Workshop "Apprentissage et simulation en grande dimension", Airbus Group, June 24-26, 2019

Deep tensor networks

Part IV: Unsupervised learning

Anthony Nouy

Centrale Nantes, Laboratoire de Mathématiques Jean Leray

We consider the problem of the estimation of the probability distribution ρ of a high-dimensional random vector $X = (X_1, \ldots, X_d)$ from samples of the distribution.

The distribution is characterized by a density

 $f(x_1,\ldots,x_d)$

with respect to a measure μ .

In high dimension, this requires using suitable model classes (or hypothesis sets).

Typical model classes

• multiplicative models

$$f^1(x_1)\ldots f^d(x_d),$$

which corresponds to the hypothesis that the components of X are independent,

• general multiplicative models

$$\prod_{\alpha\in T}f^{\alpha}(x_{\alpha}),$$

where T is a collection of subsets $\alpha \subset \{1, \ldots, d\}$ and x_{α} denotes the corresponding group of variables. This includes graphical models,

• mixture models

$$\sum_{k=1}^{K} \gamma_k f_k(x),$$

with $\sum_{k=1}^{K} \gamma_k = 1$, and the f_k in suitable model classes (possibly of different types). For example, a mixture of multiplicative models takes the form

$$\sum_{k=1}^{K} \gamma_k f_k^1(x_1) \dots f_k^d(x_d).$$

- 1 Representation of probabilistic models in tensor formats
- 2 Learning probability distributions with tree-based format

1 Representation of probabilistic models in tensor formats

2 Learning probability distributions with tree-based format

We discuss the representation in tensor formats of the distribution of a random variable $X = (X_1, \ldots, X_d)$ with density f(x) with respect to some measure μ with support $\mathcal{X} = \mathcal{X}_1 \times \ldots \times \mathcal{X}_d$ in \mathbb{R}^d .

This includes the case of a discrete random variable taking values in a subset of a finite or countable set \mathcal{X} , with measure $\rho = \sum_{x \in \mathcal{X}} \mathbb{P}(X = x) \delta_x$, by letting

$$f(x):=\mathbb{P}(X=x) \hspace{1em} ext{and} \hspace{1em} \mu:=\sum_{x\in\mathcal{X}}\delta_x,$$

and $f \in \mathbb{R}^{\mathcal{X}}$ is identified with an algebraic tensor $\mathbb{R}^{\#\mathcal{X}_1 \times \ldots \times \#\mathcal{X}_d}$.

Representation of mixtures

Assume X is a mixture of m random variables $Z^i = (Z_1^i, \ldots, Z_d^i)$ with weights γ_i , $1 \le i \le m$, such that $\sum_{i=1}^m \gamma_i = 1$. Then

$$f(x) = \sum_{i=1}^m \gamma_i f^i(x).$$

where f^i is the density of Z^i with respect to μ .

For any $\alpha \subset D$,

$$\mathsf{rank}_{\alpha}(f) \leq \sum_{i=1}^{m} \mathsf{rank}_{\alpha}(f^{i}),$$

and therefore, for any tree T,

$$\operatorname{rank}_{T}(f) \leq \sum_{i=1}^{m} \operatorname{rank}_{T}(f^{i}).$$

Assuming that Z^i has independent components, we have $f^i(x) = f_i^1(x_1) \dots f_i^d(x_d)$ with rank_T $(f^i) = (1, \dots, 1)$, and therefore, rank_T $(f) \leq (m, \dots, m)$.

Consider a discrete time Markov process $X = (X_1, \ldots, X_d)$ whose density is given by

$$f(x) = f_{d|d-1}(x_d|x_{d-1}) \dots f_{2|1}(x_2|x_1)f_1(x_1),$$

where f_1 is the density of X_1 and $f_{i|i-1}(\cdot|x_{i-1})$ is the density of X_i knowing $X_{i-1} = x_{i-1}$.

Let m_i be the rank of the bivariate function $(t, s) \mapsto f_{i|i-1}(t|s)$, i = 2, ..., d. We note that

- $rank_{\{1\}}(f) = rank(f_{2|1}) = m_2$,
- $\operatorname{rank}_{\{d\}}(f) = \operatorname{rank}(f_{d|d-1}) = m_d$
- for $2 \le \nu \le d 1$, $\operatorname{rank}_{\{\nu\}}(f) \le \operatorname{rank}(f_{\nu|\nu-1})\operatorname{rank}(f_{\nu+1|\nu}) = m_{\nu}m_{\nu+1}$.
- for $1 < \nu < d$, $rank_{\{1,...,\nu\}}(f) = rank(f_{\nu+1|\nu})$.

Representation of Markov processes

Consider the linear tree $T = \{\{1, \ldots, d\}, \{1\}, \ldots, \{d\}, \{1, 2\}, \ldots, \{1, \ldots, d-1\}\}$. We have $\operatorname{rank}_{T}(f) \leq \{1, m_{2}, m_{2}m_{3}, \ldots, m_{d-1}m_{d}, m_{d}, m_{3}, \ldots, m_{d}\}$.

Letting $m = \max_i m_i$, we then have

 $\operatorname{rank}_{\alpha}(f) \leq m^2$ for the leaves α and $\operatorname{rank}_{\alpha}(f) \leq m^2$ for internal nodes α ,

and a complexity in $O(m^4)$ for the representation in the tree-based format.

Note that the choice of tree is here crucial. By considering a permutation $T_{\sigma} = \{\sigma(\alpha) : \alpha \in T\}$ of T, we may observe an exponential dependance in d for the T_{σ} -rank.

Graphical models

Let us consider a graphical model with a density of the form

$$f(x) = \prod_{eta \in \mathcal{C}} g_{eta}(x_{eta})$$

where $\mathcal{C} \subset 2^D$ represents the cliques of a graph G with nodes $\{1\}, \ldots, \{d\}$.

Example

Graph G with cliques $C = \{\{1, 2, 3, 7\}, \{3, 4, 5, 6\}, \{4, 8\}, \{8, 9, 10\}\}$

and corresponding density

$$f(x) = g_{1,2,3,7}(x_1, x_2, x_3, x_7)g_{3,4,5,6}(x_3, x_4, x_5, x_6)g_{4,8}(x_4, x_8)g_{8,9,10}(x_8, x_9, x_{10})$$

Graphical models

Consider $\alpha \subset D$. Note that if $\alpha \in C$,

 $\operatorname{rank}_{\alpha}(g_{\alpha}) = 1.$

Also, for a clique $\beta \in \mathcal{C}$ such that either $\beta \subset \alpha$ or $\beta \subset \alpha^c$,

 $\operatorname{rank}_{\alpha}(g_{\beta}) = 1.$

Then let \mathcal{C}_{α} be the set of cliques that intersects both α and α^{c} ,

 $\mathcal{C}_{\alpha} = \{ \beta \in \mathcal{C} : \beta \cap \alpha \neq \emptyset, \beta \cap \alpha^{c} \neq \emptyset \}.$

Since $\mathcal{C} \setminus \mathcal{C}_{\alpha} = \{\beta \in \mathcal{C} : \beta \subset \alpha^{\mathsf{c}} \text{ or } \beta \subset \alpha\}$, we have

$$\operatorname{\mathsf{rank}}_{lpha}(f) = \operatorname{\mathsf{rank}}_{lpha}(\prod_{eta \in {\mathcal C}_{lpha}} g_{eta}) \leq \prod_{eta \in {\mathcal C}_{lpha}} \operatorname{\mathsf{rank}}_{lpha}(g_{eta}).$$

Assuming that the α -rank of all functions g_{β} are bounded by m, we have

$$\operatorname{rank}_{\alpha}(f) \leq m^{\#\mathcal{C}_{\alpha}}.$$

For the representation of f in tree-based format, a tree T should be chosen such that $\#C_{\alpha}$ is small for all $\alpha \in T$.

As an example, assume that the discrete random variables X_{ν} taking 5 possible instances $\{1, \ldots, 5\}$, and consider the graphical model

$$f(x) = g_{1,2,3,7}(x_1, x_2, x_3, x_7)g_{3,4,5,6}(x_3, x_4, x_5, x_6)g_{4,8}(x_4, x_8)g_{8,9,10}(x_8, x_9, x_{10})$$

f is identified with a tensor of size $5^{10} = 9,765,625$. The entries of the tensors g_{α} are generated randomly.

We first consider a random binary tree and compute a representation of the graphical model at precision 10^{-13} in the corresponding tree-based format.

We observe a storage complexity of 10, 595, 875, higher than the storage of the full tensor.

We now run a tree optimization algorithm and we obtain a new representation (at the same precision) with a storage complexity of 3, 275.

Representation of cumulative distribution function

The density is related to the cumulative distribution function by

$$F(x) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_d} f(t_1, \dots, t_d) d\mu_1(t_1) \dots d\mu_d(t_d).$$

If the density admits a representation

$$f(x) = \sum_{i \in I} a_i \prod_{\nu=1}^d \phi_{i_\nu}^{\nu}(x_\nu),$$

then

$$F(x) = \sum_{i \in I} a_i \prod_{\nu=1}^d \psi_{i_\nu}^{\nu}(x_{\nu}), \quad \text{with } \psi_{i_\nu}^{\nu}(x_{\nu}) = \int_{-\infty}^{x_{\nu}} \phi_{i_\nu}^{\nu}(t) d\mu_{\nu}(t).$$

Then if f has an exact representation in tree-based format \mathcal{T}_r^T , then F also has an exact representation in the same format \mathcal{T}_r^T , and

$$\operatorname{rank}_{T}(F) \leq \operatorname{rank}_{T}(f)$$

Representation of copulas

By Sklar's theorem, the cumulative distribution function F of (X_1, \ldots, X_d) can be written

$$F(x) = C(F_1(x_1), \ldots, F_d(x_d)),$$

where the function C is a copula of (X_1, \ldots, X_d) .

If the copula admits a representation

$$C(u) = \sum_{i \in I} a_i \prod_{\nu=1}^d \phi_{i_\nu}^{\nu}(u_{\nu}),$$

then

$$F(x) = \sum_{i \in I} a_i \prod_{\nu=1}^d \phi_{i_\nu}^{\nu}(F_{\nu}(x_{\nu})).$$

Then if *C* admits an exact representation in tree-based format \mathcal{T}_r^T , *F* also admits an exact representation in \mathcal{T}_r^T .

- Representation of probabilistic models in tensor formats
- 2 Learning probability distributions with tree-based format

We consider the approximation of a probability distribution of a random vector X from independent samples of this distribution.

We assume that the distribution of X has a density f with respect to a measure μ with support \mathcal{X} .

We introduce a contrast function $\gamma: L^0_\mu(\mathcal{X}) \times \mathcal{X} \to \mathbb{R}$ and the associated risk functional $\mathcal{R}: L^0_\mu(\mathcal{X}) \to \mathbb{R}$ defined by

$$\mathcal{R}(\mathbf{v}) = \mathbb{E}(\gamma(\mathbf{v}, X)) = \int \gamma(\mathbf{v}, x) d\mu(x),$$

such that the minimizer of $\mathcal R$ over the set of μ -measurable functions is the density f.

Given independent samples $\{x_i\}_{i=1}^n$ of X, an approximation \hat{f}_n^F of the density is then obtained by minimizing the empirical risk (a statistical estimation of the risk)

$$\hat{\mathcal{R}}_n(\mathbf{v}) = \frac{1}{n} \sum_{i=1}^n \gamma(\mathbf{v}, \mathbf{x}_i)$$

over a certain model class F, here the class of functions in tree-based tensor format.

Maximum likelihood estimation

Choosing the contrast function as $\gamma(v, x) = -\log(v(x))$ leads to

$$\mathcal{R}(v) = \int -\log(v(x))f(x)d\mu(x) = \int (-\log(f(x)) - \log(\frac{v(x)}{f(x)}))f(x)d\mu(x)$$

so that

$$\mathcal{R}(\mathbf{v}) = \mathcal{R}(f) + D_{\mathsf{KL}}(f \| \mathbf{v}),$$

with $D_{\mathsf{KL}}(f \| v)$ the Kullback-Leibler divergence between f and v.

The empirical risk

$$\hat{\mathcal{R}}_n(v) = -\frac{1}{n} \sum_{i=1}^n \log(v(x_i))$$

corresponds to the log-likelihood.

L^2 density estimation

With the contrast function as

$$\gamma(\mathbf{v}, \mathbf{x}) = \|\mathbf{v}\|_{L^2_{\mu}}^2 - 2\mathbf{v}(\mathbf{x}),$$

we have

$$\mathcal{R}(\mathbf{v}) = \mathcal{R}(f) + \|f - \mathbf{v}\|_{L^2_{\mu}}^2,$$

so that the minimization of $\mathcal{R}(v)$ is equivalent to the minimization of the distance (in L^2_{μ} norm) between v and the density f.

The empirical risk is

$$\hat{\mathcal{R}}_n(\mathbf{v}) = \|\mathbf{v}\|_{L^2_{\mu}}^2 - \frac{2}{n} \sum_{i=1}^n \mathbf{v}(x_i).$$

Note that for discrete random variables, $\|v\|_{L^2_{\mu}}^2 = \sum_{x \in \mathcal{X}} v(x)^2$ which coincides with the Frobenius norm when identifying v with a tensor in $\mathbb{R}^{\mathcal{X}}$.

L^2 density estimation

Consider as a model class a finite-dimensional space F of L^2_{μ} with an orthonormal basis $\{\varphi_k\}_{k=1}^m$.

The minimizer f^F of the risk is given by the orthogonal projection onto F

$$f^F(x) = \sum_{k=1}^m a_k \varphi_k(x), \quad a_k = (\varphi_k, f)_{L^2_\mu} = \int \varphi_k(x) f(x) d\mu(x) = \mathbb{E}(\varphi_k(X)).$$

The empirical risk for $v = \sum_{k=1}^{m} a_k \varphi_k(x) = \varphi(x)^T a$ is

$$\hat{\mathcal{R}}_n(\mathbf{v}) = \|\mathbf{a}\|_2^2 - \frac{2}{n} \sum_{i=1}^n \varphi(\mathbf{x})^T \mathbf{a},$$

so that the minimizer f_n^F of the empirical risk is given by

$$f_n^F(x) = \sum_{k=1}^m \hat{a}_k \varphi_k(x), \quad \hat{a}_k = \frac{1}{n} \sum_{i=1}^n \varphi_k(x_i).$$

Let V_{ν} be a subspace of $L^2_{\mu\nu}(\mathcal{X}_{\nu})$ and let us consider the tensor space

$$V=V^1\otimes\ldots\otimes V^d,$$

a subspace of $L^2_{\mu}(\mathcal{X})$.

We let $\{\phi_{i_{\nu}}^{
u}:i\in I^{
u}\}$ be a basis of $V_{
u}$, typically polynomials, wavelets...

We consider the model class of tree-based tensors

$$\mathcal{T}_r^{\mathcal{T}} = \{ v \in V : \mathsf{rank}_{\mathcal{T}}(v) \leq r \}$$

where T is a dimension partition tree and r a tuple of ranks.

Tree-based formats

A function v in \mathcal{T}_r^T admits the following multilinear parametrization

$$v(x) = \sum_{\substack{i_{\alpha} \in I^{\alpha} \\ \alpha \in \mathcal{L}(T)}} \sum_{\substack{1 \le k_{\beta} \le r_{\beta} \\ \beta \in T}} \prod_{\alpha \in T \setminus \mathcal{L}(T)} a^{\alpha}_{(k_{\beta})_{\beta \in S(\alpha)}, k_{\alpha}} \prod_{\alpha \in \mathcal{L}(T)} a^{\alpha}_{i_{\alpha}, k_{\alpha}} \phi^{\alpha}_{i_{\alpha}}(x_{\alpha}) = \Psi(x)((a^{\alpha})_{\alpha \in T})$$

where each parameter a^{α} is in a tensor space $\mathbb{R}^{K^{\alpha}}$ and $\Psi(x)$ is a multilinear map.

For a given α , the partial map

ι

$$a^{lpha} \in \mathbb{R}^{\kappa^{lpha}} \mapsto \Psi(\cdot)((a^{lpha})_{lpha \in T})$$

is linear and can be identified with a tensor $\Psi^{lpha}(x)\in \mathbb{R}^{K^{lpha}}$ such that

$$\Psi(\cdot)((a^{\alpha})_{\alpha\in T}) = \sum_{k\in K^{\alpha}} \Psi_{k}^{\alpha}(x)a_{k}^{\alpha} := (\Psi^{\alpha}(x), a^{\alpha})_{\ell_{2}}.$$

The empirical risk minimization problem over the model class $\mathcal{T}_r^{\mathcal{T}}$

$$\min_{(a^{\alpha})_{\alpha\in T}} \frac{1}{n} \sum_{i=1}^{n} \gamma(\Psi(\cdot)((a^{\alpha})_{\alpha\in T}), x_i)$$

can be solved using an alternating minimization algorithm, solving at each step

$$\min_{\boldsymbol{a}^{\alpha}} \frac{1}{n} \sum_{i=1}^{n} \gamma((\Psi^{\alpha}(\cdot), \boldsymbol{a}^{\alpha})_{\ell_{2}}, \boldsymbol{x}_{i})$$

for fixed a^{β} , $\beta \in T \setminus \{\alpha\}$.

For a given α , it is possible to obtain a representation of a tensor v in \mathcal{T}^{T} such that

$$\mathbf{v}(x) = \sum_{k \in K^{lpha}} \Psi_k^{lpha}(x) \mathbf{a}_k^{lpha},$$

where $\{\Psi_k^{\alpha}(x)\}_{k\in K^{\alpha}}$ form an orthonormal system in L^2_{μ} .

The tensor a^{α} minimizing the empirical risk therefore admits an explicit expression

$$a^{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \Psi^{\alpha}(x_i).$$

Sparsity in the parameters can be easily exploited. For a given subset $A \subset K^{\alpha}$, the optimization of the empirical risk over the set of tensors

$$\{a^{\alpha} \in \mathbb{R}^{K^{\alpha}} : a_k^{\alpha} = 0 \text{ for } k \notin A\},\$$

yields a solution

$$a_k^{\alpha} = \frac{1}{n} \sum_{i=1}^n \Psi^{\alpha}(x_i)_k \mathbf{1}_{k \in A}.$$

The associated risk can be evaluated by cross-validation using the leave-one estimate

$$\mathcal{R}_n^{loo}(v) = rac{-n^2}{(1-n)^2} \|v\|^2 + rac{2n-1}{n(n-1)^2} \sum_{i=1}^n \sum_{k \in A} (\Psi_k^{lpha}(x_i))^2$$

In practice, we consider a collection of candidate sets A_1, \ldots, A_M in K^{α} and retain the one that minimizes the cross-validation estimate.

Rank adaptation

We apply the strategy introduce in the supervised learning setting.

We construct a sequence of approximations in tree-based format

$$u^m \in \mathcal{T}_{r^m}^T$$

with increasing ranks

$$\begin{cases} r_{\alpha}^{m+1} = r_{\alpha}^{m} + 1 & \text{if } \alpha \in T_{m}^{\theta} \\ r_{\alpha}^{m+1} = r_{\alpha}^{m} & \text{if } \alpha \notin T_{m}^{\theta} \end{cases}$$

where T_m^{θ} is a subset of nodes in T which is selected such that

$$\mathcal{T}^{ heta}_{m} = \left\{ lpha : arepsilon^{lpha}_{r^m_{lpha}}(ilde{u}) \geq heta \max_{eta \in \mathcal{T}} arepsilon^{eta}_{r^m_{eta}}(ilde{u})
ight\}$$

where $\varepsilon^{\beta}_{r^{m}_{\beta}}(\tilde{u})$ is an estimation of the truncation error

$$arepsilon_{r^m_lpha}^{lpha}(u) = \min_{\mathrm{rank}_lpha(v) \leq r^m_lpha} \mathcal{R}(v) - \mathcal{R}(u)$$

with \tilde{u} obtained by a correction of the current approximation u^m .

Rank and tree adaptation

For rank and tree adaptation, we apply the same strategy as in the supervised learning setting.

We start with an initial tree T and learn an approximation $v \in T_r^T$ with rank r = (1, ..., 1). Then we repeat the following steps:

• compute a correction of v to obtain a better approximation \tilde{u} , compute the truncation errors

$$\eta_{\alpha} = \min_{\operatorname{rank}_{\alpha}(v) \leq r_{\alpha}^{m}} \mathcal{R}(v) - \mathcal{R}(\tilde{u})$$

and increase by one the ranks r_{α} for

$$\alpha \in T_{\theta} = \left\{ \alpha : \eta_{\alpha} \geq \theta \max_{\beta \in T} \eta_{\beta} \right\}$$

- learn an approximation v in the format \mathcal{T}_r^T (with a good initialization),
- optimize the tree for reducing the storage complexity of v (using a stochastic algorithm): if a better tree T' is found, change the representation of v and set $r = \operatorname{rank}_{T'}(v)$ and T = T'.

We consider truncated normal distribution with zero mean and covariance matrix Σ . Its support is $\mathcal{X} = \times_{\nu=1}^{6} [-5\sigma_{\nu}, 5\sigma_{\nu}]$, with $\sigma_{\nu}^2 = \Sigma_{\nu\nu}$, and its density (with respect to Lebesgue measure) is

$$f(x)\mathrm{d}\mu(x)\sim \exp\left(-\frac{1}{2}x^{\mathsf{T}}\Sigma^{-1}x
ight)\mathbf{1}_{x\in\mathcal{X}},$$

We consider polynomial approximation spaces $V^{\nu} = \mathbb{P}_{50}(\mathcal{X}_{\nu})$.

Illustration: truncated normal distribution

Consider

$$\Sigma = egin{pmatrix} 2 & 0 & 0.5 & 1 & 0 & 0.5 \ 0 & 1 & 0 & 0 & 0.5 & 0 \ 0.5 & 0 & 2 & 0 & 0 & 1 \ 1 & 0 & 0 & 3 & 0 & 0 \ 0 & 0.5 & 0 & 0 & 1 & 0 \ 0.5 & 0 & 1 & 0 & 0 & 2 \end{pmatrix}$$

After a permutation (3, 6, 1, 4, 2, 5) of its rows and columns, it comes the matrix

$$\begin{pmatrix} 2 & 1 & 0.5 & 0 & 0 & 0 \\ 1 & 2 & 0.5 & 0 & 0 & 0 \\ 0.5 & 0.5 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0.5 \\ 0 & 0 & 0 & 0 & 0.5 & 1 \end{pmatrix}$$

 (X_1, X_3, X_4, X_6) and (X_2, X_5) are independent, as well as X_4 and (X_3, X_6) , so that

$$f(x) = f_{1,3,4,6}(x_1, x_3, x_4, x_6)f_{2,5}(x_2, x_5) = f_{4,1}(x_4, x_1)f_{1,3,6}(x_1, x_3, x_6)f_{2,5}(x_2, x_5)$$

Illustration: truncated normal distribution

n	$Risk\times 10^{-2}$	L ² -error	Т	C(T,r)
10 ²	[-5.50, 119]	[0.53, 4.06]	Fig. (a)	[311, 311]
10 ³	[-7.29, -5.93]	[0.22, 0.47]	Fig. (b)	[311, 637]
10^{4}	[-7.60, -6.85]	[0.11, 0.33]	Fig. (c)	[521, 911]
10^{5}	[-7.68, -7.66]	[0.04, 0.07]	Fig. (c)	[911, 1213]
10 ⁶	[-7.70, -7.69]	[0.01, 0.01]	Fig. (c)	[1283, 1546]

Table: Ranges over 10 trials

Figure: (a) Best tree over 10 trials for $n = 10^2$