two tensors A ∈ RI1×...×IN and
B ∈ RJ1×...×JN yields a tensor C = A⊗B of size I1J1 × · · · × INJN with entries

C(i1j1, . . . , iNjN ) =A(i1, . . . , iN )B(j1, . . . , jN ).

Partial Kronecker product. The partial Kronecker product of two tensors along the modes α
is denoted �α. For two tensors A ∈ RR1×···×RM×I1×···×IN and B ∈ RS1×···×SM×I1×···×IN , the
partial Kronecker product �{1,...,M} along modes {1, . . . ,M} yields a tensor C = A �{1,...,M} B
of size R1S1 × · · · ×RMSM × I1 × · · · × IN with sub-tensors

C(:, . . . , :, i1, . . . , iN ) = A(:, . . . , :, i1, . . . , iN )⊗B(:, . . . , :, i1, . . . , iN ).

Mode-(M,1) contracted product. The mode-(M,1) contracted product (denoted ×1) of tensors
A ∈ RI1×...×IM and B ∈ RJ1×...×JN with IM = J1 yields a tensor C = A×1 B of size I1× · · ·×
IM−1 × J2 × · · · × JN with entries

C(i1, . . . , iM−1, j2, . . . , jN ) =

IM∑
iM=1

A(i1, . . . , iM )B(iM , j2, . . . , jN ).

Hadamard product. The element-wise product or Hadamard product (denoted~) of two tensors
A and B of same size n1 × . . .× nd yields a tensor C = A~B with entries

C(i1, . . . , id) =A(i1, . . . , id)B(i1, . . . , id).
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4.2 Hadamard Product in Tensor Train Format

A tensor T with the representation in TT format (Equation (1)) can be written

T = T(1) ×1 · · · ×1 T(d).

If T and T′ are two tensors with the same size and with representations in TT formats T = T(1)×1

· · ·×1T(d) and T′ = T′(1)×1 · · ·×1T′(d), then their Hadamard product T~T′ has a representation
in TT format

T~T′ = (T(1) �{1,3} T
′(1)

)×1 · · · ×1 (T(d) �{1,3} T
′(d)

)

where �{1,3} is the partial Kronecker product along modes 1 and 3.

4.3 Potentials Algebra with Tensor Train Format

Using algorithm 1 (denoted Compress(·, ε)), we are now able to compress any multivariate function
(Conditional Probability Distribution, potentials, etc.) in a tensor train format controlled by a given
relative error. In order to build algorithms for PGM using this compressed format, we now need to
define the operations used by such algorithms.

Clique-Separator Product. The product of the potential φ of a clique with one of its separators
ψ can be obtained by using a Hadamard product between tensors. However, this requires φ and ψ
to be tensors with the same order and size. Since separator’s variables form a subset of the clique’s
variables, ψ has to be identified with a tensor ψ′ with the order and size of φ. It is sufficient to
consider the case where φ is a tensor of order d and size n1 × . . . × nd depending on variables
(i1, . . . , id) and ψ is a tensor of order d− 1 depending on variables (i1, ..., iν−1, iν+1, ..., id). Then
ψ′ is the tensor of order d such that ψ′(i1, ..., id) = ψ(i1, ..., iν−1, iν+1, ..., id), and the Hadamard
product φ~ ψ has to be interpreted as φ~ ψ′.

Remark 1 If ψ has a representation in TT format with cores T(µ) and representation ranks rν , µ ∈
{1, . . . , ν− 1, ν+ 1, . . . , d}, then ψ′ has a representation in TT format with cores T′(µ) = T(µ) for
µ ∈ {1, . . . , ν−1, ν+1, . . . , d} and T′(ν) ∈ Rrν−1×nν×rν such that T′(ν)(kν−1, iν , kν) = δkν−1,kν ,
where δ represents the Kronecker delta.

Marginalization. Variables in a separator ψi→j between two cliques Ci and Cj being a subset of
Ci and Cj’s variables, we can marginalize the tensor φ associated with Ci in order to form ψi→j .

Remark 2 If φ has a representation in TT format with cores T(ν), ν ∈ {1, . . . , d} and ψi→j is a
separator over (i1, ..., iν−1, iν+1, ..., id), then ψi→j has a representation in TT format with cores
T′(ν) = T(ν) for ν ∈ {1, . . . , ν − 1, ν + 2, . . . , d} and T′(ν+1) =

∑
iν
T(ν)(:, iν , :)×1 T(ν+1) (for

a right marginalization).

4.4 Shafer-Shenoy with Tensor Train Format

We can now redefine the Shafer-Shenoy algorithm, a classical message passing algorithm described
in 2.2, using TT and the previously defined operations. The Marginalize operation will marginalize
φ over the variables that are not in ψi→j (see algorithms 2,3,4).
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Algorithm 2 CollectTT(T , i, j, ε)
Input : an initialized JT T , i, j ∈ V(T ) and a tolerance

ε
Output Recursively computed ψi→j

1: φ← φi
2: for k ∈ Adj(i)\{j} do
3: CollectTT(T , k, i, ε)
4: φ←Compress(φ ~ ψk→i, ε)
5: ψi→j ←Marginalize(φ, ψi→j )

Algorithm 3 DistributeTT(T , i, j, ε)
Input : an initialized JT T , i, j ∈ V(T ) and a tolerance ε
Output Recursively computed ψi→j

1: φ← φi
2: for k ∈ Adj(i)\{j} do
3: φ←Compress(φ ~ ψk→i, ε)
4: ψi→j ←Marginalize(φ, ψi→j )
5: for l ∈ Adj(j)\{i} do
6: DistributeTT(T , j, l)

Algorithm 4 Shafer-Shenoy TT(T , r, ε)
Input : a JT T of B = (G,Θ), a root r ∈ V(T ) and a tolerance ε
Output a JT T with messages in both directions on all the separators

1: for v ∈ V(B) do
2: Assign Compress(P (v|πv)) to a clique C s.t (v ∪ πv) ⊆ C
3: CollectTT(T , r, r, ε)
4: DistributeTT(T , r, r, ε)

5. Experimental Results

In order to obtain experimental results, we develop a first implementation using several pack-
ages : T3F (https://t3f.readthedocs.io) for the manipulation of tensors in TT format,
TensorFlow (www.tensorflow.org) for tensors related operations and pyAgrum (https:
//agrum.gitlab.io) for the manipulation of Bayesian networks, junction trees and potentials.
For the discussion, we compare 2 implementations : Shafer-Shenoy (called SS) and Shafer-Shenoy
with tensor train format (called SSTT). The two implementations are identical as much as possible
except that the first one manipulates potentials (model and operations implemented in C++) and the
second one manipulates tensors in tensor train format (model and operations implemented in Ten-
sorFlow or T3F with mixed python and C++). We compare both inference time (denoted TSS for
SS, TSSTT for SSTT) as well as the number of parameters (in cliques and separators) at the end of
each inferences (#SS for SS, #SSTT for SSTT) and the compression factor between them ( #SS

#SSTT
,

denoted τ ). All the tests have been performed on a dual E5-2630v2@2.60GHz with 32Go of RAM.

5.1 Models from the Literature

Table 1 showcases how using our approach on classical BNs improves space complexity of infer-
ences, especially on large BNs. The TT format is not helpful when the JT have small cliques (like
in Asia or Alarm). In that case, the tensor train may contain more parameters than its original
multidimensional counterpart. However, in case of complex network such as Munin1, it helps by
greatly reducing the number of parameters and the inference time. In the case of Link (724 nodes,
1125 arcs), our Shafer-Shenoy implementation couldn’t finish the inference, due to a lack of mem-
ory (SSTT took 207 seconds). TT operations being computationally expensive, time gains are not
linear with the memory savings, as Barley shows.
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BN Alarm Asia Barley Carpo Child Diabetes Hailfinder Insurrance Link Mildew Munin1 Pigs Water
Ratio 132.61 98.83 0.69 29.51 112.72 27.45 123.15 101.32 207.10 3.14 0.03 59.218 200.07
τ 0.78 0.60 116.43 0.71 0.74 11.27 1.14 4.26 - 30.29 4289.57 40.63 63.93

Table 1: Inference time ratio (TSSTTTSS
) and compression factor (τ ) for classical BN (ε = 0.001)

5.2 Dynamic Bayesian Networks

In order to generate BN with growing complexity, we relied on Dynamic Bayesian Network (dBN)
(Dagum et al., 1992), dBNs are a generalisation of Markov Chain and can be seen as BNs that relate
variables to each other over adjacent time steps (called time slices). Once the relation between
two time slices is defined (in a graph called 2TBN), they can be easily deployed (unrolled) for a
particular number of steps. When we create a junction tree from an unrolled dBN, the cliques tend
to be very large, often making exact inference intractable (Murphy, 2002).

(a) (b) (c)

Figure 2: 2TBN of : (a) dBN 1, (b) dBN 2, (c) dBN 3

For our experiments, we have defined 3 dBNs, whose related 2TBN are presented in Figure
2. Each variable’s domain size is 10 and CPT were randomly generated. The dBN 1 (Figure 2.a)
is expected to be the worst case for our tensor train based algorithm : it is exactly five Markov
chains and all the cliques have a size of 2 while dBN 2 and 3 (Figure 2.b and 2.c) are growing in
complexity, with more and more arcs intra/inter slices.

Error of Approximation using SSTT. To evaluate the relative errors of our algorithm, we per-
formed inferences ten times on dBN 2 with 50 time slices and randomized CPTs for each iteration.
We then compare the exact value of each probability p in each posterior and its approximated ver-
sion with SSTT p̂. Finally we observe the relative error |p−p̂|p . If other evaluation criteria such as
the absolute error or a Kullback–Leibler divergence between p and p̂ have been considered and even
considering its drawbacks, the relative error seemed to us to be the easiest one to interpret. Figure
3 shows that, as expected, a higher tolerance ε in the approximation operation compress(T, ε) in-
creases the maximum relative error but lower the inference time. Interestingly, Figure 4 shows that
the maximum error is almost constant with the number of time slices. It seems to indicate that there
is few error propagation along the JT branches.

Inference Time and Memory Usage. Comparing inference time of Shafer-Shenoy and our algo-
rithm shows that, the more complex and memory intensive an inference is, the more interesting is
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dBN 1 dBN 2 dBN 3
Nb. Time slices TSSTT

TSS
TSSTT
TSS

TSSTT
TSS

TSSTT
4 179.89 61.07 7.79 2.95 s
5 69.14 38.83 1.46 4.31 s
7 69.47 1.47 - 21.07 s

15 64.24 0.38 - 57.40 s
50 55.40 0.33 - 167.42 s
75 45.97 0.27 - 318.71 s
100 34.59 0.26 - 382.31 s
150 32.68 0.21 - 522.02 s

Table 2: Ratio between inference times for
SSTT and SS (ε = 0.05)

Nb. Time slices SS SSTT τ

4 3.33E+05 4.15E+04 8.0
5 1.04E+06 1.75E+05 5.9
7 1.71E+07 1.16E+05 147.8
15 1.09E+08 6.81E+05 160.5
50 5.05E+08 4.63E+06 109.1
75 8.01E+08 4.57E+06 175.4
100 1.07E+09 9.20E+06 115.9
150 1.66E+09 1.29E+07 128.8

Table 3: Number of parameters and
compression factor (τ ) in SS and SSTT

(dBN 2, ε = 0.05)
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Figure 3: Evolution of the max error ( |p−p̂|p ) and
inference time in dBN 2 with 50 timeslices
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the usage of the tensor train format, as shown in the Table 2. In the case of dBN 1, a decomposition
is unnecessary since the size of potentials won’t change, only their number will linearly grow with
the number of time slices. With dBN 2, on the other hand, the TT version of Shafer-Shenoy shows
how much compressing potentials can help to scale inference. Finally, in the case of dBN 3, mem-
ory lacks are observed over 7 time slices for the standard algorithm when the TT version can easily
scale linearly to 150 time slices. The limiting factor being the treewidth of the junction tree, using
a low-rank representation for potentials, such as the TT format, greatly improves memory usage, as
shown in Table 3. For a tolerance factor ε of 0.05, the number of parameters in our model uses less
than a hundredth of the space used by the exact one, with a maximum relative error of 0.12.

5.3 Comparison with Another Approximate Inference

To extend our comparison, we test our method against another approximate inference, Loopy Belief
Propagation (LBP) (Murphy et al., 1999), rather than sampling methods that don’t offer any guaran-
tee in terms of inferences times. Performances measures shown in Table 4 are similar between SSTT
and LBP. However, it is important to note that LBP does not provide any indication of errors for the
exact marginal approximation. Even worse, LBP may not always converge for this approximation.
On the other hand, SSTT proposes a scalable and controlled approximation.
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BN
|p−p̂|
p SSTT
ε = 1e-3

|p−p̂|
p SSTT
ε = 1e-5

|p−p̂|
p LBP

Alarm 7,63E-03 2,24E-05 7,50E-01
Asia 4,12E-02 4,02E-09 7,60E-03

Barley 1,20E+00 1,13E-02 2,05E+00
Carpo 7,75E-03 5,52E-14 8,10E-16
Child 3,00E-04 1,47E-08 3,01E-01

Diabetes 2,12E+00 2,00E+00 5,67E+01
Hailfinder 8,10E-04 2,17E-06 4,51E-02
Insurrance 5,41E+00 3,38E-01 1,35E+00

Mildew 4,28E+12 1,35E+07 1,48E+02
Munin1 1,32E+15 1,92E+02 2,08E+00

Pigs 3,06E-14 3,06E-14 1,25E-01
Water 1,86E+02 4,20E+01 6,50E+00

Table 4: Maximum error between SSTT with multiple tolerances and LBP

6. Discussion and Future Works

The representation of potentials in tensor train format proposed in this paper allowed a controlled
trade-off between time/space complexity and precision during inference. Even if we focused on
only one algorithm (Shafer-Shenoy), it is straightforward to see how much this approach could
be generalized in other contexts, such as Markov Random Fields (Koller and Friedman, 2009) or
Probabilistic Relational Model (Torti et al., 2010; Medina Oliva et al., 2010), where systems can
easily be deployed to represent large-scale worlds. Moreover, this compact representation could
greatly improve as well the expression of conditional probability tables with a large set of parents
such as (not decomposable) ICI models (Zagorecki et al., 2006) or aggregators (Wuillemin and
Torti, 2012). Since the operations involved in our algorithms are heavily parallelizable, they could
also benefit from a GPGPU pipeline using CUDA. In some cases, as Figure 1 shows, converting
potential into tensors with TT format is unnecessary or even counterproductive compared to using
the standard calculation. Hence, an hybrid inference determining for each potential the best algebra
might be a solution. Finally, tensor train format is one particular case of more general tree tensor
networks, which are tensor formats associated with dimension partition trees (Hackbusch and Kuhn,
2009; Nouy, 2019). The architecture of the network (given by the tree) can have a significant impact
on the approximation power of a tree tensor network. Therefore, in the context of PGM, much higher
performances could be expected by considering tree tensor networks with tree adaptation methods,
as proposed in (Grelier et al., 2018; Grelier et al., 2019).
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