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High-dimensional problems

Many problems of computational science, probability and statistics require the
approximation, integration or optimization of functions of many variables

u(x1, . . . , xd)
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High-dimensional problems in mechanics and physics

Navier Stokes equation
u(x , t)

∂u

∂t
+ u · ∇u − ν∆u = f

Multiscale problems
u(x , y , t), x ∈ Ω, y ∈ Y

Ω

Y
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High-dimensional problems in mechanics and physics

Boltzmann equation
f (x , p, t)

∂f

∂t
+ m−1p · ∂f

∂x
+ F · ∂f

∂p
= g

Fokker-Planck equation
p(x1, . . . , xd , t)

∂p

∂t
+

d∑
i=1

∂

∂xi
(aip)− 1

2

d∑
i,j=1

∂2

∂xixj
(bijp) = 0

Schrödinger equation
Ψ(x1, . . . , xd , t)

i~∂Ψ

∂t
= − ~

2µ
∆Ψ + VΨ
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High-dimensional problems in statistics and data science

Unsupervised learning. Estimation of the probability distribution

F (x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd),

of a random vector X = (X1, . . . ,Xd), from samples of X or some function of X .

Supervised learning. Approximation of a random variable Y by a function of a set of
random variables X = (X1, . . . ,Xd), using samples of (X ,Y ). The approximation is
used as a predictive model.

These are two typical tasks in uncertainty quantification, where Y is some output
variable of a (numerical or experimental) model depending on a set of random
parameters X .
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Approximation

The goal is to approximate a function

u(x1, . . . , xd)

by an element of a subset of functions Xn described by n parameters.

Xn is called an approximation tool, model class or hypothesis set.

Standard approximation tools include splines, wavelets, polynomials, with or without
adaptivity.

We distinguish linear approximation, where Xn are linear spaces, from nonlinear
approximation, where Xn are nonlinear spaces.
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Approximation

For a function u from a normed space, the best approximation error

en(u) = inf
v∈Xn

‖u − v‖,

quantifies what we can expect from Xn.

Fundamental problems are to

determine the complexity n = n(ε, u) required for obtaining an error

en(u) ≤ ε,

provide algorithms that practically compute approximations achieving this precision
with almost optimal complexity, using available information on the function (model
equations, samples,...)
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The curse of dimensionality

For a function u from classical regularity classes (Sobolev or Besov spaces), it is known
that

n(ε, u) . ε−d/k

for standard approximation tools (splines, wavelets).

We observe that n(ε, u) grows exponentially with the dimension d , which is the
curse of dimensionality.

A better performance may be observed for particular functions and particular
approximation tools.

But a priori, we can not expect a better performance from any (reasonable)
approximation tool without further assumptions on the function.
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How to beat the curse of dimensionality ?

We have to

make assumptions on the structure of the function, going ahead standard regularity
assumptions,

propose approximation tools (model classes) that capture these structures.
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Some standard model classes

Linear models
a1x1 + . . .+ adxd

Polynomial models ∑
α∈Λ

aαx
α1
1 . . . xαd

d

or more general sparse tensors∑
α∈Λ

aαϕ
1
α1(x1)...ϕd

αd
(xd)

where Λ ⊂ Nd is a set of multi-indices, either fixed (linear approximation) or free
(nonlinear approximation).

Curse of dimensionality can be circumvented for functions with sufficient anisotropy
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Some standard model classes

Additive models
u1(x1) + . . .+ ud(xd)

or more generally ∑
α⊂T

uα(xα)

where T ⊂ 2{1,...,d} is either fixed (linear approximation) or a free parameter
(nonlinear approximation).

Multiplicative models
u1(x1) . . . ud(xd)

or more generally ∏
α∈T

uα(xα)

where T ⊂ 2{1,...,d} is either a fixed or a free parameter. An instance of graphical
models.
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Composition of functions

f (g(x))

using standard model classes for both f and g .

Linear transformations (ridge functions)

f (Wx), W ∈ Rm×d

• With an additive model for f , projection pursuit

f1(wT
1 x) + . . .+ fm(wT

m x)

• A more specific case is the sum of m perceptrons (shallow neural network with
one hidden layer of width m)

m∑
i=1

aiσ(wT
i x + bi )

Sparse transformations, e.g.

f (g1,2(x1, x2), g3,4(x3, x4), ...)

14 / 41



More compositions... deep neural networks

f ◦ gL ◦ gL−1 ◦ . . . ◦ g2 ◦ g1(x)

Convolutional networks, sparse transformations with sparsity induced by a balanced
tree

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Reccurent networks, sparse transformations with sparsity induced by a linear tree

f1,2,3,4 (f1,2,3 (f1,2 (f1(x1), f2(x2)) , f3(x3)) , f4(x4))

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}
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More compositions... deep neural networks

These are highly nonlinear approximation tools, with a high approximation power.

They are known to achieve the optimal performance for standard regularity classes, but
we can not expect better than classical tools without further assumptions on the function.

Even if the expected error en(u) is small for a certain function u,

there is no known certified algorithm for constructing an approximation achieving
this error,

and a best approximation (when it exists) may be highly unstable.
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Low-rank formats

Functions with rank one (multiplicative model)

v(x) = u1(x1) . . . ud(xd)

Functions with canonical rank less than r (canonical format)

v(x) =
r∑

i=1

ui
1(x1) . . . ui

d(xd)
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Low rank formats

For a subset of variables α ⊂ {1, . . . , d} := D, v(x) can be identified with a
bivariate function

v(xα, xαc ),

where xα and xαc are complementary groups of variables.

The canonical rank of this bivariate function is called the α-rank of v , denoted
rankα(v), which is the minimal integer rα such that

v(x) =

rα∑
k=1

vαk (xα)wαc

k (xαc )
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Tree based tensor formats

For T ⊂ 2D a collection of subsets of D, a tensor format is defined by

T T
r = {v : rankα(v) ≤ rα, α ∈ T} .

In the particular case where T is a dimension partition tree, T T
r is a tree-based

tensor format.

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

Tucker

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Tensor Train

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Hierarchical Tucker
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Tree-based tensor formats as deep tensor networks

A tensor v in T T
r admits a multilinear parametrization

v(x) =
∑

1≤kα≤rα
α∈T

∏
γ∈T\L(T )

Cγkγ ,(kβ )β∈S(γ)

∏
γ∈L(T )

ϕγkγ (xγ)

with parameters Cγ and ϕγ forming a tree network of low order tensors.

CD

C{1,2,3}

ϕ{1}
C{2,3}

ϕ{2} ϕ{3}

C{4,5}

ϕ{4} ϕ{5}

Storage complexity scales as O(dR s+1 + dNR) where R is the maximal α-rank, s is
the arity of the tree, and N is the storage complexity of a function ϕγkγ .
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Tree-based tensor formats as compositions of multilinear functions

For each node α with children {β1, . . . , βs}, the tensor Cα in Rrβ1×...×rβs×rα can be
identified with a multilinear map from Rrβ1 × . . .× Rrβs to Rrα . Then tree-based format
can be written as a composition of multilinear functions.

For example,
CD

C{1,2,3}

ϕ{1}
C{2,3}

ϕ{2} ϕ{3}

C{4,5}

ϕ{4} ϕ{5}

v(x) = CD
(
C{1,2,3}

(
ϕ{1}(x1),C{2,3}

(
ϕ{2}(x2), ϕ{3}(x3)

))
,C{4,5}

(
ϕ{4}(x4), ϕ{5}(x5)

))
The format corresponds to a deep neural network with a sparse architecture given by the
tree and multilinear functions.
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Computing with tree-based tensor formats

Many favorable properties from a computational point of view.

Complexity is linear in d and polynomial in the rank for storage, evaluation,
differentiation, integration...

Not so nonlinear approximation tool

Topological properties ensure the well-posedness of optimization problems and
existence of stable algorithms

Geometrical properties can be exploited for optimization and dynamical
approximation.

Notion of higher-order singular value decomposition

u(x) =
∑
k≥1

σαk vk(xα)wk(xαc )

and a way to obtain approximations ur in T T
r such that

‖u − ur‖ ≤
√
2d inf

v∈T T
r

‖u − v‖.
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Approximation properties of tree-based tensor formats

For standard regularity classes (e.g. Sobolev spaces), they perform almost as well as
standard approximation tools (splines, wavelets)...

but they can perform much better for non standard classes of functions, e.g.
compositions of smooth functions

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

A function in canonical format (shallow tensor network)

u(x) =
r∑

k=1

u1
k (x1) . . . ud

k (xd)

can be represented in tree-based format with a similar complexity.

Conversely, a typical function in tree-based format T T
r has a canonical rank

depending exponentially in the dimension d .

Deep is better !
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Approximation properties of tree-based tensor formats

As an example, consider the probability distribution f (x) = P(X = x) of a Markov chain
X = (X1, . . . ,Xd) given by

f (x) = f1(x1)f2|1(x2|x1) . . . fd|d−1(xd |xd−1)

where bivariate functions fi|i−1 have a rank bounded by r .

With the linear tree T containing interior nodes {1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1},
f admits a representation in tree-based format with storage complexity in r4.

The canonical rank of f is exponential in d .

But when considering the linear tree Tσ obtained by applying permutation
σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) to the tree T , the storage complexity in tree-based
format is also exponential in d .
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Approximation properties of tree-based tensor formats

Choosing a good tree (architecture of network) is a crucial but combinatorial issue...

{2} {3}

{7}

{5} {4}

{8}

{1} {6} {2} {7}

{4}

{8} {1} {5} {3}

{6}

{1} {4}{2} {8}

{3} {7} {6}

{5}

{3} {2}{4}

{7}{5}

{8}{6} {1}
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Supervised and unsupervised learning

Two typical tasks of learning are to

estimate the probability distribution of a random vector Z = (Z1, . . . ,Zd) from
samples of the distribution (unsupervised learning)

approximate a random variable Y by a function of a set of variables
X = (X1, . . . ,Xd), from samples of the pair Z = (X ,Y ) (supervised learning)
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Risk

A classical approach is to introduce a constrast (or loss) function γ(v , z) and associated
risk (expected loss)

R(v) = E(γ(v ,Z))

whose minimizer over the set of functions v is the target function u (or oracle) and such
that

R(v)−R(u)

measures some distance between the target u and the function v .

For least-squares regression in supervised learning, R(v) = E((Y − v(X ))2, and
R(v)−R(u) = E((u(X )− v(X ))2).

For unsupervised learning with L2-loss, R(v) = E(‖v‖2 − 2v(Z)) and R(v)−R(u)
is the L2 distance between v and the probability density of Z .
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Empirical risk minimization

Given i.i.d. samples {zi}Ni=1 of Z , an approximation ûN
F of u is obtained by minimization

of the empirical risk

R̂n(v) =
1
N

N∑
i=1

γ(v , zi )

over a certain model class F .

Denoting by uF the minimizer of the risk over F , the error

R(ûN
F )−R(u) = R(ûN

F )−R(uF )︸ ︷︷ ︸
estimation error

+ R(uF )−R(u)︸ ︷︷ ︸
approximation error

For a given sample, when taking larger and larger model classes, approximation error
↘ while estimation error ↗.

Adaptive methods should be proposed for the selection of a model class taking the
best from the available information.
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Learning with tree tensor networks

v(x) =
∑

1≤kα≤rα
α∈T

∏
γ∈T\L(T )

Cγkγ ,(kβ )β∈S(γ)

∏
γ∈L(T )

ϕγkγ (xγ)

CD

C{1,2,3}

ϕ{1}
C{2,3}

ϕ{2} ϕ{3}

C{4,5}

ϕ{4} ϕ{5}

Simple alternating algorithm for the optimization in a given tree-based format T T
r

which exploits the multilinearity of the parametrization.
At each step, optimization over one parameter (learning problem with a linear
model).

Efficient strategy for rank adaptation based on higher order singular value
decomposition.

Tree adaptation using a stochastic algorithm, able to explore the set of possible trees
and recover hidden structures of functions.
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Example: supervised learning of a composition of functions

Consider a tree-structured composition of functions

u(X ) = h(h(h(X1,X2), h(X3,X4)), h(h(X5,X6), h(X7,X8))),

where h(t, s) = 9−1(2 + ts)2 is a bivariate function and where the d = 8 random
variables X1, . . . ,X8 are independent and uniform on [−1, 1].

h

h

h

X1 X2

h

X3 X4

h

h

X5 X6

h

X7 X8

We use approximation spaces such that u could (in principle) be recovered exactly for
any choice of tree with a sufficiently high rank.
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Example: supervised learning of a composition of functions

We consider two trees T 1 (coinciding with the structure of u) and T 2.

{1} {2} {3} {4} {5} {6} {7} {8}

(a) Tree T1

{8}
{7}
{6}
{5}
{4}
{3}
{2} {1}

(b) Tree T2

We start the learning algorithm from the tree and the associated families of trees
T 2
σ = {σ(α) : α ∈ T 2} obtained by applying a random permutation σ to T 2.
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Behavior of the algorithm with n = 105

Iteration rank r εtest(v) C(T , r)

1 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 3.38 10−2 79

2 (1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1) 2.95 10−2 100
3 (1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1) 2.95 10−2 100

4 (1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1) 2.45 10−2 121
5 (1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1) 2.45 10−2 121

6 (1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1) 1.85 10−2 142
7 (1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1) 1.85 10−2 142
8 (1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2) 8.97 10−3 163

9 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 9.54 10−3 188
10 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 8.89 10−3 188

11 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 9.47 10−3 188
12 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 8.87 10−3 188

13 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 5.22 10−3 188
14 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 3.97 10−3 188
15 (1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3) 1.55 10−4 308

16 (1, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3) 1.18 10−4 364
17 (1, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3) 1.18 10−4 364
18 (1, 3, 4, 3, 4, 2, 4, 3, 4, 2, 4, 3, 4, 4, 4) 6.65 10−6 520
19 (1, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 5, 5) 1.19 10−6 723
20 (1, 4, 5, 4, 5, 3, 5, 4, 5, 3, 5, 4, 5, 5, 5) 1.72 10−7 865
21 (1, 4, 6, 4, 6, 3, 6, 4, 6, 3, 6, 4, 6, 6, 6) 1.47 10−8 1113
22 (1, 5, 6, 5, 6, 3, 6, 5, 6, 3, 6, 5, 6, 6, 6) 7.02 10−9 1311
23 (1, 5, 7, 5, 7, 3, 7, 5, 7, 3, 7, 5, 7, 7, 7) 1.27 10−10 1643
24 (1, 5, 8, 5, 8, 3, 8, 5, 8, 3, 8, 5, 8, 8, 8) 3.87 10−12 2015
25 (1, 5, 9, 5, 9, 3, 9, 5, 9, 3, 9, 5, 9, 9, 9) 2.95 10−14 2427
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The leaves {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8} are labelled 9, 5, 3, 13, 11, 14, 7, 15
respectively.
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Example: learning a graphical model

Consider a truncated normal distribution with density

f (x)dµ(x) ∼ exp
(
−1
2
xTΣ−1x

)
1x∈X ,

and a matrix Σ such that (X1,X3,X4,X6) ⊥⊥ (X2,X5) and , X4 ⊥⊥ (X3,X6).

Then f is represented by the following graphical model:

f (x) = f4,1(x4, x1)f1,3,6(x1, x3, x6)f2,5(x2, x5)

.
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Example: learning a graphical model

n Risk × 10−2 L2-error T C(T , r)

102 [−5.50, 119] [0.53, 4.06] Fig. (a) [311, 311]
103 [−7.29,−5.93] [0.22, 0.47] Fig. (b) [311, 637]
104 [−7.60,−6.85] [0.11, 0.33] Fig. (c) [521, 911]
105 [−7.68,−7.66] [0.04, 0.07] Fig. (c) [911, 1213]
106 [−7.70,−7.69] [0.01, 0.01] Fig. (c) [1283, 1546]

Table: Ranges over 10 trials

{1, 2, 3, 4, 5, 6}
{2, 3, 4, 5, 6}

{2, 4, 5, 6}
{2, 4, 5}

{4, 5}

{4} {5}
{2}

{6}
{3}

{1}

Figure: (a) Best tree over 10 trials for n = 102

{1, 2, 3, 4, 5, 6}

{1, 3, 4, 6}
{3, 4, 6}
{3, 6}

{6} {3}
{4}
{1}

{2, 5}

{2} {5}

Figure: (b) Best tree over 10 trials for n = 103

{1, 2, 3, 4, 5, 6}

{1, 3, 4, 6}
{1, 4}

{1} {4}

{3, 6}

{3} {6}

{2, 5}

{2} {5}

Figure: (c) Best tree over 10 trials for n = 104, 105, 106
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Example: Pressure in a rocket booster

Modelling of the stochastic process p(t, ω).

Truncated Karhunen-Loeve expansion

p(t, ω) ≈ m(t) +
d∑

i=1

σiXi (ω)ϕi (t)

Objective: estimate the density f (x) of X = (X1, . . . ,Xd)
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Example: Pressure in a rocket booster

L2-loss density estimation using polynomial or polynomial multiwavelets approximation
spaces.

Approximation spaces Rtest(v) C(T , r) maxα rα

Polynomials −5.11 103 8251 26
Polynomial multiwavelets −9.74 103 9214 21

Table: Tree-based tensor format

Approximation spaces Rtest(v) C(T , r)

Polynomials −1.35 103 131
Polynomial multiwavelets −1.64 103 197

Table: Rank-one approximation, independence hypothesis.
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Example: Pressure in a rocket booster

Figure: Samples from the true distribution (top), and the one estimated with independence
hypothesis (bottom left) or using tree-based format (bottom right)
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