Workshop "Apprentissage et simulation en grande dimension", Airbus Group, June 24-26, 2019

Deep tensor networks

Part I: Tensors, ranks and related tensor formats

Anthony Nouy
Centrale Nantes, Laboratoire de Mathématiques Jean Leray

Outline

(1) What are tensors ?
(2) Tensor ranks
(3) Tree-based tensor formats

Outline

(1) What are tensors ?
(2) Tensor ranks
(3) Tree-based tensor formats

Algebraic tensors

Given d index sets $I_{\nu}=\left\{1, \ldots, N_{\nu}\right\}, 1 \leq \nu \leq d$, we introduce the multi-index set

$$
I=I_{1} \times \ldots \times I_{d}
$$

An element v of the vector space \mathbb{R}^{\prime} is a tensor of order d and is identified with a multidimensional array

$$
\left(v_{i}\right)_{i \in I}=\left(v_{i_{1}}, \ldots, i_{d}\right)_{i_{\mathbf{1}} \in l_{\mathbf{1}}, \ldots, i_{d} \in I_{d}}
$$

which represents the coefficients of v on the canonical basis of \mathbb{R}^{\prime}, also denoted

$$
v(i)=v\left(i_{1}, \ldots, i_{d}\right)
$$

$$
d=1
$$

$$
d=2
$$

$$
d=3
$$

Algebraic tensors

Given d vectors $v^{(\nu)} \in \mathbb{R}^{/ \nu}, 1 \leq \nu \leq d$, the tensor product of these vectors

$$
v:=v^{(1)} \otimes \ldots \otimes v^{(d)}
$$

is defined by

$$
v(i)=v^{(1)}\left(i_{1}\right) \ldots v^{(d)}\left(i_{d}\right)
$$

and is called an elementary tensor.

$$
\begin{aligned}
& d=2 \\
& \begin{array}{l}
B \\
B \\
\theta \\
B \\
B \\
B
\end{array}
\end{aligned}
$$

Using matrix notations, $v \otimes w$ is identified with the matrix $v w^{\top}$.

Algebraic tensors

The tensor space $\mathbb{R}^{\prime}=\mathbb{R}^{1_{1} \times \ldots \times l_{d}}$, also denoted $\mathbb{R}^{1_{1}} \otimes \ldots \otimes \mathbb{R}^{l^{d}}$, is defined by

$$
\mathbb{R}^{\prime}=\mathbb{R}^{\mathbf{1}_{1}} \otimes \ldots \otimes \mathbb{R}^{\prime d}=\operatorname{span}\left\{v^{(1)} \otimes \ldots \otimes v^{(d)}: v^{(\nu)} \in \mathbb{R}^{\prime \nu}, 1 \leq \nu \leq d\right\}
$$

The canonical norm on \mathbb{R}^{\prime}, also called the Frobenius norm, is given by

$$
\|v\|=\sqrt{\sum_{i \in I} v(i)^{2}}
$$

and makes \mathbb{R}^{\prime} a Hilbert space. It coincides with the natural norm on $\ell_{2}(I)$. It is the only norm associated with an inner product and having the property

$$
\left\|v^{(1)} \otimes \ldots \otimes v^{(d)}\right\|=\left\|v^{(1)}\right\|_{2} \ldots\left\|v^{(d)}\right\|_{2}
$$

Tensor product of functions

Let $\mathcal{X}_{\nu} \subset \mathbb{R}, 1 \leq \nu \leq d$, and $V_{\nu} \subset \mathbb{R}^{\mathcal{X}_{\nu}}$ be a space of functions defined on \mathcal{X}_{ν}.
The tensor product of functions $v^{(\nu)} \in V_{\nu}$, denoted

$$
v=v^{(1)} \otimes \ldots \otimes v^{(d)},
$$

is a multivariate function defined on $\mathcal{X}=\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}$ and such that

$$
v(x)=v\left(x_{1}, \ldots, x_{d}\right)=v^{(1)}\left(x_{1}\right) \ldots v^{(d)}\left(x_{d}\right)
$$

for $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathcal{X}$. For example, for $i \in \mathbb{N}_{0}^{d}$, the monomial $x^{i}=x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}$ is an elementary tensor.

Tensor product of functions

The algebraic tensor product of spaces V_{ν} is defined as

$$
V_{1} \otimes \ldots \otimes V_{d}=\operatorname{span}\left\{v^{(1)} \otimes \ldots \otimes v^{(d)}: v^{(\nu)} \in V_{\nu}, 1 \leq \nu \leq d\right\}
$$

which is the space of multivariate functions v which can be written as a finite linear combination of elementary (separated functions), i.e.

$$
v(x)=\sum_{k=1}^{n} v_{k}^{(1)}\left(x_{1}\right) \ldots v_{k}^{(d)}\left(x_{d}\right)
$$

Up to a formal definition of the tensor product \otimes, the above construction can be extended to arbitrary vector spaces V_{ν} (not only spaces of functions).

Infinite dimensional tensor spaces

For infinite dimensional spaces V_{ν}, a Hilbert (or Banach) tensor space equipped with a norm $\|\cdot\|$ is obtained by the completion (w.r.t. $\|\cdot\|$) of the algebraic tensor space

$$
\bar{V}^{\|\cdot\|}=\overline{V_{1} \otimes \ldots \otimes V_{d}}{ }^{\|\cdot\|} .
$$

If the V_{ν} are Hilbert spaces with inner products $(\cdot, \cdot)_{\nu}$ and associated norms $\|\cdot\|_{\nu}$, a canonical inner product on V can be first defined for elementary tensors

$$
\left(v^{(1)} \otimes \ldots \otimes v^{(d)}, w^{(1)} \otimes \ldots \otimes w^{(d)}\right)=\left(v^{(1)}, w^{(1)}\right) \ldots\left(v^{(d)}, w^{(d)}\right)
$$

and then extended by linearity to the whole space V.
The associated norm $\|\cdot\|$ is called the canonical norm.

Infinite dimensional tensor spaces

Example (L^{p} spaces)

Let $1 \leq p<\infty$. If $V_{\nu}=L_{\mu_{\nu}}^{p}\left(\mathcal{X}_{\nu}\right)$, then

$$
L_{\mu_{1}}^{p}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes L_{\mu_{d}}^{p}\left(\mathcal{X}_{d}\right) \subset L_{\mu}^{p}\left(\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}\right)
$$

with $\mu=\mu_{1} \otimes \ldots \otimes \mu_{d}$, and

$$
\overline{L_{\mu_{1}}^{p}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes L_{\mu_{d}}^{p}\left(\mathcal{X}_{d}\right)^{\|\cdot\|}}=L_{\mu}^{p}\left(\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}\right)
$$

where $\|\cdot\|$ is the natural norm on $L_{\mu}^{p}\left(\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}\right)$.

Example (Bochner spaces)

Let \mathcal{X} be equipped with a finite measure μ, and let W be a Hilbert (or Banach) space. For $1 \leq p<\infty$, the Bochner space $L_{\mu}^{p}(\mathcal{X} ; W)$ is the set of Bochner-measurable functions $u: \mathcal{X} \rightarrow W$ with bounded norm $\|u\|_{p}=\left(\int_{\mathcal{X}}\|u(x)\|_{W}^{p} \mu(d x)\right)^{1 / p}$, and

$$
L_{\mu}^{p}(\mathcal{X} ; W)=\overline{W \otimes L_{\mu}^{p}(\mathcal{X})}{ }^{\|\cdot\|_{p}} .
$$

Infinite dimensional tensor spaces

Example (Sobolev spaces)

The Sobolev space $H^{k}(\mathcal{X})$ of functions defined on $\mathcal{X}=\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}$, equipped with the norm

$$
\|u\|_{H^{k}}^{2}=\sum_{|\alpha|_{1} \leq k}\left\|D^{\alpha} u\right\|_{L^{2}}^{2}
$$

is a Hilbert tensor space

$$
H^{k}(\mathcal{X})=\overline{H^{k}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes H^{k}\left(\mathcal{X}_{d}\right)}{ }^{\|\cdot\|_{H^{k}}}
$$

The Sobolev space $H_{\text {mix }}^{k}(\mathcal{X})$ equipped with the norm

$$
\|u\|_{H_{\text {mix }}^{k}}^{2}=\sum_{|\alpha|_{\infty} \leq k}\left\|D^{\alpha} u\right\|_{L^{2}}^{2}
$$

is a different tensor Hilbert space

$$
H_{m i x}^{k}(\mathcal{X})=\overline{H^{k}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes H^{k}\left(\mathcal{X}_{d}\right)}{ }^{\|\cdot\|_{H_{m i x}^{k}} .}
$$

$\|u\|_{H_{m i x}^{k}}^{2}$ is the canonical tensor norm on $H^{k}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes H^{k}\left(\mathcal{X}_{d}\right)$.

Tensor product basis

If $\left\{\psi_{i}^{(\nu)}\right\}_{i \in I_{\nu}}$ is a basis of V_{ν}, then a basis of $V=V_{1} \otimes \ldots \otimes V_{d}$ is given by

$$
\left\{\psi_{i}=\psi_{i_{1}}^{(1)} \otimes \ldots \otimes \psi_{i_{d}}^{(d)}: i \in I=I_{1} \times \ldots \times I_{d}\right\} .
$$

A tensor $v \in V$ admits a decomposition

$$
v=\sum_{i \in I} a_{i} \psi_{i}=\sum_{i_{1} \in I_{\mathbf{1}}} \ldots \sum_{i_{d} \in I_{d}} a_{i_{1}}, \ldots, i_{d} \psi_{i_{1}}^{(1)} \otimes \ldots \otimes \psi_{i_{d}}^{(d)},
$$

and v can be identified with the set of its coefficients

$$
a \in \mathbb{R}^{\prime} .
$$

Hilbert tensor spaces

If the $\left\{\psi_{i}^{(\nu)}\right\}_{i \in I_{\nu}}$ are orthonormal bases of spaces V_{ν}, then $\left\{\psi_{i}\right\}_{i \in I}$ is an orthonormal basis of $\bar{V}^{\|\cdot\|}$. A tensor

$$
v=\sum_{i \in I} a_{i} \psi_{i}
$$

is such that

$$
\|v\|^{2}=\sum_{i \in I} a_{i}^{2}:=\|a\|^{2} .
$$

Therefore, the map

$$
\Psi: a \mapsto \sum_{i \in I} a_{i} \psi_{i}
$$

defines a linear isometry from \mathbb{R}^{\prime} to V for finite dimensional spaces, and between $\ell_{2}(I)$ and $\bar{V}^{\|\cdot\|}$ for infinite dimensional spaces.

Curse of dimensionality

A tensor $a \in \mathbb{R}^{\prime}=\mathbb{R}^{I_{1} \times \ldots \times I_{d}}$ or a corresponding tensor $v=\sum_{i \in I} a_{i} \psi_{i}$, when $\# I_{\nu}=O(n)$ for each ν, has a storage complexity

$$
\# I=\# I_{1} \ldots \# I_{d}=O\left(n^{d}\right)
$$

which grows exponentially with the dimension.

Manipulating tensors requires exploiting special properties of tensors such as sparsity or low rankness.

Outline

(1) What are tensors ?
(2) Tensor ranks
(3) Tree-based tensor formats

Rank of order-two tensors

The rank of an order-two tensor $u \in V \otimes W$, denoted $\operatorname{rank}(u)$, is the minimal integer r such that

$$
u=\sum_{k=1}^{r} v_{k} \otimes w_{k}
$$

for some $v_{k} \in V$ and $w_{k} \in W$.
A tensor $u \in \mathbb{R}^{n} \otimes \mathbb{R}^{m}$ is identified with a matrix $u \in \mathbb{R}^{n \times m}$. The rank of u coincides with the matrix rank, which is the minimal integer r such that

$$
u=\sum_{k=1}^{r} v_{k} w_{k}^{T}=V W^{T}
$$

where $V=\left(v_{1}, \ldots, v_{r}\right) \in \mathbb{R}^{n \times r}$ and $W=\left(w_{1}, \ldots, w_{r}\right) \in \mathbb{R}^{m \times r}$.

Singular value decomposition of order-two tensors

When V and W are Hilbert spaces (possibly infinite-dimensional), an algebraic tensor $u \in V \otimes W$ admits a singular value decomposition

$$
u=\sum_{k \geq 1} \sigma_{k} v_{k} \otimes w_{k}
$$

where v_{k} and w_{k} are orthonormal vectors (singular vectors) and $\sigma_{k} \in \mathbb{R}^{+}$are the singular values.

The rank of u is finite and coincides with the number of non-zero singular values,

$$
\operatorname{rank}(u)=\#\left\{k: \sigma_{k} \neq 0\right\}
$$

Example (Singular value decomposition of matrices)

For $V=\mathbb{R}^{n}$ and $W=\mathbb{R}^{m}, u$ is identified with a matrix in $\mathbb{R}^{n \times m}$ and

$$
u=\sum_{k=1}^{\operatorname{rank}(u)} \sigma_{k} v_{k} w_{k}^{T}=\mathrm{VSW}^{T}
$$

with orthogonal matrices \mathbf{V} and \mathbf{W}, and a diagonal matrix \mathbf{S}.

Singular value decomposition of order-two tensors

An algebraic tensor $u \in V \otimes W$ can be identified with a linear operator from W to V with rank equal to $\operatorname{rank}(u)$.
 the injective norm (corresponding to the operator norm) coincides with the space of compact operators.

A tensor $u \in \overline{V \otimes W^{\|}}{ }^{\|}{ }^{\prime}$ still admits a singular value decomposition

$$
u=\sum_{k \geq 1} \sigma_{k} v_{k} \otimes w_{k}
$$

and the rank (number of non-zero singular values) is possibly infinite.

Singular value decomposition of order-two tensors

Example (Proper Orthogonal Decomposition)

For $\Omega \times I$ a space-time domain and V a Hilbert space of functions defined on Ω, a function $u \in L^{2}(I ; V)$ admits a singular value decomposition

$$
u(t)=\sum_{k=1}^{\infty} \sigma_{k} v_{k} w_{k}(t)
$$

which is known as the Proper Orthogonal Decomposition (POD).

Example (Karhunen-Loeve decomposition)

For a probability space (Ω, μ), an element $u \in L_{\mu}^{2}(\Omega ; V)$ is a second-order V-valued random variable. If u is zero-mean, the singular value decomposition of u is known as the Karhunen-Loeve decomposition

$$
u(\omega)=\sum_{k=1}^{\infty} \sigma_{k} v_{k} w_{k}(\omega)
$$

where $w_{k}: \Omega \rightarrow \mathbb{R}$ are uncorrelated (orthogonal) random variables.

Low-rank format for order-two tensors

The set of tensors in $V \otimes W$ with rank bounded by r, denoted

$$
\mathcal{R}_{r}=\{v: \operatorname{rank}(v) \leq r\},
$$

is not a linear space nor a convex set. However, it has many favorable properties for a numerical use.

- The application $v \mapsto \operatorname{rank}(v)$ is lower semi-continuous, and therefore the set \mathcal{R}_{r} is closed, which makes best approximation problems in \mathcal{R}_{r} well posed.
- \mathcal{R}_{r} is the union of smooth manifolds of tensors with fixed rank.

Canonical rank of higher-order tensors

For tensors $u \in V_{1} \otimes \ldots \otimes V_{d}$ with $d \geq 3$, there are different notions of rank.
The canonical rank, which is the natural extension of the notion of rank for order-two tensors, is the minimal integer r such that

$$
u\left(x_{1}, \ldots, x_{d}\right)=\sum_{k=1}^{r} v_{k}^{(1)}\left(x_{1}\right) \ldots v_{k}^{(d)}\left(x_{d}\right)
$$

for some vectors $v_{k}^{(\nu)} \in V_{\nu}$.

Canonical format

The subset of tensors in $V=V_{1} \otimes \ldots \otimes V_{d}$ with canonical rank bounded by r is denoted

$$
\mathcal{R}_{r}=\{v \in V: \operatorname{rank}(v) \leq r\}
$$

A tensor in \mathcal{R}_{r} has a representation

$$
v\left(x_{1}, \ldots, x_{d}\right)=\sum_{k=1}^{r} v_{k}^{(1)}\left(x_{1}\right) \ldots v_{k}^{(d)}\left(x_{d}\right)
$$

The storage complexity of tensors in \mathcal{R}_{r} is

$$
\text { storage }\left(\mathcal{R}_{r}\right)=r \sum_{\nu=1}^{d} \operatorname{dim}\left(V_{\nu}\right)=O(r d n)
$$

for $\operatorname{dim}\left(V_{\nu}\right)=O(n)$.
\mathcal{R}_{r} is a universal approximation tool since

$$
\bigcup_{r \geq 1} \mathcal{R}_{r} \text { is dense in } V
$$

so that for any $u \in V$, we can find a sequence $\left\{u_{r}\right\}_{r \geq 1}$ with $u_{r} \in \mathcal{R}_{r}$ concerving to u.

Canonical format

For $d \geq 3$, the set \mathcal{R}_{r} looses many of the favorable properties of the case $d=2$.

- Determining the rank of a given tensor is a NP-hard problem.
- The set \mathcal{R}_{r} is not an algebraic variety.
- No notion of singular value decomposition.
- The application $v \mapsto \operatorname{rank}(v)$ is not lower semi-continuous and therefore, \mathcal{R}_{r} is not closed.

Example

Consider the order-3 tensor

$$
v=a \otimes a \otimes b+a \otimes b \otimes a+b \otimes a \otimes a
$$

where a and b are linearly independent vectors in \mathbb{R}^{m}. The rank of v is 3 . The sequence of rank-2 tensors

$$
v_{n}=n\left(a+\frac{1}{n} b\right) \otimes\left(a+\frac{1}{n} b\right) \otimes\left(a+\frac{1}{n} b\right)-n a \otimes a \otimes a
$$

converges to v as $n \rightarrow \infty$.

- The consequence is that for most problems involving approximation in canonical format \mathcal{R}_{r}, there is no robust method when $d>2$.

α-rank

For a non-empty subset α of $D=\{1, \ldots, d\}$, a tensor $u \in V=V_{1} \otimes \ldots \otimes V_{d}$ can be identified with an order-two tensor

$$
\mathcal{M}_{\alpha}(u) \in V_{\alpha} \otimes V_{\alpha^{c}}
$$

where $V_{\alpha}=\bigotimes_{\nu \in \alpha} V_{\nu}$, and $\alpha^{c}=D \backslash \alpha$. The operator $\mathcal{M}_{\alpha}=V \rightarrow V_{\alpha} \otimes V_{\alpha^{c}}$ is called the matricisation operator.

The α-rank of u, denoted $\operatorname{rank}_{\alpha}(u)$, is the rank of the order-two tensor $\mathcal{M}_{\alpha}(u)$,

$$
\operatorname{rank}_{\alpha}(u)=\operatorname{rank}\left(\mathcal{M}_{\alpha}(u)\right)
$$

which is the minimal integer r_{α} such that

$$
\mathcal{M}_{\alpha}(u)=\sum_{k=1}^{r_{\alpha}} v_{k}^{\alpha} \otimes w_{k}^{\alpha^{c}}
$$

for some $v_{k}^{\alpha} \in V_{\alpha}$ and $w_{k}^{\alpha^{c}} \in V_{\alpha^{c}}$. We note that $\operatorname{rank}_{\alpha}(u)=\operatorname{rank}_{\alpha^{c}}(u)$.

α-rank

A multivariate function $u\left(x_{1}, \ldots, x_{d}\right)$ with $\operatorname{rank}_{\alpha}(u) \leq r_{\alpha}$ is such that

$$
u(x)=\sum_{k=1}^{r_{\alpha}} v_{k}^{\alpha}\left(x_{\alpha}\right) w_{k}^{\alpha^{c}}\left(x_{\alpha^{c}}\right)
$$

for some functions $v_{k}^{\alpha}\left(x_{\alpha}\right)$ and $w_{k}^{\alpha^{c}}\left(x_{\alpha^{c}}\right)$ of groups of variables

$$
x_{\alpha}=\left\{x_{\nu}\right\}_{\nu \in \alpha} \quad \text { and } \quad x_{\alpha} c=\left\{x_{\nu}\right\}_{\nu \in \alpha^{c}} .
$$

α-rank

Example

- $u(x)=u^{1}\left(x_{1}\right) \ldots u^{d}\left(x_{d}\right)$ can be written $u(x)=u^{\alpha}\left(x_{\alpha}\right) u^{\alpha^{c}}\left(x_{\alpha} c\right)$, with $u^{\alpha}\left(x_{\alpha}\right)=\prod_{\nu \in \alpha} u^{\nu}\left(x_{\nu}\right)$. Therefore, for any α, rank $_{\alpha}(u)=1$.
- $u(x)=\prod_{\alpha \in T} u^{\alpha}\left(x_{\alpha}\right)$ with T a collection of disjoint subsets, is such that $\operatorname{rank}_{\alpha}(u)=1$ for all $\alpha \in T$, and $\operatorname{rank}_{\gamma}(u) \leq \prod_{\alpha \in T, \alpha \cap \gamma \neq \emptyset} \operatorname{rank}_{\gamma \cap \alpha}\left(u^{\alpha}\right)$ for all γ.
- $u(x)=u^{1}\left(x_{1}\right)+\ldots+u^{d}\left(x_{d}\right)$ can be written $u(x)=u^{\alpha}\left(x_{\alpha}\right)+u^{\alpha^{c}}\left(x_{\alpha} c\right)$, with $u^{\alpha}\left(x_{\alpha}\right)=\sum_{\nu \in \alpha} u^{\nu}\left(x_{\nu}\right)$. Therefore, $\operatorname{rank}_{\alpha}(u) \leq 2$.
- $u(x)=\sum_{k=1}^{r} u_{k}^{1}\left(x_{1}\right) \ldots u_{k}^{d}\left(x_{d}\right)$ can be written $\sum_{k=1}^{r} u_{k}^{\alpha}\left(x_{\alpha}\right) u_{k}^{\alpha^{c}}\left(x_{\alpha} c\right)$ with $u_{k}^{\alpha}\left(x_{\alpha}\right)=\prod_{\nu \in \alpha} u_{k}^{\nu}\left(x_{\nu}\right)$. Therefore, for any $\alpha, \operatorname{rank}_{\alpha}(u) \leq r$, with equality if the functions $\left\{u_{k}^{\alpha}\left(x_{\alpha}\right)\right\}$ and the functions $\left\{u_{k}^{\alpha^{c}}\left(x_{\alpha} c\right)\right\}$ are linearity independent.
We deduce the following relation between α-ranks and canonical rank:

$$
\operatorname{rank}_{\alpha}(u) \leq \operatorname{rank}(u), \quad \text { for any } \alpha .
$$

α-rank and minimal subspace

For a subset α of $D=\{1, \ldots, d\}$, the minimal subspace

$$
U_{\alpha}^{\min }(u)
$$

of a tensor $u \in V_{1} \otimes \ldots \otimes V_{d}$ is defined as the smallest subspace

$$
U_{\alpha} \subset V_{\alpha}=\bigotimes_{\nu \in \alpha} V_{\nu}
$$

such that

$$
\mathcal{M}_{\alpha}(u) \in U_{\alpha} \otimes V_{\alpha^{c}}
$$

The α-rank of u is the dimension of the minimal subspace $U_{\alpha}^{\min }(u)$,

$$
\operatorname{rank}_{\alpha}(u)=\operatorname{dim}\left(U_{\alpha}^{\min }(u)\right)
$$

If u admits the representation

$$
u(x)=\sum_{k=1}^{\operatorname{rank}_{\alpha}(v)} v_{k}^{\alpha}\left(x_{\alpha}\right) v^{\alpha^{c}}\left(x_{\alpha^{c}}\right)
$$

then $U_{\alpha}^{\min }(u)=\operatorname{span}\left\{v_{k}^{\alpha}: 1 \leq k \leq \operatorname{rank}_{\alpha}(u)\right\}$.

α-ranks and related tensor formats

The subset of tensors

$$
\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}=\left\{v: \operatorname{rank}_{\alpha}(v) \leq r_{\alpha}\right\}
$$

is also characterized by

$$
\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}=\left\{v: \operatorname{dim}\left(U_{\alpha}^{\min }(v)\right) \leq r_{\alpha}\right\}
$$

and has the nice properties of low-rank formats for order-two tensors.

For T a collection of subsets of D, we define the T-rank of a tensor v as the tuple

$$
\operatorname{rank}_{T}(v)=\left(\operatorname{rank}_{\alpha}(v)\right)_{\alpha \in T}
$$

The subset of tensors in V with T-rank bounded by $r=\left(r_{\alpha}\right)_{\alpha \in T}$ is

$$
\mathcal{T}_{r}^{T}=\left\{v \in V: \operatorname{rank}_{T}(v) \leq r\right\}=\bigcap_{\alpha \in T} \mathcal{T}_{r_{\alpha}}^{\{\alpha\}}
$$

Outline

(1) What are tensors ?
(2) Tensor ranks
(3) Tree-based tensor formats

Tree-based tensor format

Tree-based tensor formats are subsets of tensors

$$
\mathcal{T}_{r}^{T}=\left\{v \in V: \operatorname{rank}_{T}(v) \leq r\right\}
$$

where T is a dimension partition tree T over $D=\{1, \ldots, d\}$, with root D and leaves

$$
\mathcal{L}(T)=\{\{\nu\}: 1 \leq \nu \leq d\}
$$

The tree-based rank of a tensor v is the tuple $\operatorname{rank}_{T}(v)=\left(\operatorname{rank}_{\alpha}(v)\right)_{\alpha \in T}$.
By convention, $\operatorname{rank}_{D}(v)=1$.

Tree-based tensor format

Elements of $\mathcal{T}_{r}{ }^{T}$ admit an explicit representation. Let $v \in \mathcal{T}_{r}{ }^{T}$ with T-rank $r=\left(r_{\alpha}\right)_{\alpha \in T}$. At the first level, v admits the representation

$$
v(x)=\sum_{k_{\beta_{1}}=1}^{r_{\beta_{1}}} \ldots \sum_{k_{\beta_{s}}=1}^{r_{\beta_{s}}} C_{k_{\beta_{1}}, \ldots, k_{\beta_{s}}}^{(D)} v_{k_{\beta_{1}}}^{\left(\beta_{1}\right)}\left(x_{\beta_{1}}\right) \ldots v_{k_{\beta_{s}}}^{\left(\beta_{s}\right)}\left(x_{\beta_{s}}\right)
$$

where $\left\{\beta_{1}, \ldots, \beta_{s}\right\}=S(D)$ are the children of the root node D, and $\left\{v_{k_{\beta}}^{(\beta)}\right\}_{1 \leq k_{\beta} \leq r_{\beta}}$ form a basis of the minimal subspace $U_{\beta}^{\min }(v)$.

Tree-based tensor format

Then, for an interior node α of the tree, with children $S(\alpha)=\left\{\beta_{1}, \ldots, \beta_{s}\right\}$, the functions (or tensors) $v_{k_{\alpha}}^{(\alpha)}$ admit the representation

$$
v_{k_{\alpha}}^{(\alpha)}\left(x_{\alpha}\right)=\sum_{k_{\beta_{\mathbf{1}}}=1}^{r_{\beta_{\mathbf{1}}}} \ldots \sum_{k_{\beta_{s}}=1}^{r_{\beta_{s}}} C_{k_{\alpha}, k_{\beta_{1}}, \ldots, k_{\beta_{s}}}^{(\alpha)} v_{k_{\beta_{1}}}^{\left(\beta_{\mathbf{1}}\right)}\left(x_{\beta_{\mathbf{1}}}\right) \ldots v_{k_{\beta_{s}}}^{\left(\beta_{s}\right)}\left(x_{\beta_{s}}\right)
$$

Tree-based tensor format

Finally, the tensor v admits the representation

$$
v(x)=\sum_{\substack{1 \leq k_{\beta} \leq r_{\beta} \\ \beta \in T}} \prod_{\alpha \in T \backslash \mathcal{T}(T)} C_{\left(k_{\beta}\right)_{\beta \in S(\alpha)}^{(\alpha)}, k_{\alpha}}^{\left(\prod_{\nu \in \mathcal{L}(T)} v_{k_{\nu}}^{(\nu)}\left(x_{\nu}\right)\right) .}
$$

Tree-based tensor format

Given bases $\left\{\phi_{i_{\alpha}}^{\alpha}\left(x_{\alpha}\right)\right\}_{i_{\alpha} \in I^{\alpha}}$ of functions for the spaces V_{α} for $\alpha \in \mathcal{L}(T)$,

$$
\left.v(x)=\sum_{\substack{1 \leq k_{\beta} \leq r_{\beta} \\ \beta \in T}} \prod_{\alpha \in T \backslash \mathcal{L}(T)} C_{\left(k_{\beta}\right)}^{(\alpha)}\right)_{\beta \in S(\alpha), k_{\alpha}} \prod_{\alpha \in \mathcal{L}(T)}(\underbrace{\sum_{i_{\alpha} \in I^{\alpha}} C_{i_{\alpha}, k_{\alpha}}^{(\alpha)} \phi_{i_{\alpha}}^{(\alpha)}\left(x_{\alpha}\right)}_{v_{k_{\alpha}}^{(\alpha)}\left(x_{\alpha}\right)})
$$

or equivalently

$$
v(x)=\sum_{i_{1} \in I^{1}} \cdots \sum_{i_{d} \in I^{d}} a_{i_{1}}, \ldots, i_{d} \phi_{i_{1}}\left(x_{1}\right) \ldots \phi_{i_{d}}\left(x_{d}\right)
$$

where $a \in \mathbb{R}^{\mathbf{1}^{\mathbf{1}} \times \ldots \times 1^{d}}$ is such that

$$
a_{i_{1}, \ldots, i_{d}}=\sum_{\substack{1 \leq k_{\beta} \leq r_{\beta} \\ \beta \in T}} \prod_{\alpha \in T \backslash \mathcal{L}(T)} C_{\left(k_{\beta}\right)_{\beta \in S(\alpha)}^{(\alpha)}, k_{\alpha}}^{(\alpha)} \prod_{\alpha \in \mathcal{L}(T)} C_{i_{\alpha}, k_{\alpha}}^{(\alpha)}
$$

Tree-based tensor format as a tensor network

The parameters $\left\{C^{(\alpha)}\right\}_{\alpha \in T}$ form a tree network of low-order tensors such that

$$
C^{(\alpha)} \in \mathbb{R}^{\# I^{\alpha} \times r_{\alpha}}
$$

for a leaf node α, and

$$
C^{(\alpha)} \in \mathbb{R}^{r_{\beta_{1}} \times \ldots r_{\beta_{s}} \times r_{\alpha}}
$$

for an interior node α with children $S(\alpha)=\left\{\beta_{1}, \ldots, \beta_{s}\right\}$.

Tree-based tensor format

The storage complexity for the representation of a tensor u in \mathcal{T}_{r}^{\top} is

$$
C(T, r)=\sum_{\alpha \in T \backslash \mathcal{L}(T)} r_{\alpha} \prod_{\beta \in S(\alpha)} r_{\beta}+\sum_{\nu \in \mathcal{L}(T)} \# I^{\alpha} r_{\alpha} .
$$

If $r_{\alpha}=O(R)$ and $\# I^{\alpha}=O(N)$,

$$
C(T, r)=O\left(d N R+(\# T-d-1) R^{s+1}+R^{s}\right),
$$

where $s=\max _{\alpha \in T \backslash \mathcal{L}(T)} \# S(\alpha)$ is the arity of the tree.

Tree-based tensor format

- For a trivial tree with one level (Tucker format), $s=d, \# T=d+1$, and

- For any binary tree such as a linear binary tree (Tensor Train Tucker format) or a balanced binary tree (Hierarchical Tucker format), $s=2, \# T=2 d-1$, and

$$
C(T, r)=O\left(d N R+(d-2) R^{3}+R^{2}\right)
$$

- For an arbitrary tree with arity $s=O(1)$, since $\# T=O(d)$,

$$
C(T, r)=O\left(d N R+d R^{s+1}\right)
$$

Tree-based tensor format as a deep network

By identifying a tensor $C^{(\alpha)} \in \mathbb{R}^{n_{1} \times \ldots \times n_{s} \times r_{\alpha}}$ with a $\mathbb{R}^{r_{\alpha}}$-valued multilinear function

$$
f^{(\alpha)}: \mathbb{R}^{n_{1}} \times \ldots \times \mathbb{R}^{n_{s}} \rightarrow \mathbb{R}^{r_{\alpha}}
$$

a function v in \mathcal{T}_{r}^{T} admits a representation as a tree-structured composition of multilinear functions $\left\{f^{(\alpha)}\right\}_{\alpha \in T}$.

$v(x)=f^{D}\left(f^{1,2,3}\left(f^{1}\left(\Phi^{1}\left(x_{1}\right)\right), f^{2,3}\left(f^{2}\left(\Phi^{2}\left(x_{2}\right)\right), f^{3}\left(\Phi^{3}\left(x_{3}\right)\right)\right), f^{4,5}\left(f^{4}\left(\Phi^{4}\left(x_{4}\right)\right), f^{5}\left(\Phi^{5}\left(x_{5}\right)\right)\right)\right)\right.$
where $\Phi^{\nu}\left(x_{\nu}\right)=\left(\phi_{i_{\nu}}^{\nu}\left(x_{\nu}\right)\right)_{i_{\nu} \in I^{\nu}} \in \mathbb{R}^{\# I^{\nu}}$.
It corresponds to a deep network with a sparse architecture (given by T), a depth bounded by $d-1$, and width at level ℓ related to the α-ranks of the nodes α of level ℓ.

Universality result

For any fixed T (a tree or not), $\mathcal{T}_{r}{ }^{T}$ is a universal approximation tool since

$$
\bigcup_{r \geq 0} \mathcal{T}_{r}^{T} \text { is dense in } V
$$

or equal to V if $\operatorname{dim}(V)<\infty$.
Therefore, for any $u \in V$, we can find a sequence $\left\{u_{r}\right\}_{r \geq 1}$ with $u_{r} \in \mathcal{T}_{r}^{\top}$ which converges to u.

Canonical versus tree-based format

Consider a finite dimensional tensor space $V=V^{1} \otimes \ldots \otimes V^{d}$ with $\operatorname{dim}\left(V_{\nu}\right)=\mathbb{R}^{n}$, which is identified with $\mathbb{R}^{n \times \ldots \times n}$. Denote by $\mathcal{T}_{r}^{T}=\left\{v: \operatorname{rank}_{\alpha}(v) \leq r, \alpha \in T\right\}$.

- From canonical format to tree-based format.

For any v in V and any $\alpha \subset D$, the α-rank is bounded by the canonical rank:

$$
\operatorname{rank}_{\alpha}(v) \leq \operatorname{rank}(v)
$$

Therefore, for any tree T,

$$
\mathcal{R}_{r} \subset \mathcal{T}_{r}^{T}
$$

so that an element in \mathcal{R}_{r} with storage complexity $O(d n r)$ admits a representation in \mathcal{T}_{r}^{T} with a storage complexity $O\left(d n r+d r^{s+1}\right)$ where s is the arity of the tree T.

- From tree-based format to canonical format. For a balanced or linear binary tree, the subset

$$
S=\left\{v \in \mathcal{T}_{r}^{\top}: \operatorname{rank}(v)<q^{d / 2}\right\}, \quad q=\min \{n, r\}
$$

is of Lebesgue measure 0 .
Then a typical element $v \in \mathcal{T}_{r}^{T}$ with storage complexity of order $d n r+d r^{3}$ admits a representation in canonical format with a storage complexity of order $d n q^{d / 2}$.

Influence of the tree

- For some functions, the choice of tree is not crucial. For example, an additive function

$$
u_{1}\left(x_{1}\right)+\ldots+u_{d}\left(x_{d}\right)
$$

has α-ranks equal to 2 whatever $\alpha \subset D$.

- But usually, different trees lead to different complexities of representations.

- If $\operatorname{rank}_{T^{L}}(u) \leq r$ then $\operatorname{rank}_{T^{B}}(u) \leq r^{2}$
- If $\operatorname{rank}_{T^{B}}(u) \leq r$ then $\operatorname{rank}_{T^{L}}(u) \leq r^{\log _{2}(d) / 2}$

Influence of the tree

Given a tree T and a permutation σ of $D=\{1, \ldots, d\}$, we define a tree T_{σ}

$$
T_{\sigma}=\{\sigma(\alpha): \alpha \in T\}
$$

having the same structure as T but different nodes.

If $\operatorname{rank}_{T}(u) \leq r$ then $\operatorname{rank}_{T_{\sigma}}(u)$ typically depends on d.

Influence of the tree

- Consider the Henon-Heiles potential

$$
u(x)=\frac{1}{2} \sum_{i=1}^{d} x_{i}^{2}+0.2 \sum_{i=1}^{d-1}\left(x_{i} x_{i+1}^{2}-x_{i}^{3}\right)+\frac{0.2^{2}}{16} \sum_{i=1}^{d-1}\left(x_{i}^{2}+x_{i+1}^{2}\right)^{2}
$$

Using a linear tree $T=\{\{1\},\{2\}, \ldots,\{d\},\{1,2\},\{1,2,3\}, \ldots,\{1, \ldots, d-1\}, D\}$,

$$
\operatorname{rank}_{T}(u) \leq 4, \quad \operatorname{storage}(u)=O(d)
$$

but for the permutation

$$
\sigma=(1,3, \ldots, d-1,2,4, \ldots, d)
$$

and the corresponding linear tree T_{σ},

$$
\operatorname{rank}_{T_{\sigma}}(u) \leq 2 d+1, \quad \text { storage }(u)=O\left(d^{3}\right)
$$

- For a typical tensor in \mathcal{T}_{r}^{T} with T a binary tree, its representation in tree based format with tree T_{σ}, with σ as in (\star), has a complexity scaling exponentially with d.

How to choose a good tree?

A combinatorial problem...

References I

W. Hackbusch.

Tensor spaces and numerical tensor calculus, volume 42 of Springer series in computational mathematics.
Springer, Heidelberg, 2012.
A. Nouy.

Low-rank methods for high-dimensional approximation and model order reduction.
In P. Benner, A. Cohen, M. Ohlberger, and K. Willcox (eds.), Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia, PA, 2016.

