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Abstract. We study the approximation of univariate functions by combining tensoriza-
tion of functions with tensor trains (TTs) – a commonly used type of tensor networks
(TNs). Lebesgue Lp-spaces in one dimension can be identified with tensor product
spaces of arbitrary order through tensorization. We use this tensor product structure
to define different approximation tools and corresponding approximation spaces of TTs,
associated with different measures of complexity. The approximation tools are shown to
have (near to) optimal approximation rates for functions with classical Besov smooth-
ness. We then use classical interpolation theory to show that a scale of interpolated
smoothness spaces is continuously embedded into the scale of TT approximation spaces
and, vice versa, we show that the TT approximation spaces are, in a sense, much larger
than smoothness spaces when the depth of the tensor network is not restricted but are
embedded into a scale of interpolated smoothness spaces if one restricts the depth.

The results of this work can be seen as both an analysis of the approximation spaces
of a type of TNs and a study of the expressivity of a particular type of neural networks
(NNs) – namely feed-forward sum-product networks with sparse architecture. We point
out interesting parallels to recent results on the expressivity of rectifier networks. �

1. Introduction

Approximation of functions is an integral part of mathematics with many important
applications in various other fields of science, engineering and economics. Many classical
approximation methods – such as approximation with polynomials, splines, wavelets,
rational functions, etc. – are by now thoroughly understood. In recent decades new
families of methods have gained increased popularity due to their success in various
applications – tensor and neural networks (TNs and NNs). See, e.g., [8, 46, 14, 15, 51,
37, 56, 27] and references therein for an overview.

In this work, we will define approximation classes of TTs – a commonly used type of
TNs – and study their properties. Our goal is to investigate the expressivity of tensor
networks in the framework of classical approximation theory, as was done in [32, 2] for
deep rectifier NNs.
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Tensorized Univariate Functions

1.1. Approximation of Functions. In this work, we focus on approximating one-
dimensional real-valued functions f : Ω → R on bounded intervals Ω ⊂ R. We address
the multi-dimensional setting separately in [3].

The approximation of general functions by simpler “building blocks” has been a central
topic in mathematics for centuries with many arising methods: algebraic polynomials,
trigonometric polynomials, splines, wavelets or rational functions are among some of the
by now established tools. Recently, more sophisticated tools such as TNs or NNs have
proven to be powerful techniques.

In the 20th century, a fully fledged mathematical theory of approximation has been
established. It is by now well understood that approximability properties of a function
by more standard tools – such as polynomials or splines – are closely related to its
smoothness. Moreover, functions that can be approximated with a certain rate can be
grouped to form quasi-Banach spaces. Varying the approximation rate then generates an
entire scale of spaces that turn out to be so-called interpolation spaces. See [19, 17] for
more details.

In this work, we address the classical question of function approximation but with
a new set of tools relying on tensorization of functions and the use of rank-structured
tensor formats (or TNs). We analyze the resulting approximation classes: we will show
that many known classical spaces of smoothness are embedded in these newly defined
approximation classes. On the other hand, we will also show that these classes are, in a
sense, much larger than classical smoothness spaces.

1.2. Tensor Networks. TNs have been studied in parallel in different fields, some-
times under different names: e.g., hierarchical tensor formats in numerical analysis or
sum-product networks in machine learning. TNs are commonly applied and studied in
condensed matter physics, where understanding phenomena in quantum many-body sys-
tems has proven to be a challenging problem, to a large extent due to the sheer amount
of dependencies that cannot be simulated even on the most powerful computers (see [50]
for a non-technical introduction). In all these fields, a common challenge is the approxi-
mation of functions of a very large number of variables. This led to the development of
tools tailored to so-called high-dimensional problems.

For approximating a d-variate function f , there are several types of tensor formats.
The simplest is the so-called r-term or CP format, where f is approximated as

f(x1, . . . , xd) ≈
r∑

k=1

vk1(x1) · · · vkd(xd).(1.1)

If each factor vkν is encoded with N parameters, the total number of parameters is thus
dNr, which is linear in the number of variables. The approximation format (1.1) is
successful in many applications (chemometrics, inverse problems in signal processing...)
but due to a few unfavorable properties (see [34, Chapter 9]), different types of tensor
formats are frequently used in numerical approximation. In particular, with the so-called
tensor train (TT) format or matrix product state (MPS), the function f is approximated
as

f(x1, . . . , , xd) ≈
r1∑

k1=1

. . .

rd−1∑
kd−1=1

vk1
1 (x1)vk1,k2

2 (x2) . . . v
kd−2,kd−1

d−1 (xd−1)v
kd−1

d (xd).(1.2)

The numbers rν are referred to as TT-ranks, multi-linear ranks or hierarchical ranks. The
rank rν is related to the classical notion of rank for bi-variate functions, by identifying
a d-variate function as a function of two complementary groups of variables (x1, . . . , xν)
and (xν+1, . . . , xd). It corresponds to the so-called β-rank rβ, with β = {1, . . . , ν}. The
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format in (1.2) is a particular case of tree-based tensor formats, or tree tensor networks
(TNs) [34, 24], the TT format being associated with a linear dimension partition tree.
The TT format is the main focus of this work, although many results extend to more
general TNs. Numerically, such formats have favorable stability properties and robust
algorithms (see [28, 54, 47, 30]). Moreover, the corresponding TNs and decompositions
have a physical interpretation in the context of entangled many-body systems, see [50, 51].
For more general TNs, we refer to Figure 1 for graphical representations. The specific
choice of a TN is sometimes suggested by the problem at hand: e.g., in quantum physics
by the entanglement/interaction structure of the quantum system that f is to model – if
f is a vector – see, e.g., [36, 1, 58, 4].

vk1
1 vk2

3vk1,k2

2

(a) Tensor corresponding to (1.2) with d = 3.

(b) General Tensor Train (TT) or Matrix
Product State (MPS).

(c) Hierarchical Tucker (HT) or a tree-based
format.

(d) General 2D tensor network.

Figure 1. Examples of tensor networks. The vertices in Figure 1 repre-
sent the low-dimensional functions (tensors) in the decomposition, such as
v1, . . . , vd in (1.2). The edges between the vertices represent summation
over an index (contraction) between two functions (tensors), such as sum-
mation over kν in (1.2). The free edges represent input variables x1, . . . , xd
in (1.2).

At first glance, it seems that TNs are a tool suited only for approximating high-
dimensional functions. However, such formats can be applied in any multi-variate setting
and this multi-variate setting can be applied even if d = 1 by identifying a one-dimensional
function with a multi-variate function (or tensor). This identification is the tensorization
of functions which is at the core of the approximation tools considered in this work. It
was originally applied for matrices in [52] and later coined as quantized tensor format
when tensorization is combined with the use of a tensor format.

In high-dimensional approximation, keeping the ranks rβ small relies on the correct
choice of the tensor network that “fits” the interaction structure as hinted above. For the
approximation of tensorized functions a different type of structure is required. In [28], it
was shown that, if f is a vector of evaluations of a polynomial on a grid, then choosing
the TT format yields hierarchical ranks that are bounded by the degree of the polynomial
plus one. Similar statements were shown for trigonometric polynomials and exponential
functions. In [42], tensorized TT formats were applied in numerical modeling and, in
particular, it was shown that discrete solutions to high-dimensional elliptic and parabolic
problems can be approximated with a complexity that is logarithmic in the number of
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grid points. In [41], it was shown that a finite element approximation of two-dimensional
functions with singularities, where the coefficient vector was stored in a tensorized TT
format, automatically recovers an exponential rate of convergence, analogous to that of
an hp-approximation.

The pioneering observations of [28, 52] as well as the subsequent developments in
[53, 41, 42] provide the crucial tools for our work. We utilize these techniques to propose
an approximation theory – in the spirit of classical approximation theory (see [19, 17])
– for tensorized functions, treating the univariate case in depth here and addressing the
multivariate case in [3]. We first show that Lebesgue spaces of p-integrable functions
are isometric to tensor product spaces of any order and analyze some basic properties
of this identification. We then define and analyze the approximation classes of Lp func-
tions that can be approximated by rank-structured functions in the TT format with a
certain rate, showing that these classes are quasi-Banach spaces under appropriate con-
ditions. Finally, we show that classical smoothness spaces are continuously embedded in
TT approximation classes, while vice versa TT approximation classes are embedded in
smoothness spaces only under additional assumptions about the TT length (or depth of
the corresponding linear tree).

1.3. Tensor vs. Neural Networks. Recently multiple connections between TTs and
NNs have been discovered, see, e.g., [10, 55, 44, 16, 13, 43]. Tree tensor networks can be
seen as convolutional feedforward neural networks with nonlinear feature maps, product
pooling, a number of layers equal to the depth of the dimension partition tree and a
number of neurons equal to the sum of tree tensor ranks (see [16]). Our work was partly
motivated by current developments in the field of deep learning, particularly [32], where
the authors analyzed the approximation spaces of deep rectifier networks. In this spirit,
our work can be seen as a result on the approximation power of a particular type of
NNs, where the TT format is a feed-forward sum-product NN with a recurrent neural
network architecture. When compared to the results of [32, 2] on approximation classes
of ReLU networks, we observe that both TNs and NNs are able to recover optimal or
close to optimal approximation rates for functions with any order of Sobolev or Besov
smoothness. This is to be contrasted with more standard approximation tools, such as
splines or wavelets, where the approximation class (and thus the approximation method)
has to be adapted to the smoothness notion in question, i.e., for a given a spline or wavelet
order, the approximation tool can optimally approximate only functions with the same
smoothness order. Moreover, both tools will frequently perform better than predicted on
specific instances of functions that possess structural features that are not captured by
classical smoothness theory1.

Of course, this is simply to say that both tools do a good job when it comes to classical
notions of smoothness. We still expect that NNs approximation classes are very different
than those of TNs, in an appropriate sense. We also show that TT approximation classes
are not embedded in any Besov space, as was shown in [32] for RePU networks, unless
the depth of tensor networks is restricted.

1.4. Main Results. First, we show that any Lp-function f defined on the interval [0, 1)
can be identified with a tensor. For a given b ∈ N (the base) and d ∈ N (the level or
resolution), we first note that any x ∈ [0, 1) can be uniquely decomposed as

x =
d∑

k=1

ikb
−k + b−dy := tb,d(i1, . . . , id, y),

1A fundamental theory of these structures remains an open question for both tools.
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where (i1, ..., id) is the representation of bbdxc in base b and y = bdx−bbdxc. This allows
to identify a function with a tensor (or multivariate function)

f(i1, . . . , id, y) = f(tb,d(i1, . . . , id, y)) := Tb,df(i1, . . . , id, y),

and to define different notions of ranks for a univariate function. A function f can be
tensorized at different levels d ∈ N. We analyze the relation between tensorization maps
at different levels, and the relation between the ranks of the corresponding tensors of
different orders. When looking at Tb,d as a map on Lp([0, 1)), an important observation
is given by Theorem 2.15 and Lemma B.1.

Result 1.1. For any 0 < p ≤ ∞, b ∈ N (b ≥ 2) and d ∈ N, the map Tb,d is a linear
isometry from Lp([0, 1)) to the algebraic tensor space Vb,d,Lp := (Rb)⊗d⊗Lp([0, 1)), where
Vb,d,Lp is equipped with a crossnorm, which is a reasonable crossnorm for p ≥ 1.

1.4.1. Approximation Tools. For later use in approximation, we introduce the tensor sub-
space

Vb,d,S := (Rb)⊗d ⊗ S,
where S ⊂ Lp([0, 1)) is some finite-dimensional subspace. Then, we can identify Vb,d,S

with a finite-dimensional subspace of Lp as

Vb,d,S := T−1
b,d (Vb,d,S) ⊂ Lp([0, 1)).

We introduce the crucial assumption that S is closed under b-adic dilation, i.e., for any
f ∈ S and any k ∈ {0, . . . , b − 1}, f(b−1(· + k)) ∈ S. Under this assumption, which is
reminiscent of multi-resolution analysis (MRA), we obtain bounds for TT-ranks that are
related to the dimension of S. Also, under this assumption on S, we obtain the main
results given by Propositions 2.19 and 2.20 and Theorem 2.21.

Result 1.2. The spaces Vb,d,S form a hierarchy of Lp-subspaces, i.e.

S := Vb,0,S ⊂ Vb,1,S ⊂ Vb,2,S ⊂ . . . ,

and Vb,S :=
⋃
d∈N Vb,d,S is a linear space. If we further assume that S contains the constant

function one, Vb,S is dense in Lp for 0 < p <∞.

For the approximation of multivariate functions (or tensors), we use the set Φb,d,S,r of
functions ϕ whose tensorization ϕ = Tb,d(ϕ) admits a representation in TT format with
TT-ranks r = (rν)

d
ν=1, i.e. given a basis {ϕk}dimS

k=1 of S,

ϕ(i1, . . . , id, y) =

r1∑
k1=1

· · ·
rd∑

kd=1

dimS∑
kd+1=1

vk1
1 (i1)vk1,k2

2 (i2) · · · vkd−1,kd
d (id)v

kd,kd+1

d+1 ϕkd+1
(y),(1.3)

where the parameters v := (v1, . . . , vd+1) form a tensor network (a collection of low-order
tensors). Then an approximation tool for univariate functions is defined as

Φ := (Φn)n∈N, Φn = {ϕ ∈ Φb,d,S,r : d ∈ N, r ∈ Nd, compl(ϕ) ≤ n},
where compl(ϕ) is some measure of complexity of a function ϕ. We introduce three differ-
ent measures of complexity, complN , complC and complS , that are respectively the sum
of ranks, the number of parameters (or number of entries of the tensors from the tensor
network) and the number of non-zero parameters (or number of non-zero entries of the
tensors from the tensor network). Consequently, this defines three types of approximation
tools ΦNn , ΦCn and ΦSn . When interpreting a tensor network v as a sum-product neural
network, complN corresponds to the number of neurons, complC to the number of weights
of a fully connected network, and complS the number of non-zero weights (or number of
connections of a sparsely connected network).
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1.4.2. Approximation Rates. For each approximation tool Φn ∈
{

ΦNn ,Φ
C
n,Φ

S
n

}
we con-

sider the corresponding best approximation error

En (f)p := inf
ϕ∈Φn

‖f − ϕ‖p

for functions f in Lp([0, 1)). The main results for approximation rates are Theorems 5.2,
5.8 and 5.11 and can be summarized as follows.

Result 1.3. Let 1 ≤ p ≤ ∞ and k ∈ N. For any f ∈ W k,p we have

ENn (f)p ≤ Cn−2k ‖f‖Wk,p ,

ESn (f)p ≤ ECn(f)p ≤ Cn−k ‖f‖Wk,p ,

with constants C depending on k, m, b.

Result 1.4. Let 1 ≤ p <∞, 0 < τ < p, α > 1/τ − 1/p, and assume f ∈ Bα
τ,τ . Then, for

any σ > 0,

ENn (f)p ≤ C |f |Bατ,τ n
− α

1+σ ,

ECn(f)p ≤ C |f |Bατ,τ n
− α

2+σ ,

ESn (f)p ≤ C |f |Bατ,τ n
− α

1+σ ,

where the constants C depend on α > 0, σ > 0, b and m. In particular, they diverge to
infinity as σ → 0 or α→ 1/τ − 1/p.

Result 1.5 (Spectral Approximation). For S = Pm with a fixed m ∈ N0, we show that
if f is analytic on an open domain containing [0, 1],

ENn (f)∞ ≤ Cρ−n
1/2

,

ESn (f)∞ ≤ ECn(f)∞ ≤ Cρ−n
1/3

,

for constants C, ρ > 1. This can be extended to analytic functions with singularities using
ideas from [41].

1.4.3. Approximation spaces. An approximation tool (Φn) is associated with an approx-
imation class Aαq (Lp, (Φn)) of functions f such that the best approximation error En(f)p
decays with an algebraic rate α for q = ∞ or slightly faster for q < ∞ (the sequence
(nα−1/qEn(f)p)n≥1 is in `q), see Section 3.4 for a precise definition. The approximation
tools ΦNn , ΦCn and ΦSn are associated with approximation classes Nα

q (Lp), Cα
q (Lp) and

Sαq (Lp), respectively. We first obtain the following properties and relationship given by
Theorems 3.17 and 3.19.

Result 1.6. For any α > 0, 0 < p ≤ ∞ and 0 < q ≤ ∞, the classes Nα
q (Lp), Cα

q (Lp)
and Sαq (Lp) are quasi-normed vector spaces and satisfy the continuous embeddings

Cα
q (Lp) ↪→ Sαq (Lp) ↪→ Nα

q (Lp) ↪→ Cα/2
q (Lp).

Direct Embeddings of Smoothness Spaces. The main results on embeddings of smoothness
spaces are Theorems 6.4 and 6.6 and can be summarized as follows.

Result 1.7 (Direct Embedding for Sobolev Spaces W k,p and Besov spaces Bα
p,q). Let

W k,p denote the Sobolev space of k ∈ N times weakly differentiable, p-integrable functions
and Bα

p,q the Besov space of smoothness α > 0, with primary parameter p and secondary
parameter q. Then, for S = Pm (space of polynomials of degree m) with a fixed m ∈ N0,
we show that for 1 ≤ p ≤ ∞ and any k ∈ N

W k,p ↪→ N2k
∞ (Lp), W k,p ↪→ Ck

∞(Lp) ↪→ Sk∞(Lp),
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and for 0 < q ≤ ∞ and any α > 0

Bα
p,q ↪→ N2α

q (Lp), Bα
p,q ↪→ Cα

q (Lp) ↪→ Sαq (Lp).

Remark 1.8. Note that for p = q and non-integer α > 0, Bα
p,p = Wα,p is the fractional

Sobolev space. Moreover, these results can also be extended to the range 0 < p < 1, see
Remark 5.3.

Result 1.9 (Direct Embedding for Besov Spaces Bα
τ,q). Let Bα

p,q denote the Besov space
of smoothness α > 0, with primary parameter p and secondary parameter q. Then, for
S = Pm with a fixed m ∈ N0, we show that for any 1 ≤ p < ∞, any 0 < τ < p, any
γ > 1/τ − 1/p and any 0 < γ̄ < γ,

Bγ
τ,τ ↪→ N γ̄

∞(Lp) ↪→ C γ̄/2
∞ (Lp), Bγ

τ,τ ↪→ S γ̄∞(Lp),

and for any 0 < q ≤ ∞, any 0 < α < γ̄

(Lp, Bγ
τ,τ )α/γ̄,q ↪→ Nα

q (Lp) ↪→ Cα/2
q (Lp), (Lp, Bγ

τ,τ )α/γ̄,q ↪→ Sαq (Lp),

where (X, Y )θ,q, 0 < θ < 1, is the real K-interpolation space between X and Y ↪→ X.

Remark 1.10. Note that both Result 1.7 and Result 1.9 apply to Besov spaces. The Besov
spaces in Result 1.7 are of the type Bα

p,q, where p is the same for the error measure. Such
Besov spaces are captured by linear approximation and for p ≥ 1 these are equal to or are
very close to Sobolev spaces.

On the other hand, the Besov spaces Bα
τ,τ for 1/τ = α+ 1/p are much larger and these

correspond to the critical embedding line. These Besov spaces can only be captured by
nonlinear approximation. Our results require α > 1/τ − 1/p, i.e., Besov spaces that are
strictly above the critical line.

Inverse Embeddings. The main results on inverse embeddings are Theorems 7.1 and 7.2
and can be summarized as follows.

Result 1.11 (No Inverse Embedding). Let Bα
p,q denote the Besov space of smoothness

α, with primary parameter p and secondary parameter q. We show that for any α > 0,
0 < p, q ≤ ∞, and any α̃ > 0,

Cα
q (Lp) 6↪→ Bα̃

p,q.

Result 1.12 (Inverse Embedding For Restricted Depth). Define for n ∈ N, kB ≥ 1 and
cB > 0 the restricted sets

ΦB
n := {ϕ ∈ Vb,m : complN (ϕ) ≤ n and d(ϕ) ≤ kB logb(n) + cB} ,

where d(ϕ) is the minimal possible level (depth) for a tensorized representation of ϕ. For
1 ≤ p <∞, the depth restricted approximation classes Aαq (Lp, (ΦB

n)) satisfy the continuous
embeddings

Aαq (Lp, (ΦB
n)) ↪→ (Lp, Bm+1

τ,τ ) α
kB(m+1)

,q,

AkB(m+1)
∞ (Lp, (ΦB

n)) ↪→ Bm+1
τ,τ .

In words:

• For the approximation tools ΦCn and ΦSn (of fixed polynomial degree m ∈ N0), we
obtain optimal approximation rates for Sobolev spaces Wα,p of any order α > 0.
• For the approximation tool ΦNn , we obtain twice the optimal rate. Note, however,

that the corresponding complexity measure only reflects the number of neurons in
a corresponding neural network. It does not reflect the representation or compu-
tational complexity. Moreover, from [18] we know that an optimal approximation
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tool with continuous parametrization for the Sobolev space Wα,p cannot exceed
the rate α, see also [61].
• For the approximation tools ΦNn and ΦSn , we obtain near to optimal rates2 for the

Besov space Bα
τ,τ , for any order α > 0. For ΦCn, the approximation rate is near to

half the optimal rate.
• More explicitly, for a given approximation accuracy ε > 0 in the Lp-norm, a target

function f in the Sobolev space W k,p can be approximated with a tensorized func-
tion ϕ with TT-ranks of the order ε−1/(2k) and overall number of TT-parameters
of the order ε−1/k – hence, optimal in the sense of nonlinear widths.

If instead f ∈ Bα
τ,τ , the TT-ranks of ϕ are of the order ε−1/α and the overall

number of TT-parameters is of the order | log(ε)|ε−2/α. However, the number of
nonzero TT-parameters of ϕ is | log(ε)|ε−1/α.
• Particularly the tool ΦSn is interesting, as it corresponds to deep, sparsely con-

nected networks. The above results imply that deep, sparsely connected tensor
networks can optimally replicate both h-uniform and h-adaptive approximation
of any order.
• All approximation tools achieve exponential approximation rates for analytic tar-

get functions. Together with the previous result, this implies that deep, sparsely
connected tensor networks can optimally replicate hp-adaptive approximation,
while the underlying polynomial degree of the tensor network remains fixed.
• Finally, an arbitrary function from any of the three approximation classes pos-

sesses no Besov smoothness. This can be mainly attributed to the depth of the
tensor network and smoothness can be recovered if we restrict the latter to grow
not too fast with the complexity.

We restrict ourselves in this work to approximation of functions on intervals in one
dimension to focus on the presentation of the basic concepts and postpone the multi-
dimensional case to [3].

We base our approximation tool on the TT format. Although some of our results would
remain unchanged for other tree-based tensor formats, ranks are generally affected by the
choice of the format. This is known for multi-dimensional non-tensorized approximation
with tensor formats, see, e.g., [12, 11]. In the non-tensorized case, ranks remain low if the
format “fits” the problem at hand, e.g., if the format mimics the interaction structure
dictated by the differential operator, see [1]. In the context of tensorized 1D approxima-
tion, the tensor format would have to fit the self-similarity, periodicity or other algebraic
features of the target function, see, e.g., [29, 5].

We thus stress the following point concerning the approximation power of tree-based
tensor networks: on one hand, when comparing approximation classes of different tensor
networks to spaces of classical smoothness – the distinction between different tree-based
formats seems insignificant. On the other hand, when comparing approximation classes
of different tensor networks to each other – we expect these to be substantially different.

1.5. Outline. In Section 2, we discuss how one-dimensional functions can be identified
with tensors and analyze some basic properties of this identification. In Section 3, we in-
troduce the approximation tool, briefly review general results from approximation theory,
and analyze several approximation classes of rank-structured functions. In particular, we
show that these classes are quasi-Banach spaces. In Section 4, we discuss how classical
approximation tools can be encoded with a TT format and estimate the resulting com-
plexity. Among the classical tools considered are fixed knot splines, free knot splines,

2The approximation rates are arbitrary close to optimal.

8



M. Ali, A. Nouy

polynomials (of higher order)3. In Section 5, we show approximation rates for our ap-
proximation tool that lead to direct embeddings in Section 6. We show in Section 7
that inverse embeddings can only hold if we restrict the depth (or resolution) of the TT
format. In Sections 8 and 9, we discuss the role of tensorization, seen as a particular
featuring step, and the role of depth and sparsity.

2. Tensorization of Measurable Functions

We begin by introducing how one-dimensional measurable functions can be identified
with tensors of arbitrary dimension. We then introduce finite-dimensional subspaces of
tensorized functions and show that these form a hierarchy of subspaces that are dense in
Lp. This will be the basis for our approximation tool in Section 3.

2.1. The Tensorization Map. Consider one-dimensional functions on the unit interval,
f : [0, 1)→ R, that we tensorize as in Section 1.4. We deduce the following property.

Lemma 2.1. The conversion map tb,d defines a linear bijection from the set Idb × [0, 1)
to the interval [0, 1), with inverse defined for x ∈ [0, 1) by

t−1
b,d(x) = (bbxc, bb2xc mod b, . . . , bbdxc mod b, bdx− bbdxc).

Definition 2.2 (Tensorization Map). We define the tensorization map

Tb,d : R[0,1) → RIdb×[0,1), f 7→ f ◦ tb,d := f

which associates to a function f ∈ R[0,1) the multivariate function f ∈ RIdb×[0,1) such that

f(i1, . . . , id, y) := f(tb,d(i1, . . . , id, y)).

From Lemma 2.1, we directly deduce the following property of Tb,d, which allows to

identify the spaces R[0,1) and RIdb×[0,1).

Proposition 2.3. The tensorization map Tb,d is a linear bijection from R[0,1) to RIdb×[0,1),

with inverse given for f ∈ RIdb×[0,1) by T−1
b,d f = f ◦ t−1

b,d.

The space RIdb×[0,1) can be identified with the algebraic tensor space

Vb,d := RIdb ⊗ R[0,1) = RIb ⊗ . . .⊗ RIb︸ ︷︷ ︸
d times

⊗R[0,1) =: (RIb)⊗d ⊗ R[0,1),

which is the set of functions f defined on Idb × [0, 1) that admit a representation

(2.1) f(i1, . . . , id, y) =
r∑

k=1

vk1(i1) . . . vkd(id)g
k(y) :=

r∑
k=1

(vk1 ⊗ . . .⊗ vkd ⊗ gk)(i1, . . . , id, y)

for some r ∈ N and for some functions vkν ∈ RIb and gk ∈ R[0,1), 1 ≤ k ≤ r, 1 ≤ ν ≤ d.
Letting {δjν : jν ∈ Ib} be the canonical basis of RIb , defined by δjν (iν) = δiν ,jν , a function

f ∈ RIdb×[0,1) admits the particular representation

(2.2) f =
∑
j1∈Ib

. . .
∑
jd∈Ib

δj1 ⊗ . . .⊗ δjd ⊗ f(j1, . . . , jd, ·).

The following result provides an interpretation of the above representation.

3See [3] for the encoding of wavelets.
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Lemma 2.4. Let f ∈ R[0,1) and f = Tb,df ∈ Vb,d. For (j1, . . . , jd) ∈ Idb and j =∑d
k=1 jkb

d−k, we have

(2.3) Tb,d(f1[b−dj,b−d(j+1))) = δj1 ⊗ . . .⊗ δjd ⊗ f(j1, . . . , jd, ·),

and

f(j1, . . . , jd, ·) = f(b−d(j + ·)),(2.4)

where f(b−d(j+ ·)) is the restriction of f to the interval [b−dj, b−d(j+1)) rescaled to [0, 1).

Proof. For x = tb,d(i1, . . . , id, y),

f(x)1[b−dj,b−d(j+1))(x) = δj1(i1) . . . δjd(id)f(tb,d(i1, . . . , id, y))

= δj1(i1) . . . δjd(id)f(tb,d(j1, . . . , jd, y))

= δj1(i1) . . . δjd(id)f(j1, . . . , jd, y).

The property (2.4) simply results from the definition of f . �

From Lemma 2.4, we deduce that the representation (2.2) corresponds to the decom-
position of f = T−1

b,d (f) as a superposition of functions with disjoint supports,

(2.5) f(x) =
bd−1∑
j=0

fj(x), fj(x) = 1[b−dj,b−d(j+1))(x)f(x),

where fj is the function supported on the interval [b−dj, b−d(j + 1)) and equal to f on
this interval. Also, Lemma 2.4 yields the following result.

Corollary 2.5. A function f ∈ R[0,1) defined by

f(x) =

{
g(bdx− j) for x ∈ [b−dj, b−d(j + 1))

0 elsewhere

with g ∈ R[0,1) and 0 ≤ j < bd admits a tensorization Tb,df = δj1 ⊗ . . .⊗ δjd ⊗ g, which is
an elementary tensor.

We now provide a useful result on compositions of tensorization maps for changing the
representation level of a function.

Lemma 2.6. Let d̄, d ∈ N such that d̄ > d. For any (i1, . . . , id̄, y) ∈ I d̄b × [0, 1), we have

tb,d̄(i1, . . . , id̄, y) = tb,d(i1, . . . , id, tb,d̄−d(id+1, . . . , id̄, y)),

and the operator Tb,d̄ ◦ T−1
b,d from Vb,d to Vb,d̄ is such that

Tb,d̄ ◦ T−1
b,d = id{1,...,d} ⊗ Tb,d̄−d

where id{1,...,d} is the identity operator on RIdb and Tb,d̄−d is the tensorization map from

R[0,1) to Vb,d̄−d. Also, the operator Tb,d ◦ T−1
b,d̄

from Vb,d̄ to Vb,d is such that

Tb,d ◦ T−1
b,d̄

= id{1,...,d} ⊗ T−1
b,d̄−d.

Proof. See Appendix B. �

For d = 0, we adopt the conventions that tb,0 is the identity on [0, 1), Tb,0 is the identity
operator on R[0,1), and Vb,0 = R[0,1).

10
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2.2. Measurable functions. We now look at Tb,d as a linear map between spaces of
measurable functions, by equipping the interval [0, 1) with the Lebesgue measure.

Proposition 2.7. The Lebesgue measure λ on [0, 1) is the push-forward measure through
the map tb,d of the product measure µb,d := µ⊗db ⊗ λ, where µb is the uniform probability
measure on Ib. Then the tensorization map Tb,d defines a linear isomorphism from the
spaceM([0, 1)) of measurable functions on [0, 1) to the spaceM(Idb × [0, 1)) of measurable
functions on Idb × [0, 1), where [0, 1) is equipped with the Lebesgue measure and Idb × [0, 1)
is equipped with the product measure µb,d.
Furthermore, the algebra M(Idb × [0, 1)) is identified with the tensor product of algebras
M(Ib)

⊗d ⊗M([0, 1)), which is itself identified with (RIb)⊗d ⊗M([0, 1)).

Proof. See Appendix B. �

In the sequel, when considering measurable functions, the notation Vb,d will stand for
the tensor space (RIb)⊗d ⊗M([0, 1)), with the convention Vb,0 =M([0, 1)).

2.3. Ranks and Minimal Subspaces. The minimal integer r such that f ∈ Vb,d

admits a representation of the form (2.1) is the canonical tensor rank of f denoted r(f).
We deduce from the representation (2.2) that

r(f) ≤ bd.

Other notions of ranks can be defined from the classical notion of rank by identifying
a tensor with a tensor of order two (through unfolding). Letting Vν := RIb for 1 ≤ ν ≤ d,
and Vd+1 := R[0,1) (or M([0, 1)) in the case of measurable functions), we have

Vb,d =
d+1⊗
ν=1

Vν .

Then for any β ⊂ {1, . . . , d+1} and its complementary set βc = {1, . . . , d+1}\β, a tensor
f ∈ Vb,d can be identified with an order-two tensor in Vβ ⊗Vβc , where Vγ =

⊗
ν∈γ Vν ,

called the β-unfolding of f . This allows us to define the notion of β-rank.

Definition 2.8 (β-rank). For β ⊂ {1, . . . , d+ 1}, the β-rank of f ∈ Vb,d, denoted rβ(f),
is the minimal integer such that f admits a representation of the form

f =

rβ(f)∑
k=1

vkβ ⊗ vkβc ,(2.6)

where vkβ ∈ Vβ and vkβc ∈ Vβc.

Since Vb,d is an algebraic tensor space, the β-rank is finite and we have rβ(f) ≤ r(f)
(though the β-rank can be much smaller). Moreover, we have the following straightfor-
ward property

rβ(f) = rβc(f),

and the bound

rβ(f) ≤ min

{∏
ν∈β

dimVν ,
∏
ν∈βc

dimVν

}
,(2.7)

which can be useful for small b and either very small or very large #β.
Representation (2.6) is not unique but the space spanned by the vβk is unique and

corresponds to the β-minimal subspace of f .
11
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Definition 2.9 (β-minimal subspace). For β ⊂ {1, . . . , d + 1}, the β-minimal subspace
of f , denoted Umin

β (f), is the smallest subspace Uβ ⊂ Vβ such that f ∈ Uβ ⊗Vβc, and
its dimension is

dim(Umin
β (f)) = rβ(f).

We have the following useful characterization of minimal subspaces from partial eval-
uations of a tensor.

Lemma 2.10. For β ⊂ {1, . . . , d} and f ∈ Vb,d,

Umin
βc (f) = span{f(jβ, ·) : jβ ∈ I#β

b } ⊂ Vb,d−#β,

where f(jβ, ·) ∈ Vβc = Vb,d−#β is a partial evaluation of f along dimensions ν ∈ β.

Proof. See Appendix B. �

Next we define a notion of (β, d)-rank for univariate functions.

Definition 2.11 ((β, d)-rank). For a (measurable) function f : [0, 1) → R, d ∈ N and
β ⊂ {1, . . . , d + 1}, we define the (β, d)-rank of f , denoted rβ,d(f), as the β-rank of its
tensorization in Vb,d,

rβ,d(f) = rβ(Tb,df).

In the rest of this work, we will essentially consider subsets β of the form {1, . . . , ν}
or {ν + 1, . . . , d+ 1} for some ν ∈ {1, . . . , d}. For the corresponding β-ranks, we will use
the shorthand notations

rν(f) := r{1,...,ν}(f), rν,d(f) = r{1,...,ν},d(f).

Note that rν(f) should not be confused with r{ν}(f). The ranks (rν(f))1≤ν≤d of a tensor
f ∈ Vb,d have to satisfy some relations, as seen in the next lemma.

Lemma 2.12 (Ranks Admissibility Conditions). Let f ∈ Vb,d. For any set β ⊂
{1, . . . , d+ 1} and any partition β = γ ∪ α, we have

rβ(f) ≤ rγ(f)rα(f)

and in particular

rν+1(f) ≤ brν(f) and rν(f) ≤ brν+1(f), 1 ≤ ν ≤ d− 1,(2.8)

Proof. See Appendix B. �

A function f admits infinitely many tensorizations of different levels. The following
result provides a relation between minimal subspaces.

Lemma 2.13. Consider a (measurable) function f : [0, 1) → R and its tensorization
f d = Tb,df at level d. For any 1 ≤ ν ≤ d,

T−1
b,d−ν(U

min
{ν+1,...,d+1}(f

d)) = span {f ν(j1, . . . , jν , ·) : (j1, . . . , jν) ∈ Iνb } = Umin
{ν+1}(f

ν),

where f ν = Tb,νf is the tensorization of f at level ν.

Proof. See Appendix B. �

For j =
∑ν

k=1 jkb
ν−k, since f ν(j1, . . . , jν , ·) = f(b−ν(j+ ·)) is the restriction of f to the

interval [b−νj, b−ν(j + 1)) rescaled to [0, 1), Lemma 2.13 provides a simple interpretation
of minimal subspace Umin

{ν+1}(f
ν) as the linear span of contiguous pieces of f rescaled to

[0, 1), see the illustration in Figure 2.
12
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(a) Function f : [0, 1)→ R

(b) Partial evaluations fν(j1, j2, ·) for (j1, j2) ∈ {0, 1}2.

Figure 2. A function f : [0, 1)→ R and partial evaluations of f ν ∈ Vb,d

for b = d = 2.

Corollary 2.14. Consider a (measurable) function f : [0, 1) → R and d ∈ N. For any
1 ≤ ν ≤ d,

rν,d(f) = rν,ν(f)

and
rν,ν(f) = dim span{f(b−ν(j + ·)) : 0 ≤ j ≤ bν − 1}.

Proof. We have

rν,d(f) = r{1,...,ν}(f
d) = r{ν+1,...,d+1}(f

d) = dimUmin
{ν+1,...,d+1}(f

d)

and
rν,ν(f) = r{1,...,ν}(f

ν) = rν+1(f ν) = dimUmin
{ν+1}(f

ν).

Lemma 2.13 then implies that rν,d(f) = rν,ν(f) and provides the characterization from
the linear span of f ν(j1, . . . , jν , ·) = f(b−ν(j+ ·)), with j =

∑ν
k=1 jkb

ν−k, which is linearly
identified with the restriction f|[b−νj,b−ν(j+1)) shifted and rescaled to [0, 1). �

2.4. Lebesgue Spaces. For 0 < p ≤ ∞, we consider the Lebesgue space Lp([0, 1)) of
functions defined on [0, 1) equipped with its standard (quasi-)norm. Then we consider
the algebraic tensor space

Vb,d,Lp := RIb⊗d ⊗ Lp([0, 1)) ⊂ Vb,d,

which is the space of multivariate functions f on Idb × [0, 1) with partial evaluations
f(j1, . . . , jd, ·) ∈ Lp([0, 1)). From hereon we frequently abbreviate Lp := Lp([0, 1)).

Theorem 2.15 (Tensorization is an Lp-Isometry). For any 0 < p ≤ ∞, Tb,d is a linear
isometry from Lp([0, 1)) to Vb,d,Lp equipped with the (quasi-)norm ‖ · ‖p defined by

‖f‖pp =
∑
j1∈Ib

. . .
∑
jd∈Ib

b−d‖f(j1, . . . , jd, ·)‖pp

13
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for p <∞, or
‖f‖∞ = max

j1∈Ib
. . .max

jd∈Ib
‖f(j1, . . . , jd, ·)‖∞.

Proof. The result follows from Proposition 2.7 and by noting that for f = Tb,df = f ◦ tb,d,

‖f‖pp =

∫
[0,1)

|f(x)|pdλ(x) =

∫
Idb×[0,1)

|f(j1, . . . , jd, y)|pdµb,d(j1, . . . , jd, y) = ‖f‖pp

for p <∞, and ‖f‖∞ = ess supx |f(x)| = ess sup(j1,...,jd,y) |f(j1, . . . , jd, y)| = ‖f‖∞ . �

We denote by `p(Ib) the space RIb equipped with the (quasi-)norm ‖ · ‖`p defined for
v = (vk)k∈Ib by

‖v‖p`p := b−1

b−1∑
k=0

|vk|p (p <∞), ‖v‖`∞ := max
0≤k≤b−1

|vk|.

The space Vb,d,Lp can then be identified with the algebraic tensor space

(`p(Ib))
⊗d ⊗ Lp([0, 1)).

and ‖ · ‖p is a crossnorm, i.e., satisfying for an elementary tensor v1⊗ . . .⊗vd+1 ∈ Vb,d,Lp ,

‖v1 ⊗ . . .⊗ vd+1‖p = ‖v1‖`p . . . ‖vd‖`p‖vd+1‖p.
and even a reasonable crossnorm for 1 ≤ p ≤ ∞ (see Lemma B.1 in the appendix). We
let {epk}k∈Ib denote the normalized canonical basis of `p(Ib), defined by

epk = b1/pδk for 0 < p <∞, and e∞k = δk for p =∞.(2.9)

The tensorization f = Tb,df of a function f ∈ Lp([0, 1)) admits a representation

f =
∑
j1∈Ib

. . .
∑
jd∈Ib

epj1 ⊗ . . .⊗ e
p
jd
⊗ fpj1,...,jd ,(2.10)

with fpj1,...,jd = b−d/pf(j1, . . . , jd, ·) for p <∞ and f∞j1,...,jd = f(j1, . . . , jd, ·). The crossnorm
property implies that

‖epj1 ⊗ . . .⊗ e
p
jd
⊗ fpj1,...,jd‖p = ‖fpj1,...,jd‖p,

so that Theorem 2.15 implies

‖f‖p =
( ∑

(j1,...,jd)∈Idb

‖fpj1,...,jd‖
p
p

)1/p

(p <∞), ‖f‖∞ = max
(j1,...,jd)∈Idb

‖f∞j1,...,jd‖∞.

2.5. Tensor Subspaces and Corresponding Function Spaces. For a linear space of
functions S ⊂ R[0,1), we define the tensor subspace

Vb,d,S := (RIb)⊗d ⊗ S ⊂ Vb,d,

and the corresponding linear subspace of functions in R[0,1),

Vb,d,S = T−1
b,d (Vb,d,S).

In the majority of this work we will be using finite-dimensional subspaces S for approxi-
mation. In particular, we will frequently use S = Pm where Pm is the space of polynomials
of degree up to m ∈ N0. In this case we use the shorthand notation

Vb,d,m := Vb,d,Pm .

The tensorization f = Tb,d(f) of a function f ∈ Vb,d,S admits a representation (2.2)
with functions f(j1, . . . , jd, ·) := fj1,...,jd in S. For x = tb,d(j1, . . . , jd, y) in the interval

[xj, xj+1), with j =
∑b

k=1 jkb
d−k, we have f(x) = fj1,...,jd(y) = fj1,...,jd(b

dx−j). Therefore,
14
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the functions f ∈ Vb,d,S have restrictions on intervals [xj, xj+1) that are obtained by
shifting and scaling functions in S. In particular, the space Vb,d,m corresponds to the
space of piecewise polynomials of degree m over the uniform partition of [0, 1) with bd

intervals.
For considering functions with variable levels d ∈ N, we introduce the set

Vb,S :=
⋃
d∈N

Vb,d,S.

It is straight-forward to see that, in general,

Vb,d,S 6⊂ Vb,d̄,S

for d̄ < d. E.g., take S = Pm and let f ∈ Vb,d,m be a piece-wise polynomial but discontin-
uous function. Then, clearly f does not have to be a polynomial over the intervals

[kb−d̄, (k + 1)b−d̄), 0 ≤ k ≤ bd̄ − 1,

for d̄ < d. The same holds for the other inclusion, as the following example demonstrates.

Example 2.16. Consider the one-dimensional subspace S := span {cos(2π·)}. A function
0 6= f ∈ Vb,d,S is thus a piece-wise cosine. Take for simplicity b = 2, d = 0 (i.e., V2,0,S =
S) and d̄ = 1. Then, f 6∈ V2,1,S due to span {cos(2π·)} 6⊃ span {cos(π·), cos(π + π·)},
since cosines of different frequencies are linearly independent. The same reasoning can
be applied to any b ≥ 2 and d, d̄ ∈ N with d < d̄.

This motivates the following definition that is reminiscent of MRAs.

Definition 2.17 (Closed under b-adic dilation). We say that a linear space S is closed
under b-adic dilation if for any f ∈ S and any k ∈ {0, . . . , b− 1},

f(b−1(·+ k)) ∈ S.

Lemma 2.18. If S is closed under b-adic dilation, then for all f ∈ S,

f(b−d(·+ k)) ∈ S
for all d ∈ N and k ∈ {0, . . . , bd − 1}.

Proof. See Appendix B. �

Important examples of spaces S that satisfy the above property include spaces of
polynomials and MRAs. The closedness of S under b-adic dilation implies a hierarchy
between spaces Vb,d,S with different levels, and provides Vb,S with a linear space structure.

Proposition 2.19. If S is closed under b-adic dilation, then

S := Vb,0,S ⊂ Vb,1,S ⊂ . . . ⊂ Vb,d,S ⊂ . . . .

Proof. See Appendix B. �

Proposition 2.20 (Vb,S is a linear space). If S is closed under b-adic dilation, then Vb,S
is a linear space.

Proof. See Appendix B. �

If S ⊂ Lp([0, 1)), then Vb,S is clearly a subspace of Lp([0, 1)). However, it is not difficult
to see that, in general, Vb,S is not a closed subspace of Lp([0, 1)). On the other hand, we
have the following density result.

Theorem 2.21 (Vb,S dense in Lp). Let 0 < p <∞. If S ⊂ Lp([0, 1)) and S contains the
constant function one, then Vb,S =

⋃
d∈N Vb,d,S is dense in Lp([0, 1)).
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Proof. See Appendix B. �

Now we provide bounds for ranks of functions in Vb,S, directly deduced from (2.7).

Lemma 2.22. For f ∈ Vb,d,S and any β ⊂ {1, . . . , d},
rβ,d(f) ≤ min{b#β, bd−#β dimS}.

In particular, for all 1 ≤ ν ≤ d,

rν,d(f) ≤ min{bν , bd−ν dimS}.

In the case where S is closed under b-adic dilation, we can obtain sharper bounds for
ranks.

Lemma 2.23. Let S be closed under b-adic dilation.

(i) If f ∈ S, then for any d ∈ N, f ∈ Vb,d,S and we have

rν,d(f) ≤ min{bν , dimS}, 1 ≤ ν ≤ d.

(ii) If f ∈ Vb,d,S, then for any d̄ ≥ d, f ∈ Vb,d̄,S and we have

rν,d̄(f) = rν,d(f) ≤ min
{
bν , bd−ν dimS

}
, 1 ≤ ν ≤ d,

rν,d̄(f) ≤ min {bν , dimS} , d < ν ≤ d̄.(2.11)

Proof. See Appendix B. �

Remark 2.24. Lemma 2.23(ii) shows that the ranks are independent of the representation
level of a function ϕ, so that we will frequently suppress this dependence and simply note
rν,d(ϕ) = rν(ϕ) for any d such that ϕ ∈ Vb,d,S.

We end this section by introducing projection operators based on local projection. Let
IS be a linear projection operator from Lp([0, 1)) to a finite-dimensional space S. Then,
let Ib,d,S be a linear operator defined for f ∈ Lp([0, 1)) by

(2.12) (Ib,d,Sf)(b−d(j + ·)) = IS(f(b−d(j + ·))), 0 ≤ j < bd.

Lemma 2.25 (Local projection). The operator Ib,d,S is a linear operator from Lp([0, 1))
to Vb,d,S and satisfies

Tb,d ◦ Ib,d,S ◦ T−1
b,d = id{1,...,d} ⊗ IS.(2.13)

Proof. See Appendix B. �

We now provide a result on the ranks of projections.

Lemma 2.26 (Local projection ranks). For any f ∈ Lp, Ib,d,Sf ∈ Vb,d,S satisfies

rν,d(Ib,d,Sf) ≤ rν,d(f), 1 ≤ ν ≤ d.

Proof. Lemma 2.25 implies that Tb,d ◦Ib,d,S ◦T−1
b,d is a rank one operator. Since a rank-one

operator can not increase β-ranks, we have for all 1 ≤ ν ≤ d

rν,d(Ib,d,S(f)) = rν(Tb,d ◦ Ib,d,S ◦ T−1
b,d f) = rν((id{1,...,d} ⊗ IS)f) ≤ rν(f) = rν,d(f).

�

3. Tree Tensor Networks and Their Approximation spaces

In this section, we begin by describing particular tensor formats, namely tree tensor
networks that will constitute our approximation tool. We then briefly review classical
approximation spaces (see [19]). We conclude by introducing different measures of com-
plexity of tree tensor networks and analyze the resulting approximation classes.
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3.1. Tree Tensor Networks and The Tensor Train Format. Let S be a finite-
dimensional subspace of R[0,1) and A a dimension partition tree (or a subtree of such a
tree). A hierarchical or tree-based tensor format [35, 24] in the tensor space Vb,d,S =
(RIb)⊗d ⊗ S is defined as a set of tensors with β-ranks bounded by some integers rβ, for
a certain collection A of subsets β ⊂ {1, . . . , d+ 1},

T Ar (Vb,d,S) = {f ∈ Vb,d,S : rβ(f) ≤ rβ, β ∈ A}.

A tensor f ∈ T Ar (Vb,d,S) in a tree-based tensor format admits a parametrization in terms
of a collection of low-order tensors vβ, β ∈ A. Hence, the interpretation as a tree tensor
network (see [47, Section 4]).

For the most part we will work with the tensor train format with the exception of a few
remarks. This format considers the collection of subsets A = {{1}, {1, 2}, . . . , {1, . . . , d}}.

Definition 3.1 (Tensor Train Format). The set4 of tensors in Vb,d in tensor train (TT)
format with ranks at most r := (rν)

d
ν=1 is defined as

T T r (Vb,d,S) := {f ∈ Vb,d,S : rν(f) ≤ rν , 1 ≤ ν ≤ d} ,

where we have used the shorthand notation rν(f) := r{1,...,ν}(f). This defines a set of
univariate functions

Φb,d,S,r = T−1
b,d (T T r (Vb,d,S)) = {f ∈ Vb,d,S : rν(f) ≤ rν , 1 ≤ ν ≤ d},

where rν(f) := rν,d(f), that we further call the tensor train format for univariate func-
tions.

Letting {ϕk}dimS
k=1 be a basis of S, a tensor f ∈ T T r (Vb,d,S) admits a representation

f(i1, . . . , id, y) =

r1∑
k1=1

· · ·
rd∑

kd=1

dimS∑
k=1

vk1
1 (i1)vk1,k2

2 (i2) · · · vkd−1,kd
d (id)v

kd,k
d+1ϕk(y),(3.1)

with parameters v1 ∈ Rb×r1 , vν ∈ Rb×rν−1×rν , 2 ≤ ν ≤ d, and vd+1 ∈ Rrd×dimS forming a
tree tensor network

v = (v1, . . . , vd+1) ∈ Pb,d,S,r := Rb×r1 × Rb×r1×r2 × . . .× Rb×rd−1×rd × Rrd×dimS.

The format T T r (Vb,d,S) then corresponds to the image of the space of tree tensor net-
works Pb,d,S,r through the map

Rb,d,S,r : Pb,d,S,r → T T r (Vb,d,S) ⊂ Vb,d,S

such that for v = (v1, . . . , vd+1) ∈ Pb,d,S,r, the tensor f = Rb,d,S,r(v) is defined by (3.1).
The set of functions Φb,d,S,r in the tensor train format can be parametrized as follows:

Φb,d,S,r = {ϕ = Rb,d,S,r(v) : v ∈ Pb,d,S,r}, Rb,d,S,r(v) = T−1
b,d ◦Rb,d,S,r.

With an abuse of terminology, we call tensor networks both the set of tensors v and
the corresponding function ϕ = Rb,d,S,r(v). The representation complexity of f =
Rb,d,S,r(v) ∈ T T r (Vb,d,S) is

C(b, d, S, r) := dim(Pb,d,S,r) = br1 + b
d∑

ν=2

rν−1rν + rd dimS.(3.2)

4It is in fact a manifold, see [38, 23, 26, 25]. This definition is a continuous version of the QTT format.
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Remark 3.2 (Re-Ordering Variables in the TT Format). We chose in Definition 2.2 to
order the input variables of the tensorized function f such that y ∈ [0, 1) is in the last
position. This specific choice allows the interpretation of partial evaluations of {1, . . . , ν}-
unfoldings as contiguous pieces of f = T−1

b,d (f) (see Lemma 2.13 and the discussion there-
after). Alternatively, we could have chosen the ordering (y, i1, . . . , id) 7→ f(y, i1, . . . , id),
and defined the TT-format and TT-ranks correspondingly. Essentially this is the same as
considering a different tensor format, see discussion above. Many of the results of Sec-
tions 4 and 5 remain the same. In particular, the order of magnitude of the rank bounds
and therefore the resulting direct and inverse estimates would not change. However, this
re-ordering may lead to slightly smaller rank bounds as in Remark 3.9 or slightly larger
rank bounds as in Remark 4.7.

3.2. General Approximation Spaces. Let X be a quasi-normed linear space, Φn ⊂ X
subsets of X for n ∈ N0 and Φ := (Φn)n∈N0 . Define the best approximation error

En(f) := E(f,Φn) := inf
ϕ∈Φn

‖f − ϕ‖X .

With this we define approximation classes as

Definition 3.3 (Approximation Classes). For any f ∈ X and α > 0, define the quantity

‖f‖Aαq :=

{(∑∞
n=1[nαEn−1(f)]q 1

n

)1/q
, 0 < q <∞,

supn≥1[nαEn−1(f)], q =∞.

The approximation classes Aαq of Φ = (Φn)n∈N0 are defined by

Aαq := Aαq (X) := Aαq (X,Φ) :=
{
f ∈ X : ‖f‖Aαq <∞

}
.

These approximation classes have many useful properties if we further assume that
(Φn) satisfy the following criteria for any n ∈ N0.

(P1) 0 ∈ Φn, Φ0 = {0}.
(P2) Φn ⊂ Φn+1.
(P3) aΦn = Φn for any a ∈ R \ {0}.
(P4) Φn + Φn ⊂ Φcn for some c := c(Φ).
(P5)

⋃
n∈N0

Φn is dense in X.
(P6) Φn is proximinal in X, i.e. each f ∈ X has a best approximation in Φn.

Additionally, properties (P1) – (P6) will be frequently combined with the so-called direct
or Jackson inequality

En(f) ≤ Cn−kJ |f |Y , ∀f ∈ Y,(3.3)

for a semi-normed vector space Y and some parameter kJ > 0, and the inverse or Bern-
stein inequality

|ϕ|Y ≤ CnkB ‖ϕ‖X , ∀ϕ ∈ Φn,(3.4)

for some parameter kB > 0.
The implications of (P1) – (P4) about the properties of Aαq are as follows

• (P1)+(P3)+(P4) ⇒ Aαq is a linear space with a quasi-norm.
• (P1)+(P3)+(P4) ⇒ Aαq satisfies the direct or Jackson inequality

En(f) ≤ Cn−α ‖f‖Aαq , ∀f ∈ Aαq .

• (P1)+(P2)+(P3)+(P4) ⇒ Aαq satisfies the inverse or Bernstein inequality

‖ϕ‖Aαq ≤ Cnα ‖ϕ‖X , ∀ϕ ∈ Φn.
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(P1) – (P4) together with a Jackson estimate as in (3.3) are required to prove so-called
direct embeddings. (P1) – (P6) together with a Bernstein estimate (3.4) are required for
inverse embeddings. We will see in Section 7 that, in general, approximation spaces of
tensor networks are not embedded in smoothness (Besov) spaces. (P5) is typically true
for any type of reasonable approximation tool5. We have the continuous embeddings

Aαq ↪→ Aβq̄ , if α > β or if α = β and q ≤ q̄.

We will see that, while most properties are easy to satisfy, property (P4) will be the
most critical one. In essence (P4) is a restriction on the nonlinearity of the sets Φn, with
c(Φ) = 1 being satisfied by linear subspaces.

3.2.1. Necessity of (P4). We could consider replacing n with n2 in (P4), i.e.,

Φn + Φn ⊂ Φcn2 .(3.5)

This implies that Aαq as defined in Definition 3.3 is no longer a vector space. The state-
ments about Jackson and Bernstein inequalities as well as the relation to interpolation
and smoothness spaces are no longer valid.

One could try to recover the linearity of Aαq by modifying Definition 3.3. In Definition
3.3 we measure algebraic decay of En (f). Algebraic decay is compatible with (P4) that
in turn ensures Aαq is a vector space. We could reverse this by asking: what type of decay
behavior is “compatible” with (3.5) in the sense that the corresponding approximation
class would be a linear space? We can introduce a growth function γ : N → R+ with
limn γ(n) =∞ and define an approximation class Aγ∞ of Φ = (Φn)n∈N0 as

Aγ∞ :=

{
f ∈ X : sup

n≥1
γ(n)En−1 (f) <∞

}
.

With some elementary computations one can deduce that if the growth function is of the
form

γ(n) := 1 + ln(n),

then (3.5) implies Aγ∞ is closed under addition. However, functions in Aγ∞ have too slowly
decaying errors for any practical purposes such that we do not intend to analyze this space
further.

We could instead ask what form of (P4) would be compatible with a growth function
such as

γ(n) := exp(anα),

for some a > 0 and α > 0, i.e., classes of functions with exponentially decaying errors.
In this case we would have to require c = 1 in (P4), i.e.,

Φn + Φn ⊂ Φn,

in other words, Φn is a linear space.
These considerations suggest that preserving (P4) in its original form is necessary to

exploit the full potential of classical approximation theory while preserving some flexibil-
ity in defining Φn. Thus, we only consider definitions of approximation tools that satisfy
(P4).

5Think of universality theorems for neural networks which hold for tensor networks as well as we will
see shortly.

19



Tensorized Univariate Functions

3.3. Measures of Complexity. We consider as an approximation tool Φ the collection
of tensor networks Φb,d,S,r associated with different levels and ranks,

Φ := (Φb,d,S,r)d∈N,r∈Nd ,

and define the sets of functions Φn as

Φn :=
{
ϕ ∈ Φb,d,S,r : d ∈ N, r ∈ Nd, compl(ϕ) ≤ n

}
,(3.6)

where compl(ϕ) is some measure of complexity of a function ϕ. The approximation classes
of tensor networks depend on the chosen measure of complexity. We propose different
measures of complexity and discuss the critical property (P4). We will then only retain
definitions of compl(·) such that the corresponding approximation tool satisfies (P4).

A function ϕ ∈ Φ may admit representations at different levels. We set

d(ϕ) = min{d : ϕ ∈ Vb,d,S}

to be the minimal representation level of ϕ, and r(ϕ) = (rν(ϕ))
d(ϕ)
ν=1 be the corresponding

ranks. Measures of complexity may also be based on a measure of complexity compl(v)
of tensor networks v such that ϕ = Rb,d,S,r(v). In this case, we would define

Φn :=
{
ϕ = Rb,d,S,r(v) ∈ Φb,d,S,r : v ∈ Pb,d,S,r, d ∈ N, r ∈ Nd, compl(v) ≤ n

}
.(3.7)

which is equivalent to the definition (3.6) if we let

compl(ϕ) := min{compl(v) : Rb,d,S,r(v) = ϕ, d ∈ N, r ∈ Nd},(3.8)

where the minimum is taken over all possible representations of ϕ.

3.3.1. Complexity Measure: Maximum Rank. In many high-dimensional approximation
problems it is common to consider the maximum rank as an indicator of complexity (see,
e.g., [6]). By this analogy we consider for ϕ ∈ Φ,

compl(ϕ) := bdr2
max(ϕ) + rmax(ϕ) dimS, rmax(ϕ) = max {rν(ϕ) : 1 ≤ ν ≤ d(ϕ)} .

(3.9)

This complexity measure does not satisfy (P4).

Proposition 3.4 ((P4) not satisfied by the complexity measure based on rmax). Let S be
closed under b-adic dilation and assume dimS < ∞. Then, with Φn as defined in (3.6)
with the measure of complexity (3.9),

(i) there exists no constant c ∈ R such that Φn + Φn ⊂ Φcn.
(ii) There exists a constant c > 1 such that Φn + Φn ⊂ Φcn2 .

Proof. See Appendix C. �

3.3.2. Complexity Measure: Sum of Ranks. For a neural network, a natural measure of
complexity is the number of neurons. By analogy, we can define a complexity measure
equal to the sum of ranks

complN (ϕ) :=

d(ϕ)∑
ν=1

rν(ϕ),(3.10)

and the corresponding set

ΦNn :=
{
ϕ ∈ Φb,d,S,r : d ∈ N, r ∈ Nd, complN (ϕ) ≤ n

}
.(3.11)

This complexity measure can be equivalently defined by (3.8) with complN (v) =
∑d

ν=1 rν
for v ∈ Pb,d,S,r.
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Lemma 3.5 (ΦNn satisfies (P4)). Let S be closed under b-adic dilation and dimS < ∞.
Then, the set ΦNn as defined in (3.11) satisfies (P4) with c = 2 + dimS.

Proof. See Appendix C. �

3.3.3. Complexity Measure: Representation Complexity. A straight-forward choice for the
complexity measure is the number of parameters required for representing ϕ as in (3.2),
i.e.,

complC(ϕ) := C(b, d(ϕ), S, r(ϕ)) = br1(ϕ) + b

d(ϕ)∑
k=2

rk−1(ϕ)rk(ϕ) + rd(ϕ) dimS,(3.12)

and the corresponding set is defined as

ΦCn :=
{
ϕ ∈ Φb,d,S,r : d ∈ N, r ∈ Nd, complC(ϕ) ≤ n

}
.(3.13)

Remark 3.6. This complexity measure can be equivalently defined by (3.8) with complC(v) =
C(b, d, S, r) for v ∈ Pb,d,S,r. This means that complC(ϕ) = complC(v) for a tensor net-
work v corresponding to a minimal representation of ϕ, i.e. the sizes of tensors in the
tensor network are equal to the ranks of the represented function ϕ.

Remark 3.7. When interpreting tensor networks as neural networks, the complexity
measure complC is equivalent to the number of weights for a fully connected neural network
with rν neurons in layer ν.

We can show the set ΦCn satisfies (P4) with the help of Lemmas 2.12 and 2.23.

Lemma 3.8 (ΦCn satisfies (P4)). Let S be closed under b-adic dilation and dimS < ∞.
Then, the set ΦCn as defined in (3.13) satisfies (P4) with c = c(b, dimS) > 1.

Proof. See Appendix C. �

Remark 3.9 (Re-Ordering Input Variables). In the proof of Lemma 3.8, we have used
the property (2.11) from Lemma 2.12. As mentioned in Remark 3.2, we could consider
a different ordering of the input variables (y, i1, . . . , id) 7→ f(y, i1, . . . , id), and the corre-
sponding TT-format. This would change (2.11) to

rν,d̄(f) = 1, d+ 1 ≤ ν ≤ d̄.

We still require S to be closed under b-adic dilation to ensure f ∈ Vb,d̄,S.

Remark 3.10 (`2-norm of Ranks). One could, in principle, also consider defining the
complexity measure as a `2-norm of the tuple of ranks

compl(ϕ) := b

d(ϕ)∑
k=1

rk(ϕ)2 + rd(ϕ) dimS.

This definition satisfies (P4) as well with analogous results as for the complexity measure
complC for direct and inverse embeddings. The `2-norm of ranks is less sensitive to
rank-anisotropy than the representation complexity complC(ϕ). Note that both complexity
measures reflect the cost of representing a function with tensor networks, not the cost of
performing arithmetic operations, where frequently an additional power of r is required
(e.g., ∼ r3 or higher).
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3.3.4. Complexity Measure: Sparse Representation Complexity. Finally, for a function
ϕ = Rb,d,S,r(v) ∈ Φb,d,S,r, we consider a complexity measure that takes into account the
sparsity of the tensors v = (v1, . . . , vd+1),

complS(v) :=
d+1∑
ν=1

‖vν‖`0 ,(3.14)

where ‖vν‖`0 is the number of non-zero entries in the tensor vν . By analogy with neural
networks, this corresponds to the number of non-zero weights for sparsely connected
neural networks. We define the corresponding set as

ΦSn :=
{
ϕ ∈ Φb,d,S,r : d ∈ N, r ∈ Nd, complS(ϕ) ≤ n

}
,(3.15)

with complS(ϕ) defined by (3.8). We can show the set ΦSn satisfies (P4). For that, we
need the following two lemmas.

Lemma 3.11. Assume S is closed under b-adic dilation and dimS < ∞. Let ϕ =
Rb,d,S,r(v) ∈ Φb,d,S,r with r = (rν)

d
ν=1. For d̄ > d, there exists a representation ϕ =

Rb,d̄,S,r(v) ∈ Φb,d̄,S,r with r = (r̄ν)
d̄
ν=1 such that r̄ν = rν for 1 ≤ ν ≤ d and r̄ν ≤

max{dimS, b} dimS for d < ν ≤ d̄, and

complS(v) ≤ b complS(v) + (d̄− d)b2(dimS)3.

Proof. See Appendix C. �

Lemma 3.12 (Sum of Sparse Representations). Let ϕA = Rb,d,S,rA(vA) ∈ Φb,d,S,rA and
ϕB = Rb,d,S,rB(vB) ∈ Φb,d,S,rB . Then, ϕA + ϕB admits a representation ϕA + ϕB =
Rb,d,S,r(v) ∈ Φb,d,S,r with rν = rAν + rBν for 1 ≤ ν ≤ d, and

complS(ϕA + ϕB) ≤ complS(v) ≤ complS(vA) + complS(vB).

Proof. See Appendix C. �

Lemma 3.13 (ΦSn satisfies (P4)). Let S be closed under b-adic dilation and dimS <∞.
Then, the set ΦSn as defined in (3.15) satisfies (P4) with c = b+ 1 + b2(dimS)3.

Proof. Let ϕA, ϕB ∈ ΦSn with ϕA = Rb,dA,S,rA(vA) ∈ Φb,dA,S,rA and ϕB = Rb,dB ,S,rB(vB) ∈
Φb,dB ,S,rB and w.l.o.g. dA ≤ dB. From Lemmas 3.11 and 3.12, we know that ϕA + ϕB
admits a representation ϕA + ϕB = Rb,dB ,S,r(v) at level dB with

complS(v) ≤ b complS(vA) + complS(vB) + (dB − dA)b2(dimS)3

≤ (b+ 1 + b2(dimS)3)n,

which ends the proof. �

3.4. Approximation Spaces of Tensor Trains. We denote by ΦNn , ΦCn and ΦSn the
approximation set Φn asscociated with the measures of complexity complN , complC and
complS respectively. Then, for a quasi-normed linear space X, we define three different
families of approximation classes

Nα
q (X) := Aαq (X, (ΦNn )n∈N),(3.16)

Cα
q (X) := Aαq (X, (ΦCn)n∈N),(3.17)

Sαq (X) := Aαq (X, (ΦSn)n∈N),(3.18)

with α > 0 and 0 < q ≤ ∞. Below, we will show that these approximation classes are in
fact approximation spaces and we will then compare these spaces.
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3.4.1. Approximation Classes are Approximation Spaces. We proceed with checking if
ΦNn , ΦCn and ΦSn satisfy properties (P1)–(P6). In particular, satisfying (P1)–(P4) will
imply that the corresponding approximation classes are quasi-normed Banach spaces.
The only property – other than (P4) – that is not obvious, is (P6). This is addressed in
the following Lemma for ΦNn and ΦCn.

Lemma 3.14 (ΦNn and ΦCn satisfy (P6)). If 1 < p <∞ and S is a closed subspace of Lp,
then ΦNn and ΦCn are proximinal in Lp for any n ∈ N. Moreover, if S is finite-dimensional,
the above is true for all 0 < p ≤ ∞.

Proof. See Appendix C. �

As the following example shows, we cannot in general guarantee (P6) for ΦSn .

Example 3.15. Suppose b ≥ 3 and dimS ≥ 3. Take two linearly independent vectors
v, w ∈ Rb and f, g ∈ S. For any N ∈ N, set

ϕN := (w +Nv)⊗ (v +
1

N
w)⊗ f + v ⊗ v ⊗ (g −Nf),

and

ϕ := v ⊗ v ⊗ g + v ⊗ w ⊗ f + w ⊗ v ⊗ f.

Then, we have the following (see [34, Proposition 9.10 and Remark 12.4]).

(i) For the canonical tensor rank, we have r(ϕN) = 2 for any N ∈ N and r(ϕ) = 3.
(ii) As we will see in Lemma 3.22, ϕN ∈ ΦS6b+2 dimS for any N ∈ N and ϕ ∈ ΦS9b+3 dimS.

Moreover, this complexity is minimal for both functions.
(iii) For N →∞, ϕN → ϕ in any norm6.

In other words, ES6b+2 dimS(ϕ) = 0, even though ϕ 6∈ ΦS6b+2 dimS.

Remark 3.16. (P6) is required for showing that the approximation spaces Aαq are con-
tinuously embedded into interpolation spaces, see [19, Chapter 7, Theorem 9.3]. As a side
note, (P6) does not hold for ReLU or RePU networks as was discussed in [32].

We now derive the main result of this section.

Theorem 3.17 (Properties of ΦNn , ΦCn and ΦSn). Let 0 < p ≤ ∞, S ⊂ Lp be a closed
subspace that is also closed under b-adic dilation and dimS <∞. Then,

(i) ΦNn and ΦCn and ΦSn satisfy (P1) – (P4).
(ii) ΦNn , ΦCn additionally satisfy (P6).

(iii) If 0 < p < ∞ and if S contains the constant function one, ΦNn , ΦCn and ΦSn
additionally satisfy (P5).

Proof. (P1) – (P3) are obvious and (P4) follows from Lemmas 3.5, 3.8 and 3.13, that
yields (i). (iii) follows from the fact that⋃

n∈N

Φn =
⋃
d∈N

⋃
r∈Nd

Φb,d,S,r =
⋃
d∈N

Vb,d,S = Vb,S,

and from Theorem 2.21. Finally, (ii) follows from Lemma 3.14. �

Theorem 3.17(i) implies that the approximation classes Nα
q (Lp), Cα

q (Lp) and Sαq (Lp)
are quasi-normed vector spaces that satisfy the Jackson and Bernstein inequalities.

6Both ϕN and ϕ belong to a finite-dimensional vector space.
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3.4.2. Comparing Approximation Spaces. For comparing approximation spaces Nα
q (Lp),

Cα
q (Lp) and Sαq (Lp), we first provide some relations between the sets ΦNn , ΦCn and ΦSn .

Proposition 3.18. For any n ∈ N,

ΦCn ⊂ ΦSn ⊂ ΦNn ⊂ ΦCb dimS+bn2 .

Proof. See Appendix C. �

From Proposition 3.18 and the definition of approximation spaces, we obtain7

Theorem 3.19. For any α > 0, 0 < p ≤ ∞ and 0 < q ≤ ∞, the classes Nα
q (Lp), Cα

q (Lp)
and Sαq (Lp) satisfy the continuous embeddings

Cα
q (Lp) ↪→ Sαq (Lp) ↪→ Nα

q (Lp) ↪→ Cα/2
q (Lp).

3.5. About The Canonical Tensor Format. We conclude by comparing tensor net-
works with the canonical tensor format

Tr(Vb,d,S) = {f ∈ Vb,d,S : r(f) ≤ r},
which is the set of tensors that admit a representation

f(i1, . . . , id, y) =
r∑

k=1

wk1(i1) . . . wkd(id)g
k
d+1(y), gkd+1(y) =

dimS∑
q=1

wq,kd+1ϕq(y),

with wν ∈ Rb×r for 1 ≤ ν ≤ d and wd+1 ∈ RdimS×r. The canonical tensor format can be
interpreted as a shallow sum-product neural network (or arithmetic circuit), see [16].

We let Rb,d,S,r be the map from (Rb×r)d×RdimS×r := Pb,d,S,r to Vb,d,S which associates
to a set of tensors (w1, . . . , wd+1) the tensor f = Rb,d,S,r(w1, . . . , wd+1) as defined above.
We introduce the sets of functions

Φb,d,S,r = T−1
b,d Tr(Vb,d,S),

which can be parametrized as follows:

Φb,d,S,r = {ϕ = Rb,d,S,r(w) : w ∈ Pb,d,S,r}, Rb,d,S,r = T−1
b,d ◦Rb,d,S,r.

For ϕ ∈ Vb,S, we let

r(ϕ) = min{r(f) : f ∈ Vb,d(ϕ),S, T
−1
b,d (f) = ϕ}.

We introduce as a natural complexity measure the representation complexity

complR(ϕ) = bd(ϕ)r(ϕ) + r(ϕ) dimS,

define the sets

ΦRn = {ϕ ∈ Φb,d,S,r : d ∈ N, r ∈ N, complR(ϕ) ≤ n},
and consider the corresponding approximation classes

Rα
q (Lp) = Aαq (Lp, (ΦRn )n∈N),

with α > 0 and 0 < q ≤ ∞. We start by showing that ΦRn satisfies (P1)-(P3) and (P5)
(under some assumptions), but not (P4).

Lemma 3.20 (ΦRn satisfies (P1)-(P3) and (P5)). Let 0 < p ≤ ∞ and S ⊂ Lp be a finite-
dimensional space. Then ΦRn satisfies (P1)-(P3). Moreover, if S contains the constant
function one, ΦRn satisfies (P5) for 0 < p <∞.

7Compare to similar results obtained for RePU networks in [32, Section 3.4].
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Proof. (P1)-(P3) are obvious. (P5) follows from the fact that⋃
n∈N

ΦRn =
⋃
d∈N

⋃
r∈N

Φb,d,S,r =
⋃
d∈N

Vb,d,S = Vb,S,

and from Theorem 2.21. �

Lemma 3.21 (ΦRn does not satisfy (P4)). Let 0 < p ≤ ∞ and S ⊂ Lp be a finite-
dimensional subspace which is closed under b-adic dilation and such that r(Tb,d(ϕ)) = 1
for any ϕ ∈ S and d ∈ N. Then, ΦRn satisfies

(i) ΦRn + ΦRn ⊂ ΦR3n2,
(ii) there exists no constant c > 1 such that ΦRn + ΦRn ⊂ ΦRcn.

Proof. See Appendix C. �

Lemma 3.22. For any n ∈ N, we have ΦRn ⊂ ΦSn .

Proof. See Appendix C. �

Corollary 3.23. For any α > 0 and 0 < q ≤ ∞,

Rα
q (Lp) ⊂ Sαq (Lp).

4. Encoding Classical Approximation Tools

In this section, we demonstrate how classical approximation tools can be represented
with tensor networks and bound the complexity of such a representation. Specifically, we
consider representing fixed knot splines, free knot splines and polynomials.8 This will be
the basis for Section 6 where we use these complexity estimates to prove embeddings of a
scale of interpolation spaces into the approximation classes Nα

q (Lp), Cα
q (Lp) and Sαq (Lp).

Our background space is as before Lp, where we specify the range of p where necessary.

4.1. Polynomials. Let us first consider the encoding of a polynomial of degree m̄ in
Vb,d,m̄.

Lemma 4.1 (Ranks for Polynomials). Let ϕ ∈ Pm̄, m̄ ∈ N. For any d ∈ N, ϕ ∈ Vb,d,m̄
and for 1 ≤ ν ≤ d,

rν,d(ϕ) ≤ min{m̄+ 1, bν}.
Proof. Since Pm̄ is closed under b-adic dilation, the result simply follows from Lemma 2.23
(i). �

Now we consider the representation of a function ϕ ∈ Pm̄ as a tensor in Vb,d,m with
m 6= m̄. An exact representation is possible if m̄ ≤ m (see Proposition 2.19). Other-
wise we have to settle for an approximation. In this section, we consider a particular
type of approximation based on local interpolations that we will use in the next section.
Let Wm+1,p denote the Sobolev space of m + 1-times weakly-differentiable p-integrable
functions.

Definition 4.2 (Local Interpolation). We consider an interpolation operator Im from
Lp([0, 1)) to S := Pm, 1 ≤ p ≤ ∞, such that for all v ∈ Wm+1,p and all l = 0, . . . ,m+ 1,
we have

(4.1) |v − Imv|W l,p ≤ C |v|Wm+1,p

for some constant C > 0 independent of v. For the construction of this operator and a
proof of the above property see, e.g., [21, Theorem 1.103]. Then, we introduce the operator
Ib,d,m := Ib,d,S from Lp([0, 1)) to Vb,d,m defined by (2.12) with IS = Im.

8See [3] for a representation of wavelets.
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Polynomials and interpolations thereof can be tensorized in a highly efficient manner
– a fact first observed in [28].

Lemma 4.3 (Ranks of Interpolants of Polynomials). For ϕ ∈ Pm̄, m̄ ∈ N, the interpolant
satisfies Ib,d,m(ϕ) ∈ Vb,d,m and for 1 ≤ ν ≤ d,

rν,d(Ib,d,m(ϕ)) ≤ min
{
bν , (m+ 1)bd−ν , m̄+ 1

}
.(4.2)

Proof. Since Ib,d,m(ϕ) ∈ Vb,d,m, the bound rν,d(ϕ) ≤ min
{
bν , (m+ 1)bd−ν

}
is obtained

from Lemma 2.23 (ii). Then from Lemma 2.26, we know that rν,d(Ib,d,m(ϕ)) ≤ rν,d(ϕ) for
all 1 ≤ ν ≤ d, and we conclude by using Lemma 4.1. �

From Lemma 4.3, we easily deduce

Proposition 4.4 (Complexity for Encoding Interpolants of Polynomials). For a polyno-
mial ϕ ∈ Pm̄, m̄ ∈ N, the different complexities from Section 3 for encoding the interpolant
Ib,d,m(ϕ) of level d and degree m ≤ m̄ within Vb,m are bounded as

complN (Ib,d,m(ϕ)) ≤ (m̄+ 1)d,

complS(Ib,d,m(ϕ)) ≤ complC(Ib,d,m(ϕ)) ≤ b(m̄+ 1)2d+ b(m+ 1).

4.2. Fixed Knot Splines. Let b, d ∈ N. We divide [0, 1) into N = bd intervals [xk, xk+1)
with

xk := kb−d, k = 0, . . . , bd.

Fix a polynomial of degree m ∈ N0 and a continuity index c ∈ N0 ∪ {−1,∞}. Define the
space of fixed knot splines of degree m with N + 1 knots and c continuous derivatives as

SN,mc :=
{
f : [0, 1)→ R : f|[xk,xk+1)

∈ Pm, k = 0, . . . , N − 1 and f ∈ Cc([0, 1))
}
,

where C−1([0, 1)) stands for not necessarily continuous functions on [0, 1), C0([0, 1)) is
the space C([0, 1)) of continuous functions on [0, 1) and Ck([0, 1)), k ∈ N ∪ {∞}, is the
usual space of k-times differentiable functions. The following property is apparent.

Lemma 4.5 (Dimension of Spline Space). SN,mc is a finite-dimensional subspace of Lp

with

dimSN,mc =

{
(m+ 1)N − (N − 1)(c + 1), −1 ≤ c ≤ m,

m+ 1, m+ 1 ≤ c ≤ ∞.

With the above Lemma we immediately obtain

Lemma 4.6 (Ranks of Fixed Knot Splines). Let ϕ ∈ SN,mc with N = bd. Then, ϕ ∈ Vb,d,m
and for 1 ≤ ν ≤ d

rν,d(ϕ) ≤

{
min

{
(m− c)bd−ν + (c + 1), bν

}
, −1 ≤ c ≤ m,

min {m+ 1, bν} , m+ 1 ≤ c ≤ ∞.
(4.3)

Proof. For any 0 ≤ j < bν , the restriction of ϕ to the interval [b−νj, b−ν(j+ 1)) is a piece-

wise polynomial in Cc([b−νj, b−ν(j + 1))) with bd−ν pieces, so that ϕ(b−ν(j+ ·)) ∈ Sbd−ν ,mc

(with knots kb−ν , 0 ≤ k < bν). Corollary 2.14 then implies rν,d(f) ≤ dim(Sbd−j ,mc ) and
we obtain (4.3) by using Lemma 4.5 and Lemma 2.23. �

Remark 4.7 (General Tensor Formats). We could generalize the above statement to a
general tree-based tensor format. In this case, for β ⊂ {1, . . . , d} we would have the bound
(see also Lemma 2.22)

rβ,d(ϕ) ≤ min
{

(m+ 1)bd−#β, b#β
}
.
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Note that (Tb,dϕ)(jβ, ·) is not necessarily a contiguous piece of ϕ, even if β is a contigu-
ous subset of {1, . . . , d}, e.g., β = {j, j + 1, . . . , j + i}. Therefore additional continuity
constraints on ϕ ∈ SN,mc would in general not affect the rank bound. Of course, for large
d the rank reduction due to continuity constraints is not essential, unless c = m and in
this case the ranks would be bounded by m+ 1 in any format, see also Remark 3.2.

Proposition 4.8 (Complexity for Encoding Fixed Knot Splines). For a fixed knot spline
ϕ ∈ SN,mc with N = bd, the different complexities from Section 3 for encoding within Vb,m
are bounded as

complN (ϕ) ≤ C
√
N,

complS(ϕ) ≤ complC(ϕ) ≤ CN,

with constants C > 0 depending only on b and m.

Proof. From Lemma 4.6, we obtain

complN (ϕ) =

bd/2c∑
ν=1

bν +
d∑

ν=bd/2c+1

bd−ν ≤ 2
b

b− 1
bd/2 = 2

b

b− 1

√
N,

complC(ϕ) =

bd/2c∑
ν=1

b2ν +
d∑

ν=bd/2c+1

b2(d−ν+1) + b(m+ 1)

≤ 2b2

b2 − 1
bd + b(m+ 1) = max{ 2b2

b2 − 1
, (m+ 1)}N.

and we conclude by noting that complS(ϕ) ≤ complC(ϕ). �

Now we would like to encode splines of degree m̄ in Vb,d̄,m with m 6= m̄ and d̄ ≥ d.
An exact representation is not possible for m̄ > m. Then, we again consider the local
interpolation operator from Definition 4.2.

Lemma 4.9 (Ranks of Interpolants of Fixed Knot Splines). Let ϕ ∈ SN,m̄c with N = bd.
For d̄ ≥ d, the interpolant Ib,d̄,m(ϕ) ∈ Vb,d̄,m satisfies

rν,d̄(Ib,d̄,m(ϕ)) ≤

{
min

{
(m̄− c)bd−ν + (c + 1), bν

}
, −1 ≤ c ≤ m̄,

min {m̄+ 1, bν} , m̄+ 1 ≤ c ≤ ∞.
, 1 ≤ ν ≤ d,

rν,d̄(Ib,d̄,m(ϕ)) ≤ min
{

(m+ 1)bd̄−ν , m̄+ 1
}
, d < ν ≤ d̄.

Proof. From Lemma 2.26, we know that rν,d̄(Ib,d̄,m(ϕ)) ≤ rν,d̄(ϕ) for all 1 ≤ ν ≤ d̄.
For ν ≤ d, we have from Corollary 2.14 that rν,d̄(ϕ) = rν,d(ϕ). Then, we obtain

the first inequality from Lemma 4.6. Now consider the case d < ν ≤ d̄. The bound
rν,d̄(Ib,d̄,m(ϕ)) ≤ (m + 1)bd̄−ν simply follows from the fact that Ib,d̄,m(ϕ) ∈ Vb,d̄,m. Since
ϕ ∈ Vb,d,m̄ and Pm̄ is closed under dilation, we obtain from Lemma 2.23 the other bound
rν,d̄(ϕ) ≤ m̄+ 1. �

Proposition 4.10 (Complexity for Encoding Interpolants of Fixed Knot Splines). For
a fixed knot spline ϕ ∈ SN,m̄c with N = bd, the different complexities from Section 3
for encoding the interpolant Ib,d̄,m(ϕ) of level d̄ ≥ d and degree m ≤ m̄ within Vb,m are
bounded as

complN (Ib,d̄,m(ϕ)) ≤ C
√
N + C ′(d̄− d),

complS(Ib,d̄,m(ϕ)) ≤ complC(Ib,d̄,m(ϕ)) ≤ CN + C ′(d̄− d),

with constants C,C ′ > 0 depending only on b, m and m̄.
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Proof. Using Lemma 2.26 and Lemma 4.6 and following the proof of Proposition 4.8, we
have

complN (Ib,d̄,m(ϕ)) ≤
d∑

ν=1

rν(ϕ) + (d̄− d)(m̄+ 1) ≤ 2b

b− 1

√
N + (d̄− d)(m̄+ 1),

complC(Ib,d̄,m(ϕ)) ≤ br1(ϕ) +
d∑

ν=1

brν−1(ϕ)rν(ϕ) + (d̄− d)b(m̄+ 1)2 + b(m+ 1)

≤ max{ 2b2

b2 − 1
, (m+ 1)}N + (d̄− d)b(m̄+ 1)2,

and we conclude by noting that complS(Ib,d̄,m(ϕ)) ≤ complC(Ib,d̄,m(ϕ)). �

4.3. Free Knot Splines. A free knot spline is a piece-wise polynomial function, for
which only the maximum polynomial order and the number of polynomial pieces is known
– not the location of said pieces. More precisely, the set of free knot splines of degree
m ∈ N0 with N ∈ N pieces is defined as

SN,mfr :=

{
f : [0, 1)→ R : ∃(xk)Nk=0 ⊂ [0, 1] s.t.

0 = x0 < x1 < . . . < xN = 1 and f|[xk,xk+1)
∈ Pm

}
.

Clearly SN,mfr is not a linear subspace like SN,mc . Rank bounds for free knot splines are
slightly more tricky than for fixed knot splines. We proceed in three steps:

(1) Assume first the knots xk of the free knot spline are all located on a multiple of
b−dk for some dk ∈ N, i.e., only b-adic knots are allowed. Assume also the largest
dk is known.

(2) Show that restricting to b-adic knots does not affect the approximation class as
compared to non-constrained free knot splines.

(3) Show that the largest dk can be estimated using the desired approximation accu-
racy and excess regularity/integrability of the target function.

In this section, we only address point (1). In Section 5.2, we will address (2) and (3).

Definition 4.11 (Free b-adic Knot Splines). We call a sequence of points (xbk)
N
k=0 ⊂ [0, 1]

b-adic if

xbk = ikb
−dk ,

for some dk ∈ N and 0 ≤ ik ≤ bdk . We use the superscript b to indicate that a sequence
is b-adic. With this we define the set of free b-adic knot splines as

Sb,N,mfr :=

{
f : [0, 1)→ R : ∃(xbk)Nk=0 ⊂ [0, 1] s.t.

0 = xb0 < xb1 < . . . < xbN = 1 and f|
[xb
k
,xb
k+1

)
∈ Pm

}
.

Lemma 4.12 (Ranks of Free b-adic Knot Splines). Let ϕ ∈ Sb,N,mfr with (xbk)
N
k=0 being

the b-adic knot sequence corresponding to ϕ. Let d := max {dk : 1 ≤ k ≤ N − 1}. Then,
ϕ ∈ Vb,d,m and

rν,d(ϕ) ≤ min
{
bν , (m+ 1)bd−ν , m+N

}
(4.4)

for 1 ≤ ν ≤ d.
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Proof. For any 0 ≤ j < bν , the restriction of ϕ to the interval [b−νj, b−ν(j + 1)) is
either a polynomial or a piece-wise polynomial where the number of such piece-wise
polynomials is at most N − 1, since there are at most N − 1 discontinuities in (0, 1).
Hence, Corollary 2.14 implies that rν(ϕ) ≤ m + N for all 1 ≤ ν ≤ d, and we obtain the
other bound rν,d(ϕ) ≤ min

{
bν , (m+ 1)bd−ν

}
from Lemma 2.23 with dim(S) = m+1. �

Proposition 4.13 (Complexity for Encoding Free b-adic Knot Splines). For a free knot

spline ϕ ∈ Sb,N,mfr with d := max {dk : 1 ≤ k ≤ N − 1}, the different complexities from
Section 3 for encoding within Vb,m are bounded as

complN (ϕ) ≤ CdN,

complC(ϕ) ≤ CdN2,

complS(ϕ) ≤ Cd2N,

with constants C > 0 depending only on b and m.

Proof. Follows from Lemma 4.12, cf. also Proposition 4.8. See Appendix D for a detailed
proof. �

Lemma 4.14 (Ranks of Interpolants of Free b-adic Knot Splines). Let ϕ ∈ Sb,N,m̄fr ,
m̄ ≥ m, and (xbk)

N
k=0 being the b-adic knot sequence corresponding to ϕ. Let d :=

max {dk : 1 ≤ k ≤ N − 1}. For d̄ ≥ d, the interpolant Ib,d̄,m(ϕ) ∈ Vb,d̄,m satisfies

rν,d̄(Ib,d̄,m(ϕ)) ≤ min
{
bν , (m̄+ 1)bd−ν , m̄+N

}
, 1 ≤ ν ≤ d,

rν,d̄(Ib,d̄,m(ϕ)) ≤ min
{

(m+ 1)bd̄−ν , m̄+ 1
}
, d < ν ≤ d̄.

Proof. From Lemma 2.26, we know that rν,d̄(Ib,d̄,m(ϕ)) ≤ rν,d̄(ϕ) for all 1 ≤ ν ≤ d̄.
For ν ≤ d, we have from Corollary 2.14 that rν,d̄(ϕ) = rν,d(ϕ). Then, we obtain the

first inequality from Lemma 4.12. Now consider the case d < ν ≤ d̄. The bound
rν,d̄(Ib,d̄,m(ϕ)) ≤ (m + 1)bd̄−ν simply follows from the fact that Ib,d̄,m(ϕ) ∈ Vb,d̄,m. Since
ϕ ∈ Vb,d,m̄ and Pm̄ is closed under dilation, we obtain from Lemma 2.23 the other bound
rν,d̄(ϕ) ≤ m̄+ 1. �

Proposition 4.15 (Complexity for Encoding Interpolants of Free b-adic Knot Splines).

For a free knot spline ϕ ∈ Sb,N,m̄fr with d := max {dk : 1 ≤ k ≤ N − 1}, the different
complexities from Section 3 for encoding the interpolant Ib,d̄,m(ϕ) of level d̄ ≥ d and
degree m ≤ m̄ are bounded as

complN (Ib,d̄,m(ϕ)) ≤ CdN + C ′(d̄− d),

complC(Ib,d̄,m(ϕ)) ≤ CdN2 + C ′(d̄− d),

complS(Ib,d̄,m(ϕ)) ≤ Cd2N + C ′(d̄− d),

with constants C,C ′ > 0 depending only on b, m and m̄.

Proof. Follows from Lemma 4.14, cf. also Proposition 4.10. See Appendix D for a detailed
proof. �

Remark 4.16. Both in Lemma 4.12 and Lemma 4.14, the rank bound is of the order N
and does not assume any specific structure of the spline approximation. This is a crude
estimate that could be perhaps improved if one imposes additional restrictions, such as a
tree-like support structure of the approximating splines.

5. Approximation Rates

In this section, we discuss approximation rates for functions with different types of
smoothness.
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5.1. Sobolev Spaces. We consider the approximation properties of tensor networks in
Vb,m for a fixed m ∈ N0. Recall the definition of three different complexity measures
complN , complC and complS from Section 3 and the resulting approximating sets ΦNn , ΦCn
and ΦSn . The best approximation error for 0 < p ≤ ∞ is defined accordingly as

ENn (f)p := inf
ϕ∈ΦNn

‖f − ϕ‖p ,(5.1)

ECn(f)p := inf
ϕ∈ΦCn

‖f − ϕ‖p ,

ESn (f)p := inf
ϕ∈ΦSn

‖f − ϕ‖p ,

and the corresponding approximation classes Nα
q , Cα

q and Sαq as in Section 3.4.
We will apply local interpolation from Definition 4.2 to approximate functions in

Sobolev spaces W k,p for any k ∈ N. These embeddings essentially correspond to em-
beddings of Besov spaces Bα

p,p into approximation spaces Nα
∞(Lp), Cα

∞(Lp) and Sα∞(Lp):

i.e., the approximation error is measured in the same norm as smoothness9. To this end,
we require

Lemma 5.1 (Re-Interpolation). Let f ∈ W m̄+1,p, 1 ≤ p ≤ ∞ and m̄ ≥ m. For any

d ∈ N0, Ib,d,m̄f is a fixed knot spline in SN,m̄−1 , N = bd, and

‖f − Ib,d,m̄f‖p ≤ Cb−d(m̄+1)|f |W m̄+1,p

where C is a constant depending only on m̄ and p. Furthermore, for d̄ ≥ d,

‖Ib,d,m̄f − Ib,d̄,mIb,d,m̄f‖p ≤ C ′
(
b−d̄(m+1)|f |Wm+1,p + b−(d̄−d)(m+1)−d(m̄+1)|f |W m̄+1,p

)
where C ′ is a constant depending only on m̄, m and p.

Proof. See Appendix E. �

With this we can show the direct estimate

Theorem 5.2 (Jackson Inequality for Sobolev Spaces). Let 1 ≤ p ≤ ∞ and k ∈ N. For
any f ∈ W k,p we have

ENn (f)p ≤ Cn−2k ‖f‖Wk,p ,(5.2)

ESn (f)p ≤ ECn(f)p ≤ Cn−k ‖f‖Wk,p ,

with constants C depending on k, m, b.

Proof. Let N := bd and k := m̄+ 1 > m+ 1 and fix some f ∈ W k,p. The case k ≤ m+ 1
can be handled similarly with fewer steps. Let s := Ib,d,m̄f and s̃ := Ib,d̄,ms ∈ Vb,d̄,m with

a d̄ ≥ d to be specified later.
From Lemma 5.1 we have

‖f − s̃‖p ≤ C1 ‖f‖Wk,p

(
b−dk + b−d̄(m+1)

)
(5.3)

for a constant C1 depending only on r, m and p. Thus, we set

d̄ :=

⌈
dk

m+ 1

⌉
,(5.4)

which yields

‖f − s̃‖p ≤ 2C1 ‖f‖W r,p N
−k.(5.5)

9Compare to the embeddings for RePU networks in [32].
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From Proposition 4.10 and (5.4), we can estimate the complexity of s̃ as

n := complN (s̃) ≤ C̄2(
√
N + logb(N)) ≤ C2

√
N,

n := complS(s̃) ≤ complC(s̃) ≤ C̄2(N + logb(N)) ≤ C2N

with a constant C2 depending on b, m and m̄. Thus, inserting into (5.5), we obtain
(5.2). For the case m̄ ≤ m, the proof simplifies since we can represent s exactly and use
Proposition 4.8. �

Remark 5.3. One could extend the statement of Theorem 5.2 to the range 0 < p <
1 by considering the Besov spaces Bα

p,p. For r ≤ m + 1, this can be done by using
the characterization of Besov spaces Bα

p,p for 0 < p ≤ ∞ by dyadic splines from [20],
as was done in [32, Theorem 5.5] for RePU networks. For k > m + 1, one would
have to additionally replace the interpolation operator of Definition 4.2 with the quasi-
interpolation operator from [20].

5.2. Besov Spaces. The key to proving direct estimates for Besov smoothness are the
estimates of Proposition 4.13 and Proposition 4.15 for free knot splines. However, there
are two issues with encoding free knot splines as tensorized polynomials. First, free knot
splines are not restricted to b-adic knots and thus cannot be represented exactly within
Vb,m. Second, even if all knots of a spline s are b-adic, the complexity of encoding s as an
element of Vb,m depends on the minimal level d ∈ N such that s ∈ Vb,d,m, and this level is
not known in general. We address these issues with the following two lemmas.

Lemma 5.4 (b-adic Free Knot Splines). Let 0 < p < ∞, 0 < α < m̄ + 1 and let Sb,N,m̄fr

denote the set of free knot splines of order m̄ + 1 with N + 1 knots restricted to b-adic
points of the form

xk := ikb
−dk , 0 ≤ k ≤ N,

for some dk ∈ N and ik ∈ {0, . . . , dk}. For τ := (α+ 1/p)−1 being the Sobolev embedding
number and f ∈ Bα

τ,τ , we have

inf
s∈Sb,N,m̄fr

‖f − s‖p ≤ CN−α |f |Bατ,τ .(5.6)

Proof. See Appendix E. �

Remark 5.5. In principle, Lemma 5.4 can be extended to the case p = ∞, f ∈ C0 and
the Besov space Bα

τ,τ replaced by the space of functions of bounded variation. However,
the following Lemma 5.6 does not hold for p = ∞, such that overall we can show the
direct estimate of Theorem 5.8 only for p <∞.

Lemma 5.6 (Smallest Interval Free Knot Splines). Let δ > 1, 1 ≤ p <∞ and f ∈ Lpδ.
Let q = q(δ) > 1 be the conjugate of δ defined by

1

δ
+

1

q
= 1.

For ε > 0, let s =
∑N

k=1 sk be a piece-wise polynomial such that

‖f − s‖p ≤ ε,

where we assume sk is a polynomial over some interval Ik, zero otherwise and Ik, k =
1, . . . , N , form a partition of [0, 1].

Then, we can choose an index set Λ = Λ(ε) ⊂ {1, . . . , N} and a corresponding spline
s̃ =

∑
k∈Λ s̃k such that

‖f − s̃‖p ≤ 21/pε with |Ik| > N−q‖f‖−pqpδ εpq =: %(ε), k ∈ Λ.(5.7)
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Proof. See Appendix E. �

Remark 5.7. We can guarantee f ∈ Lpδ by assuming excess regularity and using Sobolev
embeddings as follows. Let α > 0, 0 < p < ∞, δ > 1 and τ := (α + 1/p)−1. Defining
αδ > α as

αδ := α +
δ − 1

pδ
,

we get that the Sobolev embedding number for the combination αδ, pδ is

τδ := (αδ + 1/(pδ))−1 = (α + 1/p)−1 = τ.

Then, assuming f ∈ Bαδ
τ,τ implies that f ∈ Lpδ.

Theorem 5.8 (Jackson Inequality for Bα
τ,τ ). Let 1 ≤ p <∞, 0 < τ < p, α > 1/τ − 1/p,

and assume f ∈ Bα
τ,τ . Then, for any σ > 0, we obtain the direct estimates

ENn (f)p ≤ C |f |Bατ,τ n
− α

1+σ ,(5.8)

ECn(f)p ≤ C |f |Bατ,τ n
− α

2+σ ,

ESn (f)p ≤ C |f |Bατ,τ n
− α

1+σ ,

where the constants C depend on α > 0, σ > 0, b and m. In particular, they diverge to
infinity as σ → 0 or α→ 1/τ − 1/p.

Proof. As in Theorem 5.2, we consider only the case m + 1 ≤ α, as the case α < m + 1
can be handled analogously with fewer steps. By Lemma 5.4, we can restrict ourselves to
free knot splines with b-adic knots. By Lemma 5.6, we can bound the size of the smallest
interval and thus the level d. And finally, by Lemma 4.14, we can bound the ranks of
an interpolation of a free knot spline. Thus, we have all the ingredients to bound the
representation complexity of a free knot spline. It remains to combine these estimates
with standard results from approximation theory to arrive at (5.8).

Let N ∈ N be arbitrary. From Lemma 5.4, we know there exists a spline s ∈ Sb,N,m̄fr

with b-adic knots such that

‖f − s‖p ≤ C1N
−α ‖f‖Bατ,τ ,(5.9)

for some constant C1 > 0. Set ε := C1 ‖f‖Bατ,τ N
−α. Since α > 1/τ − 1/p, there exists a

δ > 1 such that f ∈ Lpδ. By Lemma 5.6, we can assume w.l.o.g. that d := d(s) is such
that

b−d > N−q ‖f‖pqpδ ε
pq,

or equivalently

d < q logb(ε
−p ‖f‖ppδN) = q logb

[
C−p1 ‖f‖

−p
Bατ,τ
‖f‖ppδN

1+αp
]
≤ q logb

[
C−p1 N1+αp

]
,

where q = δ/(δ − 1).
We use the interpolant of Definition 4.2 and set s̃ := Ib,d̄,ms for d̄ ≥ d to be spec-

ified later. Let sj := s(j1, . . . , jd, ·), where s = Tb,ds, and analogously s̃j. For the
re-interpolation error we can estimate similar to Lemma 5.1

‖s− s̃‖pp =
∑
j∈Idb

b−d ‖sj − s̃j‖pp ≤ C2

∑
j∈Idb

b−db−p(d̄−d)(m+1)
∥∥∥s(m+1)

j

∥∥∥p
p

≤ C3

∑
j∈Idb

b−db−(d̄−d)(m+1)p ‖sj‖pp ,
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where the latter follows from [19, Theorem 2.7 of Chapter 4], since sj is a polynomial of
degree m̄.

Since s is a quasi-interpolant of f , sj is a dilation of a polynomial (near-)best approx-
imation of f over the corresponding interval and thus by [19, Theorem 8.1 of Chapter
12]

‖sj‖p ≤ C4 |fj|Bατ,τ
where fj := f(j1, . . . , jd, ·) and for any j ∈ Idb .

Since τ < p, we can further estimate∑
j∈Idb

b−db−(d̄−d)(m+1)p ‖sj‖pp

1/p

≤ b−d/pb−(d̄−d)(m+1)

∑
j∈Idb

|fj|pBατ,τ

1/p

≤ b−d/pb−(d̄−d)(m+1)

∑
j∈Idb

|fj|τBατ,τ

1/τ

= b−d/pb−(d̄−d)(m+1)

∑
j∈Idb

|fj|τBατ,τ

1/τ

bd(α−1/τ)bd(1/τ−α).

We finally estimate

‖s− s̃‖p ≤ C5b
−(d̄−d)(m+1)bd(1/τ−α−1/p) |f |Bατ,τ .

More details on the relationship between Sobolev and Besov norms for functions and
their tensorizations can be found in Appendix A.

Thus, to obtain at least the same approximation order as in (5.9), we set

d̄ :=

⌈
d(m+ 1 + 1/τ − α− 1/p) + α logb(N)

m+ 1

⌉
≤ C6 logb(N),

so that

‖s− s̃‖p ≤ C5N
−α |f |Bατ,τ .(5.10)

From Proposition 4.15, s̃ ∈ Vb,d,m with

n := complC(s̃) ≤ C7

(
N2 logb(N) + logb(N)

)
≤ CN2+σ,

for any σ > 0, where C > 0 depends on σ. Similarly for complS and complN , we obtain
from Proposition 4.15 that

complS(s̃) ≤ C̄(N logb(N)2 + logb(N)) ≤ CN1+σ,

and

complN (s̃) ≤ C̄(N logb(N) + logb(N)) ≤ CN1+σ,

for any σ > 0 and constants C depending on σ > 0. Combining (5.9) with (5.10), a triangle
inequality and the above complexity bounds, we obtain the desired statement. �

Remark 5.9 (Dense vs. Sparse TT). Note that for approximation of Sobolev (and later
analytic functions), the approximation rates for dense TTs from ΦCn and sparse TTs from
ΦSn are the same, while for functions with Besov smoothness Bs

τ,τ optimal rates are only
achieved with sparse TTs, and dense TTs can only achieve half the optimal rate. This
distinction can be roughly understood as follows.
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Functions with Sobolev smoothness can be optimally approximated with linear approx-
imation tools that, simply put, capture all polynomial features of a function upto some
refinement level d – independent of location. In this case, a TT approximation on level d,
in general, represents a spline that is active/nonzero over all n = bd subintervals of the
corresponding tensorization. A sparse TT representation of such a function has at most
a multiple of n terms. On the other hand, the ranks saturate at r . bd/2 =

√
n and thus

a dense TT representation also has at most a multiple of n terms.
In contrast to functions with Sobolev smoothness, Bs

τ,τ requires nonlinear approximation
tools that capture possibly location-dependent features of the target function to achieve
optimal approximation rates. In this case, a TT approximation on level d, in general,
represents a spline with much fewer active intervals than the maximal possible bd �
n. Thus, while a sparse TT representation has at most a multiple of n coefficients –
where the sparsity pattern encodes the location of said active subintervals – a dense TT
representation has ranks bounded as r . n2 and thus at most a multiple of n2 coefficients,
resulting in half the optimal approximation rate.

5.3. Analytic Functions. It is well known that analytic functions can be approximated
by algebraic polynomials with a rate exponential in the degree of the approximating
polynomials: see, e.g., [19, Chapter 7, Theorem 8.1]. In our setting, the polynomial degree
in Vb,m is fixed. However, as before we can re-interpolate and consider the corresponding
approximation rate. First, we show that polynomials can be approximated with an
exponential rate.

Lemma 5.10 (Approximation Rate for Polynomials). Let P ∈ Pm̄ be an arbitrary poly-
nomial with m̄ > m (otherwise we have exact representation). Then, for 1 ≤ p ≤ ∞

ENn (P )p ≤ Cb−
m+1

(m̄+1)
n
∥∥P (m+1)

∥∥
p
,

ESn (P )p ≤ ECn(P )p ≤ Cb
− m+1

b(m̄+1)2
n ∥∥P (m+1)

∥∥
p
,

with C independent of m̄.

Proof. See Appendix E. �

This implies analytic functions can be approximated with an error decay of exponential
type. For the following statement we require the distance function

dist(z,D) := inf
w∈D
|z − w|, z ∈ C, D ⊂ C.

Theorem 5.11 (Approximation Rate for Analytic Functions). Let ρ > 1 and define

Dρ :=

{
z ∈ C : dist(z, [0, 1]) <

ρ− 1

2

}
.

Let ρ := ρ(f) > 1 be such that f : [0, 1) → R has an analytic extension onto Dρ ⊂ C.
Then,

ENn (f)∞ ≤ C[min(ρ, b(m+1))]−n
1/2

,(5.11)

ESn (f)∞ ≤ ECn(f)∞ ≤ C[min(ρ, b(m+1)/b)]−n
1/3

,

where C = C(f,m, b, ρ).

Proof. See Appendix E. �

Remark 5.12. The above estimate can be further refined in the following ways:
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• The factor in the base of the exponent can be replaced by any number θ

min(ρ, b(m+1)/b) < θ < max(ρ, b(m+1)/b),

with an adjusted constant C.
• The inequality (5.11) can be stated in the form as in [19, Chapter 7, Theorem 8.1]

to explicitly include the case ρ =∞.
• One can define classes of entire functions as in [19, Chapter 7, Theorem 8.3] for

a finer distinction of functions that can be approximated with an exponential-type
rate.
• One can extend the result to approximation of analytic functions with singularities

applying similar ideas as in [41].

6. Direct Embeddings

In this section, we discuss direct embeddings for the approximation spaces defined
in Section 3.4. Since we verified that Nα

q , Cα
q and Sαq satisfy (P1) – (P4), we can use

classical approximation theory (see [19, 17]) to show that an entire scale of interpolation
and smoothness spaces is continuously embedded into these approximation classes. We
begin by briefly reviewing interpolation spaces. See Appendix A.2 for a definition of
Besov spaces.

6.1. Interpolation Spaces. We consider Peetre’sK-functional real interpolation method.
Let X, Y be Banach spaces with Y ↪→ X. The K-functional on X is defined as

K(f, t,X, Y ) := K(f, t) := inf
g∈Y
{‖f − g‖X + t ‖g‖Y } , t > 0.

Definition 6.1 (Interpolation Spaces, [9, Chapter 5]). Define a (quasi-)norm on X

‖f‖θ,q :=

{∫∞
0

[
t−θK(f, t)q dt

t

]1/q
, 0 < θ < 1, 0 < q <∞,

supt>0 t
−θK(f, t), 0 ≤ θ ≤ 1, q =∞.

The interpolation space (X, Y )θ,q is defined as

(X, Y )θ,q :=
{
f ∈ X : ‖f‖θ,q <∞

}
,

and it is a complete (quasi-)normed space.

Some basic properties of these interpolation spaces are:

• Y ↪→ (X, Y )θ,q ↪→ X;
• (X, Y )θ1,q ↪→ (X, Y )θ2,q for θ1 ≥ θ2 and (X, Y )θ,q1 ↪→ (X, Y )θ,q2 for q1 ≤ q2;
• re-iteration property: let X ′ := (X, Y )θ1,q1 , Y ′ := (X, Y )θ2,q2 . Then, for all

0 < θ < 1 and 0 < q ≤ ∞, we have

(X ′, Y ′)θ,q = (X, Y )α,q, α := (1− θ)θ1 + θθ2.

We cite some important results on the relationship between interpolation, approximation
and smoothness spaces. To this end, an important tool are the so-called Jackson (direct)
and Bernstein (inverse) inequalities from (3.3) and (3.4), respectively.

Theorem 6.2 (Interpolation and Approximation, [19, Chapter 7], [9, Chapter 5]). If
the approximation class Aαq (X) satisfies (P1), (P3), (P4) and the space Y satisfies the
Jackson inequality (3.3), then

(X, Y )α/kJ,q ↪→ Aαq (X), 0 < α < kJ, 0 < q <∞,
Y ↪→ AkJ

∞(X).
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If the approximation class Aαq (X) satisfies (P1) – (P6) and the space Y satisfies the
Bernstein inequality (3.4), then

Aαq (X) ↪→ (X, Y )α/kB,q, 0 < α < kB,

AkB
∞ (X) ↪→ Y.

Theorem 6.3 (Interpolation and Smoothness, [17]). The following identities hold:

(Lp,Wα,p)θ,q = Bθα
p,q, 0 < θ < 1, 0 < q ≤ ∞, 1 ≤ p ≤ ∞

(Bα1
p,q1
, Bα2

p,q2
)θ,q = Bα

p,q, α := (1− θ)α1 + θα2, 0 < p, q, q1, q2 ≤ ∞
(Lp, Bα

p,q̃)θ,q = Bθα
p,q, 0 < θ < 1, 0 < p, q, q̃ ≤ ∞,

(Lp, Bα
τ,τ )θ,q = Bθα

q,q, 0 < τ < p,
1

q
= θα +

1

p
.

6.2. Embeddings. Theorems 6.2 and 6.3 allow us to characterize the approximation
classes introduced in Section 3.4 by classical smoothness and interpolation spaces, pro-
vided we can show for X = Lp and Y = Bα

p,q the Jackson (3.3) and Bernstein (3.4)
inequalities. The Jackson inequalities were shown in Section 5. We will also show later
that Bernstein inequalities cannot hold. This is an expression of the fact that the spaces
Aαq are “too large” in the sense that they are not continuously embedded in any classical
smoothness space.

Theorem 6.2 and Theorem 5.2 imply

Theorem 6.4 (Direct Embedding for Sobolev Spaces). For any k ∈ N and 1 ≤ p ≤ ∞,
we have

W k,p ↪→ N2k
∞ (Lp), W k,p ↪→ Ck

∞(Lp) ↪→ Sk∞(Lp),

and for 0 < q ≤ ∞

(Lp,W k,p)α/2k,q ↪→ Nα
q (Lp), 0 < α < 2k,

(Lp,W k,p)α/k,q ↪→ Cα
q (Lp) ↪→ Sαq (Lp), 0 < α < k.

Corollary 6.5. Together with Theorem 6.3, this implies the statement of Result 1.7.

Now we turn to direct embeddings of Besov spaces Bα
τ,τ into Nα

q (Lp), Cα
q (Lp) and

Sαq (Lp), where 1/τ = α + 1/p. That is, the smoothness is measured in a weaker norm
with τ < p. The spaces Bα

τ,τ are in this sense much larger than Bα
p,p.

Theorem 6.6 (Direct Embedding forBα
τ,τ ). Let 1 ≤ p <∞, 0 < τ < p and γ > 1/τ−1/p.

Then, for any σ > 0,

Bγ
τ,τ ↪→ Nγ/(1+σ)

∞ (Lp), Bγ
τ,τ ↪→ Cγ/(2+σ)

∞ (Lp), Bγ
τ,τ ↪→ Sγ/(1+σ)

∞ (Lp),

and

(Lp, Br
τ,τ )α(1+σ)/r,q ↪→ Nα

q (Lp), 0 < α < r/(1 + σ),

(Lp, Br
τ,τ )α(2+σ)/r,q ↪→ Cα

q (Lp), 0 < α < r/(2 + σ),

(Lp, Br
τ,τ )α(1+σ)/r,q ↪→ Sαq (Lp), 0 < α < r/(1 + σ).

Proof. Follows from Theorem 6.2, Remark 5.7 and Theorem 5.8. �
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7. Inverse Embeddings

7.1. No Inverse Embedding. It is well known in tensor approximation of high-dimensional
functions and approximation with neural networks (see [32]) that highly irregular func-
tions can in some cases be approximated or even represented exactly with low or constant
rank or complexity10. This fact is reflected in the lack of inverse estimates for tensorized
approximation of one-dimensional functions as the next statement shows.

Theorem 7.1 (No Inverse Embedding). For any α > 0, 0 < p, q ≤ ∞ and any α̃ > 0

Cα
q (Lp) 6↪→ Bα̃

p,q.

Proof. For ease of notation we restrict ourselves to b = 2, but the same arguments apply
for any b ≥ 2. The proof boils down to finding a counterexample of a function that can
be efficiently represented within Vb,m but has “bad” Besov regularity. To this end, we use
the sawtooth function, see [59] and Figure 3.

Figure 3. “Sawtooth” function.

Specifically, consider the linear functions

ψ1(y) := y, ψ2(y) := 1− y, 0 ≤ y < 1.

For arbitrary d ∈ N, set

ϕd(i1, . . . , id, y) := δ0(id)ψ1(y) + δ1(id)ψ2(y).

Then, ϕd = T−1
b,dϕd ∈ V2,d,m with rν(ϕd) = 2 for all 1 ≤ ν ≤ d. Thus,

complC(ϕd) ≤ 8d+ 2m+ 2.(7.1)

We can compute the Lp-norm of ϕd as

‖ϕd‖pp = 2d
∫ b−d

0

(2dy)p dy =
1

p+ 1
.(7.2)

Next, since Cα
q (Lp) satisfies (P1) – (P4), this implies Cα

q (Lp) satisfies the Bernstein
inequality (see [19, Chapter 7, Theorem 9.3])

‖ϕd‖Cαq ≤ Cnα ‖ϕd‖p , ∀ϕ ∈ Φn.(7.3)

On the other hand, by [32, Lemma 5.12],

‖ϕd‖Bα̃p,q ≥ c2α̃d,(7.4)

for any α̃ > 0.

10Think of a rank-one tensor product of jump functions.
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Assume the Bernstein inequality holds in Bα̃
p,q for some α̃ > 0. For n ∈ N large enough,

let d := bn/8−m/4− 1/4c ≥ 2. Then, by (7.1), ϕd ∈ ΦCn. By (7.3) and (7.4),

Cnα ‖ϕd‖p ≥ ‖ϕd‖Cαq & ‖ϕd‖Bα̃p,q & 2α̃d & 2
α̃
8
n.

Together with (7.2), this is a contradiction and thus the claim follows. �

In Section 4, we demonstrated that when representing classical tools with the ten-
sorized format we obtain a complexity that is similar (or slightly worse) than for the
corresponding classical representation. This reflects the fact that these tools are tailored
for approximation in classical smoothness spaces and we therefore cannot expect better
“worst case” performance in these spaces. This was also observed in high-dimensional
approximation, see [57, 7, 33].

On the other hand, theorem 7.1 demonstrates that tensor networks are efficient for
functions that cannot be described by classical smoothness (see also [1]). The cost n in
ΦCn depends on both the discretization level d and the tensor ranks rν that, in a sense,
reflect algebraic properties of the target function.

The proof of Theorem 7.1 shows that tensor networks are particularly effective in
approximating functions with a high degree of self-similarity. Such functions do not
have to possess any smoothness in the classical sense. The ranks reflect global algebraic
features, while smoothness reflects local “rate of change” features.

7.2. Inverse Embedding For Restricted Depth. The above result shows that tensor
networks are effective to approximate functions that do not possess Sobolev or Besov
smoothness. However, one would expect that, if one enforces a full-rank structure or,
equivalently, limits the depth of the corresponding tensor network, we should recover
inverse estimates similar to classical tools from Section 4.

Theorem 7.2 (Inverse Embedding for Restricted ΦNn ). Let 1 ≤ p < ∞. Define for
n ∈ N, kB ≥ 1 and cB > 0 the restricted sets

ΦB
n := {ϕ ∈ Vb,m : complN (ϕ) ≤ n and d(ϕ) ≤ kB logb(n) + cB} ,(7.5)

where d(ϕ) is the minimal possible level for a tensorized representation of ϕ. Then,

(i) ΦB
n satisfies (P1) – (P6) and thus Aαq (Lp, (ΦB

n)) are quasi-normed linear spaces
satisfying direct and inverse estimates.

(ii) The following inverse estimate holds:

|ϕ|Bm+1
τ,τ
≤ C ‖ϕ‖p b

cB(m+1)nkB(m+1),

for any ϕ ∈ ΦB
n , where τ > 0 is the Sobolev embedding number.

(iii) We have the continuous embeddings

Aαq (Lp, (ΦB
n)) ↪→ (Lp, Bm+1

τ,τ ) α
kB(m+1)

,q, 0 < α < kB(m+ 1),

AkB(m+1)
∞ (Lp, (ΦB

n)) ↪→ Bm+1
τ,τ .

Proof. The restriction on ΦB
n ensures functions such as the sawtooth function from Fig-

ure 3 are excluded.

(i) (P1) – (P3) is trivial. For (P4): since ΦNn + ΦNn ⊂ ΦNcn and

d(ϕ1 + ϕ2) ≤ max(d1, d2) ≤ kB logb(n) + cB ≤ kB logb(cn) + cB

for ϕ1, ϕ2 ∈ ΦB
n , then (P4) is true for ΦB

n for the same c. For (P5):
⋃∞
n=0 ΦNn =⋃∞

n=0 ΦB
n and thus density follows as in Theorem 2.21. Finally, (P6) follows as in

Lemma 3.14.
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(ii) Any ϕ ∈ ΦB
n is a spline with at most bd(ϕ) ≤ bcBnkB pieces. Thus, we can use

classical inverse estimates to obtain the inequality.
(iii) Follows from (ii) and Theorem 6.2.

�

Remark 7.3. Inverse embeddings also hold for restricted sets ΦS,Bn and ΦC,Bn defined
by (7.5) with complexity measure complN replaced by complS and complC respectively.
Indeed, their approximation classes Aαq (Lp, (ΦS,Bn )) and Aαq (Lp, (ΦC,Bn )) are both included

in Aαq (Lp, (ΦB
n )).

A discussion on the role of depth and the approximation power of the restricted class
ΦB
n can be found in Section 8.

8. The Roles of Depth and Sparsity

One could ask how the direct estimates would change if we replace ΦNn with ΦB
n from

Theorem 7.2. Strictly speaking, this would require lower bounds for the complexity n :=
complN (ϕ). Nonetheless, a simple example reveals some key features of ΦB

n , assuming
the upper bounds for n in this section are sharp to some degree.

Consider the case of Sobolev spaces W k,p from Theorem 5.2 with k ≤ m + 1. Then,
assuming the upper bounds from Theorem 5.2 are sharp, we have

n ∼ C1(b,m)bd.

The approximands of Theorem 5.2 satisfy ϕ ∈ ΦB
n for kB = 1 and cB = cB(b,m). Hence,

in this case we would indeed obtain the same approximation rate as with ΦCn, in addition
to inverse estimates from Theorem 7.2.

Consider now W k,p with k > m+1. In this case we have kB = kB(k) > 1 with kB →∞
as k → ∞. In other words, if we fix ΦB

n with some kB > 1, then we would obtain direct
estimates for W k,p as in Theorem 5.2, with 0 < k ≤ k̄ for k̄ depending on kB > 1. I.e.,
k̄ = m+ 1 for kB = 1 and k̄ →∞ as kB →∞.

Finally, consider the direct estimate for Besov spaces Bαδ
τ,τ from Theorem 5.8. Again,

assuming the upper bounds of this lemma are sharp and α < m+ 1, we would obtain

n ∼ CNd,

where N is the number of knots of a corresponding free knot spline and d is the maximal
level of said spline. From Lemma 5.6, we could assume d ∼ log(N) and in this case

d ∼ log(N) . log(N) + log log(N) . log(n),

in which case we claim we could recover direct estimates as in Theorem 5.8. However, note
that, in order to recover near to optimal rates, we would have to consider the complexity
measure complS (or complN ) – i.e., we have to account for sparsity. And, as for Sobolev
spaces, to capture an arbitrary regularity α ≥ m + 1, ΦB

n is not sufficient anymore as it
requires an arbitrary depth.

Thus, when comparing approximation with tensor networks to approximation with
classical tools, we see that depth can very efficiently replicate approximation with higher-
order polynomials: that is, with exponential convergence. It was already noted in [28, 53]
that (deep) tree tensor networks can represent polynomials with bounded rank, while the
canonical (CP) tensor format, corresponding to a shallow network, can only do so approxi-
mately with ranks bounded by the desired accuracy. Moreover, similar observations about
depth and polynomial degree were made about ReLU networks, see, e.g., [60, 48, 49].

On the other hand, sparsity is necessary to recover classical adaptive (free knot spline)
approximation, see Theorem 6.6. In other words: sparse tensor networks can replicate
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h-adaptive approximation, while deep tensor networks can replicate p-adaptive approx-
imation, and, consequently, sparse and deep tensor networks can replicate hp-adaptive
approximation.

For the approximation with sparse tensor networks, the development of algorithms that
achieve in practice the expected rates of convergence remains mostly an open problem.
In a statistical learning setting, different algorithms have been recently proposed, either
based on sparsity-inducing regularization or on model selection strategies for selecting a
sparsity pattern (position of non-zero entries) [30, 31, 45].

9. The Role of Tensorization

The tensorization of functions is a milestone allowing the use of tensor networks for
the approximation of multivariate functions. In this section, we interpret tensorization as
a non-standard and powerful featuring step. Then, we discuss the role of this particular
featuring.

When applying t−1
b,d to the input variable x, we create d + 1 new variables (i1, ..., id, y)

defined by
iν = σ(bνx), σ(t) = btcmod b,

1 ≤ ν ≤ d, and
y = σ̃(bdx), σ̃(t) = t− btc,

see Figure 4 for a graphical representation of functions σ and σ̃. Then for each 1 ≤ ν ≤ d,

(a) σ (b) σ̃

Figure 4. Functions σ and σ̃

we create b features δjν (iν), 0 ≤ jν ≤ b− 1, and we also create m+ 1 features ϕk(y) = yk

from the variable y (or other features for S different from Pm).11 Figure 5 provides an
illustration of these features and of products of these features. Finally, tensorization can
be seen as a featuring step with a featuring map

Φ : [0, 1)→ Rbd(m+1)

which maps x ∈ [0, 1) to a (d+ 1)-order tensor

Φ(x)j1,...,jd+1
= δj1(σ(bx)) . . . δjd(σ(bdx))σ̃(bdx)jd+1 .

11For m = 0, the extra variable y is not exploited. For m = 1, we only consider the variable y and for
m > 1, we exploit more from this variable.
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(a) δ0(σ(b3x)) (b) σ̃(b4x)

(c) δ0(b3x)σ̃(b4x) (d) δ1(σ(bx))δ0(σ(b3x))δ0(b7x)

Figure 5. Representation of some features and their products for b = 2.

A function ϕ ∈ Vb,d,m is then represented by ϕ(x) =
∑

j Φ(x)jaj, where a is a (d + 1)-

order tensor with entries associated with the bd(m + 1) features. When considering for
a a full tensor (not rank-structured), it results in a linear approximation tool which is
equivalent to spline approximation. Note that functions represented on Figures 5c and 5d
are obtained by summing many features Φ(x)j1,...,jd+1

. However, these functions, which
have rank-one tensorizations, can be represented with a rank-one tensor a in the feature
tensor space, and thus can be encoded with very low complexity within our nonlinear
approximation tool.

Increasing d means considering more and more features, and is equivalent to refining
the discretisation. At this point, tensorization is an interpretation of a univariate function
as a multivariate function, but it is also an alternative way to look at discretization.

Another featuring (which is rather straight-forward) would have consisted in taking
new variables (or features) xj,k = (bdx− j)k1Ij(x) = (bdx− j)k1[0,1)(b

dx− j), 0 ≤ k ≤ m,

0 ≤ j < bd, where Ij is the interval [bdj, bd(j + 1)). This also leads to (m+ 1)bd features.
When considering a simple linear combination of these features, we also end up with
classical fixed knot spline approximation.

Both featuring (or tensorization) methods lead to a linear feature space corresponding
to classical spline approximation. One may ask what is the interest of using the very
specific feature map Φ? In fact, the use of the particular feature map Φ, which is related
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to multi-resolution analysis, allows to further exploit sparsity or low-rankness of the
tensor when approximating functions from smoothness spaces, and possibly other classes
of functions such as fractals. It is well known that the approximation class of splines of
degree m ≥ r − 1 is the Sobolev space W r,p. Therefore, whatever the featuring used, the
approximation class of the resulting linear approximation tool (taking linear combinations
of the features) is the Sobolev space Wm+1,p. Near-optimal performance is achieved by
the proposed approximation tool for a large range of smoothness spaces for any fixed
m (including m = 0), at the price of letting d grow (or equivalently the depth of the
tensor networks) to capture higher regularity of functions. When working with a fixed
m, exploiting low-rank structures will then be crucial.

This reveals that the power of the approximation tool considered in this work comes
from the combination of a particular featuring step (the tensorization step) and the use
of tensor networks.
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Appendix A. Sobolev and Besov Spaces of Tensorizations

A.1. Sobolev Spaces. Consider functions f in the Sobolev space W k,p := W k,p([0, 1)),
equipped with the (quasi-)norm

‖f‖Wk,p = (‖f‖pp + |f |p
Wk,p)

1/p (p <∞), ‖f‖Wk,∞ = max {‖f‖p, |f |Wk,∞} ,

where |f |Wk,p is a (quasi-)semi-norm defined by

|f |Wk,p = ‖Dkf‖p,

with Dkf := f (k) the k-th weak derivative of f . Since f and its tensorization f = Tb,df

are such that f(x) = f(j1, . . . , jd, b
dx − j) for x ∈ [bdj, bd(j + 1)) and j =

∑d
k=1 b

d−kjk,
we deduce that

Dkf(x) = bkd
∂k

∂yk
f(j1, . . . , jd, b

dx− j)

for x ∈ [bdj, bd(j + 1)), that means that Dk can be identified with a rank-one operator
over Vb,d,Lp ,

Tb,d ◦Dk ◦ T−1
b,d = id{1,...,d} ⊗ (bkdDk).

We deduce from Theorem 2.15 that for f ∈ W k,p,

|f |Wk,p = ‖Dkf‖p = ‖Tb,d(Dkf)‖p = bkd‖(id{1,...,d} ⊗Dk)f‖p,

with

(id{1,...,d} ⊗Dk)f =
∑
j∈Idb

δj1 ⊗ . . .⊗ δjd ⊗Dkf(j1, . . . , jd, ·).

Then we deduce that if f ∈ W k,p, f = Tb,df is in the algebraic tensor space

Vb,d,Wk,p := (RIb)⊗d ⊗W k,p,

and

|f |Wk,p = bkd‖
∑
j1∈Ib

. . .
∑
jd∈Ib

δj1 ⊗ . . .⊗ δjd ⊗Dkf(j1, . . . , jd, ·)‖p.

This implies that Tb,dW
k,p ⊂ Vb,d,Wk,p but T−1

b,d (Vb,d,Wk,p) 6⊂ W k,p. In fact, T−1
b,d (Vb,d,Wk,p) =

W k,p(Pb,d), the broken Sobolev space associated with the partition Pb,d = {[bdj, bd(j+1)) :
0 ≤ j ≤ bd − 1}. From the above considerations, we deduce

Theorem A.1. For any 0 < p ≤ ∞ and k ∈ N0, Tb,d is a linear isometry from the broken
Sobolev space W k,p(Pb,d) to Vb,d,Wk,p equipped with the (quasi-)norm

‖f‖Wk,p = (‖f‖pp + |f |p
Wk,p)

1/p (p <∞), ‖f‖Wk,∞ = max {‖f‖∞, |f |Wk,∞} ,

where | · |Wk,p is a (quasi-)semi-norm defined by

|f |p
Wk,p := bd(kp−1)

∑
(j1,...,jd)∈Idb

|f(j1, . . . , jd, ·)|pWk,p

for p <∞, and

|f |∞Wk,∞ := bdk max
(j1,...,jd)∈Idb

|f(j1, . . . , jd, ·)|Wk,∞ .
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A.2. Besov Spaces. Let f ∈ Lp, 0 < p ≤ ∞ and consider the difference operator

∆h : Lp([0, 1))→ Lp([0, 1− h)),

∆h[f ](·) := f(·+ h)− f(·).

For k = 2, 3, . . ., the k-th difference is defined as

∆k
h := ∆h ◦∆k−1

h ,

with ∆1
h := ∆h. The k-th modulus of smoothness is defined as

ωk(f, t)p := sup
0<h≤t

∥∥∆k
h[f ]
∥∥
p
, t > 0.(A.1)

Definition A.2 (Besov Spaces). For parameters α > 0 and 0 < p, q ≤ ∞, define
k := bαc+ 1 and the Besov (quasi-)semi-norm as

|f |Bαp,q :=


(∫ 1

0
[t−αωk(f, t)p]

q dt
t

)1/q

, 0 < q <∞,
sup0<t≤1t

−αωk(f, t)p, q =∞.

The Besov (quasi-)norm is defined as

‖f‖Bαp,q := ‖f‖p + |f |Bαp,q .

The Besov space is defined as

Bα
p,q :=

{
f ∈ Lp : ‖f‖Bαp,q <∞

}
.

As in Appendix A.1, we would like to compare the Besov space Bα
p,q with the algebraic

tensor space

Vb,d,Bαp,q := (RIb)⊗d ⊗Bα
p,q.

First, we briefly elaborate how the Besov (quasi-)semi-norm scales under affine trans-
formations of the interval. I.e., suppose we are given a function f : [a, b) → R with
−∞ < a < b <∞ and a transformed f̄ such that

f̄ : [ā, b̄)→ R, x̄ 7→ x :=
b− a
b̄− ā

(x̄− ā) + a 7→ f(x) = f̄(x̄),

for −∞ < ā < b̄ <∞. Then,

∆k
h̄[f̄ ] : [ā, b̄− rh̄)→ R,

∆k
h̄[f̄ ](x̄) =

k∑
i=0

(
k

i

)
(−1)k−if̄(x̄+ ih̄) =

k∑
i=0

(
k

i

)
(−1)k−if(x+ ih) = ∆k

h[f ](x)

with

h :=
b− a
b̄− ā

h̄.

For 0 < p <∞, we obtain for the modulus of smoothness

ωk(f̄ , t̄)
p
p =

b̄− ā
b− a

ωk(f, t)
p
p, t :=

b− a
b̄− ā

t̄,
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and for p = ∞, ωk(f̄ , t̄)∞ = ωk(f, t)∞. Finally, for the Besov (quasi-)semi-norm this
implies ∣∣f̄ ∣∣

Bαp,q
=

(
b̄− ā
b− a

)1/p−α

|f |Bαp,q , 0 < q ≤ ∞, 0 < p <∞,

∣∣f̄ ∣∣
Bαp,q

=

(
b̄− ā
b− a

)−α
|f |Bαp,q , 0 < q ≤ ∞, p =∞.

With this scaling at hand, for p < ∞, what remains is “adding up” Besov (quasi-
)norms of partial evaluations f(j1, . . . , jd, ·). The modulus of smoothness from (A.1) is
not suitable for this task. Instead, we can use an equivalent measure of smoothness via
the averaged modulus of smoothness (see [19, §5 of Chapter 6 and §5 of Chapter 12])

wk(f, t)
p
p :=

1

t

∫ t

0

∥∥∆k
h[f ]
∥∥p
p

dh, 0 < p <∞.

We can then define a (quasi-)semi-norm

|f |Bαp,q =

(∫ 1

0

[t−αwk(f, t)p]
q dt

t

)1/q

, 0 < q <∞,

which is equivalent to the former one from Definition A.2 and therefore results in the
same Besov space Bα

p,q. Expanding the right-hand-side and interchanging the order of

integration allows us to add up the contributions to |f |Bαp,q over the intervals [bdj, bd(j +

1)), provided that q = p. However, note that this is not the same as summing over
|f(j1, . . . , jd, ·)|Bαp,q , since the latter necessarily omits the contributions of |∆k

h[f ]| across

the right boundaries of the intervals [bdj, bd(j + 1)).

Example A.3. Consider the function

f(x) :=

{
1, 0 ≤ x ≤ 1/2,

0, otherwise.

Take 0 < α < 1 and r = 1 in Definition A.2. The first difference is then

∆h[f ](x) =

{
1, 1/2− h < x ≤ 1/2,

0, otherwise.

For 0 < p <∞,

‖∆h[f ]‖pp = h,

and for p =∞,

‖∆h[f ]‖∞ = 1.

Thus, for the ordinary modulus of smoothness we obtain

ωk(f, t)p = t1/p, 0 < p <∞,
ωk(f, t)∞ = 1.

Inserting this into Definition A.2, we see that f ∈ Bα
p,q if and only if p 6=∞ and 0 < α <

1/p. In this case 0 < |f |Bαp,q <∞.

On the other hand, for b = 2 and d = 1, the partial evaluations of the tensorization
T2,1f are the constant functions 0 and 1. Thus, any Besov semi-norm of these partial
evaluations is 0 and consequently the sum as well. We see that, unlike in Theorem A.1,
even if a function f has Besov regularity, the Besov norm of f is in general not equivalent
to the sum of the Besov norms of partial evaluations.
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Theorem A.4. Let 0 < p = q ≤ ∞ and α > 0. Let Bα
p,p be equipped with the (quasi-

)norm associated with the modulus of smoothness when p =∞ or the averaged modulus of
smoothness when p <∞. Then, we equip the tensor space Vb,d,Bαp,p with the (quasi-)norm

‖f‖Bαp,p := (‖f‖pp + |f |pBαp,p)
1/p (p <∞), ‖f‖Bα∞,∞ := max{‖f‖∞, |f |Bα∞,∞},

where | · |Bαp,p is a (quasi-)semi-norm defined by

|f |pBαp,p := bd(αp−1)
∑

(j1,...,jd)∈Idb

|f(j1, . . . , jd, ·)|pBαp,p ,

for p <∞, and

|f |Bα∞,∞ := bdα max
(j1,...,jd)∈Idb

|f(j1, . . . , jd, ·)|Bα∞,∞

Then, Tb,d(B
α
p,p) ↪→ Vb,d,Bαp,p with

|f |Bαp,p ≥ |Tb,d(f)|Bαp,p .

Appendix B. Proofs for Section 2

Proof of Lemma 2.6. We have

tb,d̄(i1, . . . , id̄, y) =
d̄∑

k=1

ikb
−k + b−d̄y =

d∑
k=1

ikb
−k +

d̄−d∑
k=1

ik+db
−k−d + b−d̄y =

d∑
k=1

ikb
−k + b−dz,

with z =
∑d̄−d

k=1 ik+db
−k+b−(d̄−d)y = tb,d̄−d(id+1, . . . , id̄, y), which proves the first statement.

Then consider an elementary tensor v = v1 ⊗ . . . ⊗ vd ⊗ g ∈ Vb,d, with vk ∈ RIb and
g ∈ R[0,1). We have

Tb,d̄ ◦ T−1
b,d v(i1, . . . , id̄, y) = v(t−1

b,d ◦ tb,d̄(i1, . . . , id̄, y))

= v(i1, . . . , id, tb,d̄−d(id+1, . . . , id̄, y))

= v1(i1) . . . vd(id)g(tb,d̄−d(id+1, . . . , id̄, y))

= v1(i1) . . . vd(id)Tb,d̄−dg(id+1, . . . , id̄, y)

= (v1 ⊗ . . .⊗ vd ⊗ (Tb,d̄−dg))(id+1, . . . , id̄, y),

which proves the second property. The last property simply follows from Tb,d ◦ T−1
b,d̄

=

(Tb,d̄ ◦ T−1
b,d )−1 = (id{1,...,d} ⊗ Tb,d̄−d)−1 = id{1,...,d} ⊗ T−1

b,d̄−d. �

Proof of Proposition 2.7. Subsets of the form J × A, with A a Borel set of [0, 1) and
J = ×dk=1Jk with Jk ⊂ Ib, 1 ≤ k ≤ d, form a generating system of the Borel σ-algebra of
Idb×[0, 1). The image of such a set J×A through tb,d is

⋃
j∈J Aj, where Aj1,...,jd = b−d(j+A)

with j =
∑d

k=1 jkb
d−k. Then

λ(tb,d(J × A)) = λ(
⋃
j∈J

Aj) = #Jb−dλ(A) = #J1 . . .#Jdb
−dλ(A) = µb(J1) . . . µb(Jd)λ(A)

= µb,d(J × A).

Then, we conclude on Tb,d by noting that it is a linear bijection (Proposition 2.3) which
preserves measurability. To prove the second statement, we first note that we clearly have
the first inclusion M(Ib)

⊗d ⊗M([0, 1)) ⊂ M(Idb × [0, 1)). To prove the other inclusion,
we note that a tensor f ∈M(Idb × [0, 1)) admits a representation (2.2) with δjk ∈M(Ib)

and f(j1, . . . , jd, ·) = f(b−d(j + ·)) ∈ M([0, 1)) (j =
∑d

k=1 jkb
d−k), where the latter
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identification is deduced from Lemma 2.4. The final identification simply follows from
the identification M(Ib) = RIb . �

Proof of Lemma 2.10. f is identified with a tensor in Vβ ⊗ Vβc with Vβ ∈ (RIb)⊗#β

and Vβc = Vb,d−#β. We have Umin
βc (f) = {(ϕβ ⊗ idβc)f : ϕβ ∈ (Vβ)′} with (Vβ)′ the

algebraic dual of Vβ (see [22, Corollary 2.19]). Then for any basis {ϕjβ
β : jβ ∈ I#β

b } of

(Vβ)′, we have Umin
βc (f) = span{(ϕjβ

β ⊗idβc)f : jβ ∈ I#β
b }. We conclude by introducing the

particular basis ϕ
jβ
β = δjβ , with δjβ = ⊗ν∈βδjν ∈ RI#β

b , and by noting that (δjβ ⊗ idβc)f =
f(jβ, ·) ∈ Vβc . �

Proof of Lemma 2.12. For any set β ⊂ {1, . . . , d + 1} and any partition β = γ ∪ α, the
minimal subspaces from Definition 2.9 satisfy the hierarchy property (see [34, Corollary
6.18]) Umin

β (f) ⊂ Umin
γ (f) ⊗ Umin

α (f), from which we deduce that rβ(f) ≤ rγ(f)rα(f).
Then for 1 ≤ ν ≤ d − 1, by considering γ = {1, . . . , ν} and α = {ν + 1}, we obtain
rν+1(f) ≤ rν(f)r{ν+1}(f), where r{ν+1}(f) = dimUmin

{ν+1}(f) ≤ b, which yields the first

inequality. By considering γ = {ν + 1} and α = {ν + 2, . . . , d + 1}, we obtain rν(f) =
r{ν+1,...,d+1}(f) ≤ r{ν+1}(f)r{ν+2,...,d+1}(f) = r{ν+1}(f)rν+1(f) ≤ brν+1(f), that is the
second inequality. �

Proof of Lemma 2.13. We have from Lemma 2.10 that

T−1
b,d−ν(U

min
{ν+1,...,d+1}(f

d)) = span{T−1
b,d−ν(f

d(j1, . . . , jν , ·)) : (j1, . . . , jν) ∈ Iνb },

where f d(j1, . . . , jν , ·) ∈ Vb,d−ν is a partial evaluation of f d along the first ν dimensions.
We note that

T−1
b,d−ν(f

d(j1, . . . , jν , ·)) = ((id{1,...,ν} ⊗ T−1
b,d−ν)f

d)(j1, . . . , jν , ·)
= (Tb,ν ◦ T−1

b,d f
d)(j1, . . . , jν , ·) = f ν(j1, . . . , jν , ·),

where the second equality results from Lemma 2.6. The result then follows from Lemma 2.10
again. �

Lemma B.1. Let S be a closed subspace of Lp, 0 < p ≤ ∞. The norm ‖ · ‖p is a
reasonable crossnorm on (`p(Ib))

⊗d ⊗ S.

Proof. Let vk ∈ `p(Ib), 1 ≤ k ≤ d, and g ∈ S. For p <∞, we have

‖v1 ⊗ . . .⊗ vd ⊗ g‖pp =
∑
i1∈Ib

. . .
∑
id∈Ib

|v1(i1)|p . . . |vd(id)|pb−d
∫ 1

0

|g(y)|pdy

= ‖v1‖p`p . . . ‖vd‖
p
`p‖g‖

p
p,

and for p =∞,

‖v1⊗ . . .⊗ vd⊗ g‖∞ = max
i1∈Ib
|v1(i1)| . . .max

id∈Ib
|vd(id)| ess sup

y
|g(y)| = ‖v1‖`∞ . . . ‖vd‖`∞‖g‖∞,

which proves that ‖ · ‖p is a crossnorm. Now consider p ≥ 1. Then, consider the dual
norm

‖ϕ‖∗p = sup
‖f‖p≤1

|ϕ(f)|

over the algebraic tensor space (`p(Ib)
∗)⊗d ⊗ S∗, where V ∗ stands for the continuous

dual of a space V . For (v, ψ) ∈ `p(Ib) × `p(Ib)∗, we consider the duality pairing ψ(v) =

b−1
∑b−1

k=0 ψkvk, such that `p(Ib)
∗ = `q(Ib) with 1/p + 1/q = 1. Consider φ ∈ S∗ and

ϕν ∈ `p(Ib)∗, 1 ≤ ν ≤ d. To prove that ‖ · ‖p is a reasonable crossnorm, we have to prove
that

‖ϕ1 ⊗ . . .⊗ ϕd ⊗ φ‖∗p ≤ ‖ϕ1‖`q . . . ‖ϕd‖`q‖φ‖∗p,
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with ‖φ‖∗p = supf∈S,‖f‖p≤1 |φ(f)|. Let ϕ = ϕ1 ⊗ . . . ⊗ ϕd ∈ (`p(Ib)
∗)⊗d = `q(Idb ). For

j ∈ Idb , we let δj = δj1 ⊗ . . . ⊗ δjd ∈ `p(Idb ). Any f ∈ Vb,d,S admits a representation
f =

∑
j∈Idb

δj ⊗ gj where gj = f(j1, . . . , jd, ·) ∈ Lp, and

|(ϕ1 ⊗ . . .⊗ ϕd ⊗ φ)(f)| = |ϕ(
∑
j∈Idb

δjφ(gj)| = |ϕ(v)|

where v ∈ `p(Idb ) is a tensor with entries v(j) = φ(gj). Also,

|ϕ(v)| ≤ ‖ϕ‖∗`p‖v‖`p ≤ ‖ϕ‖`q‖φ‖∗p‖w‖`p ,

where w ∈ `p(Idb ) is a tensor with entries w(j) = ‖gj‖p = ‖f(j1, . . . , jd, ·)‖p. From
Theorem 2.15, we have ‖w‖`∞ = maxj∈Idb ‖f(j1, . . . , jd, ·)‖∞ = ‖f‖∞, and for p <∞

‖w‖p`p = b−d
∑
j∈Idb

|w(j)|p = b−d
∑
j∈Idb

‖f(j1, . . . , jd, ·)‖pp = ‖f‖pp.

Therefore, |(ϕ1 ⊗ . . .⊗ ϕd ⊗ φ)(f)| ≤ ‖ϕ‖`q‖φ‖∗p‖f‖p. We conclude by noting that ‖ · ‖`q
is a crossnorm on `q(Idb ) = `q(Ib)

⊗d, so that ‖ϕ‖`q(Idb ) = ‖ϕ1‖`q . . . ‖ϕd‖`q . �

Proof of Lemma 2.18. By definition, the result is true for d = 1. The result is then proved
by induction. Assume that for all f ∈ S, f(b−d(· + k)) ∈ S for all k ∈ {0, . . . , bd − 1}.
Then for f ∈ S, consider the function f(b−d−1(·+ k)) with k ∈ {0, . . . , bd+1− 1}. We can
write k = bk′′ + k′ for some k′ ∈ {0, . . . , b − 1} and k′′ ∈ {0, . . . , bd − 1}. Then for any
x ∈ [0, 1),

f(b−d−1(x+ k)) = f(b−d(b−1(x+ k′) + k′′)) = g(b−1(x+ k′))

for some g ∈ S, and g(b−1(x + k′)) = h(x) for some h ∈ S. Therefore f(b−d−1(· + k)) =
h(·) ∈ S, which ends the proof. �

Proof of Proposition 2.19. For f ∈ S, we have (Tb,1f)(i1, ·) = f(b−1(· + i1)). Then from
Lemma 2.18, we have (Tb,1f)(i1, ·) ∈ S, which implies f ∈ Vb,1,S. Now assume f ∈ Vb,d,S
for d ∈ N, i.e. Tb,df = f d ∈ Vb,d,S. Then f d(i1, . . . , id, ·) ∈ S and from Lemma 2.18,

f d(i1, . . . , id, b
−1(id+1 + ·)) ∈ S. Then using Lemma 2.6, we have that

f d(i1, . . . , id, b
−1(id+1 + ·)) = f ◦ tb,d(i1, . . . , id, tb,1(id+1, ·)) = f ◦ tb,d+1(i1, . . . , id+1, ·)

, which implies that (Tb,d+1f)(i1, . . . , id+1, ·) ∈ S, and therefore f ∈ Vb,d+1,S. �

Proof of Proposition 2.20. Since 0 ∈ Vb,d,S for any d, we have 0 ∈ Vb,S. For f1, f2 ∈ Vb,S,
there exists d1, d2 ∈ N such that f1 ∈ Vb,d1,S and f2 ∈ Vb,d2,S. Letting d = max{d1, d2},
we have from Proposition 2.19 that f1, f2 ∈ Vb,d,S, and therefore cf1 + f2 ∈ Vb,d,S ⊂ Vb,S
for all c ∈ R, which ends the proof. �

Lemma B.2 (Density of Step Functions in Lp([0, 1))). For any 0 < p < ∞, the set of
step functions12 is dense in Lp([0, 1)).

Proof. The set of simple functions is dense in Lp([0, 1)) for 0 < p < ∞ (see, e.g., [62,
Theorem 18.3]). Then it remains to show that the set of step functions is dense in the
set of simple functions. For that, it is sufficient to show that the indicator function 1A
of any measurable set in [0, 1) (hence with finite measure) is the limit of a sequence
of step functions. For all ε > 0, since the Lebesgue measure λ is outer regular, there
exists an open set O containing A and such that λ(O \ A) < ε. The open set O is the
union of a countable set of disjoint intervals (Ik)k∈N, O =

⋃
k>0 Ik. Let n sufficiently

large such that λ(∪k>nIk) < ε, and consider the step function f =
∑n

k=1 1Ik . For p ≥ 1,

12A step function is a finite linear combination of indicator functions of intervals.
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‖1A−f‖Lp ≤ ‖1O\A‖Lp+‖1O−f‖Lp < 2ε1/p. For p < 1,
∫
|1A−f |p ≤

∫
|1O\A|p+|1O−f |p =∫

|1O\A| + |10 − f | < 2ε, and thus ‖1A − f‖Lp < 21/pε. This shows the desired result for
any 0 < p <∞. Note that this result only exploits the fact that the Lebesgue measure is
outer regular, and it can be extended to any space Lp(R,BR,m) equipped with an outer
regular measure. �

Proof of Theorem 2.21. By Lemma B.2, it is sufficient to prove that Vb,S is dense in the

set of step functions over [0, 1). Consider a step function f =
∑n−1

i=0 ai1[xi,xi+1) 6= 0, with

0 = x0 < x1 < . . . < xn = 1, and ‖f‖pp =
∑n−1

i=0 |ai|p(xi+1 − xi). Let xdi = b−dbbdxic,
0 ≤ i ≤ n, and consider the function fd =

∑n−1
i=0 ai1[xdi ,x

d
i+1) which is such that fd ∈ Vb,d,S.

Then, noting that xd0 = x0 = 0 and xdn = xn = 1, we have

f − fd =
n−1∑
i=0

ai(1[xi,xi+1) − 1[xdi ,x
d
i+1)) =

n−1∑
i=0

ai(1[xdi+1,xi+1) − 1[xdi ,xi)
)

=
n−2∑
i=0

(ai − ai+1)1[xdi+1,xi+1).

Then, noting that 0 ≤ xi − xdi ≤ b−d for all 0 < i < n, we have

‖f − fd‖pp =
n−2∑
i=0

|ai − ai+1|p(xi+1 − xdi+1) ≤ 2pb−d
n−1∑
i=0

|ai|p

≤ 2pb−d‖f‖pp
(

min
0≤i≤n−1

(xi+1 − xi)
)−1

,

so that ‖f − fd‖p → 0 as d→∞, which ends the proof. �

Proof of Lemma 2.23. (i) If f ∈ S, from Proposition 2.19, we have f ∈ Vb,ν,S for any ν,
so that rν,ν(f) ≤ dimS. Then, using Corollary 2.14, we have rν,d(f) = rν,ν(f) ≤ dimS.
The other bound rν,d(f) ≤ bν results from Lemma 2.22.
(ii) The fact that f ∈ Vb,d̄,S follows from Proposition 2.19. Then, from Corollary 2.14, we

have that rν,d̄(f) = rν,ν(f) for all 1 ≤ ν ≤ d̄. For 1 ≤ ν ≤ d, Corollary 2.14 also implies
rν,ν(f) = rν,d(f) and we obtain the desired inequality from Lemma 2.22. For ν > d, we
note that rν,ν(f) = dimUmin

{ν+1}(Tb,νf). From Proposition 2.19, we know that Tb,νf ∈ Vb,ν,S
for ν ≥ d, so that Umin

{ν+1}(Tb,νf) ⊂ S and rν,ν(f) ≤ dim(S). The other bound rν,d̄(f) ≤ bν

results from Lemma 2.22. �

Proof of Lemma 2.25. Let {φl}1≤l≤dimS be a basis of S, such that for g ∈ Lp, IS(g) =∑dimS
l=1 φlσl(g), with σl a linear map from Lp to R. For f ∈ Lp, and x ∈ [b−dj, b−d(j+ 1)),

Ib,d,Sf(x) =
dimS∑
l=1

φl(b
dx− j)σl(f(b−d(j + ·)).

We have f(b−d(j + ·)) = f(j1, . . . , jd, ·), with j =
∑d

k=1 b
d−kjk and f = Tb,df , so that

Tb,d(Ib,d,Sf)(j1, . . . , jd, y) =
dimS∑
l=1

φl(y)σl(f(j1, . . . , jd, ·)).
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For f = ϕ1 ⊗ . . . ϕd ⊗ g, using the linearity of σl, we then have

Tb,d(Ib,d,S(T−1
b,d f))(j1, . . . , jd, y) = ϕ1(j1) . . . ϕd(jd)(

dimS∑
l=1

φl(y)σl(g))

= ϕ1(j1) . . . ϕd(jd)IS(g)(y),

which proves (2.13). �

Appendix C. Proofs for Section 3

Proof of Proposition 3.4. (ii). Let ϕA, ϕB ∈ Φn with ϕA ∈ Vb,dA,S, ϕB ∈ Vb,dB ,S and
w.l.o.g. dB ≥ dA. Set rA := rmax(ϕA) and rB := rmax(ϕB). Then,

compl(ϕA + ϕB) ≤ bdA(max(rA, dimS) + rB)2 + (max(rA, dimS) + rB) dimS

≤ 2bdAr
2
B + 4bdAr

2
A + 4bdA(dimS)2 + rA dimS + rB dimS + (dimS)2

≤ [4 + 4(dimS)2 + dimS]n+ 4n2 ≤ [8 + 4(dimS)2 + dimS]n2.

(i). Let W0 denote the principal Branch of the Lambert W function. Recall, that the
multi-valued Lambert function W is the solution to the equation

ωeω = z

for complex valued ω and z, with countably many solutions Wk, where W0 denotes the
principal branch by convention.

Take n ∈ N large enough such that

dA :=

⌊
1

ln(b)
W0

[
n

ln(b)

2 max {b, dimS}

]⌋
≥ 2, dA :=

⌊
n− dimS

b

⌋
≥ 2

Pick a full-rank function ϕA ∈ Vb,dA,S such that r2
A := r2

max(ϕA) = b
2
⌊
dA
2

⌋
. Then,

compl(ϕA) ≤ bdAb
dA + b

dA
2 dimS ≤ 2 max {b, dimS} dAbdA ≤ n,

by the choice of dA and the properties of the Lambert W function.
Pick any ϕB ∈ Vb,dB ,S with rB := rmax(ϕB) = 1 and dB = dA, so that compl(ϕB) =

bdB + dimS ≤ n. Then, ϕA, ϕB ∈ Φn. On the other hand, rA ≥ rB and from [39] we
can estimate the Lambert W function from below as

W0

[
n

ln(b)

2 max {b, dimS}

]
≥ ln

[
n

ln(b)

2 max {b, dimS}

]
− ln ln

[
n

ln(b)

2 max {b, dimS}

]
Then

compl(ϕA + ϕB) ≥ bdAr
2
A + rA dimS

≥ b

(
n− dimS

b
− 1

)(
b

1
ln(b)

W0[n ln(b)
2 max{b,dimS} ]−1

)
=

(
n− dimS

b
− 1

)(
n

ln(b)

2 max {b, dimS}

)[
ln

(
n

ln(b)

2 max {b, dimS}

)]−1

,

The leading term in the latter expression is

ln(b)

2bmax {b, dimS}
n2

[
ln

(
n

ln(b)

2 max {b, dimS}

)]−1

.

This cannot be bounded by cn for any c > 0 and thus (i) follows. �
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Proof of Lemma 3.5. Let ϕA, ϕB ∈ ΦNn with dA := d(ϕA), dB := d(ϕB), rA := rA(ϕA),
rB := rB(ϕB) and w.l.o.g. dA ≤ dB. Then using Lemma 2.23,

complN (ϕA + ϕB) ≤
dB∑
ν=1

(rAν + rBν ) ≤
dA∑
ν=1

rAν + (dB − dA) dimS +

dB∑
ν=1

rBν

≤ complN (ϕA) + complN (ϕB)(1 + dimS) ≤ (2 + dimS)n.

�

Proof of Lemma 3.8. Let ϕA, ϕB ∈ ΦCn with dA := d(ϕA), dB := d(ϕB), rA := rA(ϕA),
rB := rB(ϕB) and w.l.o.g. dA ≤ dB. Then

complC(ϕA + ϕB) ≤ b(rA1 + rB1 ) +

dB∑
k=2

b(rAk−1 + rBk−1)(rAk + rBk ) + (rAdB + rBdB) dimS

= brA1 +

dA∑
k=2

brAk−1r
A
k + rAdA dimS︸ ︷︷ ︸

N1

+ brB1 +

dB∑
k=2

brBk−1r
B
k + brBdB dimS︸ ︷︷ ︸

N2

+

dA∑
k=1

brAk−1r
B
k + brBk−1r

A
k︸ ︷︷ ︸

N3

+

dB∑
k=dA+1

brAk−1r
A
k︸ ︷︷ ︸

N4

+ (rAdB − r
A
dA

) dimS︸ ︷︷ ︸
N5

+

dB∑
k=dA+1

brAk−1r
B
k + brBk−1r

A
k︸ ︷︷ ︸

N6

.

Since ϕA, ϕB ∈ ΦCn, we have N1 = complC(ϕA) ≤ n and N2 = complC(ϕB) ≤ n. Then,
using Lemma 2.12, we have

N3 ≤b
( dA∑
k=2

(rAk−1)2
)1/2( dA∑

k=2

(rBk )2
)1/2

+ b
( dA∑
k=2

(rBk−1)2
)1/2( dA∑

k=2

(rAk )2
)1/2

≤b
( dA∑
k=2

brAk−1r
A
k

)1/2( dA∑
k=2

brBk−1r
B
k )2
)1/2

+ b
( dA∑
k=2

brBk−1r
B
k

)1/2( dA∑
k=2

brAk−1r
A
k

)1/2

≤2b complC(ϕA)1/2 complC(ϕB)1/2 ≤ 2bn.

If dA = dB, we have N4 = N5 = N6 = 0. If dA < dB, using Lemma 2.23, we have

N4 ≤ (dimS)2b(dB − dA) ≤ (dimS)2 complC(ϕB) ≤ n(dimS)2,

N5 ≤ (dimS)2 ≤ (dimS) complC(ϕA) ≤ n dimS,

N6 ≤ (dimS)
( dB∑
k=dA+1

brBk + brBk−1

)
≤ 2(dimS) complC(ϕB) ≤ 2n dimS.

Thus, putting all together

complC(ϕA + ϕB) ≤ [(dimS)2 + 3 dimS + 2b+ 2]n,

and (P4) is satisfied with c := (dimS)2 + 3 dimS + 2b+ 2. �
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Proof of Lemma 3.11. We have the representation

Tb,d(ϕ)(i1, . . . , id, y) =

r1∑
k1=1

· · ·
rd∑

kd=1

dimS∑
q=1

vk1
1 (i1) · · · vkd−1,kd

d (id)v
kd,q
d+1ϕq(y).

Then, from Lemma 2.6,

Tb,d̄(ϕ)(i1, . . . , id̄, y)

=

r1∑
k1=1

· · ·
rd∑

kd=1

dimS∑
q=1

vk1
1 (i1) · · · vkd−1,kd

d (id)v
kd,q
d+1Tb,d̄−d(ϕq)(id+1, . . . , id̄, y)

=

r1∑
k1=1

· · ·
rd∑

kd=1

dimS∑
q=1

b∑
jd+1=1

vk1
1 (i1) · · · vkd−1,kd

d (id) v
kd,q
d+1δjd+1

(id+1)︸ ︷︷ ︸
v̄
kd,(q,jd+1)

d+1 (id+1)

Tb,d̄−d(ϕq)(jd+1, id+2, . . . , id̄, y),

where v̄d+1 ∈ Rb×rd×(b dimS). Since S is closed under b-adic dilation, we know from
Lemma 2.23 that rν(ϕq) ≤ dimS for all ν ∈ N. Let l = d̄ − d and first assume l ≥ 2.
Then, Tb,d̄−d(ϕq) admits a representation

Tb,d̄−d(ϕq)(jd+1, id+2, . . . , id̄, y)

=
dimS∑
α1=1

. . .
dimS∑
αl=1

dimS∑
p=1

wq,α1

1 (jd+1)wq,α1,α2

2 (id+2) . . . w
q,αl−1,αl
l (id̄)w

q,αl,p
l+1 ϕp(y)

=
dimS∑
α2=1

. . .
dimS∑
αl=1

dimS∑
p=1

wq,α2

1,2 (jd+1, id+2) . . . w
q,αl−1,αl
l (id̄)w

q,αl,p
l+1 ϕp(y)

with wq,α2

1,2 (jd+1, id+2) =
∑dimS

α1=1 w
q,α1

1 (jd+1)wq,α1,α2

2 (id+2). Then,

Tb,d̄−d(ϕq)(jd+1, id+2, . . . , id̄, y)

=
dimS∑
α2,q2=1

. . .
dimS∑
αl,ql=1

dimS∑
p=1

δq,q2w
q,α2

1,2 (jd+1, id+2)︸ ︷︷ ︸
v̄

(q,jd+1),(q2,α2)

d+2 (id+2)

. . . δql−1,qlw
ql−1,αl−1,αl
l (id̄)︸ ︷︷ ︸

v̄
(ql−1,αl−1),(ql,αl)

d̄
(id̄)

wql,αl,pl+1︸ ︷︷ ︸
v̄

(ql,αl),p

d̄+1

ϕp(y)

with v̄d+2 ∈ Rb×(b dimS)×(dimS)2
, v̄ν ∈ Rb×(dimS)2×(dimS)2

for d + 3 ≤ ν ≤ d̄, and v̄d̄+1 ∈
R(dimS)2×dimS. Then, we have ϕ ∈ Rb,d̄,S,r(v) with v = (v̄1, . . . , vd, v̄d+1, . . . , v̄d̄+1), with
v̄ν defined above for ν > d, and r̄ν = rν for ν ≤ d, r̄d+1 = b dimS, and r̄ν = (dimS)2 for
d + 1 < ν ≤ d̄. From the definition of v̄ν , we easily deduce that ‖v̄d+1‖`0 = b‖vd+1‖`0 ,
‖v̄d+2‖`0 ≤ b2(dimS)2, ‖v̄ν‖`0 ≤ b(dimS)3 for d + 3 ≤ ν ≤ d̄, and ‖v̄d̄+1‖`0 ≤ (dimS)3.
Then, for l = d̄− d ≥ 2, we obtain

complS(v) =
d+1∑
ν=1

‖v̄ν‖`0 +
d̄+1∑

ν=d+2

‖v̄ν‖`0

≤ b complS(v) + b2(dimS)2 + b(dimS)3(d̄− d− 2) + (dimS)3.

For l = 1, we have a representation

Tb,d̄−d(ϕq)(jd+1, y) =
dimS∑
p=1

v̄
(q,jd+1),p
d+2 ϕp(y)

52



M. Ali, A. Nouy

with v̄d+2 ∈ R(b dimS)×dimS such that v̄
(q,jd+1),p
d+2 =

∑dimS
α1=1 w

q,α1

1 (jd+1)ϕq,α1,p
2 . Then, for l = 1,

ϕ ∈ Rb,d̄,S,r(v) with v = (v̄1, . . . , vd, v̄d+1, v̄d̄+2), and

complS(v) ≤ b complS(v) + b(dimS)2 = b complS(v) + b(dimS)2(d̄− d).

For any l ≥ 1, we then deduce

complS(v) ≤ b complS(v) + b2(dimS)3(d̄− d).

�

Proof of Lemma 3.12. ϕA and ϕB admit representations

Tb,d(ϕC)(i1, . . . , id, y) =

rC1∑
k1=1

· · ·
rCd∑
kd=1

dimS∑
q=1

vC,k1

1 (i1) · · · vC,kd−1,kd
d (id)v

C,kd,q
d+1 ϕq(y),

with C = A or B. Then, ϕA + ϕB admit the representation

Tb,d(ϕA + ϕB)(i1, . . . , id, y) =

rA1 +rB1∑
k1=1

· · ·
rAd +rBd∑
kd=1

dimS∑
q=1

vk1
1 (i1) · · · vkd−1,kd

d (id)v
kd,q
d+1ϕq(y),

with vk1
1 = vA,k1

1 if 1 ≤ k1 ≤ rA1 and vk1
1 = vB,k1

1 if rA1 < k1 ≤ rA1 + rB1 ,

vkν−1,kν
ν =


vA,kν−1,kν if 1 ≤ kν−1, kν ≤ rA1
vB,kν−1,kν if rA1 < kν−1, kν ≤ rA1 + rB1
0 elsewhere,

and vkd,qd+1 = vA,kd,qd+1 if 1 ≤ kd ≤ rA1 and vkd,qd+1 = vB,kd,qd+1 if rA1 < kd ≤ rA1 + rB1 . From the
above, we deduce that ‖vC‖`0 ≤ ‖vA‖`0 + ‖vB‖`0 , so that

complS(v) =
d+1∑
ν=1

‖vC‖`0 ≤ complS(v) ≤ complS(vA) + complS(vB).

�

Proof of Lemma 3.14. For 1 < p <∞, the norm defined in Theorem 2.15 is a reasonable
crossnorm (see Lemma B.1) and thus, in particular, not weaker than the injective norm
on Vb,d,S. Thus, by [34, Lemma 8.6] T T r (Vb,d,S) for r ∈ Nd is a weakly closed subset
of Lp. Moreover, the set Φn, with either Φn = ΦNn or ΦCn, is a finite union of the sets
T T r (Vb,d,S) for different d ∈ N and r ∈ Nd. Since finite unions of closed sets (in the
weak topology) are closed, it follows that Φn is weakly closed in Lp, and a fortiori, Φn is
also closed in the strong topology. Since Lp is reflexive for 1 < p <∞ and Φn is weakly
closed, Φn is proximinal in Lp (see [34, Theorem 4.28]).

Now consider that S is finite-dimensional and 0 < p ≤ ∞. There exists d such that
Φn ⊂ Vb,d,S and Vb,d,S is finite-dimensional. Since Φn is a closed subset of a finite-
dimensional space Vb,d,S, it is proximinal in Lp for any 0 < p ≤ ∞. �

Proof of Proposition 3.18. Consider a function 0 6= ϕ ∈ Vb,S and let d = d(ϕ) and r =
r(ϕ). We have

complN (ϕ) =
d∑

ν=1

rν ≤ br1 +
d∑

rν=2

brν−1rν + b dimS = complC(ϕ),
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which implies ΦCn ⊂ ΦNn . Also

complC(ϕ) ≤ br1 + b(
d−1∑
ν=1

r2
ν)

1/2(
d∑

ν=2

r2
ν)

1/2 + b dimS ≤ br1 + b(
d−1∑
ν=1

rν)(
d∑

ν=2

rν) + b dimS

≤ b(
d∑

ν=1

rν)
2 + b dimS = b complN (ϕ)2 + b dimS,

which yields ΦNn ⊂ ΦCb dimS+bn2 . Also, we clearly have complS(ϕ) ≤ complC(ϕ), which

implies ΦCn ⊂ ΦSn . Now consider any tensor network v ∈ Pb,d,S,r such that ϕ = Rb,d,S,r(v),

with d(ϕ) ≤ d and r(ϕ) ≤ r. We have that r1(ϕ) ≤ dim{vk1
1 (·) ∈ Rb : 1 ≤ k1 ≤ r1} ≤

‖v1‖`0 and for 2 ≤ ν ≤ d, rν(ϕ) ≤ dim{v·,kνν (·) ∈ Rb×rν−1 : 1 ≤ kν ≤ rν} ≤ ‖vν‖`0 .
Therefore

complN (ϕ) =
d∑

ν=1

rν(ϕ) ≤
d∑

ν=1

‖vν‖`0 ≤ complS(v).

The inequality being true for any tensor network v such that ϕ = Rb,d,S,r(v), we deduce
complN (ϕ) ≤ complS(ϕ), which yields ΦSn ⊂ ΦNn . �

Proof of Lemma 3.21. (i). Consider ϕA, ϕB ∈ ΦRn , and let dA = d(ϕA), dB = d(ϕB),
rA = r(ϕA) and rB = r(ϕB). Assume w.l.o.g. that dA ≤ dB. The function ϕA admits a
representation

Tb,dAϕA(i1, . . . , idA , y) =

rA∑
k=1

wA,k1 (i1) . . . wA,kd (id)w
A,k
d+1(y),

and

Tb,dBϕA(i1, . . . , idB , y) =

rA∑
k=1

wA,k1 (i1) . . . wA,kd (id)Tb,dB(wA,kd+1)(y).

From the assumption on S, we have Tb,dB(wA,kd+1) of rank 1, so that r(Tb,dBϕA) ≤ rA. We
easily deduce that r(ϕA + ϕB) ≤ rA + rB and complR(ϕA + ϕB) ≤ bdB(rA + rB) + (rA +
rB)b dimS ≤ 2n+ brA(dB − dA) ≤ 2n+ n2 ≤ 3n2.
(ii). The proof idea is analogous to Proposition 3.4: we take a rank-one tensor ϕB ∈ ΦRn
such that dB ∼ n and a full-rank tensor ϕA ∈ ΦRn with dA < dB such that rA ∼ bdA ∼ n.
Then, as in Proposition 3.4, complR(ϕA + ϕB) ∼ n2. �

Proof of Lemma 3.22. Let ϕ ∈ ΦRn , d = d(ϕ), r = r(ϕ). The function ϕ admits a
representation

Tb,dϕ(i1, . . . , id, y) =
r∑

k=1

dimS∑
q=1

wk1(i1) . . . wkd(id)w
q,k
d+1ϕq(y).

Letting v1 = w1, vd+1 = wd+1 and vν ∈ Rb×r×r such that vkν−1,kν
ν = δkν−1,kνw

kν
ν for

2 ≤ ν ≤ d, and letting r = (r, . . . , r) ∈ Nd, we have

Tb,dϕ(i1, . . . , id, y) =
r∑

k1=1

. . .
r∑

kd=1

dimS∑
q=1

vk1(i1) . . . w
kd−1,kd
d (id)w

q,kd
d+1ϕq(y),

which proves that Tb,dϕ ∈ Φb,d,S,r with

complS(ϕ) =
d+1∑
ν=1

‖vν‖`0 =
d+1∑
ν=1

‖wν‖`0 ≤ brd+ r dimS = complR(ϕ) ≤ n,

that is ϕ ∈ ΦSn . �
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Appendix D. Proofs for Section 4

Proof of Proposition 4.13. The bounds for complN (ϕ) and complC(ϕ) directly follow from
Lemma 4.12. To obtain the bound on the sparse representation complexity, we have
to provide a representation of ϕ in a tensor format. First, we note that the interval
Ik = [xbk−1, x

b
k) is such that Ik = ∪nki=1Ik,i, where the Ik,i are nk contiguous intervals from

b-adic partitions of [0, 1), and the minimal nk can be bounded as nk ≤ 2d(b − 1). To
illustrate why this bound holds, we refer to Figure 6.

If d is the maximal level, the subsequent partitioning of [0, 1) for levels l = 0, 1, 2, . . . , d
can be represented as a tree, where each vertex has b sons, i.e., each interval is subse-
quently split into b intervals. Then, the end-points xbk−1 and xbk of an arbitrary interval
Ik correspond to two points in this interval partition tree. The task of finding a minimal
sub-partitioning Ik = ∪nki=1Ik,i is then equivalent to finding the shortest path in this tree,
and 2d represents the longest possible path.

Figure 6. Visual representation of different partitioning levels of the in-
terval [0, 1), with b = 2 and d = 4.

In Figure 6, we depict a scenario close to the “worst case”. In order to reach vertex
xbk from vertex xbk−1, at most, we would have to traverse the tree up (towards the root)
and back down. On each level, we would need at most b− 1 horizontal steps. Thus, we
require at most 2d(b− 1) steps to reach xbk.

Then, ϕ admits a representation as ϕ =
∑N

k=1

∑nk
i=1 si,k, with si,k supported on Ii,k and

polynomial on this interval. Let λ := (k, i). We have Iλ = [bdλjλ, b
dλ(jλ + 1)) for some

dλ ≤ d and jλ ∈ {0, . . . , bdλ−1 − 1}. By denoting (jλ,1, . . . , jλ,dλ) the representation of jλ
in base b, sλ admits a tensorization

Tb,dλ(sλ) = δjλ,1 ⊗ . . .⊗ δjλ,dλ ⊗ pλ,

with pλ ∈ Pm, so that complS(sλ) ≤ dλ + dimS. From Lemmas 3.11 and 3.12, we deduce
that

complS(ϕ) ≤
N∑
k=1

nk∑
i=1

b(dk,i + dimS) + b2(dimS)3(d− dk,i) ≤ 2b2(dimS)3d
N∑
k=1

nk

≤ 4b3(m+ 1)3d2N.

�

Proof of Proposition 4.15. From Lemma 4.14, we have

complN (Ib,d̄,m(ϕ)) ≤ d(m̄+N) + (d̄− d)(m̄+N) ≤ (m̄+ 1)dN + (d̄− d)(m̄+N),

complC(Ib,d̄,m(ϕ)) ≤ b(m̄+N) + (d− 1)b(m̄+N)2 + (d̄− d)b(m̄+ 1)2 + b(m+ 1)

≤ 2bd(m̄+ 1)2dN2 + (d̄− d)b(m̄+ 1)2.
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Now we consider the sparse representation complexity. The function ϕ admits a repre-
sentation ϕ = Rb,d,m̄,r(v) for some r ∈ Nr and a tensor network v ∈ Pb,d,m̄,r such that
complS(v) = complS(ϕ) and

Tb,d(ϕ)(i1, . . . , id, y) =

r1∑
k1=1

· · ·
rd∑

kd=1

m̄+1∑
q=1

vk1
1 (i1) · · · vkd−1,kd

d (id)v
kd,q
d+1ϕ

m̄+1
q (y),

with the ϕm̄+1
q forming a basis of Pm̄. From Proposition 4.8, we know that complS(ϕ) ≤

C1N for some constant C1 depending only on b and m̄. Then from (2.13), we have that

Tb,d̄(Ib,d̄,m(ϕ))(i1, . . . , id̄, y)

=

r1∑
k1=1

· · ·
rd∑

kd=1

m̄+1∑
q=1

vk1
1 (i1) · · · vkd−1,kd

d (id)v
kd,q
d+1Tb,d̄−d(Ib,d̄−d,m(ϕm̄+1

q ))(id+1, . . . , id̄, y)

=

r1∑
k1=1

· · ·
rd∑

kd=1

m̄+1∑
q=1

b∑
jd+1=1

vk1
1 (i1) · · · vkd−1,kd

d (id)v̄
kd,(q,jq+1)
d+1 (id+1)Tb,d̄−d(Ib,d̄−d,m(ϕm̄+1

q ))(jd+1, . . . , id̄, y),

with v̄
kd,(q,jq+1)
d+1 (id+1) = vkd,qd+1δjd+1

(id+1) such that ‖v̄d+1‖`0 = b‖vd+1‖`0 . Noting that
rν(Ib,d̄−d,m(ϕm̄+1

q )) ≤ rν(ϕ
m̄+1
q ) ≤ m̄ + 1 for all ν ∈ N, and following the proof of

Lemma 3.11, we can prove that for d̄− d ≥ 2, Ib,d̄−d,m(ϕm̄+1
q ) admits a representation

Tb,d̄−d(Ib,d̄−d,m(ϕq))(jd+1, id+2, . . . , id̄, y)

=
m̄+1∑

α2,q2=1

. . .
m̄+1∑
αl,ql=1

m+1∑
p=1

v̄
(q,jd+1),(q2,α2)
d+2 (id+2) . . . v̄

(ql−1,αl−1),(ql,αl)

d̄
(id̄)v̄

(ql,αl),p

d̄+1
ϕp(y)

with the ϕp forming a basis of Pm and with v̄d+2 ∈ Rb×(b(m̄+1))×(m̄+1)2
, v̄ν ∈ Rb×(m̄+1)2×(m̄+1)2

for d+ 3 ≤ ν ≤ d̄, and v̄d̄+1 ∈ R(m̄+1)2×(m+1). Then, we have Ib,d̄,m(ϕ) = Rb,d̄,m,r(v) with
v = (v̄1, . . . , vd, v̄d+1, . . . , v̄d̄+1) such that

complS(Ib,d̄,m(ϕ)) ≤ b complS(ϕ) + b2(m̄+ 1)3 + b(m̄+ 1)4(d̄− d− 2) + (m̄+ 1)2(m+ 1)

≤ max{b,m+ 1}(complS(ϕ) + b(m̄+ 1)3

+ (m̄+ 1)4(d̄− d− 2) + (m̄+ 1)2)

≤ max{b,m+ 1}(complS(ϕ) + b(m̄+ 1)4(d̄− d)).

For d̄− d = 1, we have the representation

Tb,d̄−d(Ib,d̄−d,m(ϕm̄+1
q ))(jd+1, y) =

m+1∑
p=1

v̄
(q,jd+1),p
d+2 ϕp(y)

with some v̄d+2 ∈ R(b(m̄+1))×(m+1). Then for d̄ − d = 1, ϕ ∈ Rb,d̄,S,r(v) with v =
(v̄1, . . . , vd, v̄d+1, v̄d̄+2), and

complS(Ib,d̄,m(ϕ)) ≤ b complS(v) + b(m̄+ 1)(m+ 1)

≤ max{b,m+ 1}(complS(v) + b(m̄+ 1)(d̄− d)).

Finally for d̄ = d, we simply have Ib,d̄−d,m = Im, and we can show that Ib,d̄,m(ϕ) =
Rb,d,m,r(v1, ..., vd, v̄d+1) with ‖v̄d+1‖`0 ≤ (m+ 1)‖vd+1‖`0 , so that

complS(Ib,d̄,m(ϕ)) ≤ (m+ 1) complS(v).
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Then for any d̄ ≥ d, we have

complS(Ib,d̄,m(ϕ)) ≤ max{b,m+ 1}(complS(ϕ) + b(m̄+ 1)4(d̄− d)),

and we conclude by using complS(ϕ) ≤ C1N. �

Appendix E. Proofs for Section 5

Proof of Lemma 5.1. From (2.13), we know that s := Ib,d,m̄f admits a tensorization s :=
Tb,ds = (id{1,...,d} ⊗ Im̄)f , with f = Tb,df and where id{1,...,d} : (RIb)⊗d → (RIb)⊗d is the
identity. Then,

Tb,d(f − s) =
∑
j∈Idb

δj1 ⊗ . . .⊗ δjd ⊗ (gj − Im̄gj),

with gj = f(j1, . . . , jd, ·). Using the property (4.1) of operator Im̄, with a constant C
depending on m̄ and p, we have

‖gj − Im̄gj‖p ≤ C|gj|W m̄+1,p = C‖Dm̄+1gj‖p.
Then, using Theorem 2.15, we have for p <∞

‖f − s‖pp =
∑
j∈Idb

b−d‖gj − Im̄gj‖pp ≤ Cp
∑
j∈Idb

b−d‖Dm̄+1gj‖pp = Cp‖(id{1,...,d} ⊗Dm̄+1)f‖pp

and

‖f − s‖∞ = max
j∈Idb
‖gj − Im̄gj‖∞ ≤ C max

j∈Idb
‖Dm̄+1gj‖∞ ≤ C‖(id{1,...,d} ⊗Dm̄+1)f‖∞.

Then, from Theorem 2.15 we deduce

‖f − s‖p ≤ C‖(id{1,...,d} ⊗Dm̄+1)f‖p = Cb−d(m̄+1)‖f‖W m̄+1,p .

For d̄ ≥ d, we obtain from Lemma 2.6 and (2.13) that

Tb,dIb,d̄,mT−1
b,d = Tb,dT

−1
b,d̄

(id{1,...,d̄} ⊗ Im)Tb,d̄T
−1
b,d

= id{1,...,d} ⊗ (Tb,d̄−d(id{1,...,d̄−d} ⊗ Im)T−1
b,d̄−d) = id{1,...,d} ⊗ Ib,d̄−d,m.

Then s̃ := Ib,d̄,ms admits for tensorization

Tb,ds̃ = (id{1,...,d} ⊗ Ib,d̄−d,m)s =
∑
j∈Idb

δj1 ⊗ . . .⊗ δd ⊗ (Ib,d̄−d,mIm̄gj),

which yields

Tb,d(s− s̃) =
∑
j∈Idb

δj1 ⊗ . . .⊗ δjd ⊗ (Im̄gj − Ib,d̄−d,mIm̄gj).

From the property (4.1) of Im, with a constant C̃ depending on m and p, and the property
of Im̄, we obtain

‖Im̄gj − Ib,d̄−d,mIm̄gj‖p ≤ C̃b−(d̄−d)(m+1)|Im̄gj|Wm+1,p

≤ C̃b−(d̄−d)(m+1)
(
|gj|Wm+1,p + C |gj|W m̄+1,p

)
.

In the same way as above, we deduce

‖s− s̃‖p ≤ C̃b−(d̄−d)(m+1)
(
‖(id{1,...,d} ⊗Dm+1)f‖p + C‖(id{1,...,d} ⊗Dm̄+1)f‖p

)
= C ′b−(d̄−d)(m+1)(b−d(m+1) |f |Wm+1,p + b−d(m̄+1) |f |W m̄+1,p),

with C ′ = C̃ max{1, C} depending on m, m̄ and p, which completes the proof. �
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Proof of Lemma 5.4. The proof is a modification of the proof of Petrushev for free knot
splines (see [19, Chapter 12, Theorem 8.2]). The first step is the optimal selection of n
intervals that, in a sense, balances out the Besov norm |f |Bατ,τ . In this step, unlike in the

case of classic free knot splines, we are restricted to b-adic knots. The second step is a
polynomial approximation over each interval and is essentially the same as with free knot
splines. We demonstrate this step here as well for completeness.

First, we define a set function that we will use for the selection of the n − 1 b-adic
knots. Let k := bαc+ 1 and

M τ :=

∫ 1

0

t−ατ−1wk(f, t)
τ
τ dt,

where wk is the averaged modulus of smoothness, i.e.,

wk(f, t)
τ
τ :=

1

t

∫ t

0

∥∥∆k
h[f ]
∥∥τ
τ

dh.

By [19, Chapters 2 and 12], M is equivalent to |f |Bατ,τ .
Let

g(x, h, t) :=

{
t−ατ−2|∆k

h[f ](x)|τ if h ∈ [0, t] and x ∈ [0, 1− kh],

0 elsewhere.

Then,

M τ =

∫ 1

0

∫ ∞
0

∫ 1

0

g(x, h, t) dx dh dt =

∫ 1

0

G(x) dx,

G(x) :=

∫ ∞
0

∫ 1

0

g(x, h, t) dh dt.

The aforementioned set function is then defined as

Ω(t) :=

∫ t

0

G(x) dx.

This function is positive, continuous and monotonically increasing with

Ω(0) = 0 and Ω(1) = M τ ∼ |f |τBατ,τ .

Thus, we can pick N intervals Ii, i = 1, . . . , N , with disjoint interiors such that

N⋃
i=1

Ii = [0, 1] and

∫
Ii

G(x) dx =
M τ

N
.

This would have been the optimal knot selection for free knot splines. For our purposes
we need to restrict the intervals to b-adic knots. More precisely, we show that with
restricted intervals we can get arbitrarily close to the optimal choice.

Let ε > 0 be arbitrary. Starting with i = 1, due to the properties of the function Ω(·),
we can pick a b-adic interval Iε1 with left end point 0 such that∫

Iε1

G(x) dx ≤ M τ

N
≤
∫
Iε1

G(x) dx+
ε

N
.(E.1)

For Iε2 , we set the left endpoint equal to the right endpoint of Iε1 and choose the right
endpoint of Iε2 as a b-adic knot such that (E.1) is satisfied for Iε2 . Repeating this procedure
until IεN−1 we get∫

⋃N−1
i=1 Iεk

G(x) dx ≤ N − 1

N
M τ ≤

∫
⋃N−1
i=1 Iεi

G(x) dx+
N − 1

N
ε.
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Taking IεN as the remaining interval such that
⋃N
i=1 I

ε
i = [0, 1], we have∫

⋃N
i=1 I

ε
i

G(x) dx = M τ .

For the last interval we see that ∫
IεN

G(x) dx ≥ M τ

N
,

and ∫
IεN

G(x) dx = M τ −
∫
⋃N−1
k=1 Iεi

G(x) dx ≤M τ − N − 1

N

(
M τ − ε

)
≤ 1

N
M τ + ε.

Finally, we apply polynomial approximation over each Iεi . There exist polynomials Pi
of degree ≤ m̄ over each Iεi such that for fi := f |Iεi (see [19, Chapter 12, Theorem 8.1])

‖fi − Pi‖τp (Iεi ) ≤ Cτ |fi|τBατ,τ (Iεi ) ≤ C ′
∫
Iεi

G(x) dx ≤ C ′

{
1
N
M τ , i = 1, . . . , N − 1,

1
N
M τ + ε, i = N,

where ‖·‖ (Iεi ) means we take norms over Iεi only. Setting s =
∑N

i=1 Pi1Iεi and since
p/τ > 1, we obtain

‖f − s‖pp =
N∑
i=1

‖fi − Pi‖pp (Iεi ) ≤ (N − 1)CMpN−p/τ +

(
1

N
M τ + ε

)p/τ
≤ (N − 1)CMpN−p/τ + 2p/τ−1

(
(

1

N
M τ )p/τ + εp/τ

)
≤ max

{
C, 2p/τ−1

} (
MpN1−p/τ + εp/τ

)
.

Since the constant is independent of ε and ε can be chosen arbitrarily small, we obtain
(5.6). �

Proof of Lemma 5.6. Let fk := f1Ik . By the Hölder inequality

‖fk‖pp =

∫ 1

0

|fk(x)|p dx ≤
(∫ 1

0

|f(x)|pδ dx

)1/δ (∫
Ik

dx

)1/q

.

We choose

Λ := {k = 1, . . . , N : |Ik| > %(ε)} .
Then, ∑

k 6∈Λ

‖fk‖pp ≤ ‖f‖
p
pδN%(ε)1/q ≤ εp.

For s̃, we thus estimate

‖f − s̃‖pp =
∑
k∈Λ

‖fk − sk‖pp +
∑
k 6∈Λ

‖fk‖pp ≤ 2εp.

�

Proof of Lemma 5.10. Let P ∈ Pm̄ be arbitrary and set s := Ib,d,mP . From Lemma 5.1,
we obtain

‖P − s‖p ≤ C1b
−d(m+1)

∥∥P (m+1)
∥∥
p
.(E.2)

From Lemma 4.1 we can estimate the complexity of s ∈ Vb,d,m as

n := complC(s) ≤ b2 + b(d− 1)(m̄+ 1)2 + (m+ 1)2,
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or

d ≥ n− b2 + b(m̄+ 1)2 − (m+ 1)2

b(m̄+ 1)2
.

Inserting into (E.2)

‖P − s‖p ≤ C2b
− m+1

b(m̄+1)2
n ∥∥P (m+1)

∥∥
p
.

Analogously for complN

n := complN (s) ≤ d(m̄+ 1),

and

‖P − s‖p ≤ C2b
− m+1

(m̄+1)
n
∥∥P (m+1)

∥∥
p
.

�

Proof of Theorem 5.11. Set

M := sup
z∈Dρ
|f(z)|,

and m̄ ∈ N. From [19, Chapter 7, Theorem 8.1], we know

inf
P∈Pm̄

‖f − P‖∞ ≤
2M

ρ− 1
ρ−m̄.(E.3)

We aim at approximating an arbitrary polynomial of degree m̄ within Vb,m. W.l.o.g. we
can assume m̄ > m, since otherwise Pm̄ ⊂ Vb,m.

From (E.2) we know

‖P − s‖∞ ≤ C1b
−d(m+1)

∥∥P (m+1)
∥∥
∞ ,(E.4)

for a spline s = Ib,d,mP of degree m. To estimate the derivatives
∥∥P (m+1)

∥∥
∞, we further

specify P . Let P be the sum of Chebyshev polynomials from [19, Chapter 7, Theorem
8.1] used to derive (E.3). I.e., since f is assumed to be analytic, we can expand f into a
series

f(x) =
1

2
a0 +

∞∑
k=1

akCk(x),

where Ck are Chebyshev polynomials of the first kind of degree k. We set P = PCh with

PCh :=
1

2
a0 +

m̄∑
k=1

akCk,(E.5)

which is such that

(E.6) ‖f − PCh‖p ≤
2M

ρ− 1
ρ−m̄.

For the derivatives of C
(m+1)
k we get by standard estimates (see, e.g., [40])∥∥∥C(m+1)

k

∥∥∥
∞
≤ k2(k2 − 1) · · · (k2 −m2)

(2(m+ 1)− 1)!
.
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And thus, for any 1 < ρ0 < ρ,∥∥∥P (m+1)
Ch

∥∥∥
∞
≤ 1

(2(m+ 1)− 1)!

m̄∑
k=m+1

|ak|k2(k2 − 1) · · · (k2 −m2)

≤ 2M

(2(m+ 1)− 1)!

m̄∑
k=m+1

ρ−k0 k2(k2 − 1) · · · (k2 −m2).

For m̄→∞, this series converges to a constant depending on M , m and ρ.
We can now combine both estimates for the final approximation error. We first consider

the approximation error ECn(f)∞. Let n ∈ N be large enough such that

d :=
⌊
b−1n1/3 − (m+ 1)n−2/3

⌋
> 1,

m̄ := bn1/3 − 1c ≥ 1.

For this choice of d and m̄, let s ∈ Vb,d,m be the interpolant of degree m of the Chebyshev
polynomial PCh from (E.5). Then from Proposition 4.4, we obtain

complC(s) ≤ bd(m̄+ 1)2 + b(m+ 1) ≤ n,

and thus s ∈ Φn. Moreover, by (E.4) and (E.6),

ECn(f)∞ ≤ ‖f − PCh‖∞ + ‖PCh − s‖∞ ≤
2M

ρ− 1
ρ−m̄ + C ′1b

−d(m+1)
∥∥∥P (m+1)

Ch

∥∥∥
∞

≤ C ′2[min(ρ, b(m+1)/b)]−n
1/3

.

The result for ESn (f)∞ follows from ΦCn ⊂ ΦSn . Now we consider the case of ENn (f)∞. Let
n ∈ N be large enough such that d := bn1/2c > 1 and m̄ = bn1/2 − 1c ≥ 1. Then from
Proposition 4.4, we obtain

complN (s) ≤ d(m̄+ 1) ≤ n.

Moreover, by (E.4) and (E.6),

ENn (f)∞ ≤
2M

ρ− 1
ρ−m̄ + C ′1b

−d(m+1)
∥∥∥P (m+1)

Ch

∥∥∥
∞
≤ C ′2[min(ρ, b(m+1))]−n

1/2

.

�
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[22] Antonio Falcó and Wolfgang Hackbusch. On minimal subspaces in tensor representations. Founda-

tions of Computational Mathematics, 12:765–803, 2012.
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