Workshop "Apprentissage et simulation en grande dimension", Airbus Group, June 24-26, 2019

Deep tensor networks

Part IV: Unsupervised learning

Anthony Nouy

Centrale Nantes, Laboratoire de Mathématiques Jean Leray

Unsupervised learning

We consider the problem of the estimation of the probability distribution ρ of a high-dimensional random vector $X=\left(X_{1}, \ldots, X_{d}\right)$ from samples of the distribution.

The distribution is characterized by a density

$$
f\left(x_{1}, \ldots, x_{d}\right)
$$

with respect to a measure μ.
In high dimension, this requires using suitable model classes (or hypothesis sets).

Typical model classes

- multiplicative models

$$
f^{1}\left(x_{1}\right) \ldots f^{d}\left(x_{d}\right)
$$

which corresponds to the hypothesis that the components of X are independent,

- general multiplicative models

$$
\prod_{\alpha \in T} f^{\alpha}\left(x_{\alpha}\right)
$$

where T is a collection of subsets $\alpha \subset\{1, \ldots, d\}$ and x_{α} denotes the corresponding group of variables. This includes graphical models,

- mixture models

$$
\sum_{k=1}^{K} \gamma_{k} f_{k}(x)
$$

with $\sum_{k=1}^{K} \gamma_{k}=1$, and the f_{k} in suitable model classes (possibly of different types). For example, a mixture of multiplicative models takes the form

$$
\sum_{k=1}^{K} \gamma_{k} f_{k}^{1}\left(x_{1}\right) \ldots f_{k}^{d}\left(x_{d}\right)
$$

Outline

(1) Representation of probabilistic models in tensor formats
(2) Learning probability distributions with tree-based format

Outline

(1) Representation of probabilistic models in tensor formats
(2) Learning probability distributions with tree-based format

Representation of probabilistic models in tensor formats

We discuss the representation in tensor formats of the distribution of a random variable $X=\left(X_{1}, \ldots, X_{d}\right)$ with density $f(x)$ with respect to some measure μ with support $\mathcal{X}=\mathcal{X}_{1} \times \ldots \mathcal{X}_{d}$ in \mathbb{R}^{d}.

This includes the case of a discrete random variable taking values in a subset of a finite or countable set \mathcal{X}, with measure $\rho=\sum_{x \in \mathcal{X}} \mathbb{P}(X=x) \delta_{x}$, by letting

$$
f(x):=\mathbb{P}(X=x) \quad \text { and } \quad \mu:=\sum_{x \in \mathcal{X}} \delta_{x},
$$

and $f \in \mathbb{R}^{\mathcal{X}}$ is identified with an algebraic tensor $\mathbb{R}^{\# \mathcal{X}_{1} \times \ldots \times \# \mathcal{X}_{d}}$.

Representation of mixtures

Assume X is a mixture of m random variables $Z^{i}=\left(Z_{1}^{i}, \ldots, Z_{d}^{i}\right)$ with weights γ_{i}, $1 \leq i \leq m$, such that $\sum_{i=1}^{m} \gamma_{i}=1$. Then

$$
f(x)=\sum_{i=1}^{m} \gamma_{i} f^{i}(x) .
$$

where f^{i} is the density of Z^{i} with respect to μ.
For any $\alpha \subset D$,

$$
\operatorname{rank}_{\alpha}(f) \leq \sum_{i=1}^{m} \operatorname{rank}_{\alpha}\left(f^{i}\right),
$$

and therefore, for any tree T,

$$
\operatorname{rank}_{T}(f) \leq \sum_{i=1}^{m} \operatorname{rank}_{T}\left(f^{i}\right)
$$

Assuming that Z^{i} has independent components, we have $f^{i}(x)=f_{i}^{1}\left(x_{1}\right) \ldots f_{i}^{d}\left(x_{d}\right)$ with $\operatorname{rank}_{T}\left(f^{i}\right)=(1, \ldots, 1)$, and therefore, $\operatorname{rank}_{T}(f) \leq(m, \ldots, m)$.

Representation of Markov processes

Consider a discrete time Markov process $X=\left(X_{1}, \ldots, X_{d}\right)$ whose density is given by

$$
f(x)=f_{d \mid d-1}\left(x_{d} \mid x_{d-1}\right) \ldots f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) f_{1}\left(x_{1}\right),
$$

where f_{1} is the density of X_{1} and $f_{i \mid i-1}\left(\cdot \mid x_{i-1}\right)$ is the density of X_{i} knowing $X_{i-1}=x_{i-1}$.
Let m_{i} be the rank of the bivariate function $(t, s) \mapsto f_{i \mid i-1}(t \mid s), i=2, \ldots, d$. We note that

- $\operatorname{rank}_{\{1\}}(f)=\operatorname{rank}\left(f_{2 \mid 1}\right)=m_{2}$,
- $\operatorname{rank}_{\{d\}}(f)=\operatorname{rank}\left(f_{d \mid d-1}\right)=m_{d}$
- for $2 \leq \nu \leq d-1, \operatorname{rank}_{\{\nu\}}(f) \leq \operatorname{rank}\left(f_{\nu \mid \nu-1}\right) \operatorname{rank}\left(f_{\nu+1 \mid \nu}\right)=m_{\nu} m_{\nu+1}$.
- for $1<\nu<d, \operatorname{rank}_{\{1, \ldots, \nu\}}(f)=\operatorname{rank}\left(f_{\nu+1 \mid \nu}\right)$.

Representation of Markov processes

Consider the linear tree $T=\{\{1, \ldots, d\},\{1\}, \ldots,\{d\},\{1,2\}, \ldots,\{1, \ldots, d-1\}\}$. We have $\operatorname{rank}_{T}(f) \leq\left\{1, m_{2}, m_{2} m_{3}, \ldots, m_{d-1} m_{d}, m_{d}, m_{3}, \ldots, m_{d}\right\}$.

Letting $m=\max _{i} m_{i}$, we then have

$$
\begin{aligned}
& \operatorname{rank}_{\alpha}(f) \leq m^{2} \text { for the leaves } \alpha \text { and } \\
& \operatorname{rank}_{\alpha}(f) \leq m^{2} \text { for internal nodes } \alpha
\end{aligned}
$$

and a complexity in $O\left(m^{4}\right)$ for the representation in the tree-based format.
Note that the choice of tree is here crucial. By considering a permutation $T_{\sigma}=\{\sigma(\alpha): \alpha \in T\}$ of T, we may observe an exponential dependance in d for the T_{σ}-rank.

Graphical models

Let us consider a graphical model with a density of the form

$$
f(x)=\prod_{\beta \in \mathcal{C}} g_{\beta}\left(x_{\beta}\right)
$$

where $\mathcal{C} \subset 2^{D}$ represents the cliques of a graph G with nodes $\{1\}, \ldots,\{d\}$.

Example

Graph G with cliques $\mathcal{C}=\{\{1,2,3,7\},\{3,4,5,6\},\{4,8\},\{8,9,10\}\}$

and corresponding density

$$
f(x)=g_{1,2,3,7}\left(x_{1}, x_{2}, x_{3}, x_{7}\right) g_{3,4,5,6}\left(x_{3}, x_{4}, x_{5}, x_{6}\right) g_{4,8}\left(x_{4}, x_{8}\right) g_{8,9,10}\left(x_{8}, x_{9}, x_{10}\right)
$$

Graphical models

Consider $\alpha \subset D$. Note that if $\alpha \in \mathcal{C}$,

$$
\operatorname{rank}_{\alpha}\left(g_{\alpha}\right)=1
$$

Also, for a clique $\beta \in \mathcal{C}$ such that either $\beta \subset \alpha$ or $\beta \subset \alpha^{c}$,

$$
\operatorname{rank}_{\alpha}\left(g_{\beta}\right)=1
$$

Then let \mathcal{C}_{α} be the set of cliques that intersects both α and α^{c},

$$
\mathcal{C}_{\alpha}=\left\{\beta \in \mathcal{C}: \beta \cap \alpha \neq \emptyset, \beta \cap \alpha^{c} \neq \emptyset\right\} .
$$

Since $\mathcal{C} \backslash \mathcal{C}_{\alpha}=\left\{\beta \in \mathcal{C}: \beta \subset \alpha^{c}\right.$ or $\left.\beta \subset \alpha\right\}$, we have

$$
\operatorname{rank}_{\alpha}(f)=\operatorname{rank}_{\alpha}\left(\prod_{\beta \in \mathcal{C}_{\alpha}} g_{\beta}\right) \leq \prod_{\beta \in \mathcal{C}_{\alpha}} \operatorname{rank}_{\alpha}\left(g_{\beta}\right)
$$

Assuming that the α-rank of all functions g_{β} are bounded by m, we have

$$
\operatorname{rank}_{\alpha}(f) \leq m^{\# \mathcal{C}_{\alpha}}
$$

For the representation of f in tree-based format, a tree T should be chosen such that $\# \mathcal{C}_{\alpha}$ is small for all $\alpha \in T$.

Graphical models

As an example, assume that the discrete random variables X_{ν} taking 5 possible instances $\{1, \ldots, 5\}$, and consider the graphical model

$$
f(x)=g_{1,2,3,7}\left(x_{1}, x_{2}, x_{3}, x_{7}\right) g_{3,4,5,6}\left(x_{3}, x_{4}, x_{5}, x_{6}\right) g_{4,8}\left(x_{4}, x_{8}\right) g_{8,9,10}\left(x_{8}, x_{9}, x_{10}\right)
$$

f is identified with a tensor of size $5^{10}=9,765,625$. The entries of the tensors g_{α} are generated randomly.

Graphical models

We first consider a random binary tree and compute a representation of the graphical model at precision 10^{-13} in the corresponding tree-based format.

We observe a storage complexity of $10,595,875$, higher than the storage of the full tensor.

(a) Dimension tree.

(b) Representation rank.

Graphical models

We now run a tree optimization algorithm and we obtain a new representation (at the same precision) with a storage complexity of 3, 275.

(c) Optimized dimension tree.

(d) Representation rank.

Representation of cumulative distribution function

The density is related to the cumulative distribution function by

$$
F(x)=\int_{-\infty}^{x_{1}} \ldots \int_{-\infty}^{x_{d}} f\left(t_{1}, \ldots, t_{d}\right) d \mu_{1}\left(t_{1}\right) \ldots d \mu_{d}\left(t_{d}\right) .
$$

If the density admits a representation

$$
f(x)=\sum_{i \in I} a_{i} \prod_{\nu=1}^{d} \phi_{i_{\nu}}^{\nu}\left(x_{\nu}\right)
$$

then

$$
F(x)=\sum_{i \in I} a_{i} \prod_{\nu=1}^{d} \psi_{i_{\nu}}^{\nu}\left(x_{\nu}\right), \quad \text { with } \psi_{i_{\nu}}^{\nu}\left(x_{\nu}\right)=\int_{-\infty}^{x_{\nu}} \phi_{i_{\nu}}^{\nu}(t) d \mu_{\nu}(t) .
$$

Then if f has an exact representation in tree-based format $\mathcal{T}_{r}{ }^{T}$, then F also has an exact representation in the same format $\mathcal{T}_{r}{ }^{\top}$, and

$$
\operatorname{rank}_{T}(F) \leq \operatorname{rank}_{T}(f)
$$

Representation of copulas

By Sklar's theorem, the cumulative distribution function F of $\left(X_{1}, \ldots, X_{d}\right)$ can be written

$$
F(x)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right)
$$

where the function C is a copula of $\left(X_{1}, \ldots, X_{d}\right)$.
If the copula admits a representation

$$
C(u)=\sum_{i \in I} a_{i} \prod_{\nu=1}^{d} \phi_{i_{\nu}}^{\nu}\left(u_{\nu}\right)
$$

then

$$
F(x)=\sum_{i \in I} a_{i} \prod_{\nu=1}^{d} \phi_{i_{\nu}}^{\nu}\left(F_{\nu}\left(x_{\nu}\right)\right)
$$

Then if C admits an exact representation in tree-based format $\mathcal{T}_{r}{ }^{T}, F$ also admits an exact representation in \mathcal{T}_{r}^{T}.

Outline

(1) Representation of probabilistic models in tensor formats
(2) Learning probability distributions with tree-based format

Contrast function and risk

We consider the approximation of a probability distribution of a random vector X from independent samples of this distribution.

We assume that the distribution of X has a density f with respect to a measure μ with support \mathcal{X}.

We introduce a contrast function $\gamma: L_{\mu}^{0}(\mathcal{X}) \times \mathcal{X} \rightarrow \mathbb{R}$ and the associated risk functional $\mathcal{R}: L_{\mu}^{0}(\mathcal{X}) \rightarrow \mathbb{R}$ defined by

$$
\mathcal{R}(v)=\mathbb{E}(\gamma(v, X))=\int \gamma(v, x) d \mu(x)
$$

such that the minimizer of \mathcal{R} over the set of μ-measurable functions is the density f.

Empirical risk minimization

Given independent samples $\left\{x_{i}\right\}_{i=1}^{n}$ of X, an approximation \hat{f}_{n}^{F} of the density is then obtained by minimizing the empirical risk (a statistical estimation of the risk)

$$
\hat{\mathcal{R}}_{n}(v)=\frac{1}{n} \sum_{i=1}^{n} \gamma\left(v, x_{i}\right)
$$

over a certain model class F, here the class of functions in tree-based tensor format.

Maximum likelihood estimation

Choosing the contrast function as $\gamma(v, x)=-\log (v(x))$ leads to

$$
\mathcal{R}(v)=\int-\log (v(x)) f(x) d \mu(x)=\int\left(-\log (f(x))-\log \left(\frac{v(x)}{f(x)}\right)\right) f(x) d \mu(x)
$$

so that

$$
\mathcal{R}(v)=\mathcal{R}(f)+D_{\text {KL }}(f \| v),
$$

with $D_{\mathrm{KL}}(f \| v)$ the Kullback-Leibler divergence between f and v.
The empirical risk

$$
\hat{\mathcal{R}}_{n}(v)=-\frac{1}{n} \sum_{i=1}^{n} \log \left(v\left(x_{i}\right)\right)
$$

corresponds to the log-likelihood.

L^{2} density estimation

With the contrast function as

$$
\gamma(v, x)=\|v\|_{L_{\mu}^{2}}^{2}-2 v(x),
$$

we have

$$
\mathcal{R}(v)=\mathcal{R}(f)+\|f-v\|_{L_{\mu}^{2}}^{2},
$$

so that the minimization of $\mathcal{R}(v)$ is equivalent to the minimization of the distance (in L_{μ}^{2} norm) between v and the density f.

The empirical risk is

$$
\hat{\mathcal{R}}_{n}(v)=\|v\|_{L_{\mu}^{2}}^{2}-\frac{2}{n} \sum_{i=1}^{n} v\left(x_{i}\right) .
$$

Note that for discrete random variables, $\|v\|_{L_{\mu}^{2}}^{2}=\sum_{x \in \mathcal{X}} v(x)^{2}$ which coincides with the Frobenius norm when identifying v with a tensor in $\mathbb{R}^{\mathcal{X}}$.

L^{2} density estimation

Consider as a model class a finite-dimensional space F of L_{μ}^{2} with an orthonormal basis $\left\{\varphi_{k}\right\}_{k=1}^{m}$.

The minimizer f^{F} of the risk is given by the orthogonal projection onto F

$$
f^{F}(x)=\sum_{k=1}^{m} a_{k} \varphi_{k}(x), \quad a_{k}=\left(\varphi_{k}, f\right)_{L_{\mu}^{2}}=\int \varphi_{k}(x) f(x) d \mu(x)=\mathbb{E}\left(\varphi_{k}(X)\right) .
$$

The empirical risk for $v=\sum_{k=1}^{m} a_{k} \varphi_{k}(x)=\varphi(x)^{T} a$ is

$$
\hat{\mathcal{R}}_{n}(v)=\|a\|_{2}^{2}-\frac{2}{n} \sum_{i=1}^{n} \varphi(x)^{T} a,
$$

so that the minimizer f_{n}^{F} of the empirical risk is given by

$$
f_{n}^{F}(x)=\sum_{k=1}^{m} \hat{a}_{k} \varphi_{k}(x), \quad \hat{a}_{k}=\frac{1}{n} \sum_{i=1}^{n} \varphi_{k}\left(x_{i}\right) .
$$

Tree-based formats

Let V_{ν} be a subspace of $L_{\mu_{\nu}}^{2}\left(\mathcal{X}_{\nu}\right)$ and let us consider the tensor space

$$
V=V^{1} \otimes \ldots \otimes V^{d},
$$

a subspace of $L_{\mu}^{2}(\mathcal{X})$.
We let $\left\{\phi_{i \nu}^{\nu}: i \in I^{\nu}\right\}$ be a basis of V_{ν}, typically polynomials, wavelets...
We consider the model class of tree-based tensors

$$
\mathcal{T}_{r}^{T}=\left\{v \in V: \operatorname{rank}_{T}(v) \leq r\right\}
$$

where T is a dimension partition tree and r a tuple of ranks.

Tree-based formats

A function v in \mathcal{T}_{r}^{T} admits the following multilinear parametrization

$$
v(x)=\sum_{\substack{i_{\alpha} \in \in^{\alpha} \\ \alpha \in \mathcal{L}(T)}} \sum_{\substack{\leq k_{\beta} \leq r_{r} \\ \beta \in T}} \prod_{\alpha \in T \backslash \mathcal{L}(T)} a_{\left.a_{\left(k_{\beta}\right)}^{\alpha}\right)_{\beta \in S(\alpha)}, k_{\alpha}} \prod_{\alpha \in \mathcal{L}(T)} a_{i_{\alpha}, k_{\alpha}}^{\alpha} \phi_{i_{\alpha}}^{\alpha}\left(x_{\alpha}\right)=\Psi(x)\left(\left(a^{\alpha}\right)_{\alpha \in T}\right)
$$

where each parameter a^{α} is in a tensor space $\mathbb{R}^{K^{\alpha}}$ and $\Psi(x)$ is a multilinear map.

For a given α, the partial map

$$
a^{\alpha} \in \mathbb{R}^{K^{\alpha}} \mapsto \Psi(\cdot)\left(\left(a^{\alpha}\right)_{\alpha \in T}\right)
$$

is linear and can be identified with a tensor $\Psi^{\alpha}(x) \in \mathbb{R}^{K^{\alpha}}$ such that

$$
\Psi(\cdot)\left(\left(a^{\alpha}\right)_{\alpha \in T}\right)=\sum_{k \in K^{\alpha}} \Psi_{k}^{\alpha}(x) a_{k}^{\alpha}:=\left(\Psi^{\alpha}(x), a^{\alpha}\right)_{\ell_{2}}
$$

Learning with tree-based formats

The empirical risk minimization problem over the model class $\mathcal{T}_{r}{ }^{T}$

$$
\min _{\left(a^{\alpha}\right)_{\alpha \in T}} \frac{1}{n} \sum_{i=1}^{n} \gamma\left(\Psi(\cdot)\left(\left(a^{\alpha}\right)_{\alpha \in T}\right), x_{i}\right)
$$

can be solved using an alternating minimization algorithm, solving at each step

$$
\min _{a^{\alpha}} \frac{1}{n} \sum_{i=1}^{n} \gamma\left(\left(\Psi^{\alpha}(\cdot), a^{\alpha}\right) \ell_{2}, x_{i}\right)
$$

for fixed $a^{\beta}, \beta \in T \backslash\{\alpha\}$.

L^{2} density estimation with tree-based formats

For a given α, it is possible to obtain a representation of a tensor v in \mathcal{T}^{T} such that

$$
v(x)=\sum_{k \in K^{\alpha}} \Psi_{k}^{\alpha}(x) a_{k}^{\alpha},
$$

where $\left\{\Psi_{k}^{\alpha}(x)\right\}_{k \in K^{\alpha}}$ form an orthonormal system in L_{μ}^{2}.

The tensor a^{α} minimizing the empirical risk therefore admits an explicit expression

$$
a^{\alpha}=\frac{1}{n} \sum_{i=1}^{n} \Psi^{\alpha}\left(x_{i}\right)
$$

Exploiting sparsity

Sparsity in the parameters can be easily exploited. For a given subset $A \subset K^{\alpha}$, the optimization of the empirical risk over the set of tensors

$$
\left\{a^{\alpha} \in \mathbb{R}^{K^{\alpha}}: a_{k}^{\alpha}=0 \text { for } k \notin A\right\}
$$

yields a solution

$$
a_{k}^{\alpha}=\frac{1}{n} \sum_{i=1}^{n} \Psi^{\alpha}\left(x_{i}\right)_{k} \mathbf{1}_{k \in A} .
$$

The associated risk can be evaluated by cross-validation using the leave-one estimate

$$
\mathcal{R}_{n}^{100}(v)=\frac{-n^{2}}{(1-n)^{2}}\|v\|^{2}+\frac{2 n-1}{n(n-1)^{2}} \sum_{i=1}^{n} \sum_{k \in A}\left(\Psi_{k}^{\alpha}\left(x_{i}\right)\right)^{2}
$$

In practice, we consider a collection of candidate sets A_{1}, \ldots, A_{M} in K^{α} and retain the one that minimizes the cross-validation estimate.

Rank adaptation

We apply the strategy introduce in the supervised learning setting.
We construct a sequence of approximations in tree-based format

$$
u^{m} \in \mathcal{T}_{r^{m}}^{T}
$$

with increasing ranks

$$
\begin{cases}r_{\alpha}^{m+1}=r_{\alpha}^{m}+1 & \text { if } \alpha \in T_{m}^{\theta} \\ r_{\alpha}^{m+1}=r_{\alpha}^{m} & \text { if } \alpha \notin T_{m}^{\theta}\end{cases}
$$

where T_{m}^{θ} is a subset of nodes in T which is selected such that

$$
T_{m}^{\theta}=\left\{\alpha: \varepsilon_{r_{\alpha}^{m}}^{\alpha}(\tilde{u}) \geq \theta \max _{\beta \in T} \varepsilon_{r_{\beta}^{m}}^{\beta}(\tilde{u})\right\}
$$

where $\varepsilon_{r_{\beta}^{m}}^{\beta}(\tilde{u})$ is an estimation of the truncation error

$$
\varepsilon_{r_{\alpha}^{m}}^{\alpha}(u)=\min _{\operatorname{rank}_{\alpha}(v) \leq r_{\alpha}^{m}} \mathcal{R}(v)-\mathcal{R}(u)
$$

with \tilde{u} obtained by a correction of the current approximation u^{m}.

Rank and tree adaptation

For rank and tree adaptation, we apply the same strategy as in the supervised learning setting.

We start with an initial tree T and learn an approximation $v \in \mathcal{T}_{r}{ }^{T}$ with rank $r=(1, \ldots, 1)$. Then we repeat the following steps:

- compute a correction of v to obtain a better approximation \tilde{u}, compute the truncation errors

$$
\eta_{\alpha}=\min _{\operatorname{rank}_{\alpha}(v) \leq r_{\alpha}^{m}} \mathcal{R}(v)-\mathcal{R}(\tilde{u})
$$

and increase by one the ranks r_{α} for

$$
\alpha \in T_{\theta}=\left\{\alpha: \eta_{\alpha} \geq \theta \max _{\beta \in T} \eta_{\beta}\right\}
$$

- learn an approximation v in the format \mathcal{T}_{r}^{T} (with a good initialization),
- optimize the tree for reducing the storage complexity of v (using a stochastic algorithm): if a better tree T^{\prime} is found, change the representation of v and set $r=\operatorname{rank}_{T^{\prime}}(v)$ and $T=T^{\prime}$.

Illustration: truncated normal distribution

We consider truncated normal distribution with zero mean and covariance matrix Σ. Its support is $\mathcal{X}=\times_{\nu=1}^{6}\left[-5 \sigma_{\nu}, 5 \sigma_{\nu}\right]$, with $\sigma_{\nu}^{2}=\Sigma_{\nu \nu}$, and its density (with respect to Lebesgue measure) is

$$
f(x) \mathrm{d} \mu(x) \sim \exp \left(-\frac{1}{2} x^{T} \Sigma^{-1} x\right) \mathbf{1}_{x \in \mathcal{X}}
$$

We consider polynomial approximation spaces $V^{\nu}=\mathbb{P}_{50}\left(\mathcal{X}_{\nu}\right)$.

Illustration: truncated normal distribution

Consider

$$
\Sigma=\left(\begin{array}{cccccc}
2 & 0 & 0.5 & 1 & 0 & 0.5 \\
0 & 1 & 0 & 0 & 0.5 & 0 \\
0.5 & 0 & 2 & 0 & 0 & 1 \\
1 & 0 & 0 & 3 & 0 & 0 \\
0 & 0.5 & 0 & 0 & 1 & 0 \\
0.5 & 0 & 1 & 0 & 0 & 2
\end{array}\right)
$$

After a permutation $(3,6,1,4,2,5)$ of its rows and columns, it comes the matrix

$$
\left(\begin{array}{cccccc}
2 & 1 & 0.5 & 0 & 0 & 0 \\
1 & 2 & 0.5 & 0 & 0 & 0 \\
0.5 & 0.5 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0.5 \\
0 & 0 & 0 & 0 & 0.5 & 1
\end{array}\right)
$$

($X_{1}, X_{3}, X_{4}, X_{6}$) and $\left(X_{2}, X_{5}\right)$ are independent, as well as X_{4} and $\left(X_{3}, X_{6}\right)$, so that

$$
f(x)=f_{1,3,4,6}\left(x_{1}, x_{3}, x_{4}, x_{6}\right) f_{2,5}\left(x_{2}, x_{5}\right)=f_{4,1}\left(x_{4}, x_{1}\right) f_{1,3,6}\left(x_{1}, x_{3}, x_{6}\right) f_{2,5}\left(x_{2}, x_{5}\right)
$$

Illustration: truncated normal distribution

n	Risk $\times 10^{-2}$	L^{2}-error	T	$C(T, r)$
10^{2}	$[-5.50,119]$	$[0.53,4.06]$	Fig. (a)	$[311,311]$
10^{3}	$[-7.29,-5.93]$	$[0.22,0.47]$	Fig. (b)	$[311,637]$
10^{4}	$[-7.60,-6.85]$	$[0.11,0.33]$	Fig. (c)	$[521,911]$
10^{5}	$[-7.68,-7.66]$	$[0.04,0.07]$	Fig. (c)	$[911,1213]$
10^{6}	$[-7.70,-7.69]$	$[0.01,0.01]$	Fig. (c)	$[1283,1546]$

Table: Ranges over 10 trials

Figure: (a) Best tree over 10 trials for $n=10^{2}$

