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Algebraic tensors

Given d index sets Iν = {1, . . . ,Nν}, 1 ≤ ν ≤ d , we introduce the multi-index set

I = I1 × . . .× Id .

An element v of the vector space RI is a tensor of order d and is identified with a
multidimensional array

(vi )i∈I = (vi1,...,id )i1∈I1,...,id∈Id

which represents the coefficients of v on the canonical basis of RI , also denoted

v(i) = v(i1, . . . , id).

d = 1 d = 2 d = 3
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Algebraic tensors

Given d vectors v (ν) ∈ RIν , 1 ≤ ν ≤ d , the tensor product of these vectors

v := v (1) ⊗ . . .⊗ v (d)

is defined by
v(i) = v (1)(i1) . . . v (d)(id)

and is called an elementary tensor.

d = 2

⊗ ≡

Using matrix notations, v ⊗ w is
identified with the matrix vwT .

d = 3

⊗ ⊗ ≡
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Algebraic tensors

The tensor space RI = RI1×...×Id , also denoted RI1 ⊗ . . .⊗ RId , is defined by

RI = RI1 ⊗ . . .⊗ RId = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ RIν , 1 ≤ ν ≤ d}

The canonical norm on RI , also called the Frobenius norm, is given by

‖v‖ =

√∑
i∈I

v(i)2

and makes RI a Hilbert space. It coincides with the natural norm on `2(I ). It is the only
norm associated with an inner product and having the property

‖v (1) ⊗ . . .⊗ v (d)‖ = ‖v (1)‖2 . . . ‖v (d)‖2.
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Tensor product of functions

Let Xν ⊂ R, 1 ≤ ν ≤ d , and Vν ⊂ RXν be a space of functions defined on Xν .

The tensor product of functions v (ν) ∈ Vν , denoted

v = v (1) ⊗ . . .⊗ v (d),

is a multivariate function defined on X = X1 × . . .×Xd and such that

v(x) = v(x1, . . . , xd) = v (1)(x1) . . . v (d)(xd)

for x = (x1, . . . , xd) ∈ X . For example, for i ∈ Nd
0 , the monomial x i = x i1

1 . . . x
id
d is an

elementary tensor.
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Tensor product of functions

The algebraic tensor product of spaces Vν is defined as

V1 ⊗ . . .⊗ Vd = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ Vν , 1 ≤ ν ≤ d}

which is the space of multivariate functions v which can be written as a finite linear
combination of elementary (separated functions), i.e.

v(x) =
n∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd).

Up to a formal definition of the tensor product ⊗, the above construction can be
extended to arbitrary vector spaces Vν (not only spaces of functions).
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Infinite dimensional tensor spaces

For infinite dimensional spaces Vν , a Hilbert (or Banach) tensor space equipped with a
norm ‖ · ‖ is obtained by the completion (w.r.t. ‖ · ‖) of the algebraic tensor space

V
‖·‖

= V1 ⊗ . . .⊗ Vd
‖·‖
.

If the Vν are Hilbert spaces with inner products (·, ·)ν and associated norms ‖ · ‖ν , a
canonical inner product on V can be first defined for elementary tensors

(v (1) ⊗ . . .⊗ v (d),w (1) ⊗ . . .⊗ w (d)) = (v (1),w (1)) . . . (v (d),w (d))

and then extended by linearity to the whole space V .

The associated norm ‖ · ‖ is called the canonical norm.
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Infinite dimensional tensor spaces

Example (Lp spaces)

Let 1 ≤ p <∞. If Vν = Lp
µν (Xν), then

Lp
µ1(X1)⊗ . . .⊗ Lp

µd
(Xd) ⊂ Lp

µ(X1 × . . .×Xd)

with µ = µ1 ⊗ . . .⊗ µd , and

Lp
µ1(X1)⊗ . . .⊗ Lp

µd (Xd)
‖·‖

= Lp
µ(X1 × . . .×Xd)

where ‖ · ‖ is the natural norm on Lp
µ(X1 × . . .×Xd).

Example (Bochner spaces)

Let X be equipped with a finite measure µ, and let W be a Hilbert (or Banach) space.
For 1 ≤ p <∞, the Bochner space Lp

µ(X ;W ) is the set of Bochner-measurable functions
u : X →W with bounded norm ‖u‖p = (

∫
X ‖u(x)‖pWµ(dx))1/p, and

Lp
µ(X ;W ) = W ⊗ Lp

µ(X )
‖·‖p

.
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Infinite dimensional tensor spaces

Example (Sobolev spaces)

The Sobolev space Hk(X ) of functions defined on X = X1 × . . .×Xd , equipped with the
norm

‖u‖2Hk =
∑
|α|1≤k

‖Dαu‖2L2 ,

is a Hilbert tensor space

Hk(X ) = Hk(X1)⊗ . . .⊗ Hk(Xd)
‖·‖

Hk
.

The Sobolev space Hk
mix(X ) equipped with the norm

‖u‖2Hk
mix

=
∑
|α|∞≤k

‖Dαu‖2L2 ,

is a different tensor Hilbert space

Hk
mix(X ) = Hk(X1)⊗ . . .⊗ Hk(Xd)

‖·‖
Hk
mix .

‖u‖2
Hk
mix

is the canonical tensor norm on Hk(X1)⊗ . . .⊗ Hk(Xd).
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Tensor product basis

If {ψ(ν)
i }i∈Iν is a basis of Vν , then a basis of V = V1 ⊗ . . .⊗ Vd is given by{

ψi = ψ
(1)
i1
⊗ . . .⊗ ψ(d)

id
: i ∈ I = I1 × . . .× Id

}
.

A tensor v ∈ V admits a decomposition

v =
∑
i∈I

aiψi =
∑
i1∈I1

. . .
∑
id∈Id

ai1,...,idψ
(1)
i1
⊗ . . .⊗ ψ(d)

id
,

and v can be identified with the set of its coefficients

a ∈ RI .
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Hilbert tensor spaces

If the {ψ(ν)
i }i∈Iν are orthonormal bases of spaces Vν , then {ψi}i∈I is an orthonormal

basis of V
‖·‖

. A tensor
v =

∑
i∈I

aiψi

is such that
‖v‖2 =

∑
i∈I

a2
i := ‖a‖2.

Therefore, the map
Ψ : a 7→

∑
i∈I

aiψi

defines a linear isometry from RI to V for finite dimensional spaces, and between `2(I )

and V
‖·‖

for infinite dimensional spaces.
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Curse of dimensionality

A tensor a ∈ RI = RI1×...×Id or a corresponding tensor v =
∑

i∈I aiψi , when #Iν = O(n)
for each ν, has a storage complexity

#I = #I1 . . .#Id = O(nd)

which grows exponentially with the dimension.

Manipulating tensors requires exploiting special properties of tensors such as sparsity or
low rankness.
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Rank of order-two tensors

The rank of an order-two tensor u ∈ V ⊗W , denoted rank(u), is the minimal integer r
such that

u =
r∑

k=1

vk ⊗ wk

for some vk ∈ V and wk ∈W .

A tensor u ∈ Rn ⊗Rm is identified with a matrix u ∈ Rn×m. The rank of u coincides with
the matrix rank, which is the minimal integer r such that

u =
r∑

k=1

vkw
T
k = VW T ,

where V = (v1, . . . , vr ) ∈ Rn×r and W = (w1, . . . ,wr ) ∈ Rm×r .

= + + =
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Singular value decomposition of order-two tensors

When V and W are Hilbert spaces (possibly infinite-dimensional), an algebraic tensor
u ∈ V ⊗W admits a singular value decomposition

u =
∑
k≥1

σkvk ⊗ wk ,

where vk and wk are orthonormal vectors (singular vectors) and σk ∈ R+ are the singular
values.

The rank of u is finite and coincides with the number of non-zero singular values,

rank(u) = #{k : σk 6= 0}.

Example (Singular value decomposition of matrices)

For V = Rn and W = Rm, u is identified with a matrix in Rn×m and

u =

rank(u)∑
k=1

σkvkw
T
k = VSWT .

with orthogonal matrices V and W, and a diagonal matrix S.
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Singular value decomposition of order-two tensors

An algebraic tensor u ∈ V ⊗W can be identified with a linear operator from W to V
with rank equal to rank(u).

For infinite dimensional Hilbert spaces, the closure V ⊗W
‖·‖∨ of V ⊗W with respect to

the injective norm (corresponding to the operator norm) coincides with the space of
compact operators.

A tensor u ∈ V ⊗W
‖·‖∨ still admits a singular value decomposition

u =
∑
k≥1

σkvk ⊗ wk .

and the rank (number of non-zero singular values) is possibly infinite.
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Singular value decomposition of order-two tensors

Example (Proper Orthogonal Decomposition)

For Ω× I a space-time domain and V a Hilbert space of functions defined on Ω, a
function u ∈ L2(I ;V ) admits a singular value decomposition

u(t) =
∞∑
k=1

σkvkwk(t)

which is known as the Proper Orthogonal Decomposition (POD).

Example (Karhunen-Loeve decomposition)

For a probability space (Ω, µ), an element u ∈ L2
µ(Ω;V ) is a second-order V -valued

random variable. If u is zero-mean, the singular value decomposition of u is known as the
Karhunen-Loeve decomposition

u(ω) =
∞∑
k=1

σkvkwk(ω)

where wk : Ω→ R are uncorrelated (orthogonal) random variables.
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Low-rank format for order-two tensors

The set of tensors in V ⊗W with rank bounded by r , denoted

Rr = {v : rank(v) ≤ r},

is not a linear space nor a convex set. However, it has many favorable properties for a
numerical use.

The application v 7→ rank(v) is lower semi-continuous, and therefore the set Rr is
closed, which makes best approximation problems in Rr well posed.

Rr is the union of smooth manifolds of tensors with fixed rank.
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Canonical rank of higher-order tensors

For tensors u ∈ V1 ⊗ . . .⊗ Vd with d ≥ 3, there are different notions of rank.

The canonical rank, which is the natural extension of the notion of rank for order-two
tensors, is the minimal integer r such that

u(x1, . . . , xd) =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd),

for some vectors v (ν)
k ∈ Vν .
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Canonical format

The subset of tensors in V = V1 ⊗ . . .⊗ Vd with canonical rank bounded by r is denoted

Rr = {v ∈ V : rank(v) ≤ r}.

A tensor in Rr has a representation

v(x1, . . . , xd) =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd)

The storage complexity of tensors in Rr is

storage(Rr ) = r
d∑
ν=1

dim(Vν) = O(rdn)

for dim(Vν) = O(n).

Rr is a universal approximation tool since⋃
r≥1

Rr is dense in V

so that for any u ∈ V , we can find a sequence {ur}r≥1 with ur ∈ Rr concerving to u.
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Canonical format

For d ≥ 3, the set Rr looses many of the favorable properties of the case d = 2.
Determining the rank of a given tensor is a NP-hard problem.
The set Rr is not an algebraic variety.
No notion of singular value decomposition.
The application v 7→ rank(v) is not lower semi-continuous and therefore, Rr is not
closed.

Example
Consider the order-3 tensor

v = a⊗ a⊗ b + a⊗ b ⊗ a + b ⊗ a⊗ a

where a and b are linearly independent vectors in Rm. The rank of v is 3. The sequence
of rank-2 tensors

vn = n(a +
1
n
b)⊗ (a +

1
n
b)⊗ (a +

1
n
b)− na⊗ a⊗ a

converges to v as n→∞.

The consequence is that for most problems involving approximation in canonical
format Rr , there is no robust method when d > 2.
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α-rank

For a non-empty subset α of D = {1, . . . , d}, a tensor u ∈ V = V1 ⊗ . . .⊗ Vd can be
identified with an order-two tensor

Mα(u) ∈ Vα ⊗ Vαc ,

where Vα =
⊗

ν∈α Vν , and αc = D \ α. The operatorMα = V → Vα ⊗ Vαc is called
the matricisation operator.

M{1}←−−−−
M{2}−−−−→

The α-rank of u, denoted rankα(u), is the rank of the order-two tensorMα(u),

rankα(u) = rank(Mα(u)),

which is the minimal integer rα such that

Mα(u) =

rα∑
k=1

vαk ⊗ wαc

k

for some vαk ∈ Vα and wαc

k ∈ Vαc . We note that rankα(u) = rankαc (u).
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α-rank

A multivariate function u(x1, . . . , xd) with rankα(u) ≤ rα is such that

u(x) =

rα∑
k=1

vαk (xα)wαc

k (xαc )

for some functions vαk (xα) and wαc

k (xαc ) of groups of variables

xα = {xν}ν∈α and xαc = {xν}ν∈αc .
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α-rank

Example

u(x) = u1(x1) . . . ud(xd) can be written u(x) = uα(xα)uα
c

(xαc ), with
uα(xα) =

∏
ν∈α uν(xν). Therefore, for any α, rankα(u) = 1.

u(x) =
∏
α∈T uα(xα) with T a collection of disjoint subsets, is such that

rankα(u) = 1 for all α ∈ T , and rankγ(u) ≤
∏
α∈T ,α∩γ 6=∅ rankγ∩α(uα) for all γ.

u(x) = u1(x1) + . . .+ ud(xd) can be written u(x) = uα(xα) + uα
c

(xαc ), with
uα(xα) =

∑
ν∈α uν(xν). Therefore, rankα(u) ≤ 2.

u(x) =
∑r

k=1 u
1
k (x1) . . . ud

k (xd) can be written
∑r

k=1 u
α
k (xα)uα

c

k (xαc ) with
uαk (xα) =

∏
ν∈α uνk (xν). Therefore, for any α, rankα(u) ≤ r , with equality if the

functions {uαk (xα)} and the functions {uα
c

k (xαc )} are linearity independent.

We deduce the following relation between α-ranks and canonical rank:

rankα(u) ≤ rank(u), for any α.
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α-rank and minimal subspace

For a subset α of D = {1, . . . , d}, the minimal subspace

Umin
α (u)

of a tensor u ∈ V1 ⊗ . . .⊗ Vd is defined as the smallest subspace

Uα ⊂ Vα =
⊗
ν∈α

Vν

such that
Mα(u) ∈ Uα ⊗ Vαc .

The α-rank of u is the dimension of the minimal subspace Umin
α (u),

rankα(u) = dim(Umin
α (u)).

If u admits the representation

u(x) =

rankα(v)∑
k=1

vαk (xα)vα
c

(xαc )

then Umin
α (u) = span{vαk : 1 ≤ k ≤ rankα(u)}.
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α-ranks and related tensor formats

The subset of tensors
T {α}rα = {v : rankα(v) ≤ rα}

is also characterized by
T {α}rα = {v : dim(Umin

α (v)) ≤ rα}

and has the nice properties of low-rank formats for order-two tensors.

For T a collection of subsets of D, we define the T -rank of a tensor v as the tuple

rankT (v) = (rankα(v))α∈T .

The subset of tensors in V with T -rank bounded by r = (rα)α∈T is

T T
r = {v ∈ V : rankT (v) ≤ r} =

⋂
α∈T

T {α}rα .
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Tree-based tensor format

Tree-based tensor formats are subsets of tensors

T T
r = {v ∈ V : rankT (v) ≤ r}

where T is a dimension partition tree T over D = {1, . . . , d}, with root D and leaves

L(T ) = {{ν} : 1 ≤ ν ≤ d}.

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

The tree-based rank of a tensor v is the tuple rankT (v) = (rankα(v))α∈T .

By convention, rankD(v) = 1.
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Tree-based tensor format

Elements of T T
r admit an explicit representation. Let v ∈ T T

r with T -rank r = (rα)α∈T .
At the first level, v admits the representation

v(x) =

rβ1∑
kβ1=1

. . .

rβs∑
kβs =1

C
(D)
kβ1 ,...,kβs

v
(β1)
kβ1

(xβ1) . . . v
(βs )
kβs

(xβs )

where {β1, . . . , βs} = S(D) are the children of the root node D, and {v (β)
kβ
}1≤kβ≤rβ form

a basis of the minimal subspace Umin
β (v).

{1, 2, 3, 4, 5, 6}

{1, 2, 3} {4, 5, 6}

C (D)

v (1,2,3)

x{1,2,3}

k1,2,3

v (4,5,6)

x{4,5,6}

k4,5,6
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Tree-based tensor format

Then, for an interior node α of the tree, with children S(α) = {β1, . . . , βs}, the functions
(or tensors) v (α)

kα
admit the representation

v
(α)
kα

(xα) =

rβ1∑
kβ1=1

. . .

rβs∑
kβs =1

C
(α)
kα,kβ1 ,...,kβs

v
(β1)
kβ1

(xβ1) . . . v
(βs )
kβs

(xβs ).

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}{2, 3}

{4, 5, 6}

{4} {5} {6}

C (D)

C (1,2,3)

v (1)

x1

k1

v (2,3)

x2,3

k2,3

k1,2,3

C (4,5,6)

v (4)

x4

k4

v (5)

x5

k5

v (6)

x6

k6

k4,5,6
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Tree-based tensor format

Finally, the tensor v admits the representation

v(x) =
∑

1≤kβ≤rβ
β∈T

∏
α∈T\L(T )

C
(α)
(kβ )β∈S(α),kα

∏
ν∈L(T )

v
(ν)
kν

(xν)

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

C (D)

C (1,2,3)

v (1)

x1

k1

C (2,3)

v (2)

x2

k2

v (3)

x3

k3

k2,3

k1,2,3

C (4,5,6)

v (4)

x4

k4

v (5)

x5

k5

v (6)

x6

k6

k4,5,6
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Tree-based tensor format

Given bases {φαiα(xα)}iα∈Iα of functions for the spaces Vα for α ∈ L(T ),

v(x) =
∑

1≤kβ≤rβ
β∈T

∏
α∈T\L(T )

C
(α)
(kβ )β∈S(α),kα

∏
α∈L(T )

( ∑
iα∈Iα

C
(α)
iα,kα

φ
(α)
iα

(xα)︸ ︷︷ ︸
v
(α)
kα

(xα)

)

or equivalently
v(x) =

∑
i1∈I1

. . .
∑
id∈Id

ai1,...,idφi1(x1) . . . φid (xd)

where a ∈ RI1×...×Id is such that

ai1,...,id =
∑

1≤kβ≤rβ
β∈T

∏
α∈T\L(T )

C
(α)
(kβ )β∈S(α),kα

∏
α∈L(T )

C
(α)
iα,kα
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Tree-based tensor format as a tensor network

The parameters {C (α)}α∈T form a tree network of low-order tensors such that

C (α) ∈ R#Iα×rα

for a leaf node α, and
C (α) ∈ Rrβ1×...rβs×rα

for an interior node α with children S(α) = {β1, . . . , βs}.

C 1,2,3,4,5

C 1,2,3

C 1 C 2,3

C 2 C 3

C 4,5

C 4 C 5
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Tree-based tensor format

The storage complexity for the representation of a tensor u in T T
r is

C(T , r) =
∑

α∈T\L(T )

rα
∏

β∈S(α)

rβ +
∑

ν∈L(T )

#Iαrα.

If rα = O(R) and #Iα = O(N),

C(T , r) = O(dNR + (#T − d − 1)R s+1 + R s),

where s = maxα∈T\L(T ) #S(α) is the arity of the tree.
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Tree-based tensor format

For a trivial tree with one level (Tucker format), s = d , #T = d + 1, and

C(T , r) = O(dNR + Rd)

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

For any binary tree such as a linear binary tree (Tensor Train Tucker format) or a
balanced binary tree (Hierarchical Tucker format), s = 2, #T = 2d − 1, and

C(T , r) = O(dNR + (d − 2)R3 + R2)

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

For an arbitrary tree with arity s = O(1), since #T = O(d),

C(T , r) = O(dNR + dR s+1) 37 / 45



Tree-based tensor format as a deep network

By identifying a tensor C (α) ∈ Rn1×...×ns×rα with a Rrα -valued multilinear function

f (α) : Rn1 × . . .× Rns → Rrα ,

a function v in T T
r admits a representation as a tree-structured composition of

multilinear functions {f (α)}α∈T .

f 1,2,3,4,5

f 1,2,3

f 1 f 2,3

f 2 f 3

f 4,5

f 4 f 5

v(x) = f D(f 1,2,3(f 1(Φ1(x1)), f 2,3(f 2(Φ2(x2)), f 3(Φ3(x3))), f 4,5(f 4(Φ4(x4)), f 5(Φ5(x5))))

where Φν(xν) = (φνiν (xν))iν∈Iν ∈ R#Iν .

It corresponds to a deep network with a sparse architecture (given by T ), a depth
bounded by d − 1, and width at level ` related to the α-ranks of the nodes α of level `.

38 / 45



Universality result

For any fixed T (a tree or not), T T
r is a universal approximation tool since⋃
r≥0

T T
r is dense in V

or equal to V if dim(V ) <∞.

Therefore, for any u ∈ V , we can find a sequence {ur}r≥1 with ur ∈ T T
r which converges

to u.
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Canonical versus tree-based format

Consider a finite dimensional tensor space V = V 1 ⊗ . . .⊗V d with dim(Vν) = Rn, which
is identified with Rn×...×n. Denote by T T

r = {v : rankα(v) ≤ r , α ∈ T}.
From canonical format to tree-based format.
For any v in V and any α ⊂ D, the α-rank is bounded by the canonical rank:

rankα(v) ≤ rank(v).

Therefore, for any tree T ,
Rr ⊂ T T

r ,

so that an element in Rr with storage complexity O(dnr) admits a representation in
T T
r with a storage complexity O(dnr + dr s+1) where s is the arity of the tree T .

From tree-based format to canonical format. For a balanced or linear binary tree,
the subset

S = {v ∈ T T
r : rank(v) < qd/2}, q = min{n, r},

is of Lebesgue measure 0.

Then a typical element v ∈ T T
r with storage complexity of order dnr + dr3 admits a

representation in canonical format with a storage complexity of order dnqd/2.
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Influence of the tree

For some functions, the choice of tree is not crucial. For example, an additive
function

u1(x1) + . . .+ ud(xd)

has α-ranks equal to 2 whatever α ⊂ D.

But usually, different trees lead to different complexities of representations.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

TB (Balanced tree)
{1} {2}

{3}

{4}

T L (Linear tree)

• If rankTL(u) ≤ r then rankTB (u) ≤ r2

• If rankTB (u) ≤ r then rankTL(u) ≤ r log2(d)/2
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Influence of the tree

Given a tree T and a permutation σ of D = {1, . . . , d}, we define a tree Tσ

Tσ = {σ(α) : α ∈ T}

having the same structure as T but different nodes.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

T

{1, 2, 3, 4}

{1, 3}

{3} {1}

{2, 4}

{2} {4}

Tσ with σ = (3, 1, 2, 4)

If rankT (u) ≤ r then rankTσ (u) typically depends on d .

42 / 45



Influence of the tree

Consider the Henon-Heiles potential

u(x) =
1
2

d∑
i=1

x2
i + 0.2

d−1∑
i=1

(xix
2
i+1 − x3

i ) +
0.22

16

d−1∑
i=1

(x2
i + x2

i+1)2

Using a linear tree T = {{1}, {2}, . . . , {d}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1},D},

rankT (u) ≤ 4, storage(u) = O(d)

but for the permutation

σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) (?)

and the corresponding linear tree Tσ,

rankTσ (u) ≤ 2d + 1, storage(u) = O(d3).

For a typical tensor in T T
r with T a binary tree, its representation in tree based

format with tree Tσ, with σ as in (?), has a complexity scaling exponentially with d .
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How to choose a good tree ?

A combinatorial problem...

{2} {3}

{7}

{5} {4}

{8}

{1} {6} {2} {7}

{4}

{8} {1} {5} {3}

{6}

{1} {4}{2} {8}

{3} {7} {6}

{5}

{3} {2}{4}

{7}{5}

{8}{6} {1}
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