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Hilbertian setting

We consider a tensor u in a Hilbert tensor space V 1 ⊗ . . .⊗ V d and we assume that u is
given as a full tensor or in a certain low-rank format.

We present truncation schemes for finding a low-rank approximation of u with reduced
complexity, relying on the standard singular value decomposition of order-two tensors.

We denote by ‖ · ‖ the canonical norm on V 1 ⊗ . . .⊗ V d .

For an algebraic tensor in RI1 ⊗ . . .⊗ RId , ‖ · ‖ is the Frobenius norm

‖u‖2 =
∑
i1∈I1

. . .
∑
id∈Id

u(i1, . . . , id)2
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Truncated singular value decomposition for order-two tensors

An order-two tensor u in V 1 ⊗ V 2 admits a singular value decomposition

u =
N∑

k≥1

σkv
1
k ⊗ v2

k ,

where the singular values σ(u) = {σk}k≥1 are sorted by decreasing order.

An element of best approximation of u in the set of tensors with rank bounded by r is
provided by the truncated singular value decomposition

ur =
r∑

k=1

σkv
1
k ⊗ v2

k ,

with an error
‖u − ur‖2 = min

rank(v)≤r
‖u − v‖2 =

∑
k≥r+1

σ2
k .

5 / 45



Truncated singular value decomposition for order-two tensors

An approximation ur with relative precision ε, such that

‖u − ur‖ ≤ ε‖u‖,

can be obtained by choosing a rank r such that∑
k≥r+1

σ2
k ≤ ε2

∑
k≥1

σ2
k .

The complexity of computing the singular value decomposition of a tensor u is O(n3) if
dim(V 1) = dim(V 2) = n. If u is given in low-rank format u =

∑R
k=1 ak ⊗ bk , with a rank

R < n, the complexity breaks down to O(R3 + 2Rn2).
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Higher-order singular value decomposition

For a non-empty subset α in D = {1, . . . , d}, a tensor u ∈ V 1 ⊗ . . .⊗ V d can be
identified with its matricisation

Mα(u) ∈ V α ⊗ V αc

,

an order-two tensor which admits a singular value decomposition

Mα(u) =
∑
k≥1

σαk v
α
k ⊗ wαc

k .

The set σα(u) := {σαk }k≥1 is called the set of α-singular values of u.

The α-rank of u is the number of non-zero α-singular values

rankα(u) = ‖σα(u)‖0.
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Higher-order singular value decomposition

By sorting the α-singular values by decreasing order, an approximation ur with α-rank r
can be obtained by retaining the r largest singular values, i.e.

ur such that Mα(ur ) =
r∑

k=1

σαk v
α
k ⊗ wαc

k ,

which satisfies
‖u − ur‖2 = min

rankα(v)≤r
‖u − v‖2 =

∑
k>r

(σαk )2.

There are 2d−1 different binary partitions α ∪ αc of D, to each of which corresponds a
singular value decomposition and a way to truncate a higher-order tensor !
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Truncation scheme for the approximation in Tucker format

For each ν ∈ {1, . . . , d}, we consider the singular value decomposition of the
matricisationMν(u) of a tensor u

Mν(u) =
∑
k≥1

σνk v
ν
k ⊗ wν

k .

Let Uνrν = span{vνk }rνk=1 be the subspace of V ν generated by the rν dominant left singular
vectors ofMν(u), and by PUrν

the orthogonal projection from V ν to Uνrν .

The tensor
ur = (PU1

r1
⊗ . . .⊗ PUd

rd
)u

is the orthogonal projection of u onto the reduced tensor space

U1
r1 ⊗ . . .⊗ Ud

rd

and therefore,
ur ∈ Tr = {v : rank{ν}(v) ≤ rν , 1 ≤ ν ≤ d}.
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Truncation scheme for the approximation in Tucker format

The operator
Pνrν =M−1

ν PUνrν
Mν = I ⊗ . . .⊗ PUνrν

⊗ . . .⊗ I

is the orthogonal projection from V onto

V 1 ⊗ . . .⊗ Uνrν ⊗ . . .⊗ V d ,

which is such that

‖u − Pνrνu‖ = min
rankν (v)≤rν

‖u − v‖ =
∑

k≥rν+1

(σνk )2.

The approximation ur can then be written

ur = P1
r1 . . .P

d
rd u,

and satisfies

‖u − ur‖2 ≤
d∑
ν=1

‖u − Pνrνu‖
2 =

d∑
ν=1

min
rankν (v)≤rν

‖u − v‖2,

from which we deduce the quasi-optimality property

‖u − ur‖ ≤
√
d min

v∈Tr
‖u − v‖.
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Truncation scheme for the approximation in Tucker format

Also, from

‖u − ur‖2 ≤
d∑
ν=1

‖u − Pνrνu‖
2 =

d∑
ν=1

∑
kν>rν

(σνkν )2,

we deduce that if we select the ranks (r1, . . . , rd) such that for each ν∑
kν>rν

(σνkν )2 ≤ ε2

d

∑
kν≥1

(σνkν )2 =
ε2

d
‖u‖2,

then the truncated singular value decomposition Pνrνu has a relative precision ε/
√
d and

we finally obtain an approximation ur with relative precision ε,

‖u − ur‖ ≤ ε‖u‖.

Note that the definition of ur is independent on the order of the projections Pνrν .
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Truncation scheme for tree-based tensor formats

For tree-based tensor formats

T T
r = {v : rankα(v) ≤ rα, α ∈ T},

where T is a dimension partition tree over D = {1, . . . , d}, a higher order singular value
decomposition (also called hierarchical singular value decomposition) can also be defined
from singular value decompositions of matricisationsMα(u) of a tensor u.
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Truncation scheme for tree-based tensor formats

Letting Uαrα be the subspace generated by the rα dominant left singular vectors of
Mα(u), and letting PUαrα

be the orthogonal projector from V α to Uαrα , we define the
orthogonal projection

Pαrα =M−1
α PUαrα

Mα.

Then, an approximation with tree-based rank r = (rα)α∈T can be defined by

ur = P(L)
r P(L−1)

r . . .P(1)
r u with P(`) =

∏
α∈T

level(α)=`

Pαrα

where we apply to u a sequence of projections ordered by increasing level in the tree
(from the root to the leaves). Here L = maxα∈T level(α).

level 0

level 1

level 2

level 3
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Truncation scheme for tree-based tensor formats

The obtained approximation ur is such that

‖u − ur‖2 ≤
∑

α∈T\D

min
rankα(v)≤rα

‖u − v‖2 =
∑

α∈T\D

∑
kα>rα

(σαkα)2,

from which we deduce that ur is a quasi-optimal approximation of u in T T
r such that

‖u − ur‖ ≤ C(T ) min
v∈T T

r

‖u − v‖,

where C(T ) =
√

#T − 1 is the square root of the number of projections applied to the
tensor. The number of nodes of a dimension partition tree T being bounded by 2d − 1,

C(T ) ≤
√
2d − 2.

Also, if we select the ranks (rα)α∈T\D such that for all α∑
kα>rα

(σαkα)2 ≤ ε2

C(T )2

∑
kα≥1

(σαkα)2 =
ε2

C(T )2 ‖u‖
2,

we finally obtain an approximation ur with relative precision ε,

‖u − ur‖ ≤ ε‖u‖.
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Example: a home made function

We consider the function u : [0, 1]6 → R defined by

f (x) =
1

3 + x1 + x3
+ x2 + cos(x4 + x5).

The function is evaluated on a product grid Γ× . . .× Γ with N6 points, where

Γ = {tk =
k − 1
N − 1

: 1 ≤ k ≤ N − 1} ⊂ [0, 1]

.
We consider the tensor of order 6 in (RN)⊗6 = RN6

u(i1, . . . , id) = f (ti1 , . . . , tid ).

See live results...
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Example: conditional probability table

Let X1, . . . ,Xd be d i.i.d. random variables taking values 0 or 1 and let Y be a random
variable taking the value 1 if

∑d
i=1 Xi = k and 0 otherwise.

Let consider the function f : {0, 1}d+1 → {0, 1} defined by

f (y , x1, . . . , yd) = P(Y = y |X1 = x1, . . . ,Xd = xd) = 1g(x1,...,xd )=y

with
g(x1, . . . , xd) = 1∑d

i=1 xi=k .

The function f is identified with a tensor in (R2)⊗(d+1).
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Example: conditional probability table

We compress the function f using tree-based tensor formats with a linear tree (tensor
train format).

The ranks are chosen so that the compression relative error (in Frobenius norm) is below
10−10.

The following table gives the storage complexity of the compressed tensor. The storage
complexity of the initial tensor, equal to 2d+1, is provided inside parentheses.

d = 15 (65536) d = 20 (2097152) d = 25 (67108864)

k = 1 308 418 528
k = 3 620 890 1176
k = 5 900 1410 1984
k = 10 900 2082 3818
k = 15 180 1410 3992

17 / 45



Outline

1 Higher-order singular value decomposition and tensor truncation

2 Tree optimization

3 Approximation properties of tree tensor networks

18 / 45



Tree optimization

Consider a tensor v in a finite dimensional tensor space RN1 ⊗ . . .⊗ RNd .

For a given dimension tree T , v admits an exact representation in the format T T
r with

r = rankT (u) and a storage complexity

C(T , r) =
∑

α∈T\L(T )

rα
∏

β∈S(α)

rβ +
∑

α∈L(T )

Nαrα.

Then, we would like to find a tree T solution of

min
T

C(T , rankT (v)),

which is a combinatorial problem.
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Stochastic algorithm for tree adaptation

Starting from an initial tree T and a representation of v in the corresponding format, we
repeatedly

Draw a new tree T̃ from a suitable distribution over the set of trees,

Check if
C(T̃ , rankT̃ (v)) < C(T , rankT (v)),

in which case we set T ← T̃ and change the representation of v .
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Stochastic algorithm for tree adaptation

The tree T̃ is obtained random permutations of nodes.

{1, . . . , 8}

{1, . . . , 7}

{1, . . . , 6}

{1, . . . , 5}

{1, . . . , 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

{6}

{7}

{8}

(a) Before permutation

{1, . . . , 8}

{1, . . . , 7}

{1, . . . , 6}

{1, . . . , 5}

{1, . . . , 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

{5}

{6}

{7}

{8}

(b) After permutation

Figure: Permutation of the blue nodes {1, 2} and {4}. White node is removed. Green node is
added.

{1, . . . , 8}

{1, . . . , 7}

{1, . . . , 6}

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

{5}

{6}

{7}

{8}

(a) Before permutation

{1, . . . , 8}

{1, . . . , 7}

{1, . . . , 6}

{1, 2, 3, 4}

{1, 2}

{1}{2}

{3, 4}

{3}{4}

{5, 6}

{5} {6}

{7}

{8}

(b) After permutation

Figure: Permutation of the blue nodes {1, . . . , 4} and {6}. White node is removed. Green node
is added.
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Stochastic algorithm for tree adaptation

The tree T̃ is defined as T̃ = σm ◦ . . . ◦ σ1(T ), where the map σi+1 permutes two nodes
of the tree Ti = σi ◦ . . . ◦ σ1(T ), with T0 := T .

We first draw the number of permutations m.

Then given Ti , σi+1 permutes nodes α and β in Ti , with

α drawn with a probability increasing with the rank of its parent (since the parent
will be removed).

β drawn with a probability depending on the computational complexity for
permuting α and β.

For changing the representation from Ti to Ti+1, use of higher-order singular value
decomposition (change of representation with arbitrary accuracy).
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Approximation

The goal is to approximate a function

u(x1, . . . , xd)

by an element of a subset Xn described by a moderate number of parameters.

For a function u from a normed vector space X , the error of best approximation of u by
elements of Xn is defined by

en(u) = inf
v∈Xn

‖u − v‖X

and quantifies the best we can expect from Xn.

A sequence of subsets (Xn) is called an approximation tool.
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Approximation

For a given approximation tool, fundamental problems are to

determine if en(u) tends to 0 for a certain class of functions (universality result)

determine how fast en(u) tends to 0 for a certain class of functions, e.g.

en(u) ≤ Mn−r

characterize approximation classes, i.e. sets of functions for which the approximation
tool gives a certain convergence rate, e.g.

Ar = {u : sup
n

nren(u) < +∞}

provide algorithms which produce approximations un ∈ Xn such that

‖u − un‖X ≤ Cen(u)

with C independent of n (instance optimality) or C(n)en(u)→ 0 as n→∞
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What can we expect from an ideal approximation tool ?

For a set of functions K in a normed vector space X , the Kolmogorov n-width of K is

dn(K)X = inf
dim(Xn)=n

sup
u∈K

inf
v∈Xn

‖u − v‖X

where the infimum is taken over all linear subspaces of dimension n.

dn(K)X measures how well the set of functions K can be approximated by a
n-dimensional space.

It measures the ideal performance that we can expect from linear approximation methods.
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The curse of dimensionality

For X = L2(X ) with X = (0, 1)d or X = Td , and K the unit ball of the Sobolev
space Hk(X ),

dn(K)X ∼ n−k/d

this optimal rate being achieved with splines or trigonometric polynomials. The
complexity for achieving an accuracy ε,

n(ε) . ε−d/k ,

may grow exponentially with d , which is the curse of dimensionality.
For X = L2(X ) with X = Td , and K the unit ball of the mixed Sobolev space
Hk

mix(X ),
dn(K)X ∼ n−k log(n)k(d−1),

this rate being achieved by sparse tensors (hyperbolic cross approximation), and

n(ε) . k−(d−1)ε−1/k | log(ε)|d−1

The curse of dimensionality is still present.
For X = L∞(X ) with X = (0, 1)d and K = {v ∈ C∞(X ) : supα ‖Dαv‖L∞ <∞},

min{n : dn(K)X ≤ 1/2} ≥ c2d/2

No blessing of smoothness !
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What about tree-based tensor formats ?

Tree-based tensor formats are nonlinear approximation tools, so the previous results do
not apply.

The question is: do they perform better for smoothness classes ?
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Singular value decomposition of multivariate functions

We consider a function u in L2
µ(X ), where X = X1 × . . .×Xd is equipped with a product

measure µ = µ1 ⊗ . . .⊗ µd .

Consider a subset of variables α and its complementary subset αc = D \ α.

u can be identified with a bivariate function u(xα, xαc ) in L2
µα⊗µαc (Xα ×Xαc ).

The problem of best approximation of u by a function with α-rank rα,

min
rankα(v)≤rα

‖u − v‖2 := eαrα(u)2,

admits as a solution the truncated singular value decomposition urα of u

urα(xα, xαc ) =

rα∑
k=1

σαk v
α
k (xα)vα

c

k (xαc )

where {vα1 , . . . , vαrα} are the rα α-principal components of u.
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α-principal subspaces and associated projections

The subspace of principal components

Uα = span{vα1 , . . . , vαrα}

is such that
urα(·, xαc ) = PUαu(·, xαc )

where PUα is the orthogonal projection onto Uα.

It is solution of
min

dim(Uα)=rα
‖u − PUαu‖

2

that is
min

dim(Uα)=rα

∫
‖u(·, xαc )− PUαu(·, xαc )‖2L2

µα
dµαc (xαc ).
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Linear widths for multivariate functions

Consider the set of functions

Kα(u) = {u(·, xαc ) : xαc ∈ Xαc } ⊂ L2
µα(Xα)

and let ναc be the push-forward measure of µαc over Kα(u) through the map
xαc 7→ u(·, xαc ).

The best approximation error eαrα(u) is such that

eαrα(u)2 = min
dim(Uα)=rα

∫
Kα(u)

‖v − PUαv‖
2
L2
µα

dναc (v)

and defines a linear width of the set Kα(u) which measures how well it can be
approximated by a rα dimensional space Uα. It quantifies the ideal performance of a
linear approximation method in L2

µα(Xα) in a mean-square sense.
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Linear widths for multivariate functions

Assuming µ is finite,

eαrα(u) . min
dim(Uα)=rα

sup
v∈Kα(u)

‖v − PUαv‖L2
µα

= drα(Kα(u))L2
µα
,

this upper bound being the Kolmogorov rα-width of Kα(u) in L2
µα(Xα).

Furthermore, since
eαrα(u) = eα

c

rα (u),

we have
eαrα(u) ≤ min

{
drα(Kα(u))L2

µα
, drα(Kαc (u))L2

µαc

}
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Best approximation in tree-based tensor format

We would like a bound on the best approximation error using tree-based tensor format

eTr (u) = inf
v∈T T

r

‖u − v‖L2
µ
.

Given a dimension tree T , for each α ∈ T , we let Uα be a rα-dimensional principal
subspace of L2

µα and define

ur = P(L)P(L−1) . . .P(1)u with P(`) =
∏
α∈T

level(α)=`

PUα

where we apply to u a sequence of orthogonal projections PUα onto Uα ⊗ L2
µαc , ordered

by increasing level in the tree (from the root to the leaves). Here L = maxα∈T level(α).
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Best approximation in tree-based tensor format

We have that
‖u − ur‖2 ≤

∑
α∈T\{D}

‖u − PUαu‖
2.

By taking the best possible subspaces Uα, we obtain

eTr (u) ≤ ‖u − ur‖2 ≤
∑

α∈T\{D}

eαrα(u)2

with
eαrα(u) ≤ min

{
drα(Kα(u))L2

µα
, drα(Kαc (u))L2

µαc

}
where

Kβ(u) = {u(·, xβc ) : xβc ∈ Xβc }
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Approximation of smoothness classes in tree-based tensor format

Consider the approximation of a function u ∈ Hk
mix(X ) with X = (0, 1)d . Then for any β,

Kβ(u) ⊂ Hk
mix(Xβ)

and
eαrα(u) . r−k

α log(rα)k(dα−1), dα = min{#α, d −#α}

If the ranks are chosen such that

rα ∼ ε−1/k log(ε−1)dα−1(#T )1/(2k),

it guarantees eαrα(u) ≤ ε/
√

#T , and therefore

eTr (u) ≤ ε

for a complexity (for binary trees)

c(ε) . ε−3/k log(ε−1)dd1+3/(2k) up to powers of log(ε−1)

It performs almost as well as hyperbolic cross approximation (sparse tensors), but not
better !

The result only depends on the arity of the tree. However, for a particular function, the
tree may have a strong influence.
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Approximation of smoothness classes in tree-based tensor format

Consider the approximation of a function u ∈ Hk(X ) with X = (0, 1)d .

We can prove that

eαrα(u) . rα
−k/dα , dα = min{#α, d −#α}

If the ranks are chosen such that

rα ∼ ε−dα/k(#T )dα/(2k),

it guarantees eαrα(u) ≤ ε/
√

#T , and therefore

eTr (u) ≤ ε

for a complexity
c(ε) . d1+ 3d

4k ε−
3d
2k

It performs almost as well as splines, but not better.
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About nonlinear approximation results

There exists notions of nonlinear widths δn(K)X that measure the ideal performance of
nonlinear approximation tools for standard smoothness classes.

For standard smoothness classes, the performance of tree tensor networks is almost the
best over all nonlinear approximation tools (covered by these notions of widths).

A first conclusion is that no (reasonable) approximation tool is able to overcome the
curse of dimensionality for all functions from standard smoothness classes.

But of course, a certain approximation tool may behave well for a particular function with
low-dimensional features that the approximation tool is able to capture.
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Approximation of composition of functions

Consider a ridge function u defined on X = (0, 1)d

u(x) = f (wT x) = f (w1x1 + . . .+ wdxd),

with ‖w‖1 ≤ 1 and f ∈ L∞(0, 1).

Assuming there exists an approximation using exponential sums

fr (t) =
r∑

k=1

ake
bk t such that ‖f − fr‖L∞(0,1) ≤ cr−γ ,

the function u admits a representation in canonical tensor format

ur (x) =
r∑

k=1

aku
k
1(x1) . . . uk

d (xd), uk
ν(xν) = ebkwνxν ,

such that
‖u − ur‖L∞ ≤ cr−γ (No curse of dimensionality !)

The same type of results holds for u(x) = f ◦ g(x) with g(x) = g1(x1) + . . . gd(xd) such
that ‖g‖L∞ ≤ 1.
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Approximation of composition of functions

Consider a function u defined on X = (0, 1)d which is obtained by compositions of a
collection of functions {fα}α∈T , with T a dimension tree.

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Assume that the functions fα ∈W k,∞ with ‖fα‖L∞ ≤ 1 and ‖fα‖W k,∞ ≤ B.
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Approximation of composition of functions

For all α ∈ T ,
eαrα(u) . drα(Kα(u))L∞µα . Bk`α`k−1

α r−k
α

where `α is the level of the node α.

Then
eTr (u) ≤ ε

is guaranteed with ranks

rα ∼ ε−1/k`1−1/k
α B`α(#T )1/(2k).

This gives the following simplified bound on the complexity c(ε) to achieve accuracy ε

c(ε) . ε−(s+1)/k(L + 1)s+1B(s+1)(L+1)d1+(s+1)/2k

with L the depth of the tree, and s its arity.
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Approximation of composition of functions

For binary trees, the complexity to achieve precision ε is

c(ε) . ε−3/k(L + 1)3B3Ld1+3/2k

with L = log2(d) for a balanced tree and L + 1 = d for a linear tree.

We observe a bad influence of the depth through the exponent of the norm B of
functions fα (roughness).

For B ≤ 1 (and even for 1-Lipschitz functions), the complexity only scales
polynomially in d

c(ε) . ε−3/k(L + 1)3d1+3/2k (no curse of dimensionality)

The choice of tree is here crucial.
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Approximation of functions through tensorization

For a function u(x) defined for x ∈ [0, 1), we introduce the corresponding multivariate
function v defined on {0, ..., b − 1}d × [0, 1) such that

u(x) = v(i0, . . . , id−1, y)

where

x = b−dy + b−d
d−1∑
k=0

ikb
k .

This allows the identification (through a linear isometry)

L2(0, 1) = Rb . . . . . .Rb ⊗ L2(0, 1).

In practice, introduction of an approximation space Sp ⊂ L2(0, 1) (e.g. polynomial
space) and approximations in

Vb,d,p = Rb . . . . . .Rb ⊗ Sp,

using tree-based formats.

For example, V2,d,0 corresponds to the space of piecewise constant functions on a
uniform mesh with 2d elements.
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Approximation of functions through tensorization

Exploiting low-rank structures of the tensorized function allows to achieve better
performance than splines on adapted meshes for functions with singularities or multiscale
functions [Kazeev and Schwab 2015 , Kazeev et al. 2017].

For u(x) = xα, 0 < α ≤ 1,
• a piecewise constant approximation on a uniform mesh with n elements gives a
convergence in O(n−α) in L∞,

• a piecewise constant approximation on an optimal mesh with n elements gives a
convergence in O(n−1) in L∞,

• a piecewise constant approximation on a uniform mesh with 2d elements
exploiting low-rank structures gives an exponential convergence in O(β−n),
where n is the complexity of the representation.

For u(x) = ezx , z ∈ C,

v(i0, . . . , id−1, y) = u1(i0), . . . ud(id−1)ud+1(y), with uk(t) = eztb
k−d

,

is a rank-one function whatever z .
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Approximation of functions through tensorization

A promising route for high-resolution simulations in low-dimension.

Figure: Scattering problem: tensorization with base b = 2, piecewise constant approximation,
storage complexity at precision 10−3 (resp. 10−5) goes from 260100 to 3532 (resp. 6170) by
exploiting low-rank structures.
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