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Unsupervised learning

We consider the problem of the estimation of the probability distribution ρ of a
high-dimensional random vector X = (X1, . . . ,Xd) from samples of the distribution.

The distribution is characterized by a density

f (x1, . . . , xd)

with respect to a measure µ.

In high dimension, this requires using suitable model classes (or hypothesis sets).

2 / 32



Typical model classes

multiplicative models
f 1(x1) . . . f d(xd),

which corresponds to the hypothesis that the components of X are independent,

general multiplicative models ∏
α∈T

f α(xα),

where T is a collection of subsets α ⊂ {1, . . . , d} and xα denotes the corresponding
group of variables. This includes graphical models,

mixture models
K∑

k=1

γk fk(x),

with
∑K

k=1 γk = 1, and the fk in suitable model classes (possibly of different types).
For example, a mixture of multiplicative models takes the form

K∑
k=1

γk f
1
k (x1) . . . f dk (xd).
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Representation of probabilistic models in tensor formats

We discuss the representation in tensor formats of the distribution of a random variable
X = (X1, . . . ,Xd) with density f (x) with respect to some measure µ with support
X = X1 × . . .Xd in Rd .

This includes the case of a discrete random variable taking values in a subset of a finite
or countable set X , with measure ρ =

∑
x∈X P(X = x)δx , by letting

f (x) := P(X = x) and µ :=
∑
x∈X

δx ,

and f ∈ RX is identified with an algebraic tensor R#X1×...×#Xd .
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Representation of mixtures

Assume X is a mixture of m random variables Z i = (Z i
1, . . . ,Z

i
d) with weights γi ,

1 ≤ i ≤ m, such that
∑m

i=1 γi = 1. Then

f (x) =
m∑
i=1

γi f
i (x).

where f i is the density of Z i with respect to µ.

For any α ⊂ D,

rankα(f ) ≤
m∑
i=1

rankα(f i ),

and therefore, for any tree T ,

rankT (f ) ≤
m∑
i=1

rankT (f i ).

Assuming that Z i has independent components, we have f i (x) = f 1
i (x1) . . . f di (xd) with

rankT (f i ) = (1, . . . , 1), and therefore, rankT (f ) ≤ (m, . . . ,m).
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Representation of Markov processes

Consider a discrete time Markov process X = (X1, . . . ,Xd) whose density is given by

f (x) = fd|d−1(xd |xd−1) . . . f2|1(x2|x1)f1(x1),

where f1 is the density of X1 and fi|i−1(·|xi−1) is the density of Xi knowing Xi−1 = xi−1.

Let mi be the rank of the bivariate function (t, s) 7→ fi|i−1(t|s), i = 2, . . . , d . We note
that

rank{1}(f ) = rank(f2|1) = m2,

rank{d}(f ) = rank(fd|d−1) = md

for 2 ≤ ν ≤ d − 1, rank{ν}(f ) ≤ rank(fν|ν−1) rank(fν+1|ν) = mνmν+1.

for 1 < ν < d , rank{1,...,ν}(f ) = rank(fν+1|ν).
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Representation of Markov processes

Consider the linear tree T = {{1, . . . , d}, {1}, . . . , {d}, {1, 2}, . . . , {1, . . . , d − 1}}. We
have rankT (f ) ≤ {1,m2,m2m3, . . . ,md−1md ,md ,m3, . . . ,md}.

{1, . . . , d}

{1, . . . , d − 1}

{1, 2}

{1} {2}

{d − 1}

{d}

Letting m = maxi mi , we then have

rankα(f ) ≤ m2 for the leaves α and

rankα(f ) ≤ m2 for internal nodes α,

and a complexity in O(m4) for the representation in the tree-based format.

Note that the choice of tree is here crucial. By considering a permutation
Tσ = {σ(α) : α ∈ T} of T , we may observe an exponential dependance in d for the
Tσ-rank.
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Graphical models

Let us consider a graphical model with a density of the form

f (x) =
∏
β∈C

gβ(xβ)

where C ⊂ 2D represents the cliques of a graph G with nodes {1}, . . . , {d}.

Example
Graph G with cliques C = {{1, 2, 3, 7}, {3, 4, 5, 6}, {4, 8}, {8, 9, 10}}
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and corresponding density

f (x) = g1,2,3,7(x1, x2, x3, x7)g3,4,5,6(x3, x4, x5, x6)g4,8(x4, x8)g8,9,10(x8, x9, x10)
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Graphical models

Consider α ⊂ D. Note that if α ∈ C,

rankα(gα) = 1.

Also, for a clique β ∈ C such that either β ⊂ α or β ⊂ αc ,

rankα(gβ) = 1.

Then let Cα be the set of cliques that intersects both α and αc ,

Cα = {β ∈ C : β ∩ α 6= ∅, β ∩ αc 6= ∅}.

Since C \ Cα = {β ∈ C : β ⊂ αc or β ⊂ α}, we have

rankα(f ) = rankα(
∏
β∈Cα

gβ) ≤
∏
β∈Cα

rankα(gβ).

Assuming that the α-rank of all functions gβ are bounded by m, we have

rankα(f ) ≤ m#Cα .

For the representation of f in tree-based format, a tree T should be chosen such that
#Cα is small for all α ∈ T .
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Graphical models

As an example, assume that the discrete random variables Xν taking 5 possible instances
{1, . . . , 5}, and consider the graphical model

f (x) = g1,2,3,7(x1, x2, x3, x7)g3,4,5,6(x3, x4, x5, x6)g4,8(x4, x8)g8,9,10(x8, x9, x10)

f is identified with a tensor of size 510 = 9, 765, 625. The entries of the tensors gα are
generated randomly.
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Graphical models

We first consider a random binary tree and compute a representation of the graphical
model at precision 10−13 in the corresponding tree-based format.

We observe a storage complexity of 10, 595, 875, higher than the storage of the full
tensor.
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(a) Dimension tree.
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(b) Representation rank.
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Graphical models

We now run a tree optimization algorithm and we obtain a new representation (at the
same precision) with a storage complexity of 3, 275.
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(c) Optimized dimension tree.
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(d) Representation rank.
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Representation of cumulative distribution function

The density is related to the cumulative distribution function by

F (x) =

∫ x1

−∞
. . .

∫ xd

−∞
f (t1, . . . , td)dµ1(t1) . . . dµd(td).

If the density admits a representation

f (x) =
∑
i∈I

ai

d∏
ν=1

φνiν (xν),

then

F (x) =
∑
i∈I

ai

d∏
ν=1

ψνiν (xν), with ψνiν (xν) =

∫ xν

−∞
φνiν (t)dµν(t).

Then if f has an exact representation in tree-based format T T
r , then F also has an exact

representation in the same format T T
r , and

rankT (F ) ≤ rankT (f )

.
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Representation of copulas

By Sklar’s theorem, the cumulative distribution function F of (X1, . . . ,Xd) can be written

F (x) = C(F1(x1), . . . ,Fd(xd)),

where the function C is a copula of (X1, . . . ,Xd).

If the copula admits a representation

C(u) =
∑
i∈I

ai

d∏
ν=1

φνiν (uν),

then

F (x) =
∑
i∈I

ai

d∏
ν=1

φνiν (Fν(xν)).

Then if C admits an exact representation in tree-based format T T
r , F also admits an

exact representation in T T
r .
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Contrast function and risk

We consider the approximation of a probability distribution of a random vector X from
independent samples of this distribution.

We assume that the distribution of X has a density f with respect to a measure µ with
support X .

We introduce a contrast function γ : L0
µ(X )×X → R and the associated risk functional

R : L0
µ(X )→ R defined by

R(v) = E(γ(v ,X )) =

∫
γ(v , x)dµ(x),

such that the minimizer of R over the set of µ-measurable functions is the density f .
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Empirical risk minimization

Given independent samples {xi}ni=1 of X , an approximation f̂ Fn of the density is then
obtained by minimizing the empirical risk (a statistical estimation of the risk)

R̂n(v) =
1
n

n∑
i=1

γ(v , xi )

over a certain model class F , here the class of functions in tree-based tensor format.
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Maximum likelihood estimation

Choosing the contrast function as γ(v , x) = − log(v(x)) leads to

R(v) =

∫
− log(v(x))f (x)dµ(x) =

∫
(− log(f (x))− log(

v(x)

f (x)
))f (x)dµ(x)

so that
R(v) = R(f ) + DKL(f ‖v),

with DKL(f ‖v) the Kullback-Leibler divergence between f and v .

The empirical risk

R̂n(v) = −1
n

n∑
i=1

log(v(xi ))

corresponds to the log-likelihood.
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L2 density estimation

With the contrast function as

γ(v , x) = ‖v‖2L2
µ
− 2v(x),

we have
R(v) = R(f ) + ‖f − v‖2L2

µ
,

so that the minimization of R(v) is equivalent to the minimization of the distance (in L2
µ

norm) between v and the density f .

The empirical risk is

R̂n(v) = ‖v‖2L2
µ
− 2

n

n∑
i=1

v(xi ).

Note that for discrete random variables, ‖v‖2L2
µ

=
∑

x∈X v(x)2 which coincides with the

Frobenius norm when identifying v with a tensor in RX .
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L2 density estimation

Consider as a model class a finite-dimensional space F of L2
µ with an orthonormal basis

{ϕk}mk=1.

The minimizer f F of the risk is given by the orthogonal projection onto F

f F (x) =
m∑

k=1

akϕk(x), ak = (ϕk , f )L2
µ

=

∫
ϕk(x)f (x)dµ(x) = E(ϕk(X )).

The empirical risk for v =
∑m

k=1 akϕk(x) = ϕ(x)Ta is

R̂n(v) = ‖a‖22 −
2
n

n∑
i=1

ϕ(x)Ta,

so that the minimizer f Fn of the empirical risk is given by

f Fn (x) =
m∑

k=1

âkϕk(x), âk =
1
n

n∑
i=1

ϕk(xi ).
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Tree-based formats

Let Vν be a subspace of L2
µν

(Xν) and let us consider the tensor space

V = V 1 ⊗ . . .⊗ V d ,

a subspace of L2
µ(X ).

We let {φνiν : i ∈ I ν} be a basis of Vν , typically polynomials, wavelets...

We consider the model class of tree-based tensors

T T
r = {v ∈ V : rankT (v) ≤ r}

where T is a dimension partition tree and r a tuple of ranks.
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Tree-based formats

A function v in T T
r admits the following multilinear parametrization

v(x) =
∑
iα∈Iα
α∈L(T )

∑
1≤kβ≤rβ
β∈T

∏
α∈T\L(T )

aα(kβ )β∈S(α),kα

∏
α∈L(T )

aαiα,kαφ
α
iα(xα) = Ψ(x)((aα)α∈T )

where each parameter aα is in a tensor space RKα

and Ψ(x) is a multilinear map.

a1,2,3,4,5

a1,2,3

a1 a2,3

a2 a3

a4,5

a4 a5

For a given α, the partial map

aα ∈ RKα

7→ Ψ(·)((aα)α∈T )

is linear and can be identified with a tensor Ψα(x) ∈ RKα

such that

Ψ(·)((aα)α∈T ) =
∑
k∈Kα

Ψα
k (x)aαk := (Ψα(x), aα)`2 .
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Learning with tree-based formats

The empirical risk minimization problem over the model class T T
r

min
(aα)α∈T

1
n

n∑
i=1

γ(Ψ(·)((aα)α∈T ), xi )

can be solved using an alternating minimization algorithm, solving at each step

min
aα

1
n

n∑
i=1

γ((Ψα(·), aα)`2 , xi )

for fixed aβ , β ∈ T \ {α}.
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L2 density estimation with tree-based formats

For a given α, it is possible to obtain a representation of a tensor v in T T such that

v(x) =
∑
k∈Kα

Ψα
k (x)aαk ,

where {Ψα
k (x)}k∈Kα form an orthonormal system in L2

µ.

The tensor aα minimizing the empirical risk therefore admits an explicit expression

aα =
1
n

n∑
i=1

Ψα(xi ).
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Exploiting sparsity

Sparsity in the parameters can be easily exploited. For a given subset A ⊂ Kα, the
optimization of the empirical risk over the set of tensors

{aα ∈ RKα

: aαk = 0 for k /∈ A},

yields a solution

aαk =
1
n

n∑
i=1

Ψα(xi )k1k∈A.

The associated risk can be evaluated by cross-validation using the leave-one estimate

Rloo
n (v) =

−n2

(1− n)2 ‖v‖
2 +

2n − 1
n(n − 1)2

n∑
i=1

∑
k∈A

(Ψα
k (xi ))2

In practice, we consider a collection of candidate sets A1, . . . ,AM in Kα and retain the
one that minimizes the cross-validation estimate.
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Rank adaptation

We apply the strategy introduce in the supervised learning setting.

We construct a sequence of approximations in tree-based format

um ∈ T T
rm

with increasing ranks {
rm+1
α = rmα + 1 if α ∈ T θ

m

rm+1
α = rmα if α /∈ T θ

m

where T θ
m is a subset of nodes in T which is selected such that

T θ
m =

{
α : εαrmα (ũ) ≥ θmax

β∈T
εβrm

β
(ũ)

}
where εβrm

β
(ũ) is an estimation of the truncation error

εαrmα (u) = min
rankα(v)≤rmα

R(v)−R(u)

with ũ obtained by a correction of the current approximation um.
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Rank and tree adaptation

For rank and tree adaptation, we apply the same strategy as in the supervised learning
setting.

We start with an initial tree T and learn an approximation v ∈ T T
r with rank

r = (1, ..., 1). Then we repeat the following steps:

compute a correction of v to obtain a better approximation ũ, compute the
truncation errors

ηα = min
rankα(v)≤rmα

R(v)−R(ũ)

and increase by one the ranks rα for

α ∈ Tθ =

{
α : ηα ≥ θmax

β∈T
ηβ

}
learn an approximation v in the format T T

r (with a good initialization),

optimize the tree for reducing the storage complexity of v (using a stochastic
algorithm): if a better tree T ′ is found, change the representation of v and set
r = rankT ′(v) and T = T ′.
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Illustration: truncated normal distribution

We consider truncated normal distribution with zero mean and covariance matrix Σ. Its
support is X = ×6

ν=1[−5σν , 5σν ], with σ2
ν = Σνν , and its density (with respect to

Lebesgue measure) is

f (x)dµ(x) ∼ exp
(
−1
2
xTΣ−1x

)
1x∈X ,

We consider polynomial approximation spaces V ν = P50(Xν).
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Illustration: truncated normal distribution

Consider

Σ =


2 0 0.5 1 0 0.5
0 1 0 0 0.5 0
0.5 0 2 0 0 1
1 0 0 3 0 0
0 0.5 0 0 1 0
0.5 0 1 0 0 2

 .

After a permutation (3, 6, 1, 4, 2, 5) of its rows and columns, it comes the matrix
2 1 0.5 0 0 0
1 2 0.5 0 0 0
0.5 0.5 2 1 0 0
0 0 1 3 0 0
0 0 0 0 1 0.5
0 0 0 0 0.5 1


(X1,X3,X4,X6) and (X2,X5) are independent, as well as X4 and (X3,X6), so that

f (x) = f1,3,4,6(x1, x3, x4, x6)f2,5(x2, x5) = f4,1(x4, x1)f1,3,6(x1, x3, x6)f2,5(x2, x5)

.
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Illustration: truncated normal distribution

n Risk × 10−2 L2-error T C(T , r)

102 [−5.50, 119] [0.53, 4.06] Fig. (a) [311, 311]
103 [−7.29,−5.93] [0.22, 0.47] Fig. (b) [311, 637]
104 [−7.60,−6.85] [0.11, 0.33] Fig. (c) [521, 911]
105 [−7.68,−7.66] [0.04, 0.07] Fig. (c) [911, 1213]
106 [−7.70,−7.69] [0.01, 0.01] Fig. (c) [1283, 1546]

Table: Ranges over 10 trials

{1, 2, 3, 4, 5, 6}
{2, 3, 4, 5, 6}

{2, 4, 5, 6}
{2, 4, 5}

{4, 5}

{4} {5}
{2}

{6}
{3}

{1}

Figure: (a) Best tree over 10 trials for n = 102

{1, 2, 3, 4, 5, 6}

{1, 3, 4, 6}
{3, 4, 6}
{3, 6}

{6} {3}
{4}
{1}

{2, 5}

{2} {5}

Figure: (b) Best tree over 10 trials for n = 103

{1, 2, 3, 4, 5, 6}

{1, 3, 4, 6}
{1, 4}

{1} {4}

{3, 6}

{3} {6}

{2, 5}

{2} {5}

Figure: (c) Best tree over 10 trials for n = 104, 105, 106
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