tensap.approximation.learning package¶
Submodules¶
tensap.approximation.learning.learning module¶
Module learning.
tensap.approximation.learning.linear_model_learning module¶
Module linear_model_learning.
-
class
tensap.approximation.learning.linear_model_learning.
LinearModelLearning
(loss)¶ Bases:
tensap.approximation.learning.learning.Learning
Methods
initialize
linear_model
risk_estimation
-
initialize
()¶
-
tensap.approximation.learning.linear_model_learning_custom_loss module¶
Module linear_model_learning_custom_loss.
-
class
tensap.approximation.learning.linear_model_learning_custom_loss.
LinearModelLearningCustomLoss
(custom_loss)¶ Bases:
tensap.approximation.learning.linear_model_learning.LinearModelLearning
Class LinearModelLearningCustomLoss.
- Attributes
- optimizertensorflow.keras.optimizers.Optimizer
The optimizer used to solve the learning problem. The default is Adam.
- initial_guessnumpy.ndarray or tensorflow.Tensor
The initial guess used as a starting point of the optimization algorithm. The default is a tensor with components drawn according to a standard normal random variable.
- optionsdict
Options for the optimizer:
max_iter: the maximum number of iterations of an iterative minimization algorithm,
stagnation: the value of a stopping criterion based on the relative stagnation between two iterates
Methods
solve
()Solution of the minimization problem.
initialize
linear_model
risk_estimation
-
solve
()¶ Solution of the minimization problem.
- Returns
- solnumpy.ndarray or tensap.FunctionalBasisArray
The solution of the minimization problem.
- outputdict
Outputs of the algorithm.
tensap.approximation.learning.linear_model_learning_density_l2 module¶
Module linear_model_learning_density_l2.
-
class
tensap.approximation.learning.linear_model_learning_density_l2.
LinearModelLearningDensityL2
¶ Bases:
tensap.approximation.learning.linear_model_learning.LinearModelLearning
Class LinearModelLearningDensityL2.
- Attributes
- is_basis_orthonormalbool, optional
Boolean indicating if the basis used to compute the approximation is orthonormal according to some reference measure. The default is True.
Methods
solve
()Solution (Ordinary or Regularized) of the minimization problem and cross-validation procedure.
initialize
linear_model
risk_estimation
-
solve
()¶ Solution (Ordinary or Regularized) of the minimization problem and cross-validation procedure.
- Returns
- solnumpy.ndarray or tensap.FunctionalBasisArray
The solution of the minimization problem.
- outputdict
Outputs of the algorithm.
tensap.approximation.learning.linear_model_learning_square_loss module¶
Module linear_model_learning_square_loss.
-
class
tensap.approximation.learning.linear_model_learning_square_loss.
LinearModelLearningSquareLoss
(weights=None)¶ Bases:
tensap.approximation.learning.linear_model_learning.LinearModelLearning
Class LinearModelLearningSquareLoss.
- Attributes
- weightslist or numpy.ndarray, optional
The arrays for the weighted least-squares minimization. The default is None.
- linear_solverstr
The selected solver: ‘solve’ to directly solve the normal equation using numpy.solve, ‘qr’ to perform a QR decomposition, and solve the resulting system using numpy.solve. The default is ‘qr’.
- shared_coefficientsbool
When approximating a vector-valued function, indicates if the coefficients of the approximation are common to all the outputs. The default is True.
Methods
solve
()Solution (Ordinary or Regularized) of the Least-Squares problem and cross-validation procedure.
initialize
linear_model
risk_estimation
-
solve
()¶ Solution (Ordinary or Regularized) of the Least-Squares problem and cross-validation procedure.
- Returns
- solnumpy.ndarray or tensap.FunctionalBasisArray
The solution of the minimization problem.
- outputdict
Outputs of the algorithm.
tensap.approximation.learning.loss_functions module¶
Module loss_functions.
-
class
tensap.approximation.learning.loss_functions.
CustomLossFunction
(loss_function)¶ Bases:
tensap.approximation.learning.loss_functions.LossFunction
Class CustomLossFunction.
- Attributes
- loss_functiontensorflow.function
The custom loss function, defined using tensorflow operations.
- error_functionfunction, optional
The function used to compute the test error. The default is None, indicating to use the risk function.
- relative_error_functionfunction, optional
The function used to compute the relative test error. The default is None, indicating to use the risk function.
- error_typestring, optional
The error type. The default is ‘relative’. Can also be ‘absolute’.
Methods
eval
(fun, sample, *args[, nargout])Evaluate the loss function using the function fun and the provided sample.
relative_test_error
(fun, sample, *args)Compute the relative test error associated with the function fun and the loss function using the provided sample.
risk_estimation
(fun, sample, *args[, nargout])Compute an estimation of the risk associated with the function fun and the loss function using the provided sample.
test_error
(fun, sample, *args)Compute the test error associated with the function fun and the loss function using the provided sample.
-
eval
(fun, sample, *args, nargout=1)¶ Evaluate the loss function using the function fun and the provided sample.
- Parameters
- funfunction
The function used to evaluate the loss function
- samplelist
The sample used to evaluate the loss function
- *argstuple
Additional parameters used by a specific loss function.
- nargoutint, optional
Specifies the number of output variables. The default is 1, returning only the evaluations of the loss. Set to 2 to also return the so-called reference evaluations of the loss.
- Returns
- None.
-
relative_test_error
(fun, sample, *args)¶ Compute the relative test error associated with the function fun and the loss function using the provided sample.
- Parameters
- funfunction
The function to which the error is associated.
- samplelist
The sample used to estimate the risk.
- *argstuple
Additional parameters used by a specific loss function.
- Returns
- np.float
The relative test error.
-
risk_estimation
(fun, sample, *args, nargout=1)¶ Compute an estimation of the risk associated with the function fun and the loss function using the provided sample.
- Parameters
- funfunction
The function to which the risk is associated.
- samplelist
The sample used to estimate the risk.
- *argstuple
Additional parameters used by a specific loss function.
- nargoutint, optional
Specifies the number of output variables. The default is 1, returning only the risk. Set to 2 to also return the so-called estimated reference risk.
- Returns
- np.float
The estimated risk.
- np.float
The estimated reference risk.
-
test_error
(fun, sample, *args)¶ Compute the test error associated with the function fun and the loss function using the provided sample.
- Parameters
- funfunction
The function to which the error is associated.
- samplelist
The sample used to estimate the risk.
- *argstuple
Additional parameters used by a specific loss function.
- Returns
- np.float
The relative test error.
-
class
tensap.approximation.learning.loss_functions.
DensityL2LossFunction
¶ Bases:
tensap.approximation.learning.loss_functions.LossFunction
Class DensityL2LossFunction.
- Attributes
- error_typestring, optional
The error type. The default is ‘relative’.
Methods
eval
(fun, sample, *args[, nargout])Evaluate the loss function using the function fun and the provided sample.
relative_test_error
(fun, sample, *args)Compute the relative test error associated with the function fun and the loss function using the provided sample.
risk_estimation
(fun, sample, *args[, nargout])Compute an estimation of the risk associated with the function fun and the loss function using the provided sample.
test_error
(fun, sample, *args)Compute the test error associated with the function fun and the loss function using the provided sample.
-
eval
(fun, sample, *args, nargout=1)¶ Evaluate the loss function using the function fun and the provided sample.
- Parameters
- funfunction
The function used to evaluate the loss function
- samplelist
The sample used to evaluate the loss function
- *argstuple
Additional parameters used by a specific loss function.
- nargoutint, optional
Specifies the number of output variables. The default is 1, returning only the evaluations of the loss. Set to 2 to also return the so-called reference evaluations of the loss.
- Returns
- None.
-
relative_test_error
(fun, sample, *args)¶ Compute the relative test error associated with the function fun and the loss function using the provided sample.
- Parameters
- funfunction
The function to which the error is associated.
- samplelist
The sample used to estimate the risk.
- *argstuple
Additional parameters used by a specific loss function.
- Returns
- np.float
The relative test error.
-
test_error
(fun, sample, *args)¶ Compute the test error associated with the function fun and the loss function using the provided sample.
- Parameters
- funfunction
The function to which the error is associated.
- samplelist
The sample used to estimate the risk.
- *argstuple
Additional parameters used by a specific loss function.
- Returns
- np.float
The relative test error.
-
class
tensap.approximation.learning.loss_functions.
LossFunction
¶ Bases:
abc.ABC
Class LossFunction.
Methods
eval
(fun, sample, *args, nargout)Evaluate the loss function using the function fun and the provided sample.
relative_test_error
(fun, sample, *args)Compute the relative test error associated with the function fun and the loss function using the provided sample.
risk_estimation
(fun, sample, *args[, nargout])Compute an estimation of the risk associated with the function fun and the loss function using the provided sample.
test_error
(fun, sample, *args)Compute the test error associated with the function fun and the loss function using the provided sample.
-
abstract
eval
(fun, sample, *args, nargout)¶ Evaluate the loss function using the function fun and the provided sample.
- Parameters
- funfunction
The function used to evaluate the loss function
- samplelist
The sample used to evaluate the loss function
- *argstuple
Additional parameters used by a specific loss function.
- nargoutint, optional
Specifies the number of output variables. The default is 1, returning only the evaluations of the loss. Set to 2 to also return the so-called reference evaluations of the loss.
- Returns
- None.
-
abstract
relative_test_error
(fun, sample, *args)¶ Compute the relative test error associated with the function fun and the loss function using the provided sample.
- Parameters
- funfunction
The function to which the error is associated.
- samplelist
The sample used to estimate the risk.
- *argstuple
Additional parameters used by a specific loss function.
- Returns
- np.float
The relative test error.
-
risk_estimation
(fun, sample, *args, nargout=1)¶ Compute an estimation of the risk associated with the function fun and the loss function using the provided sample.
- Parameters
- funfunction
The function to which the risk is associated.
- samplelist
The sample used to estimate the risk.
- *argstuple
Additional parameters used by a specific loss function.
- nargoutint, optional
Specifies the number of output variables. The default is 1, returning only the risk. Set to 2 to also return the so-called estimated reference risk.
- Returns
- np.float
The estimated risk.
- np.float
The estimated reference risk.
-
abstract
test_error
(fun, sample, *args)¶ Compute the test error associated with the function fun and the loss function using the provided sample.
- Parameters
- funfunction
The function to which the error is associated.
- samplelist
The sample used to estimate the risk.
- *argstuple
Additional parameters used by a specific loss function.
- Returns
- np.float
The relative test error.
-
abstract
-
class
tensap.approximation.learning.loss_functions.
SquareLossFunction
¶ Bases:
tensap.approximation.learning.loss_functions.LossFunction
Class SquareLossFunction.
- Attributes
- error_typestring, optional
The error type. The default is ‘relative’. Can also be ‘absolute’.
Methods
eval
(fun, sample, *args[, nargout])Evaluate the loss function using the function fun and the provided sample.
relative_test_error
(fun, sample, *args)Compute the relative test error associated with the function fun and the loss function using the provided sample.
risk_estimation
(fun, sample, *args[, nargout])Compute an estimation of the risk associated with the function fun and the loss function using the provided sample.
test_error
(fun, sample, *args)Compute the test error associated with the function fun and the loss function using the provided sample.
-
eval
(fun, sample, *args, nargout=1)¶ Evaluate the loss function using the function fun and the provided sample.
- Parameters
- funfunction
The function used to evaluate the loss function
- samplelist
The sample used to evaluate the loss function
- *argstuple
Additional parameters used by a specific loss function.
- nargoutint, optional
Specifies the number of output variables. The default is 1, returning only the evaluations of the loss. Set to 2 to also return the so-called reference evaluations of the loss.
- Returns
- None.
-
relative_test_error
(fun, sample, *args)¶ Compute the relative test error associated with the function fun and the loss function using the provided sample.
- Parameters
- funfunction
The function to which the error is associated.
- samplelist
The sample used to estimate the risk.
- *argstuple
Additional parameters used by a specific loss function.
- Returns
- np.float
The relative test error.
-
test_error
(fun, sample, *args)¶ Compute the test error associated with the function fun and the loss function using the provided sample.
- Parameters
- funfunction
The function to which the error is associated.
- samplelist
The sample used to estimate the risk.
- *argstuple
Additional parameters used by a specific loss function.
- Returns
- np.float
The relative test error.