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Approximation by tree tensor networks in high dimensions:

Sobolev and compositional functions∗
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Abstract

This paper is concerned with convergence estimates for fully discrete tree tensor
network approximations of high-dimensional functions from several model classes. For
functions having standard or mixed Sobolev regularity, new estimates generalizing and
refining known results are obtained, based on notions of linear widths of multivariate
functions. In the main results of this paper, such techniques are applied to classes of
functions with compositional structure, which are known to be particularly suitable
for approximation by deep neural networks. As shown here, such functions can also
be approximated by tree tensor networks without a curse of dimensionality – however,
subject to certain conditions, in particular on the depth of the underlying tree. In
addition, a constructive encoding of compositional functions in tree tensor networks is
given.

1 Introduction

The performance of standard approximations schemes based on splines or wavelets can be
characterized by classical notions of Sobolev or Besov smoothness. In the approximation of
functions on high-dimensional domains, such standard methods are too inefficient, which
is related to the fact that the associated smoothness classes are too broad: in order to
approximate high-dimensional functions with tractable complexity, one needs to exploit
more specific features of these functions. This motivates the analysis of more narrow model
classes of functions and of their interplay with corresponding approximation algorithms.
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France
§Technische Universität Berlin, Germany

1

http://arxiv.org/abs/2112.01474v1


A classical example are sparse grids, whose performance is characterized by model classes
of functions of high-order mixed regularity.

Here, we consider approximation algorithms based on tree tensor networks, which are
a particular type of low-rank approximation of high-order tensors with favorable numeri-
cal properties. We study the performance of such approximations for two types of model
classes. On the one hand, we consider a class of functions that can be written as com-
positions of lower-dimensional component functions. These compositional functions may
represent complex hierarchical decision systems where one agent takes a decision based
on the decisions taken by other agents, or complex simulation systems where the inputs
of a system are given by the outputs (or states) of other systems [4, 14, 19]; see also the
discussion in [18]. This class of functions has been shown by Mhaskar and Poggio [15]
to allow for efficient approximations – with a weak dimension-dependence under certain
conditions – by deep neural networks. To obtain convergence estimates for tree tensor
networks, we develop two techniques based on estimates of linear widths and on a direct
constructive encoding of compositions. On the other hand, to put these convergence results
into context, we also revisit the approximation of functions of (mixed) Sobolev regularity
by tree tensor networks. By a similar technique based on linear widths, we extend and
refine estimates from [20]. The approximation of Sobolev functions by tree tensor networks
has recently also been considered in [11]; there, however, semidiscrete approximation rates
in terms of tensor ranks are obtained from singular value estimates, without discretization
in the tensor modes.

The approximations by tree tensor networks that we consider are associated to dimen-

sion trees, which are assumed to be fixed in advance. An example of such a tree is shown in
Figure 1; in general, for a tensor of order d, the set D = {1, . . . , d} of modes is recursively
subdivided up to the singletons {1},. . . , {d}. The set of all nodes resulting from this sub-
division is then denoted by T . The most common choice here is a binary tree, where each
interior node of the tree has two children. A tree tensor network with T -ranks bounded
by r = (rα)α∈T is a multivariate function v that admits for each α ∈ T a representation
v(x) =

∑rα
k=1 v

α
k (xα)v

αc

k (xαc) for some functions vαk and vα
c

k of complementary groups of
variables xα and xαc , αc = D \ α. For functions in a Hilbert tensor space equipped with a
canonical inner product, such a representation is related to the singular value decomposi-
tion of the α-matricization (or α-unfolding) of v, identified with a bivariate function. The
approximability of a function by tree tensor networks is therefore related to the decay of
singular values of its α-matricizations for each α ∈ T .

The results on approximation of certain compositional functions by neural networks in
[15] are also based on the notion of (binary) dimension trees: the class of approximands
considered there is comprised of functions that are compositions with a tree structure. For
instance, the tree in Figure 1 corresponds to compositions of the form

f(x) = fD
(

f{1,2,3}
(

x1, f{2,3}(x2, x3)
)

, f{4,5}(x4, x5)
)

,

where the tree being binary corresponds to composing bivariate functions, and where the
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{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Figure 1: Example of a dimension partition tree T over D = {1, 2, 3, 4, 5}.

constituent functions are assumed to be at least Lipschitz continuous.
The general result from [15] for approximating such compositions with an underlying

tree of depth L can be paraphrased as follows: Assume that f has compositional structure

according to a binary dimension tree with L levels, where each component function is Lip-

schitz continuous with Lipschitz constant B > 0 and has s weak derivatives in L∞. Then

for any smooth, non-polynomial activation function, there exists a neural network f̃ such

that ‖f − f̃‖L∞ ≤ ε with O(LBLε−2/s) coefficients.

Note that since B ≤ 1 is assumed in [15], the dependence on L is not explicitly men-
tioned there. The dependence of L on d depends on the tree structure, with the most
favorable dependence L ∼ log d for a balanced tree: in this case, BL is polynomial in
d. The proof is based on the following estimate: for functions f, g, h satisfying the above
assumptions with approximations f̃ , g̃, h̃, one has

‖f(g, h) − f̃(g̃, h̃)‖L∞ ≤ ‖f(g, h) − f(g̃, h̃)‖L∞ + ‖f(g̃, h̃)− f̃(g̃, h̃)‖L∞

≤ B(‖g − g̃‖L∞ + ‖h − h̃‖L∞) + ‖f − f̃‖L∞ .
(1)

Applying this estimate recursively starting from the root of the tree, the bound for the
approximation complexity follows, using that each component function can be approxi-
mated separately by a neural network with O(ε−2/s) parameters; the composition of these
approximations is then again a neural network.

One of the main results of the present work is that a very similar approximation com-
plexity for this class of compositional functions can be achieved by approximations by tree
tensor networks, with error measured in L2 (for arbitrary s) or L∞ (with the restriction
s ≤ 2). More specifically, we show that a tree tensor network approximation f̃ (that is,
a composition of multilinear mappings according to the same binary tree structure as the
approximand) can be found such that accuracy ε is achieved with O(L3B3Lε−3/s) coeffi-
cients, possibly up to terms logarithmic in ε that depend on the particular construction,
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and up to a constant polynomial in d. In other words, we obtain a very similar dependence
on d with d-independent convergence rate for tree tensor network approximations, which
are substantially easier to handle numerically than approximations by neural networks. In
fact, these tensor approximations can be constructed explicitly in certain cases. The curse
of dimensionality is thus shown to be avoided for tree tensor networks under very similar
conditions as for deep neural networks.

The outline of the paper is as follows. In Section 2, we recall the definition of tree tensor
networks and provide upper bounds for the best approximation error of a function in L2

in terms of linear widths. In Section 3, using these upper bounds based on linear widths,
we provide approximation results for functions with (mixed) Sobolev regularity. Finally in
Section 4, we consider the approximation of compositional functions by tree tensor networks
and discuss the conditions under which the curse of dimensionality is avoided. For the
approximation in L2, our proof is based on estimates of linear widths of compositional
functions, while for the approximation in L∞, we use a constructive proof and provide an
explicit encoding of an approximation that achieves the announced convergence rates.

2 Linear widths and tree tensor networks

In this section, we first discuss notions of linear widths in the context of multivariate func-
tions. We then recall the definition of the model class of functions in tree based tensor
format (or tree tensor networks), which is interpreted as a particular class of composi-
tional functions. Finally, in the case of square-integrable functions on the unit cube in d
dimensions, we deduce upper bounds of the best approximation error in terms of linear
widths.

2.1 Linear widths and singular value decomposition

We consider functions defined on the unit cube X = (0, 1)d with d ≥ 2; other sets X with
Cartesian product structure could be treated in the same manner in what follows, but we
restrict ourselves to this special case for simplicity. We denote by D = {1, . . . , d} the set
of dimensions. Throughout this section, we assume α to be a nonempty strict subset of D,
and we define αc = D \ α. We set Xα = (0, 1)|α|, and for x = (x1, . . . , xd) ∈ X , we write
xα = (xν)ν∈α ∈ Xα.

For closed subspaces V of Banach spaces Y , for the error of best approximation of
u ∈ Y by elements of V , we introduce the notation

E(u, V )Y = inf
v∈V

‖u− v‖Y .

Recall that the classical Kolmogorov n-width of a compact subset K ⊂ Y then reads

dn(K)Y = inf
dim(V )=n

sup
u∈K

E(u, V )Y ,
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where the infimum is taken over all n-dimensional subspaces V ⊂ Y .
In the following summary of basic notions of related linear widths of multivariate func-

tions, we focus on functions in the tensor product Hilbert space

X := L2(X ) = L2(X1)⊗ · · · ⊗ L2(Xd),

where we abbreviate Xα := L2(Xα). We first note that by the canonical isomorphism
Mα : L

2(X ) → L2(Xαc ;Xα), any f ∈ L2(X ) can be isometrically identified with fα :=
Mαf ∈ L2(Xαc ;Xα) given by fα : xαc 7→ f(·, xαc). For a given closed subspace V ⊂ Xα,
we define the projection

Pα
V f := M−1

α

(

argmin
gα∈L2(Xαc ;V )

‖fα − gα‖L2(Xαc ;Xα)

)

,

which amounts to applying the L2-orthogonal projection onto V to fα(xαc) for each xαc .
For more details on projections on tensor spaces, see also [16].

We now introduce an average linear width associated to f and α as

δαn(f) = inf
dim(V )=n

(
∫

Xαc

E
(

fα(xαc), V
)2

Xα
dxαc

)1/2

. (2)

As we shall now describe, these widths are closely connected to low-rank approximations
of f . To this end, we define the compact operator

Sα
f : Xαc → Xα, v 7→

∫

Xαc

fα v dxαc .

We then define the α-rank of f by

rankα(f) := dimRangeSα
f ,

which in general may be infinite. Note that rankα(g) ≤ n implies that g can be written in
the form

n
∑

k=1

uk(xα) vk(xαc)

with functions uk ∈ Xα, vk ∈ Xαc for k = 1, . . . , n.
The operator Sα

f admits a singular value decomposition (see, e.g., [9, Section 4.4.3]);
let (σαk )k≥1 be the non-increasing, non-negative sequence of singular values. Then it is easy
to see that for each n ∈ N,

δαn(f) = min
rankα(v)≤n

‖f − v‖X =
(

∑

k>n

(σαk )
2
)1/2

;
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in other words, δαn(f) is the error of L2-best approximation of f of α-rank n. Moreover, if
Un ⊂ Xα is a principal subspace of Sα

f associated to n largest singular values, then

δαn(f) = ‖f −Pα
Un
f‖X = min

dim(V )=n
‖f − Pα

V f‖X ,

that is, such best approximations of α-rank at most n can be obtained from the singular
value decomposition. As a further consequence, note that

δαn = δα
c

n , n ∈ N. (3)

2.2 Tree-based tensor formats

We next introduce some notions that are fundamental to tree-based tensor formats; for
further details, we refer to [9, 5]. Let T be a dimension partition tree over D = {1, . . . , d}
(see an example on Figure 1). For any node α ∈ T , we denote by S(α) ⊂ T the set of sons
of α, which forms a partition of α. S(α) is either empty or has cardinality #S(α) ≥ 2.
If S(α) = ∅, α is called a leaf of T . We let L(T ) be the set of leaves of T and write
I(T ) = T \ L(T ) for the interior nodes of T .

We let level(α) be the level of α in T . We use the convention level(D) = 0 and for any
β ∈ T \ {D} such that β ∈ S(α), we define level(β) = level(α) + 1. Also, we define the
depth of T as depth(T ) = max{level(α) : α ∈ T}. We set Tℓ = {α ∈ T : level(α) = ℓ} for
0 ≤ ℓ ≤ depth(T ) and dℓ = #Tℓ.

Example 2.1 (Trivial tree). The trivial tree T = {D, {1}, . . . , {d}} has a single interior
node D and depth(T ) = 1.

Example 2.2 (Linear binary tree). The linear binary tree

T = {{1}, . . . , {d}, {1, 2}, . . . , {1, . . . , d− 1},D}

satisfies depth(T ) = d− 1 and Tℓ = {{1, . . . , d− ℓ}, {d − ℓ+ 1}} for 1 ≤ ℓ ≤ d− 1.

Example 2.3 (Balanced binary tree). For a balanced binary tree T , depth(T ) = ⌈log2(d)⌉.
For ℓ ≤ depth(T ), we have #Tℓ ≤ 2ℓ and #α ≤ ⌈ d

2ℓ
⌉ for all α ∈ Tℓ.

Let X be a tensor product space of multivariate functions. For a tuple r = (rα)α∈T
(with rD = 1), we define a tree-based tensor format in X as

T T
r (X) =

{

v ∈ X : rankα(v) ≤ rα, α ∈ T
}

.

Tensors satisfying these rank constraints are also known as hierarchical tensors [10] or as
tree tensor network states in quantum physics [21]. Letting U = U1⊗. . .⊗Ud be a subspace
of X, where the Uν are finite-dimensional subspaces of functions defined on Xν , we also
define

T T
r (U) = {v ∈ U : rankα(v) ≤ rα} = T T

r (X) ∩ U.
A tuple r is called admissible if T T

r (X) 6= ∅.
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2.3 Tree based tensor formats as compositional functions and tensor

networks

We let {ϕν
i }nν

i=1 denote a basis of Uν , and introduce the map ϕν : Xν → R
nν such that

ϕν(xν) = (ϕν
i (xν))

nν
i=1. A function f ∈ T T

r (U) can be parametrized by a set of multilinear
functions {Gα : α ∈ T}, where Gα :×β∈S(α)R

rβ → R
rα for α ∈ I(T ) is multilinear, and

Gα : Rnα → R
rα for α ∈ L(T ) is linear. The function f can be written

f(x) = GD((zα)α∈S(D)),

with zα = ϕα(xα) for a leaf node α ∈ L(T ), and

zα = Gα((zβ)β∈S(α))

for an interior node α ∈ I(T ).
The multilinear functions Gα can be identified with tensors of order #S(D) for α = D,

1 + #S(α) for α ∈ I(T ) \ {D} and 2 if α ∈ L(T ). This yields the interpretation of the
tree-based format as a tree tensor network.

Example 2.4. For the tree T of Figure 1, f ∈ T T
r (U) can be written

f(x) = GD(G{1,2,3}(G{1}(z1), G
{2,3}(G{2}(z2), G

{3}(z3))), G
{4,5}(G{4}(z4), G

{5}(z5)))

where zν = ϕν(xν), 1 ≤ ν ≤ d.

Example 2.5 (Trivial tree and Tucker format). For the trivial tree of Example 2.1, T T
r (U)

corresponds to the Tucker format and f ∈ T T
r (U) can be written

f(x) = GD(ϕ1(x1), . . . , ϕ
d(xd)).

Example 2.6 (Linear tree and tensor train format). For the linear binary tree of Exam-
ple 2.2, T T

r (U) corresponds to the tensor train (TT) Tucker format.

The number of parameters (or representation complexity) of an element in T T
r (U) is

N(T, r, U) =
∑

α∈I(T )

rα
∏

β∈S(α)

rβ +

d
∑

ν=1

rνnν ,

with nν = dim(Uν). If rα ≤ R for all α and dim(Uν) ≤ n for all ν, then

N(T, r, U) ≤ Ra + (#T − 1− d)Ra+1 + dRn ≤ Ra + (d− 2)Ra+1 + dRn,

where a = maxα∈I(T )#S(α) is the arity of the tree (a = 2 for a binary tree, and a = d for
a trivial tree).

7



2.4 Best approximation error and linear widths

Let T be a fixed dimension tree and r = (rα)α∈T be an admissible rank. For any subspace
U ⊂ X = L2(X ), the error of best approximation of a function f ∈ X by an element of
T T
r (U) is

eTr,U (f)X = inf
v∈T T

r (U)
‖f − v‖X ,

and the error of best approximation of a function f ∈ X by an element of T T
r (X) is

eTr (f)X := eTr,X(f)X .

The following result provides an upper bound of the best approximation error with tree
tensor networks in terms of linear widths of f . The argument is similar to the one for the
discrete case given in [8].

Proposition 2.7. Let f ∈ X and let r ∈ N
#T be an admissible rank. Then

eTr (f)
2
X ≤

∑

α∈T\{D}

(

δαr (f)
)2
. (4)

Furthermore, for any finite-dimensional subspace U = U1 ⊗ . . .⊗ Ud, we have

eTr,U (f)
2
X ≤

d
∑

ν=1

∫

Xνc

E
(

f ν(xνc), Uν

)2

Xν
dxνc +

∑

α∈A\{D}

(

δαr (f)
)2
, (5)

with A = I(T ) if dim(Uν) = rν for all 1 ≤ ν ≤ d, or A = T otherwise.

Proof. We first show that for any finite-dimensional subspace U = U1 ⊗ . . . ⊗ Ud, and
any collection of subspaces Vα ⊂ Xα with dim(Vα) = rα, α ∈ T \ {D}, with A as in the
hypothesis we have

eTr (f)X ≤ eTr,U (f)X ≤
d

∑

ν=1

‖f − P{ν}
Uν

f‖2X +
∑

α∈A\{D}

‖f − Pα
Vα
f‖2X . (6)

The result will be proved by constructing a particular approximation fr ∈ T T
r (U) and by

providing an upper bound of ‖f − fr‖2X . We define the approximation

fr = PL+1PL . . .P1f,

where L = depth(T ), Pℓ =
∏

α∈Tℓ
Pα
Vα
, for 1 ≤ ℓ ≤ L, and PL+1 = P{1}

U1
. . .P{d}

Ud
. For

disjoint subsets α and β, the projections Pα
Vα

and Pβ
Vβ

commute. Therefore, the definition

of Pℓ does not depend on the order of projections Pα
Vα
, α ∈ Tℓ.
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Let us first prove that fr ∈ T T
r (U). We clearly have fr ∈ U . Then we note that for

any function g and any pair α, β ∈ T such that β ⊂ α or β ⊂ αc, we have rankα(PVβ
g) ≤

rankα(g) for any subspace Vβ in Xβ . Then for α ∈ T with level ℓ, since the projections

Pℓ′ with ℓ
′ > ℓ only involve projections Pβ

Vβ
with β ⊂ α or β ⊂ αc, we have rankα(fr) ≤

rankα(Pℓ . . .P1f) = rankα(Pα
Vα
g) ≤ rα, where g =

∏

β∈Tℓ,β 6=αP
β
Vβ
Pℓ−1 . . .P1f. This proves

that rankα(fr) ≤ rα for all α ∈ T , which implies fr ∈ T T
r (X). We therefore deduce that

fr ∈ T T
r (X) ∩ U = T T

r (U).
Now let us provide the desired upper bound for ‖f−fr‖X . For clarity, we let ‖·‖ = ‖·‖X .

Using the properties of orthogonal projections, we have

‖f − fr‖2 = ‖f − PL+1 . . .P1f‖2 = ‖f − PL+1f‖2 + ‖PL+1(f − PL−1 . . .P1f)‖2

≤ ‖f − PL+1f‖2 + ‖f − PL . . .P1f‖2

Repeating the above arguments, we obtain ‖f − fr‖2 ≤ ∑

1≤ℓ≤L+1 ‖f − Pℓf‖2. For 1 ≤
ℓ ≤ L, we have ‖f − Pℓf‖2 = ‖f −∏

α∈Tℓ
Pα
Vα
f‖2 ≤ ∑

α∈Tℓ
‖f − Pα

Vα
f‖2, which provides

the desired bound for the general case. In the case where dim(Uν) = rν for 1 ≤ ν ≤ d, the
result is deduced from the above result by choosing Vν = Uν for 1 ≤ ν ≤ d in the definition
of fr, and by defining PL+1 = id.

Now (4) follows from (6) by taking the infimum over spaces Uα and Vα, and (5) follows
from (6) by taking the infimum over spaces Vα.

3 Approximation of functions in Sobolev spaces

In this section, we consider the approximation of functions in Sobolev spaces on X = (0, 1)d

using tree tensor networks: on the one hand, the standard fractional Sobolev spaces Hs(X )
for s > 0, and on the other hand, the mixed Sobolev spaces Hs

mix(X ), which can be
characterized as tensor products Hs

mix(X ) = Hs(0, 1) ⊗ · · · ⊗ Hs(0, 1) with the canonical
cross norm. Assuming a dimension tree T for D, we again write Xα = (0, 1)|α| for α ∈ T
and abbreviate Hs

α = Hs(Xα) and H
s
α,mix = Hs

mix(Xα).

3.1 Sobolev spaces

We first recall a standard result on Kolmogorov widths of Sobolev balls (see, e.g., [17,
Chapter VII]). Here and in what follows, we denote by B1(X) the unit ball of a given
normed space X.

Theorem 3.1. Let I = (0, 1)m. Then

dn
(

B1(H
s(I))

)

L2 ≤ Rn−s/m,

where R > 0 is independent of n.
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It is well known that there exist approximation tools, such as splines or wavelets, that
achieve the optimal rate of convergence given by the Kolmogorov widths [6]. In other words,
there exists a sequence of n-dimensional spaces Vn ⊂ L2(I) such that for all f ∈ Hs(I),

E(f, Vn)Xα ≤Mn−s/m‖f‖Hs

where M ≥ R is a constant independent of f and n. For f ∈ Hs(X ), s > 0, from this
bound we deduce the following estimate on the average linear widths of f defined in (2).

Proposition 3.2. Let f ∈ Hs(X ), s > 0. For any α ∈ T \ {D}, we have

δαn(f) ≤ Cn−s/dα‖f‖Hs

with dα = min{#α, d −#α}, and C independent of r and f , but depending on dα and s.

Proof. Let f ∈ Hs(X ). Since fα(xαc) ∈ Hs
α for almost all xαc , for xαc such that fα(xαc) 6=

0 we have

E(fα(xαc), Vn)L2
α
= E

(

‖fα(xαc)‖−1
Hs

α
fα(xαc), Vn

)

Xα
‖fα(xαc)‖Hs

α
,

as well as E(fα(xαc), Vn)Xα = 0 otherwise. Thus

δαn(f) = inf
dim(Vn)=n

(
∫

Xαc

E(fα(xαc), Vn)
2
Xα
dxαc

)1/2

≤ inf
dim(Vn)=n

ess sup
xαc

E
(

‖fα(xαc)‖−1
Hs

α
fα(xαc), Vn

)

Xα
‖f‖L2(Xαc ;Hs

α)

≤ dn
(

B1(H
s
α)
)

Xα
‖f‖Hs ,

where we have used ‖fα‖L2(Xαc ;Hs
α)

≤ ‖f‖Hs . By Theorem 3.1, we have dn
(

B1(H
s
α)
)

Xα
≤

C#αn
−s/#α with C#α independent of f and n. The statement now follows with (3).

For each ν ∈ D, we introduce a sequence of spaces Uν,nν with dimension nν (such as
splines or wavelets) such that for all u ∈ Hs

ν ,

E(u,Uν,nν )Xν ≤Mn−s
ν ‖u‖Hs

ν
, (7)

which implies

∫

Xνc

E
(

f ν(xνc), Uν,nν

)2

Xν
dxνc ≤M2n−2s

ν ‖f‖2Hs . (8)

Then we let Un = U1,n1 ⊗ . . .⊗Ud,nd
. Now, we can deduce an approximation result for the

approximation of functions in Sobolev spaces using tree tensor networks.
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Theorem 3.3. Let f ∈ Hs(X ) and 0 < ε < 1, and let N(f, ε, d) be the minimal complexity

N(T, r, Un) such that

eTr,Un
(f)X ≤ ε‖f‖Hs .

For any dimension partition tree T , there exists a constant C depending on d such that

N(f, ε, d) ≤ Cε−d/s.

Proof. From Proposition 2.7 and Proposition 3.2, we deduce that if

rα ≥ ε−dα/s(Cdα

√

#T − 1)dα/s

for each interior node α ∈ I(T ) \ {D}, and rν = nν ≥ ε−1/s(M
√
#T − 1)1/s for all

1 ≤ ν ≤ d, then
eTr,Un

(f)X ≤ ε‖f‖Hs .

The minimal values of ranks such that the above conditions hold are such that rα :=
rα(ε) ∼ ε−dα/s, α ∈ T \{D}, with constants depending on d, M and s. Then recalling that
N(f, r, Un) =

∑d
ν=1 r

2
ν +

∑

α∈I(T ) rα
∏

β∈S(α) rβ, we have

N(f, ε, d) . dε−2/s + ε−(
∑

α∈S(D) dα)/s +
∑

α∈I(T )\{D}

ε−(dα+
∑

β∈S(α) dβ)/s.

We note that
∑

α∈S(D) dα ≤ ∑

α∈S(D)#α = d. Then consider α ∈ I(T )\{D}. If dα = #α,
we have #α ≤ d/2 and dα +

∑

β∈S(α) dβ ≤ #α +
∑

β∈S(α)#β = 2#α ≤ d. Otherwise,
dα = #αc, and we have dα +

∑

β∈S(α) dβ ≤ #αc +
∑

β∈S(α)#β = #αc + #α = d. Then

for any tree, we have N(f, ε, d) . dε−2/s + (#T − d)ε−d/s.

An important observation is that for any dimension partition tree T the complexity
N(f, ε, d) scales as ε−d/s, the optimal rate deduced from linear widths of Sobolev balls.
For Sobolev spaces, a shallow network associated with a trivial tree with depth one (Tucker
format) has a similar performance as deep tensor networks associated with binary trees.

3.2 Mixed Sobolev spaces

We recall a standard result on Kolmogorov widths of balls of mixed Sobolev spaces (see
e.g. [23]).

Theorem 3.4. Let I = (0, 1)m. For any s > 0, there exists R > 0 such that for all n ∈ N,

dn
(

B1(H
s
mix(I))

)

L2 ≤ Rn−s log(n)s(m−1) .

The above result yields the following estimate of the average linear widths of f .
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Proposition 3.5. For f ∈ Hs
mix(X ) and α ∈ T \ {D}, we have

δαn(f) ≤ Cn−s log(n)s(dα−1)‖f‖Hs
mix

with dα = min{#α, d−#α}, and C a constant independent of f and n, but depending on

dα and s.

Proof. Let f ∈ Hs
mix(X ). Using ‖fα‖L2(Xαc ;Hs

α,mix)
≤ ‖f‖Hs

mix
to argue as in the proof of

Proposition 3.2, we obtain

δαn (f) ≤ dn
(

B1(H
s
α,mix)

)

Xα
‖f‖Hs

mix
.

By Theorem 3.4,
dn

(

B1(H
s
α,mix)

)

Xα
≤ C#αn

−s log(n)s(#α−1)

with C#α independent of f and n. The statement follows with (3).

Another bound is obtained in the next proposition by exploiting results on hyperbolic
cross approximation [12] (see also [7]). Related conversions from hyperbolic cross approxi-
mations to tensor formats have also been considered in [9, §7.6] and [20].

Proposition 3.6. For f ∈ Hs
mix(X ) and α ∈ T \ {D}, we have

δαn(f) ≤ Cd n
−2s log(n)2s(d−2)‖f‖Hs

mix

with Cd independent of f and n, but depending on s and depending exponentially on d.

Proof. We rely on results on m-term approximation from [12]. We consider the tensor
product wavelet system {φj}j∈I from [12, Section 3.2], where I ⊂ N

d × Z
d and where for

(l, k) ∈ I, φl,k(x) = ϕl1,k1(x1) . . . ϕld,kd(xd) with ϕlν ,kν a one-dimensional wavelet system.
Consider f ∈ Hs

mix with ‖f‖Hs
mix

= 1, where Hs
mix coincides with the Lizorkin-Triebel space

Ss
2,2F (see definition in [12, Section 3.1]). It admits an expansion

f =
∑

j∈I

cj(f)φj ,

with a sequence of coefficients (cj(f))j∈I in the sequence space ss2,2f(I) defined in [12,
Definition 3.2]. Then consider the multi-index set

IL = {(l, k) ∈ I : |l|1 ≤ L},

which is an hyperbolic cross with cardinality #IL ∼ Ld−12L (see [12, Remark 5.7]). Then
from [12, Proposition 5.6] and the fact that ‖f‖Hs

mix
∼ ‖(cj(f))j∈I‖ss2,2f , we have that the

approximation

fL =
∑

j∈IL

cjφj

12



satisfies ‖f − fL‖p . 2−Ls.
We let Lα((l, k)) =

∑

ν∈α lν , Lαc((l, k)) = |l|1 −Lα((l, k)), and define the sets of multi-
indices

I≤
L = {j ∈ IL : Lα(j) ≤ Lαc(j)} and I>

L = {j ∈ IL : Lα(j) > Lαc(j)}.

We decompose

fL = f≤L + f>L , f≤L =
∑

j∈I≤
L

cjφj, f>L =
∑

j∈I>
L

cjφj .

Defining IS
L,β = {jβ : (jβ , jβc) ∈ IS

L}, with S ∈ {≤, >} and β ∈ {α,αc}, we have

fSL =
∑

jβ∈I
S
L,β

φjβ (xβ)ψ
S,β
jβ

(xβc), with ψS,β
jβ

(xβc) =
∑

jβc :(jβ ,jβc)∈IS
L

c(jβ ,jβc)φjβc (xβc),

so that rankβ(f
S
L ) ≤ #IS

L,β. It follows that

rankα(fL) ≤ rankα(f
≤
L ) + rankα(f

>
L ) = rankα(f

≤
L ) + rankαc(f>L ) ≤ #I≤

L,α +#I>
L,αc .

We observe that for all j ∈ I≤
L , L ≥ Lα(j) + Lαc(j) ≥ 2Lα(j), and therefore

#I≤
L,α ≤ #{(lα, kα) : (lα, lαc , kα, kαc) ∈ I, |lα|1 ≤ L/2} . 2L/2(L/2)#α−1.

Also, for all j ∈ I<
L , L > 2Lαc(j), and therefore

#I>
L,αc . 2L/2(L/2)#α−1.

Since max{#α,#αc} ≤ d− 1, we finally deduce that rankα(fL) ≤ C2L/2(L/2)d−2 for some
constant C. This implies that for n ≥ C2L/2(L/2)d−2 := Cx log2(x)

d−2,

δαn(f) . 2−Ls = x−2s.

A solution to x log2(x)
a = t, for t ≥ 0, is given by x = eaW0(t1/a log(2)/a), where W0 is the

principal branch of the Lambert function. Then for a = d− 2 and n ≥ Ct, we have

δαn(f) . e−2saW0(t1/a log(2)/a).

Using [13, Theorem 2.1], we have that for all t ≥ e, W0(t) ≥ log(t) − log(log(t)), which
implies eW0(t) ≥ t log(t)−1. Therefore, for n ≥ C(ae/ log(2))d−2,

δαn (f) . ((n/C)1/a log(2)a−1 log((n/C)1/a log(2)a−1)−1)−2sa ≤ Ca,sn
−2s log(n)2sa,

with a constant Ca,s depending on a and s, which completes the proof.
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The above result provides a better rate in n−2s (instead of n−s) but slightly worse expo-
nent of the log(n) term. In the following, we will only exploit the result of Proposition 3.6.

Remark 3.7. Based on [12], analogous results can be obtained for Lp-weighted widths with
Hs

mix replaced by the Lizorkin-Triebel space Ss
p,2F for 1 ≤ p <∞.

For each ν ∈ D, we introduce a sequence of spaces Uν,nν with dimension nν (e.g.
trigonometric polynomials or wavelets) such that for all u ∈ Hs(Xν), the error E(u,Uν,nν )L2

ν

satisfies (7), which implies
∫

Xνc

E
(

f ν(xνc), Uν,nν

)2

Xν
dxνc ≤M2n−2s

ν ‖f‖2Hs
mix
.

Then we let Un = U1,n1 ⊗ . . . ⊗ Ud,nd
. Now, we can state an approximation result for the

approximation of functions in mixed Sobolev spaces using tree tensor networks.

Theorem 3.8. Let f ∈ Hs
mix(X ). Let 0 < ε < 1. We denote by N(f, ε, d) the complexity

N(T, r, Un) sufficient to achieve a relative error ε for the approximation of f in the format

T T
r (Un). There exists a constant Cd, which may depend exponentially on d, such that

(i) if T is a trivial tree with depth one,

N(f, ε, d) ≤ Cdε
−d/(2s) log(ε−1)d(d−2),

(ii) and if T is a binary tree,

N(f, ε, d) ≤ Cdε
−3/(2s) log(ε−1)3(d−2).

Proof. From [20, Lemma 1], we know that for some function c(ε, d) such that c(ε, d) → 1
as ε→ 0 and c(ε, d) → ∞ super-exponentially with dα, the condition

rα ≥ c(ε, d)(C
√

d+#T − 1)1/(2s)s−d+2ε−1/(2s) log(ε−1)d−2 (9)

implies
Cr−2s

α log(rα)
2s(d−2) ≤ ε/

√

d+#T − 1.

Then using Proposition 2.7 and Proposition 3.6, we have that if nν ≥ ε−1/s(M
√
d+#T − 1)1/s

for all 1 ≤ ν ≤ d, and rα satisfies (9) for each node α ∈ T , then

eTr,Un
(f)X ≤ ε‖f‖Hs

mix
.

The minimal values of ranks and dimensions nν such that the above conditions hold are
such that rα := rα(ε) ∼ ε−1/(2s) log(ε−1)d−2, α ∈ T \ {D}, and nν := nν(ε) ∼ ε−1/s,
1 ≤ ν ≤ d, with constants depending on d, M and s. Then recalling that N(f, r, Un) =
∑d

ν=1 rνnν +
∑

α∈I(T ) rα
∏

β∈S(α) rβ, we have

N(f, ε, d) . dε−3/(2s) log(ε−1)d−2 + ε−a/(2s) log(ε−1)a(d−2)

+ (#T − d− 1)ε−(a+1)/(2s) log(ε−1)(a+1)(d−2) ,

where a = maxα∈I(T )#α is the arity of the tree T .
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Remark 3.9. From the above result, we can make the following observations.

(i) For a trivial tree (Tucker format), we have a complexity ε−d/(2s), up to a logarithmic
factor, which compared to the result of Theorem 3.3 for Hs-regularity represents
a deterioration by a factor two in the rate. In other words, the extra regularity of
functions inHs

mix compared to those ofHs is not exploited by shallow tensor networks.

(ii) For binary trees, we observe a significant gain, going from a complexity in ε−d/s for
Hs to a complexity in ε−3/(2s) log(ε−1)3d−6 for Hs

mix. The result is similar to the one
obtained in [20] using results on bilinear approximation from [22].

(iii) We note, however, that deep tensor networks (associated with binary trees) do not
achieve the optimal rate in ε−1/s (up to logarithmic factors) obtained from linear
widths of mixed Sobolev balls, and reached by hyperbolic cross approximation [23, 7].

Remark 3.10. The optimal rate in ε−1/s (up to logarithmic terms) could be obtained by
tree tensor networks by further exploiting sparsity in the tensors, and by using a measure
of complexity N counting the number of nonzero entries. In particular, this optimal rate
can be achieved with a trivial tree and a tensor CD having a sparsity pattern based on
hyperbolic crosses. We refer the reader to [1, 2, 3] for the analysis of approximation classes
of tensor networks with sparsity.

4 Approximation of compositional functions

We have seen in Section 2 that tree tensor networks are a particular class of compositional
functions, where the functions that are composed are vector-valued multilinear functions.
In this section, we consider the approximation with tree tensor networks of a particular
class of compositional functions (also considered in [15]) where the functions that are
composed are real-valued functions with Sobolev regularity. In this section, we consider a
set X = X1 × . . . × Xd, with Xν = Iν a bounded and closed interval, equipped with the
uniform measure. The results can be easily extended to the case of more general measures.

4.1 A class FT
s of compositional functions

We let T be a given dimension partition tree over D = {1, . . . , d}. We consider the model
class FT of compositional functions f : X → R of the form

f(x) = fD((gα(xα))α∈S(D))

where gα : Xα → Iα ⊂ R and fD is a multivariate function with values in R =: ID, where
gα(xα) = xα for α ∈ L(T ), and for α ∈ I(T ),

gα(xα) = fα((gβ(xβ))β∈S(α))
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where gβ : Xβ → Iβ ⊂ R and fα is a multivariate function. The function f is completely
determined by the set of multivariate functions

fα : ×
β∈S(α)

Iβ → Iα, α ∈ I(T ).

Example 4.1. For the dimension tree T of Figure 1, the function f admits the representation

f(x) = f{1,2,3,4,5}(f{1,2,3}(x1, f{2,3}(x2, x3)), f{4,5}(x4, x5)).

Note that for α ∈ I(T ) \ {D}, we can take Iα = [−‖fα‖L∞ , ‖fα‖L∞ ].

With Iℓ(T ) = {α ∈ I(T ) : level(α) = ℓ} the set of interior nodes with level ℓ and
Vℓ = Iℓ(T ) ∪ {α ∈ L(T ) : level(α) ≤ ℓ}, we define the compositions of a given function
Gℓ :×β∈Vℓ+1

Iβ → ID with all fα, α ∈ Iℓ+1(T ), by

Gℓ ◦ℓ (fα)α∈Iℓ+1(T ) =
(

(xα)α∈Vℓ+1
7→ Gℓ

(

(xα)α∈Vℓ+1

)∣

∣

xβ=fβ((xγ )γ∈S(β)) for β ∈ Iℓ+1(T )

)

.

(10)

Starting with C0({fα}α∈I(T )) = fD, we now recursively define the compositions of all fα
up to a given level ℓ in T by

Cℓ({fα}α∈I(T )) = Cℓ−1

(

{fα}α∈I(T )

)

◦ℓ−1 (fα)α∈Iℓ(T ).

We denote by C the map which associates to the entire set of functions {fα}α∈I(T ) the

compositional function f ∈ FT ,

f = C({fα}α∈I(T )) = Cdepth(T )−1({fα}α∈I(T )).

We now restrict the class to functions with parameters fα having Sobolev regularity W s,∞

with s ∈ N by introducing

FT
s = {f = C({fα}α∈I(T )) : fα ∈W s,∞, α ∈ I(T )}.

Next, we introduce a subset of FT
s where the norms of parameters fα are controlled. For

a given B = (B1, . . . , Bs) ≥ (1, . . . , 1), we define

FT
s,B =

{

f ∈ FT : ‖fD‖W s,∞ ≤ 1,

‖Dkαfα‖L∞ ≤ B|kα| for 1 ≤ |kα| ≤ s and α ∈ I(T ) \ {D}
}

,

where kα is a multi-index in N
#S(α). For any f ∈ FT

s,B , we have ‖Dkαfα‖L∞ ≤ B1 for
|kα| ≤ 1. Using the chain rule, we can prove that ‖f‖W s,∞ ≤ pT,s,B, with pT,s,B depending
on the tree T , on s and on B.
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4.2 Approximation of functions in FT
s using tree tensor networks

4.2.1 An approach based on linear widths

Let T be a dimension tree over D = {1, . . . , d} and consider a compositional function
f ∈ FT

s,B .

Lemma 4.2. Let f ∈ FT
s,B. For α ∈ T \ {D},

f(x) = Fα(gα(xα), xαc),

with Fα : Iα × Xαc → R such that for any fixed xαc , Fα(·, xαc) ∈ Ss,∞,B
level(α) with

Ss,∞,B
ℓ = {h = h1 ◦ . . . ◦ hℓ : ‖h1‖W s,∞ ≤ 1, ‖Djhi‖L∞ ≤ Bj, 0 ≤ j ≤ s, 2 ≤ i ≤ ℓ}.

Proof. Let α ∈ T \ {D}. Let P (α) ∈ T be the parent node of α in T (such that α ∈
S(P (α))), let B(α) ⊂ T be the set of brothers of α (such that B(P (α)) ∪ {α} = S(α)),
and let Aα be the ancestors of α, which is of cardinality #Aα = level(α). We let Fα :
Iα × Xαc → R be the function such that

f(x) = Fα(yα, xαc) with yα = gα(xα).

Letting ℓ = level(α), and letting Aα = {β1, . . . , βℓ} be the ancestors of α ordered by increas-
ing level (that is, D = β1 ⊃ . . . ⊃ βℓ = P (α)), the function Fα admits the representation

Fα(t, xαc) = fβ1(fβ2(. . . fβℓ
(t, (yβ)β∈B(α)) . . .), (yβ)β∈B(β2)),

with yβ = gβ(xβ). Therefore, for a fixed xαc , the function Fα(·, xαc) : Iα → R can
be written as Fα(t, xαc) = h1 ◦ . . . ◦ hℓ(t), where hi(·) = fβi

(·, (yβ)β∈B(βi+1)) : Iβi+1
→ Iβi

satisfies hi ∈W s,∞.We have h1(·) = fD(·, (yβ)β∈B(β2)), so that ‖h1‖W s,∞ ≤ ‖fD‖W s,∞ ≤ 1.

And for 2 ≤ i ≤ ℓ and 1 ≤ j ≤ s, ‖Djhi‖L∞ = ‖D(j,0)fβi
‖L∞ , with (j, 0) ∈ N

#S(βi), so that
‖Djhi‖L∞ ≤ Bj .

We consider the sets of partial evaluations

Kα(f) =
{

f(·, xαc) : xαc ∈ Xαc

}

= {Fα(gα(·), xαc) : xαc ∈ Xαc},

for which we have the following width estimate.

Lemma 4.3. For f ∈ FT
s,B and any α ∈ T \ {D},

dk(Kα(f))L∞(Xα) ≤ dk
(

Ss,∞,B
level(α)

)

L∞(Iα)
.
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Proof of Lemma 4.3. Recall that Kα(f) = {Fα(gα(·), xαc) : xαc ∈ Xαc}, with gα : Xα →
Iα. Therefore

dk(Kα(f))L∞(Xα) = inf
dim(Vα)=k

sup
xαc

inf
v∈Vα

‖Fα(gα(·), xαc)− v(·)‖L∞(Xα)

≤ inf
dim(W )=k

sup
xαc

inf
w∈W

‖Fα(gα(·), xαc)− w(gα(·))‖L∞(Xα),

where the inequality has been obtained by restricting the minimization over k-dimensional
subspaces Vα = {w(gα(·)) : w ∈W}, withW a k-dimensional subspace of functions defined
on Iα. Then, introducing K1(Fα) = {Fα(·, xαc) : xαc ∈ Xαc} ⊂ L∞(Iα), we have

dk(Kα(f))L∞(Xα) ≤ inf
dim(W )=k

sup
h∈K1(Fα)

inf
w∈W

‖h(gα(·))− w(gα(·))‖L∞(Xα)

≤ inf
dim(W )=k

sup
h∈K1(Fα)

inf
w∈W

‖h− w‖L∞(Iα)

= dk(K1(Fα))L∞(Iα).

The result now follows from the fact that K1(Fα) ⊂ Ss,∞,B
level(α).

Lemma 4.4. For h = h1 ◦ . . . ◦ hℓ ∈ Ss,∞,B
ℓ , we have

‖h‖W s,∞ ≤ C(B, s, ℓ),

where C(B, 1, ℓ) = Bℓ−1
1 , C(B, 2, ℓ) = ℓB2ℓ−2

1 B2, and more generally,

C(B, s, ℓ) = (Cℓ)s−1B
s(ℓ−1)
1 Bs

⋆

with C = B⋆ = 1 for s = 1, and B⋆ = max1≤j≤sBj and C ≥ 1 for s ≥ 2.

Proof. We first note that ‖h‖L∞ ≤ ‖h1‖L∞ ≤ 1. Let h>i(t) = hi+1 ◦ . . . ◦ hℓ(t). Then
h′(t) =

∏ℓ
i=1 g1,i(t), with g1,i(t) = h′i ◦ h>i(t). Therefore ‖h′‖L∞ ≤ Bℓ−1

1 . Then we have

h′′(t) =
∑ℓ

i=1 g
′
1,i(t)

∏

j 6=i g1,j(t), with g
′
1,i(t) = h′′i (h>i(t))

∏

j>i g1,j(t) := g2,i(t). Then, we

have ‖h′′‖L∞ ≤ ∑ℓ
i=1B2B

2ℓ−i−1
1 ≤ ℓB2B

2(ℓ−1)
1 .

From Lemmas 4.3 and 4.4 and Theorem 3.1, we directly obtain the following result.

Lemma 4.5. For f ∈ FT
s,B and any node α ∈ T \ {D} with level ℓα,

dn(Kα(f))L∞(Xα) ≤ RC(B, s, ℓα)n
−s, n ∈ N,

with a constant R not depending on ℓα, B and d.
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For each ν ∈ D, we introduce a sequence of spaces Uν,nν with dimension nν (e.g. splines
or wavelets) such that for all u ∈ Hs(Xν),

E(u,Uν,nν )Xν ≤Mn−s
ν ‖u‖Hs , (11)

with M ≥ R, with R the constant from Lemma 4.5.

Lemma 4.6. Let f ∈ FT
s,B and ν ∈ D. For all u ∈ K{ν}(f), with ℓν = level({ν}), we have

E(u,Uν,nν )Xν ≤MC(B, s, ℓν)n
−s
ν

with M a constant not depending on d.

Proof. The set of partial evaluations K{ν}(f) satisfies K{ν}(f) ⊂ Hs(Xν), so that (11)

holds for all u ∈ K{ν}(f). Also K{ν}(f) ⊂ Ss,∞,B
ℓν

. Therefore, from Lemma 4.4, we have
‖u‖Hs ≤ C(B, s, ℓν) for all u ∈ K{ν}(f), which completes the proof.

Proposition 4.7. Let f ∈ FT
s,B. For an admissible rank r ∈ N

#T and Ur = U1,r1 ⊗ . . . ⊗
Ud,rd, we have

eTr,Ur
(f)2X ≤

∑

α∈T\D

(

MC(B, s, level(α))
)2
r−2s
α .

Proof. This follows from Proposition 2.7, the bound δαn(f) ≤ dn(Kα(f))L∞(Xα) which holds
since meas(X ) = 1, Lemma 4.5, and Lemma 4.6.

4.2.2 A constructive approach using uniform approximations

For each α ∈ I(T ), let (Qα
N )N∈N#S(α) be a family of linear operators mapping C(×β∈S(α) I

β)
to a finite-dimensional tensor subspace spanned by product basis functions,

Qα
N : C( ×

β∈S(α)

Iβ) →
⊗

β∈S(α)

Uβ,Nβ

with
Uβ,Nβ

= span{ϕβ
Nβ ,i

: i = 1, . . . , Nβ}, β ∈ S(α).

We assume these operators to have the properties

‖Qα
Ng‖L∞ ≤ ‖g‖L∞ (12)

and for all s ∈ (0, s∗] with s∗ ∈ (0,∞], minN := minβ∈S(α)Nβ,

‖g −Qα
Ng‖L∞ ≤ Q#S(α)

(

minN
)−s‖g‖W s,∞ . (13)

HereQ#S(α) > 0 is independent ofN and g, but may depend on #S(α), whereQ#S(α) ≤ Qa

for aQa > 0 whenever #S(α) ≤ a. The operatorsQα
N are thus required to be non-expansive

and provide approximations in L∞-norm converging at optimal rate up to some maximum
order.
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Example 4.8. The operators Qα
N can be chosen as piecewise constant interpolation on a

uniform partition into Nβ subintervals in the coordinate β, in which case (13) holds for
s ∈ (0, 1]; or piecewise linear interpolation with s ∈ (0, 2].

In general, Qα
Ng is of the form

Qα
Ng =

∑

i1,...,ia

cαi1,...,ia(g)ϕ
β1

Nβ1
,i1

⊗ · · · ⊗ ϕβa

Nβa ,ia
, S(α) = {β1, . . . , βa}

with coefficients cαi1,...,ia(g) ∈ R.

For f ∈ FT
s,B with f = C({fα}α∈I(T )), for given tuples of positive integers Nα ∈ N

#S(α),

α ∈ T , we define f̃ℓ for ℓ = 0, . . . ,depth(T )− 1 recursively as follows:

f̃0 = QD
ND
fD,

and for ℓ > 0, with Tℓ = {α1, . . . , αdℓ},

f̃ℓ =

(

⊗

α∈Vℓ

Qα
Nα

)

(

f̃ℓ−1 ◦ℓ−1 (fα)α∈Iℓ
)

.

We set f̃ = f̃L−1 with L = depth(T ).

Lemma 4.9. For f ∈ FT
s,B,

‖f − f̃‖L∞ ≤
∑

α∈I(T )

Q#S(α)C
(

B, s, level(α)
) (

minNα

)−s
. (14)

Proof. Let fℓ = Cℓ((fα)α∈Iℓ(T )), that is, fℓ are the compositions of the functions fα up to
level ℓ without approximations, so that f = fL−1. We set

Qℓ =
⊗

α∈Iℓ

Qα
Nα

⊗
⊗

α∈Vℓ\Iℓ

idα

and note that ‖Qℓ‖ ≤ 1 by (12) and that by the triangle inequality, for any h,

‖h−Qℓh‖∞ ≤
∑

α∈Iℓ

‖h− (Qα
Nα

⊗ idαc)h‖∞ .

Since f = fL−2 ◦L−2 (fα)α∈IL−1(T ), combining the above and (13) with Lemma 4.4 we
obtain

‖f − f̃‖L∞ ≤ ‖f −QL−1f‖L∞

+ ‖QL−1(fL−2 ◦L−2 (fα)α∈IL−1(T ))−QL−1(f̃L−2 ◦L−2 (fα)α∈IL−1(T ))‖L∞

≤
∑

α∈IL−1

‖(I − (Qα
Nα

⊗ idαc))f‖L∞ + ‖QL−1‖‖fL−2 − f̃L−2‖L∞

≤
∑

α∈IL−1

C(B, s, level(α))Q#S(α)

(

minNα

)−s
+ ‖fL−2 − f̃L−2‖L∞ .
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Applying the same argument to ℓ < L− 1 starting with fL−2− f̃L−2, we recursively obtain

‖f − f̃‖L∞ ≤
L−1
∑

ℓ=0

∑

α∈Iℓ

Q#S(α)C(B, s, level(α))
(

minNα

)−s
,

which completes the proof.

From the above, we deduce a result on the approximation with tree tensor networks in
L∞-norm.

Proposition 4.10. Let f ∈ FT
s,B with s > 0, and let (12) and (13) hold for this s. For an

admissible rank r ∈ N#T and Ur = U1,r1 ⊗ . . .⊗ Ud,rd, we have

eTr,Ur
(f)L∞ ≤

∑

α∈T\{D}

QaC(B, s, level(α)) r−s
α , (15)

with a the arity of T .

Proof. We let Nα = (rβ)β∈S(α) for all α ∈ I(T ) and f̃ be the corresponding approximation

defined above, which is such that f̃ ∈ Ur and rankα(f̃) ≤ rα for each α ∈ T \ {D}.
Therefore, eTr,Ur

(f)L∞ ≤ ‖f − f̃‖L∞ and the result follows from Lemma 4.9 and the fact

that for each α ∈ I(T ), Q#S(α) ≤ Qa,
(

minNα

)−s
= maxβ∈S(α) r

−s
β ≤ ∑

β∈S(α) r
−s
β and

for each β ∈ S(α), C(B, s, level(α)) ≤ C(B, s, level(β)).

Remark 4.11. Similar results can still be obtained when the assumptions (12) and (13) are
relaxed. One example is for each α ∈ T to choose Qα

N as the Lagrangian interpolation

operator on×β∈S(α) I
β corresponding to interpolation in Chebyshev points {xβ1 , . . . , x

β
Nβ

}
on each Iβ ; that is, if S(α) contains only interior nodes in the tree, Qα

N acts on g ∈
C(×β∈S(α) I

β) as

Qα
Ng =

∑

i1,...,ia

g(xβ1
i1
, . . . , xβa

ia
)ϕβ1

Nβ1
,i1

⊗ · · · ⊗ ϕβa

Nβa ,ia
, S(α) = {β1, . . . , βa}

where ϕβ
N,i, i = 1, . . . , N are the Lagrange basis polynomials for the Chebyshev points on

Iβ. For the Lebesgue constant ΛN , we have ΛN ≤ ∏

β∈S(α)(
2
π log(Nβ + 1) + 1). Recall

that ‖Qα
Ng‖L∞ ≤ ΛN‖g‖L∞ and by Lebesgue’s lemma,

‖g −Qα
Ng‖L∞ ≤ (1 + ΛN ) min

p∈ΠN

‖g − p‖L∞ .
(

minN
)−s(

∏

β∈S(α)

(1 + logNβ)
)

‖g‖W s,∞ ,

with ΠN =
⊗

β∈S(α) Uβ,Nβ
. Thus (12) and (13) both hold only up to an additional loga-

rithmic factor. This leads to additional factors in log(rα)
a on the right in (15).
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For a given r = (rα)α∈T , we let Nα = (rβ)β∈S(α) for each α ∈ I(T ) and f̃ the cor-
responding approximation. For α ∈ I(T ), the component tensor of the tree network
representation of f̃ at node α is explicitly given for α 6= D by

Aα
j,i1,...,i#S(α)

:= cαi1,...,i#S(α)

(

ϕα
rα,j ◦ fα

)

, j ∈ {1, . . . , rα}, iβ ∈ {1, . . . , rβ}, β ∈ S(α),

or for α = D by

AD
i1,...,ia := cDi1,...,i#S(D)

(

fD
)

, iβ ∈ {1, . . . , rβ}, β ∈ S(D).

Example 4.12. Let D = {1, 2, 3, 4} and let T be the corresponding balanced tree with arity
a = 2. Then we have the explicit tensor representation

f̃ =

r12
∑

i12=1

r34
∑

i34=1

r1
∑

i1=1

r2
∑

i2=1

r3
∑

i3=1

r4
∑

i4=1

cDi12,i34(fD) c
{1,2}
i1,i2

(ϕ
{1,2}
r12,i12

◦ f{1,2}) c{3,4}i3,i4
(ϕ

{3,4}
r34,i34

◦ f{3,4})

× ϕ
{1}
r1,i1

⊗ ϕ
{2}
r2,i2

⊗ ϕ
{3}
r3i3

⊗ ϕ
{4}
r4,i4

=
∑

i12,i34
i1,i2,i3,i4

AD
i12,i34A

{1,2}
i12,i1,i2

A
{3,4}
i34,i3,i4

ϕ
{1}
r1,i1

⊗ ϕ
{2}
r2,,i2

⊗ ϕ
{3}
r3,i3

⊗ ϕ
{4}
r4,i4

.

With the particular choice of Qα
N as piecewise constant approximation, with each ϕβ

rβ ,j
the

characteristic function of a subinterval of Iβ , the entries of the tensors Aα of order three
have a simple interpretation: their nonzero entries correspond exactly to parallelepipeds in
the chosen three-dimensional product grid that intersect the graph of the bivariate function
fα; in other words, these entries mark a “voxel approximation” of the graph of fα.

4.2.3 Approximation complexity estimates

We are now ready to state the main result on the approximation of compositional functions
from FT

s,B by tree tensor networks.

Theorem 4.13. Let f ∈ FT
s,B with s ∈ N. For ǫ > 0, we denote by N(f, ε, d) the

complexity N(T, r, Un) sufficient to achieve an error ε for the approximation of f in the

format T T
r (Un), with error measured in L2 for arbitrary s or in L∞ for s ≤ 2. Let a =

maxα∈I(T )#S(α) be the arity of the tree and L = depth(T ). Then we have the following

estimates:

(i) For a trivial tree T with arity a = d and depth L = 1,

N(f, ε, d) ≤ Cd ε
−d/s.

with a constant Cd depending super-exponentially on d but not depending on ǫ.
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(ii) For a tree with arity a independent of d,

N(f, ε, d) ≤ Cd L
a+1ε−(a+1)/sB

(a+1)L
1 Ba+1

⋆ (16)

with a constant Cd depending polynomially on d but not depending on ε.

Proof. From Proposition 4.7 and Proposition 4.10, we have that

eTr,Un
(f)Lp ≤

∑

α∈T\{D}

MC(B, s, level(α)) r−s
α ,

for p = 2 and arbitrary s with a constant M independent of d, and for p = ∞ and s = 1
or 2 and a constant M depending on the arity a. If the ranks rα are such that

rα ≥ ε−1/s(#T − 1)1/sM1/sC(B, s, ℓα)
1/s, (17)

then eTr,Ur
(f)Lp ≤ ε. From Lemma 4.4, we know that C(B, s, ℓ) ≤ (Cℓ)s−1B

s(ℓ−1)
1 Bs

⋆.
Therefore, from condition (17), we deduce the sufficient condition on rα to achieve an error
ε is

rα ≥M1/sε−1/s(Cℓα)
1−1/sBℓα−1

1 B⋆(#T − 1)1/s.

Letting rα := rα(ε) ∼ M1/sε−1/s(Cℓα)
1−1/sBℓα−1

1 B⋆(#T − 1)1/(2s) be the minimal ranks
satisfying the above condition, we have N(f, ε, d) ≤ N(T, r, Ur), which yields

N(f, ε, d) .Ma/sε−a/s(C)a−a/sBa
⋆ (#T − 1)a/s

+
∑

α∈I(T )\{D}

M (a+1)/sε−(a+1)/s(Cℓα)
1−1/s(C(ℓα + 1))a−a/s

×B
(a+1)ℓα−1
1 Ba+1

⋆ (#T − 1)(a+1)/s

+

d
∑

ν=1

M2/sε−2/s(Cℓν)
2−2/sB2ℓν−2

1 B2
⋆(#T − 1)2/s.

Noting that #T ≤ 2d − 1, ℓα ≤ L− 1 for α ∈ I(T ) and ℓα ≤ L for α ∈ L(T ), and letting
a = maxα∈I(T )#S(α) be the arity of the tree and L = depth(T ), we obtain

N(f, ε, d) ≤Ma/sε−a/s(C)a(1−1/s)Ba
⋆ (#T − 1)a/s

+ (#I(T )− 1)M (a+1)/sε−(a+1)/s(CL)(a+1)(1−1/s)B
(a+1)(L−1)−1
1 Ba+1

⋆ (2d)(a+1)/s

+ dM2/sε−2/s(CL)2(1−1/s)B2L−2
1 B2

⋆(2d)
2/s.

In particular, for a trivial tree T with arity d and depth 1,

N(f, ε, d) ≤Md/sε−d/s(C)d(1−1/s)Bd
⋆d

d/s + dM2/sε−2/s(CL)2−2/sB2
⋆(2d)

2/s,
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whereas for a tree with arity a independent of d,

N(f, ε, d) ≤ βd1+(a+1)/sε−(a+1)/sLa+1B
(a+1)L
1 Ba+1

⋆

with a constant β independent of ε and d.

Remark 4.14. The following observations can be made:

(i) As expected, we observe that for a trivial tree, a shallow tensor network (Tucker
format) does not exploit more than the Sobolev regularity Hs of the function and
suffers from the curse of dimensionality.

(ii) In the case where the tree has arity a independent of d, we observe in (16) that the

complexity is exponential in the depth L through the term B
(a+1)L
1 , which depends

on the bound B1 on the first derivatives of functions fα.

(iii) An important observation is that if a is independent of d and B1 = 1 (i.e. functions
fα are 1-Lipschitz), then there is no more an exponential dependence on L and the
complexity depends polynomially on d and ε−1. That means that tree tensor networks
do not present the curse of dimensionality for functions in FT

s,B.

(iv) When B1 > 1 and a independent of d, tree tensor networks may or may not suffer
from the curse of dimensionality for functions in FT

s,B, depending on the dependence
of L in d.

(v) For binary trees with a = 2,

N(f, ε, d) ≤ CdL
3ε−3/sB3L

1 B3
⋆ ,

where L ≤ ⌈log2(d)⌉ for a balanced binary tree, and L = d − 1 for a linear binary
tree. For a linear tree, we observe a complexity exponential in d of the form B3d

1 .
However, for a balanced tree, the dependence in d is only polynomial on d of the form

B
3 log2(d)
1 . This means that the approximation complexity may depend exponentially

on d for any tree with depth depending polynomially on d, in particular for linear
trees, but remains polynomial in d for balanced trees, or more generally for any tree
with a depth L depending logarithmically on d.
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