
Workshop “Apprentissage et simulation en grande dimension” ,
Airbus Group, June 24-26, 2019

Deep tensor networks

Part III: Supervised learning

Anthony Nouy

Centrale Nantes, Laboratoire de Mathématiques Jean Leray

1 / 52



Supervised learning

We consider the problem of constructing an approximation of a random variable Y by a
function of a set of random variables X = (X1, . . . ,Xd), using samples of (X ,Y ).

A first situation is when we are given independent samples of (X ,Y ) (passive learning).

Another situation is when the samples of (X ,Y ) can be generated from adaptively
chosen samples of X (active learning) and the evaluation of a function u such that

Y = u(X ) + ε.

2 / 52



Outline

1 Passive learning through empirical risk minimization
Parametrization of tree-based formats
Rank adaptation
Tree adaptation

2 Active learning based on empirical principal component analysis
Principal component analysis of multivariate functions
Adaptive sampling based on principal component analysis

3 / 52



Outline

1 Passive learning through empirical risk minimization

2 Active learning based on empirical principal component analysis

4 / 52



Empirical risk minimization

Consider a function v providing a prediction v(x) for a given instance x of X .

Given a loss function ` such that `(y , v(x)) measures a certain dissimilarity between y
and the prediction v(x), we define the risk

R(v) = E(`(Y , v(X )))

whose minimizer u(X ) over the set of measurable functions (if it exists) is called the
oracle.

Given i.i.d. samples {(xi , yi )}ni=1, an approximation ûn
F of u is obtained by minimization

of the empirical risk

R̂n(v) =
1
n

n∑
i=1

`(yi , v(xi ))

over a set of functions F (model class).

5 / 52



Least-squares regression

When choosing the square loss `(y , z) = (y − z)2, the risk is

R(v) = E((Y − v(X ))2)

and the empirical risk

R(v) =
1
n

∑
i=1

(yi − v(xi ))2.

The oracle is the conditional expectation u(X ) = E(Y |X ) and

R(v) = E((Y − u(X ))2) + E((u(X )− v(X ))2),

or, by denoting µ the probability measure induced by X ,

R(v) = E((Y − u(X ))2) + ‖u − v‖2L2
µ
.

Therefore, the risk minimization over F is equivalent to the best approximation problem

min
v∈F
‖u − v‖2L2

µ

6 / 52



Bias and variance tradeoff

Denoting by uF the minimizer of the risk R over F , the error (or excess risk)

R(ûn
F )−R(u) = R(uF )−R(u)︸ ︷︷ ︸

approximation error

+ R(ûn
F )−R(uF )︸ ︷︷ ︸

estimation error

For a given sample, when taking larger and larger model classes F

approximation error ↘
but estimation error ↗

A suitable model class has to be selected in order to balance these two errors.

For high dimension d , or when only a small sample is available, one should use a model
class of moderate dimension that exploits low-dimensional structures of function u.

This will require strategies for adaptation and selection of tensor formats.

7 / 52



Multilinear models

A tensor format (such as canonical format, tree-based format) is a multilinear model
class, i.e. a set of functions having a multilinear parametrization

F = {v(x) = Ψ(x)(a1, . . . , aM) : aα ∈ RKα , 1 ≤ α ≤ M},

where aα denotes a parameter in some vector space RKα , and

Ψ(x) : RK1
× . . .× RKM

→ R

is a multilinear map.

For a given α and fixed parameters {aβ : β 6= α}, the partial map

aα ∈ RKα 7→ Ψ(x)(a1, . . . , aα, . . . , aM) ∈ R

is a linear map identified with a vector Ψα(x) in RKα such that

Ψ(x)(a1, . . . , aα, . . . , aM) = Ψα(x)Taα =
∑
k∈Kα

Ψα
k (x)aαk .

8 / 52



Empirical risk minimization by alternating minimization

For a multilinear model class F , the empirical risk minimization

min
v∈F
R̂n(v) = min

a1,...,aM

1
n

n∑
i=1

`(yi ,Ψ(xi )(a1, . . . , aM))

can be solved with an alternating minimization algorithm (block coordinate descent),
solving at each step

min
aα

1
n

n∑
i=1

`(yi ,Ψ(xi )(a1, . . . , aα, . . . , aM)) = min
aα

1
n

n∑
i=1

`(yi ,Ψ
α(xi )

Taα) (?)

for fixed parameters {aβ : β 6= α}, which is a learning problem with a linear model.

For least-squares regression, (?) can be written

min
aα

1
n
‖y −Ψαaα‖22

where y ∈ Rn and Ψα ∈ Rn ⊗ RKα is a matrix whose i-th row is Ψα(xi ).

9 / 52



Regularization

At each step, we can consider a regularized empirical risk minimization problem

min
aα

1
n

n∑
i=1

`(yi ,Ψ
α(xi )

Taα) + Ωα(aα) (?)

with a regularization functional Ωα promoting

smoothness,

sparsity (e.g. Ωα(aα) = λα‖aα‖1 for convex relaxation methods, or a characteristic
function for working set algorithms),

...

For least-squares regression and Ωα(aα) = λα‖aα‖1, (?) is a LASSO problem

min
aα

1
n
‖y −Ψαaα‖22 + λα‖aα‖1

Cross-validation methods can be used for the selection of Ωα.

10 / 52



Parametrization of tree-based formats

We consider a tensor space V = V 1 ⊗ . . .⊗ V d of functions in L2
µ(X ), where

X = X1 × . . .×Xd is equipped with a measure µ. We let {φνiν : iν ∈ I ν} be a basis of
the vector space V ν in L2

µν (Xν), typically polynomials, wavelets, trigonometric
polynomials...

We consider the model class of tree-based tensors T T
r = {v ∈ V : rankT (v) ≤ r} where

T is a dimension partition tree and r a tuple of ranks.

A function v in T T
r admits the following multilinear parametrization in terms of low-order

tensors aα

v(x) =
∑
iα∈Iα
α∈L(T )

∑
1≤kβ≤rβ
β∈T

∏
α∈T\L(T )

aα(kβ )β∈S(α),kα

∏
α∈L(T )

aαiα,kαφ
α
iα(xα) = Ψ(x)((aα)α∈T )

a1,2,3,4,5

a1,2,3

a1 a2,3

a2 a3

a4,5

a4 a5

11 / 52



Parametrization of tree-based formats

A tensor v in tree-based format T T
r admits infinitely many equivalent representations.

For a given α, it is possible to obtain a representation

v(x) = Ψα(x)(aα) =
∑
k

Ψα
k (x)aαk .

where {Ψα
k (x)} is a set of orthonormal functions in L2

µ (depending on the parameters aβ ,
β 6= α), i.e. such that

E(Ψα
k (X )Ψα

l (X )) = δk,l

This improves numerical stability and statistical properties and cross-validation error
estimations.

For a least-square problem, empirical risk minimisation over aα is equivalent to solving
the linear system of equations

1
n
ΨαTΨαaα =

1
n
ΨαT y

where 1
n

(ΨαTΨα)k,l = 1
n

∑n
i=1 Ψα

k (xi )Ψα
l (xi ) is an estimation of E(Ψα

k (X )Ψα
l (X )) = δk,l .

12 / 52



How to choose the ranks ?

For a given dimension tree T and a tuple of ranks r = (rα)α∈T ,

T T
r = {v ∈ V : rankα(v) ≤ rα, α ∈ T}.

Therefore
T T
r ⊂ T T

m for r ≤ m,

and ⋃
r∈Nd

T T
r is dense in (or equal to) V

so that we can find a sequence of approximations ur with increasing rank r which
converges to any function in V .

We would like to find an increasing sequence of T -ranks which yields an optimal
convergence of the error in terms of the complexity, and hopefully achieves optimal
statistical performance in a supervised learning context.

13 / 52



Strategy for rank adaptation

Construction of a sequence of approximations in tree-based format

um ∈ T T
rm = {v : rankT (v) ≤ (rmα )α∈T}

with increasing ranks {
rm+1
α = rmα + 1 if α ∈ T θ

m

rm+1
α = rmα if α /∈ T θ

m

where T θ
m is a suitably chosen subset of nodes.

If we knew the truncation errors

εαrmα (u) = min
rankα(v)≤rmα

R(v)−R(u)

we could choose

T θ
m =

{
α : εαrmα (u) ≥ θmax

β∈T
εβrm
β

(u)

}
for some θ ∈ [0, 1].

With θ = 0, all ranks are increased, while with θ = 1, only the ranks with maximal
truncation error are increased.

14 / 52



Strategy for rank adaptation

For least-squares regression,

R(v)−R(u) = ‖u − v‖2L2
µ
.

The α-matricisation of u admits a singular value decomposition

u(x) =
∑
k≥1

σαk u
α
k (xα)uα

c

k (xαc )

with singular values {σαk } sorted by decreasing values, and the truncation error in
L2
µ-norm is

εαrmα (u) = min
rankα(v)≤rmα

‖u − v‖2L2
µ

=
∑
k>rmα

(σαk )2.

In practice, at iteration m, we compute a low-rank correction of um to obtain a
better approximation ũ of u and estimate εαrmα (u) by εαrmα (ũ).

15 / 52



Illustration

u(X1, . . . ,X8) = (1 + 5−1X1 + 5−2X3 + 5−3X5 + 5−4X7)−2, Xk ∼ U(−1, 1) (i .i .d .)

Least-squares regression

Training sample of size n = 100

Polynomial approximation spaces Vν = P10.

Dimension tree

{1, 2, 3, 4, 5, 6, 7, 8}

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

{5, 6, 7, 8}

{5, 6}

{5} {6}

{7, 8}

{7} {8}

Test sample of size 1000.

16 / 52



Illustration

θ = 0 (isotropic ranks)

iteration rank test error CV estimate
0 (1 1 1 1 1 1 1 1 1 1 1 1 1 1) 6.5 10−3 4.9 10−3

1 (2 2 2 2 2 2 2 2 2 2 2 2 2 2) 6.4 10−5 7.6 10−6

3 (3 3 3 3 3 3 3 3 3 3 3 3 3 3) 5.8 10−5 2.4 10−8

4 (4 4 4 4 4 4 4 4 4 4 4 4 4 4) 5.9 10−5 9.6 10−16

θ = 0.8 (anisotropic ranks)

iteration rank test error CV estimate
0 (1 1 1 1 1 1 1 1 1 1 1 1 1 1) 6.5 10−3 4.9 10−3

1 (1 1 2 2 1 1 2 1 2 1 1 1 1 1) 1.9 10−3 7.7 10−4

2 (2 2 2 2 2 2 2 1 2 1 2 1 2 1) 2.8 10−4 1.9 10−4

3 (2 2 2 2 2 2 2 1 2 1 2 1 2 1) 5.9 10−5 8.2 10−6

4 (2 2 3 3 2 2 3 1 3 1 2 1 2 1) 3.3 10−6 3.8 10−7

5 (3 3 3 3 3 2 3 1 3 1 3 1 2 1) 1.0 10−6 4.9 10−8

6 (3 3 4 3 3 2 4 1 3 1 3 1 2 1) 7.2 10−7 3.0 10−8

7 (3 3 5 4 3 2 5 1 4 1 3 1 2 1) 1.2 10−6 3.8 10−9

In practice, automatic selection of θ > 0.

17 / 52



Tree adaptation

Choosing a good dimension tree T is a combinatorial problem.

Exploring the whole set of possible trees in unfeasible in high dimension.

A possible strategy is to use a stochastic optimization algorithm over the set of possible
trees, where at each iteration,

1 a tree T is randomly selected,
2 an approximation v is constructed in T T

r (with an adapted rank),
3 a criterium (some error estimate) is used for accepting or rejecting the tree T .

Stochastic optimization may require many iterations, with a very costly step 2.

18 / 52



Tree adaptation

In practice, we use a slightly different approach using an efficient stochastic tree
optimization algorithm for reducing the complexity of the representation of a given
tensor.

We start with an initial tree T and learn an approximation v ∈ T T
r with rank

r = (1, ..., 1). Then we repeat the following steps

estimate truncation errors εαrα(u) and increase the rank r according a rank
adaptation rule,

learn an approximation v in the format T T
r (with a good initialization),

optimize the tree for reducing the storage complexity of v (using a stochastic
algorithm): if a better tree T ′ is found, change the representation of v and set
r = rankT ′(v) and T = T ′.

19 / 52



Illustration: sum of bivariate functions

u(X ) = g(X1,X2) + g(X3,X4) + . . .+ g(Xd−1,Xd), g(t, s) =
3∑

i=0

t i s i

We consider least-squares regression and use polynomial spaces Vν = P3 (no
discretization error).

The function u admits an exact representation in the following tree T 1 with an optimal
storage complexity 428.

1

2

2

2

{1}
4
{2}
4

2

{3}
4
{4}
4

2

{5}
4

{6}
4

2

2

{7}
4

{8}
4

2

{9}
4

{10}
4

Figure: Tree T 1 and corresponding α-ranks.

20 / 52



Illustration: sum of bivariate functions

The function u admits an exact representation in the following tree T 2 with a higher
storage complexity 560.

1

{10}
4

4

{9}
4

2

{8}
4

5

{7}
4

2

{6}
4

5

{5}
4

2

{4}
4

5

{3}
4

2

{2}
4

{1}
4

Figure: Tree T 2 and corresponding α-ranks.

21 / 52



Noiseless case, Y = u(X )

We start the learning algorithm with a random permutation T i
σ = {σ(α) : α ∈ T i} of the

tree T i .

initial tree n P̂(T is optimal) εtest(v) C(T , r)

T 1
σ

5 102 50% [4.23 10−15, 1.80 10−1] [84, 921]
103 100% [6.64 10−16, 9.60 10−15] [428, 673]
104 100% [5.34 10−16, 1.18 10−15] [428, 428]

T 2
σ

5 102 70% [5.83 10−15, 1.94 10−1] [69, 1114]
103 90% [7.72 10−16, 2.43 10−2] [357, 515]
104 100% [5.59 10−16, 1.74 10−15] [428, 428]

Table: training sample size n, estimation of the probability of obtaining an optimal tree and
ranges (over the 10 trials) for the test error, and the storage complexity.

22 / 52



Noisy case, Y = u(X ) + ε, Var(ε) = ζ2

We here use the tree adaptation, starting from a random permutation T 2
σ of tree T 2.

n ζ P(optimal T ) εtest(v) C(T , v)

103
10−1 90% [9.4 10−3, 3.8 10−2] [298, 450]
10−2 80% [7.7 10−4, 1.2 10−1] [114, 718]
10−3 100% [7.5 10−5, 3.1 10−2] [272, 570]

5.103
10−1 100% [5.5 10−3, 7.3 10−3] [298, 545]
10−2 100% [2.8 10−4, 3.5 10−4] [428, 428]
10−3 100% [2.9 10−5, 3.6 10−5] [428, 428]

104
10−1 100% [1.8 10−3, 5.7 10−3] [428, 570]
10−2 100% [1.8 10−4, 2.3 10−4] [428, 428]
10−3 100% [1.9 10−5, 2.4 10−5] [428, 428]

Table: Training sample size n, standard deviation ζ of the noise, probability of obtaining an
optimal tree T and confidence intervals for the test error, and the storage complexity.

23 / 52



Noisy case, Y = u(X ) + ε, Var(ε) = ζ2

R(v) = R(u) + ‖u − v‖2 = ζ2 + ‖u − v‖2

n ζ2 ‖u − v‖2

103
10−2 [2.90 10−3, 4.68 10−2]
10−4 [1.90 10−5, 0.47 10−1]
10−6 [1.81 10−7, 0.03 10−2]

5. 103
10−2 [1.00 10−3, 1.72 10−3]
10−4 [2.52 10−6, 4.08 10−6]
10−6 [2.73 10−8, 4.32 10−8]

104
10−2 [1.11 10−4, 1.04 10−3]
10−4 [1.13 10−6, 1.75 10−6]
10−6 [1.18 10−8, 1.85 10−8]

Table: Training sample size n, standard deviation ζ of the noise and confidence interval for the
estimated approximation error.

24 / 52



Illustration: composition of functions

Consider a tree-structured composition of functions

u(X ) = h(h(h(X1,X2), h(X3,X4)), h(h(X5,X6), h(X7,X8))),

where h(t, s) = 9−1(2 + ts)2 is a bivariate function and where the d = 8 random
variables X1, . . . ,X8 are independent and uniform on [−1, 1].

h

h

h

X1 X2

h

X3 X4

h

h

X5 X6

h

X7 X8

We use approximation spaces V ν = P8(Xν), so that function u is in V and could (in
principle) be recovered exactly for any choice of tree with a sufficiently high rank.

25 / 52



Illustration: composition of functions

We consider two trees T 1 (coinciding with the structure of u) and T 2.

{1} {2} {3} {4} {5} {6} {7} {8}

(a) Tree T1

{8}
{7}
{6}
{5}
{4}
{3}
{2} {1}

(b) Tree T2

26 / 52



Illustration: composition of functions

We start the learning algorithm from the tree and the associated families of trees
T 2
σ = {σ(α) : α ∈ T 2} obtained by applying a random permutation σ to T 2.

n P̂(T = T 1) εtest(v) C(T , r)

103 90% [1.75 10−5, 1.75 10−4] [360, 1062]
104 90% [2.15 10−8, 4.10 10−3] [185, 2741]
105 100% [4.67 10−15, 8.92 10−3] [163, 2594]

Table: training sample size n, estimation of the probability of obtaining the ideal tree T 1 and
ranges (over the 10 trials) for the test error, and the storage complexity.

27 / 52



Behavior of the algorithm algorithm with n = 105

Iteration rank r εtest(v) C(T , r)

1 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 3.38 10−2 79

2 (1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1) 2.95 10−2 100
3 (1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1) 2.95 10−2 100

4 (1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1) 2.45 10−2 121
5 (1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1) 2.45 10−2 121

6 (1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1) 1.85 10−2 142
7 (1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1) 1.85 10−2 142
8 (1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2) 8.97 10−3 163

9 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 9.54 10−3 188
10 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 8.89 10−3 188

11 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 9.47 10−3 188
12 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 8.87 10−3 188

13 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 5.22 10−3 188
14 (1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2) 3.97 10−3 188
15 (1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3) 1.55 10−4 308

16 (1, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3) 1.18 10−4 364
17 (1, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3) 1.18 10−4 364
18 (1, 3, 4, 3, 4, 2, 4, 3, 4, 2, 4, 3, 4, 4, 4) 6.65 10−6 520
19 (1, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 5, 5) 1.19 10−6 723
20 (1, 4, 5, 4, 5, 3, 5, 4, 5, 3, 5, 4, 5, 5, 5) 1.72 10−7 865
21 (1, 4, 6, 4, 6, 3, 6, 4, 6, 3, 6, 4, 6, 6, 6) 1.47 10−8 1113
22 (1, 5, 6, 5, 6, 3, 6, 5, 6, 3, 6, 5, 6, 6, 6) 7.02 10−9 1311
23 (1, 5, 7, 5, 7, 3, 7, 5, 7, 3, 7, 5, 7, 7, 7) 1.27 10−10 1643
24 (1, 5, 8, 5, 8, 3, 8, 5, 8, 3, 8, 5, 8, 8, 8) 3.87 10−12 2015
25 (1, 5, 9, 5, 9, 3, 9, 5, 9, 3, 9, 5, 9, 9, 9) 2.95 10−14 2427

1
2

4
6

8
10

12

14 15
13

11
9

7
5

3

1
2

6
10

4

3 13

12

5 15

14
7

8

9 11

1
6

2

7 11

10
4

3 13

12

14 15

8

5 9

1
6

2

11 14

10
4

3 13

12

7 15

8

5 9

1
6

10
2

11 14

4

3 13

12

7 15

8

5 9

1
6

2

11 14

10
4

3 13

12

7 15

8

5 9

1
6

4

3 13

10
2

11 14

12

7 15

8

5 9

1
6

4

3 13

8

5 9

10
2

11 14

12

7 15

Dimension tree with each node numbered. The singletons
{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8} correspond to the leaf nodes numbered
9, 5, 3, 13, 11, 14, 7, 15 respectively

28 / 52



Outline

1 Passive learning through empirical risk minimization
Parametrization of tree-based formats
Rank adaptation
Tree adaptation

2 Active learning based on empirical principal component analysis
Principal component analysis of multivariate functions
Adaptive sampling based on principal component analysis

29 / 52



Setting

Assume that X = (X1, . . . ,Xd) has a probability measure µ = µ1 ⊗ . . .⊗ µd with support
X = X1 × . . .×Xd .

Consider a multivariate function u ∈ L2
µ(X ) and assume that we can evaluate the

function for arbitrary instance x of X .

30 / 52



Singular value decomposition

Consider a subset of variables α and its complementary subset αc = D \ α.

A multivariate function u(x1, . . . , xd) is identified with a bivariate function u ∈ Vα ⊗ Vαc

which admits a singular value decomposition

u(xα, xαc ) =

rankα(u)∑
k=1

σαk v
α
k (xα)vα

c

k (xαc )

The problem of best approximation of u by a function with α-rank rα,

min
rankα(v)≤rα

‖u − v‖2,

admits as a solution the truncated singular value decomposition urα of u

urα(xα, xαc ) =

rα∑
k=1

σαk v
α
k (xα)vα

c

k (xαc )

where {vα1 , . . . , vαrα} are the rα α-principal components of u.

31 / 52



α-principal subspace and associated projection

The subspace of principal components

Uα = span{vα1 , . . . , vαrα}

is such that
urα(·, xαc ) = PUαu(·, xαc )

where PUα is the orthogonal projection onto Uα.

It is solution of
min

dim(Uα)=rα
‖u − PUαu‖

2

that is for ‖ · ‖ the L2
µ(X )-norm,

min
dim(Uα)=rα

E
(
‖u(·,Xαc )− PUαu(·,Xαc )‖2L2

µα
(Xα)

)

32 / 52



Higher-order principal component analysis for tree-based formats

Let T be a tree-structured collection of subsets of 2D

For each α in T , we will determine subspaces Uα that are approximations of α-principal
subspaces of u in low-dimensional subspaces Vα of functions defined on Xα.

33 / 52



Higher-order principal component analysis for tree-based formats

For each α ∈ T \ D, Uα is defined as the rα-dimensional α-principal subspace of

uα(·, xαc ) = PVαu(·, xαc )

for S(α) = ∅ (leaf node), Vα is a given approximation space (e.g., polynomials,
wavelets, kernel functions, perceptrons...)

Vα = span{φαλ(Xα) : λ ∈ Iα}

for S(α) 6= ∅ (interior node), Vα =
⊗

β∈S(α) Uβ .

34 / 52



Higher-order principal component analysis for tree-based formats

We finally obtain an approximation u? of u by orthogonal projection onto the tensor
space VD =

⊗
α∈S(D) Uα

u? = PVDu

35 / 52



Higher-order principal component analysis for tree-based formats

Theorem (Fixed rank)

For a given T -rank, we obtain an approximation u? ∈ T T
r such that

‖u? − u‖2 ≤ #T min
v∈T T

r

‖v − u‖2 +
∑

leaves α

‖u − PVαu‖
2

Theorem (Fixed precision)

For a desired precision ε, if the α-ranks are determined such that

‖PUαuα − uα‖ ≤
ε√
#T
‖uα‖,

we obtain an approximation u? such that

‖u? − u‖2 ≤ ε2‖u‖2 +
∑

leaves α

‖u − PVαu‖
2.

36 / 52



Learning algorithm based on principal component analysis

For a feasible algorithm using samples...

1 From orthogonal to sampled-based projections.
2 Statistical estimation of principal subspaces.

37 / 52



From orthogonal to sampled-based projections

Orthogonal projections PVα on subspaces Vα are replaced by oblique projections IVα
using samples, typically interpolation or least-squares projection.

For a function u and a given value xαc of the group of variables Xαc ,

IVαu(·, xαc ) =

Mα∑
i=1

ai (xαc )ψαi (·)

where the ψαi form a basis of Vα, and the coefficients ai (xαc ) depend on evaluations
u(xk

α, xαc ) for some samples xk
α of Xα (interpolation points or random samples).

In practice,

for interpolation, use of magic points x i
α,

for least-squares projection, possible use of optimal weighted least-squares.

38 / 52



Statistical estimation of principal subspaces

The α-principal subspaces Uα of uα = IVαu are defined by

min
dim(Uα)=rα

E
(
‖IVαu(·,Xαc )− PUαIVαu(·,Xαc )‖2L2

µα
(Xα)

)
where u is seen as a function-valued random variable

u(·,Xαc ) ∈ L2
µα(Xα).

Principal subspaces can be estimated using i.i.d. samples u(·, x j
αc ) of this random variable

and by solving

min
dim(Uα)=rα

1
Nα

Nα∑
j=1

‖IVαu(·, x j
αc )− PUαIVαu(·, x j

αc )‖2L2
µα

(Xα)

where {x j
αc }Nαj=1 are i.i.d. samples of the group of variables Xαc .

If the projection IVα is based on a set of Mα samples of Xα, this requires the evaluation
of u at the Mα × Nα points

{(x i
α, x

j
αc ) : 1 ≤ i ≤ Mα, 1 ≤ j ≤ Nα}.

39 / 52



Properties of the algorithm (for interpolation)

Theorem (Prescribed rank)

For a given T -rank, if the subspaces Uα are such that

‖PUαuα − uα‖ ≤ C min
rankα(v)≤rα

‖v − uα‖

then we obtain an approximation u? such that

‖u? − u‖2 ≤ Λ2C 2#T min
v∈T T

r

‖v − u‖2 + Λ̃2 max
1≤ν≤d

‖u − PVνu‖
2

with Λ and Λ̃ depending on the properties of the oblique projection operators.

About complexity: If Nα = rα for all α ∈ T , then the total number of evaluations N is
equal to the storage complexity S of the resulting approximation u? ∈ T T

r .

40 / 52



About the constants

The constants Λ and Λ̃ depend on

‖IVα‖Umin
α (u)→Vα

and ‖IUα − PUα‖Umin
α (u)→Vα

which depends on the properties of interpolation operators restricted to minimal
subspaces of u.

Case of tensor recovery

Assume that Umin
α (u) ⊂ Vα for all leaves α (no discretization error).

If for all α ∈ T , the set of Nα samples u(·, xk
αc ) contains rankα(u) linearly independent

functions, then Uα = Umin
α (u).

The constants C = 1, Λ = 1, and Λ̃ = 1 (i.e. same stability than the ideal algorithm).

41 / 52



Illustration of tensor recovery: Henon-Heiles potential

u(X ) =
1
2

d∑
i=1

X 2
i + 0.2

d−1∑
i=1

(XiX
2
i+1 − X 3

i ) +
0.22

16

d−1∑
i=1

(X 2
i + X 2

i+1)2, Xi ∼ U(−1, 1),

rankα(u) = 3 for all α in

T = {{1}, {1, 2}, . . . , {1, . . . , d−1}}

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Then u can be exactly represented in the tensor train format T T
r with T -rank

r = (3, . . . , 3)

u =
3∑

k1=1

3∑
k2=1

. . .

3∑
kd−1=1

v
(1)
1,k1(x1)v

(1,2)
k1,k2

(x2)v
(1,2,3)
k2,k3

(x3) . . . v
(1,...,d)
kd−1,1

(xd)

with univariate polynomial functions of degree 4.
42 / 52



Illustration of tensor recovery: Henon-Heiles potential

Table: Approximation with prescribed T -rank r = (3, . . . , 3) and polynomial degree 4 for
different values of d and γ = Nα/rα. Use of interpolation.

γ = 1
d 5 10 20 50 100

ε(u?)× 1014 [1.0; 234.2] [1.5; 67.5] [2.5; 79.9] [6.6; 62.8] [15.7; 175.1]
S = N 165 390 840 2190 4440

γ = 10
d 5 10 20 50 100

ε(u?)× 1014 [0.1; 0.4] [0.2; 0.4] [0.3; 0.4] [0.4; 0.7] [0.6; 0.8]
S 165 390 840 2190 4440
N 1515 3765 8265 21765 44265

43 / 52



Properties of the algorithm (for interpolation)

Theorem (Fixed precision)

Let ε, ε̃ ≥ 0. If the subspaces Uα are determined such that

‖PUαuα − uα‖ ≤
ε√
#T
‖uα‖

and if the approximation spaces Vν , 1 ≤ ν ≤ d , are such that

‖PVνu − u‖ ≤ ε̃‖u‖,

then we obtain an approximation u? such that

‖u? − u‖2 ≤ (Λ2ε2 + Λ̃2ε̃2)‖u‖2

with Λ and Λ̃ depending on the properties of the oblique projection operators.

44 / 52



Illustration for approximation: Borehole function

The Borehole function models water flow through a borehole:

u(X ) =
2πTu(Hu − Hl)

ln(r/rw )
(
1 + 2LTu

ln(r/rw )r2wKw
+ Tu

Tl

) , X = (rw , log(r),Tu,Hu,Tl ,Hl , L,Kw )

rw radius of borehole (m) N(µ = 0.10, σ = 0.0161812)
r radius of influence (m) LN(µ = 7.71, σ = 1.0056)
Tu transmissivity of upper aquifer (m2/yr) U(63070, 115600)
Hu potentiometric head of upper aquifer (m) U(990, 1110)
Tl transmissivity of lower aquifer (m2/yr) U(63.1, 116)
Hl potentiometric head of lower aquifer (m) U(700, 820)
L length of borehole (m) U(1120, 1680)
Kw hydraulic conductivity of borehole (m/yr) U(9855, 12045)

45 / 52



Illustration for approximation: Borehole function

Approximation in hierarchical Tucker format with a linearly structured tree:

T = {{1}, . . . , {d}, {1, 2}, . . . , {1, . . . , d−1},D}

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

u? =

r1∑
i1=1

. . .

rd∑
id=1

r1,2∑
k2=1

. . .

r1,...,d−1∑
kd−1=1

v
(1)
i1

(x1) . . . v
(d)
id

(xd)C
(1,2)
i1,i2,k2

C
(1,2,3)
k2,i3,k3

. . .C
(1,...,d−1)
kd−2,id−1,kd−1

C
(1,...,d)
kd−1,id

with polynomial functions v (ν)
iν
∈ Vν = Pq.

46 / 52



Illustration for approximation: Borehole function

Table: Approximation with prescribed precision ε, adaptive degree p(ε) = log10(ε−1), and
Nα = dim(Vα). Confidence intervals for relative error ε(u?), storage complexity S and
number of evaluations M for different ε, and average ranks. Projections based on
empirical interpolation

ε ε(u?) N S [r{1}, . . . , r{d}, r{1,2}, . . . , r{1,...,d−1}]

10−1 [1.8; 2.7]× 10−1 [39, 39] [23, 23] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

10−2 [0.3; 4.0]× 10−2 [88, 100] [41, 46] [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1]

10−3 [0.8; 1.9]× 10−3 [159, 186] [61, 78] [2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1]

10−4 [2.5; 5.6]× 10−5 [328, 328] [141, 141] [2, 2, 2, 3, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2]

10−5 [0.6; 1.6]× 10−5 [444, 472] [166, 178] [2, 2, 2, 4, 4, 2, 2, 2, 1, 2, 2, 2, 2, 2]

10−6 [3.1; 5.7]× 10−6 [596, 664] [204, 241] [3, 2, 2, 4, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2]

10−7 [1.0; 6.3]× 10−7 [1042, 1267] [374, 429] [4, 3, 4, 6, 5, 3, 3, 3, 2, 2, 3, 2, 2, 2]

10−8 [1.1; 7.1]× 10−8 [1567, 1567] [512, 512] [4, 3, 4, 7, 6, 3, 3, 3, 2, 2, 3, 2, 3, 3]

10−9 [0.2; 4.9]× 10−8 [1719, 1854] [534, 560] [4, 4, 4, 8, 6, 3, 3, 3, 2, 2, 3, 2, 3, 3]

10−10 [0.3; 1.9]× 10−9 [2482, 2828] [774, 838] [5, 4, 6, 10, 7, 4, 3, 3, 2, 2, 3, 2, 3, 3]

47 / 52



Influence of the tree

Table: Approximation with prescribed precision ε = 10−8, degree p(ε) = log10(ε−1), and
Nα = dim(Vα). Confidence intervals for relative error ε(u?), storage complexity S and
number of evaluations M for different ε, and average ranks. Projections based on
empirical interpolation

ε ε(u?) N S

10−8 [1.2; 1.7]× 10−7 [1587, 1587] [527, 527]

Table: Approximation with prescribed precision ε = 10−8, degree p(ε) = log10(ε−1), and
Nα = dim(Vα). Confidence intervals for relative error ε(u?), storage complexity S and
number of evaluations M for different ε, and average ranks. Projections based on
empirical interpolation

ε ε(u?) N S

10−8 [0.5; 1.4]× 10−7 [1726, 1770] [506, 530]

Table: Approximation with prescribed precision ε = 10−8, degree p(ε) = log10(ε−1), and
Nα = dim(Vα). Confidence intervals for relative error ε(u?), storage complexity S and
number of evaluations M for different ε, and average ranks. Projections based on
empirical interpolation

ε ε(u?) N S

10−8 [0.2; 5.6]× 10−7 [1651, 2499] [470, 836]

Table: Approximation with prescribed precision ε = 10−8, degree p(ε) = log10(ε−1), and
Nα = dim(Vα). Confidence intervals for relative error ε(u?), storage complexity S and
number of evaluations M for different ε, and average ranks. Projections based on
empirical interpolation

ε ε(u?) N S

10−8 [0.08; 4.8]× 10−7 [1979, 3364] [503, 688]

48 / 52



Illustration: Henon-Heiles potential (d = 20)

Table: Approximation with prescribed precision ε = 10−8, degree p = 4, and
Nα = dim(Vα). Confidence intervals for relative error ε(u?), storage complexity S and
number of evaluations M, and average maximal rank.

ε ε(u?) N S maxα rα
10−8 [1.6e − 14; 2.9e − 14] [3101, 3101] [1047, 1047] 4

Table: Approximation with prescribed precision ε = 10−8, degree p = 4, and
Nα = dim(Vα). Confidence intervals for relative error ε(u?), storage complexity S and
number of evaluations M, and average maximal rank.

ε ε(u?) N S maxα rα
10−8 [7.7e − 15; 4.3e − 15] [4389, 4389] [1390, 1390] 4

Table: Approximation with prescribed precision ε = 10−8, degree p = 4, and
Nα = dim(Vα). Confidence intervals for relative error ε(u?), storage complexity S and
number of evaluations M, and average maximal rank.

ε ε(u?) N S maxα rα
10−8 [2.8e − 14; 3.6e − 14] [31685, 48385] [5311, 6008] 13

Table: Approximation with prescribed precision ε = 10−8, degree p = 4, and
Nα = dim(Vα). Confidence intervals for relative error ε(u?), storage complexity S and
number of evaluations M, and average maximal rank.

ε ε(u?) N S maxα rα
10−8 [2.4e − 14; 1.6e − 13] [38045, 49713] [6187, 6148] 13

49 / 52



Approximation of a function using tensorization

Consider a function f : [0, 1]→ 1 and the vector v ∈ R2d such that

v(i) = f (2−d i), 0 ≤ i ≤ 2d − 1

The vector v can be identified with an order-d tensor u ∈ H = R2 ⊗ . . .⊗ R2 such that

u(i1, . . . , id) = v(i), i =
d∑

k=1

ik2d−k ,

where (i1, . . . , id) ∈ {0, 1}d = X is the binary representation of the integer i .

We introduce an approximation of u in the tensor train format

u(i1, . . . , id) ≈
r1∑

k1=1

r1,2∑
k2=1

. . .

r1,...,d−1∑
kd−1=1

v
(1)
k1

(i1)v
(2)
k1,k2

(i2) . . . v
(d−1)
kd−2,kd−1

(id−1)v
(d)
kd−1

(id)

50 / 52



Approximation of a function using tensorization

Table: f (t) =
√
t, d = 40. Approximation in tensor train format with prescribed ε,

Nα = dim(Vα). Confidence intervals for relative `2-error ε(u?), number of evaluations M,
storage complexity S and maximal rank for different ε.

ε ε(u?) M S maxα rα
10−1 [9.3 10−3; 5.5 10−2] [182, 230] [90, 114] [2, 2]

10−2 [3.7 10−3; 8.6 10−3] [314, 350] [156, 172] [2, 3]

10−3 [5.4 10−4; 9.2 10−4] [514, 606] [252, 300] [3, 3]

10−4 [1.3 10−4; 3.3 10−3] [838, 962] [414, 474] [4, 4]

10−5 [1.8 10−5; 8.2 10−4] [1270, 1398] [626, 692] [4, 5]

10−6 [1.3 10−6; 6.3 10−5] [1900, 2036] [938, 1014] [5, 5]

10−7 [4.9 10−7; 1.3 10−6] [2444, 2718] [1218, 1344] [5, 6]

10−8 [1.0 10−7; 1.2 10−6] [3304, 3468] [1642, 1722] [6, 6]

10−9 [2.2 10−8; 1.3 10−7] [4116, 4328] [2046, 2144] [7, 7]

10−10 [8.6 10−10; 6.7 10−8] [5024, 5136] [2490, 2552] [7, 7]

51 / 52



References I

M. Chevreuil, R. Lebrun, A. Nouy, and P. Rai.
A least-squares method for sparse low rank approximation of multivariate functions.
SIAM/ASA Journal on Uncertainty Quantification, 3(1):897–921, 2015.

E. Grelier, A. Nouy, M. Chevreuil.
Learning with tree-based tensor formats.
Arxiv eprints, Nov. 2018.

A. Nouy.
Higher-order principal component analysis for the approximation of tensors in tree-based low-rank
formats.
Numerische Mathematik, 141(3):743–789, Mar 2019.

52 / 52


	Passive learning through empirical risk minimization
	Parametrization of tree-based formats
	Rank adaptation
	Tree adaptation

	Active learning based on empirical principal component analysis
	Principal component analysis of multivariate functions
	Adaptive sampling based on principal component analysis


