Journées du GDR AMORE, Dec. 2016

Tensor numerical methods for high-dimensional problems

Part 1

High-dimensional approximation, low-rank tensor formats

Outline

(1) High dimensional approximation
(2) What are tensors ?
(3) Low-rank format for order-two tensors
(4) Low-rank formats for higher-order tensors

Outline

(1) High dimensional approximation
(2) What are tensors ?
(3) Low-rank format for order-two tensors
(4) Low-rank formats for higher-order tensors

High-dimensional problems in physics

- Schrodinger equation

$$
\begin{gathered}
\Psi\left(x_{1}, \ldots, x_{d}, t\right) \\
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar}{2 \mu} \Delta \Psi+V \Psi
\end{gathered}
$$

- Boltzmann equation

$$
\begin{gathered}
p\left(x_{1}, \ldots, x_{d}, t\right) \\
\frac{\partial p}{\partial t}+\sum_{i=1}^{d} v_{i} \frac{\partial p}{\partial x_{i}}=H(p, p)
\end{gathered}
$$

- Fokker-Planck equation

$$
\begin{gathered}
p\left(x_{1}, \ldots, x_{d}, t\right) \\
\frac{\partial p}{\partial t}+\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}}\left(a_{i} p\right)-\frac{1}{2} \sum_{i, j=1}^{d} \frac{\partial^{2}}{\partial x_{i} x_{j}}\left(b_{i j} p\right)=0
\end{gathered}
$$

- Master equation

$$
\begin{gathered}
P\left(x_{1}, \ldots, x_{d}, t\right), \quad\left(x_{1}, \ldots, x_{d}\right) \in \mathcal{X}=\{1, \ldots, N\}^{d} \\
\frac{\partial P}{\partial t}(x, t)=\sum_{y \in \mathcal{X}} A(x, y) P(y, t)
\end{gathered}
$$

High-dimensional problems in stochastic analysis

Stochastic differential equations (SDEs)

$$
d X_{t}=a\left(X_{t}, t\right) d t+\sigma\left(X_{t}, t\right) d W_{t}, \quad X_{t} \in \mathbb{R}^{d}
$$

- Fokker-Planck equation for probability density function $p\left(x_{1}, \ldots, x_{d}, t\right)$ of X_{t}

$$
\frac{\partial p}{\partial t}=\mathcal{L} p=-\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}}\left(a_{i} p\right)+\frac{1}{2} \sum_{i, j=1}^{d} \frac{\partial^{2}}{\partial x_{i} x_{j}}\left(\left(\sigma \sigma^{T}\right)_{i j} p\right)
$$

- Feynman-Kac formula for

$$
u(x, t)=\mathbb{E}^{X_{t}=x}\left(\int_{t}^{T} e^{\int_{t}^{s} r\left(X_{r}, r\right) d r} f\left(X_{s}, s\right) d s\right)
$$

yields a high-dimensional PDE

$$
\partial_{t} u+\mathcal{L}^{*} u+r u+f=0 \quad \text { in } \mathbb{R}^{d} \times(0, T), \quad u(x, T)=0
$$

- Functional approach to SDEs using a parametrization of the noise

$$
\begin{gathered}
W_{t}=\sum_{i=1}^{\infty} \xi_{i} \varphi_{i}(t), \quad \xi_{i} \sim \mathcal{N}(0, l), \\
X_{t}(\omega) \equiv u\left(t, \xi_{1}(\omega), \xi_{2}(\omega), \ldots\right)
\end{gathered}
$$

High-dimensional problems in uncertainty quantification

Parameter-dependent models

$$
\mathcal{M}(u(X) ; X)=0
$$

where $X=\left(X_{1}, \ldots, X_{d}\right)$ are random variables.

- Forward problem: evaluation of statistics, probability of events, sensitivity indices...

$$
\mathbb{E}(f(u(X)))=\int_{\mathbb{R}^{d}} f\left(u\left(x_{1}, \ldots, x_{d}\right)\right) p\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d}
$$

- Inverse problem: from (partial) observations of u, estimate the density of X

$$
p\left(x_{1}, \ldots, x_{d}\right)
$$

- Meta-models: approximation of the high-dimensional function

$$
u\left(x_{1}, \ldots, x_{d}\right)
$$

High-dimensional approximation

The goal of approximation is to replace a function

$$
u\left(x_{1}, \ldots, x_{d}\right)
$$

by a simpler function (easy to evaluate) depending on a few parameters.

For a certain subset of functions X_{n} described by n parameters (or $O(n)$ parameters), the error of best approximation of u by elements of X_{n} is defined by

$$
e_{n}(u)=\inf _{v \in X_{n}} d(u, v)
$$

where d is a distance measuring the quality of an approximation.
A sequence of subsets $\left(X_{n}\right)_{n \geq 1}$ is called an approximation tool. We distinguish linear approximation, where X_{n} are linear spaces, from nonlinear approximation, where X_{n} are nonlinear spaces.

High-dimensional approximation

Fundamental problems are

- to determine if and how fast $e_{n}(u)$ tends to 0 for a certain class of functions and a certain approximation tool,
- to provide algorithms which produce approximations $u_{n} \in X_{n}$ such that

$$
d\left(u, u_{n}\right) \leq C e_{n}(u)
$$

with C independent of n or $C(n) e_{n}(u) \rightarrow 0$ as $n \rightarrow \infty$

The curse of dimensionality

Let consider u in $X=L^{p}(\mathcal{X})$ with $\mathcal{X}=(0,1)^{d}$ and the natural distance $d(u, v)=\|u-v\|_{L p}$ on X. Let X_{n} be the space of piecewise polynomials of partial degree m, with $n=(m+1)^{d} h^{-d}$ parameters.
If u is in the Sobolev space $W^{k, p}(\mathcal{X})$ for a certain $k \leq m+1$,

$$
e_{n}(u) \leq M n^{-k / d}
$$

We observe

- the curse of dimensionality: deterioration of the rate of approximation when d increases. Exponential growth with d of the complexity for reaching a given accuracy.
- the blessing of smoothness : improvement of the rate of approximation when k increases.

We may ask if the curse of dimensionality is due to the particular choice of approximation tool (polynomials) for approximating functions in $W^{k, p}(\mathcal{X})$? We may also ask if the curse of dimensionality is still present if $k=\infty$ (smooth functions) ?

The curse of dimensionality

For a set of functions K in a normed vector space X, the Kolmogorov n-width of K is

$$
d_{n}(K)=\inf _{\operatorname{dim}\left(X_{n}\right)=n} \sup _{u \in K} \inf _{v \in X_{n}} d(u, v)
$$

where the infimum is taken over all linear subspaces of dimension $n . d_{n}(K)$ measures how well the set of functions K can be approximated by a n-dimensional space. It measures the ideal performance that we can expect from linear approximation methods.

Let $X=L^{p}(\mathcal{X})$ with $\mathcal{X}=(0,1)^{d}$.

- For K the unit ball of $W^{k, p}(\mathcal{X})$, we have

$$
d_{n}(K) \sim n^{-k / d}
$$

- For $K=\left\{v \in C^{\infty}(\mathcal{X}): \sup _{\alpha}\left\|D^{\alpha} v\right\|_{L^{\infty}}<\infty\right\}$, we have

$$
\min \left\{n: d_{n}(K) \leq 1 / 2\right\} \geq c 2^{d / 2}
$$

Extra smoothness does not help!

- Similar results are obtained for non-linear widths measuring the ideal performance of nonlinear approximation methods. Nonlinear methods can not help !

How to beat the curse of dimensionality ?

The key is to consider classes of functions with specific low-dimensional structures and to propose approximation formats (models) which exploit these structures (application-dependent).

Approximations are searched in subsets X_{n} with a number of parameters

$$
n=O\left(d^{p}\right)
$$

but

- X_{n} is usually nonlinear, and
- X_{n} may be non smooth.

This turns approximation problems

$$
\min _{v \in X_{n}} d(u, v)
$$

into nonlinear and possibly non smooth optimization problems.

Low-dimensional models for high-dimensional approximation

- Low-order interactions, e.g.
- No interaction (additive model)

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx u_{0}+u_{1}\left(x_{1}\right)+\ldots+u_{d}\left(x_{d}\right)
$$

- First-order interactions

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx u_{0}+\sum_{i} u_{i}\left(x_{i}\right)+\sum_{i \neq j} u_{i, j}\left(x_{i}, x_{j}\right)
$$

- Small number of interactions
- For a given $\Lambda \subset 2^{\{1, \ldots, d\}}$ (set of interaction groups),

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{\alpha \in \Lambda} u_{\alpha}\left(x_{\alpha}\right)
$$

- Λ as a parameter

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{\alpha \in \Lambda} u_{\alpha}\left(x_{\alpha}\right) \quad \text { with } \quad \# \Lambda=n
$$

Low-dimensional models for high-dimensional approximation

- Sparsity relatively to a basis or frame $\left\{\psi_{\alpha}\right\}_{\alpha \in \mathbb{N}}$

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{\alpha \in \Lambda} a_{\alpha} \psi_{\alpha}\left(x_{1}, \ldots, x_{d}\right), \quad \# \Lambda=n
$$

- Sparsity relatively to a dictionary \mathcal{D}

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{i=1}^{n} a_{i} \psi_{i}\left(x_{1}, \ldots, x_{d}\right), \quad \psi_{i} \in \mathcal{D}
$$

Low-dimensional models for high-dimensional approximation

- Low rank, e.g.

$$
\begin{gathered}
u\left(x_{1}, \ldots, x_{d}\right) \approx u_{1}\left(x_{1}\right) \ldots u_{d}\left(x_{d}\right) \\
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{i=1}^{r} u_{1, i}\left(x_{1}\right) \ldots u_{d, i}\left(x_{d}\right) \\
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{i_{1}=1}^{r_{1}} \ldots \sum_{i_{d-1}=1}^{r_{d-1}} u_{1, i_{1}}\left(x_{1}\right) u_{i_{1}, i_{2}}\left(x_{2}\right) \ldots u_{i_{d-1}, 1}\left(x_{d}\right)
\end{gathered}
$$

Multilinear approximation, a first step between linear approximation and nonlinear approximation.

Outline

(1) High dimensional approximation

(2) What are tensors ?
(3) Low-rank format for order-two tensors

4 Low-rank formats for higher-order tensors

Tensor product of vectors

For $I=\{1, \ldots, N\}$, an element v of the vector space \mathbb{R}^{\prime} is identified with the set of its coefficients $\left(v_{i}\right)_{i \in I}$ on a certain basis $\left\{e_{i}\right\}_{i \in I}$ of \mathbb{R}^{\prime},

$$
v=\sum_{i \in I} v_{i} e_{i} .
$$

Given d index sets $I_{\nu}=\left\{1, \ldots, N_{\nu}\right\}, 1 \leq \nu \leq d$, we introduce the multi-index set

$$
I=I_{1} \times \ldots \times I_{d} .
$$

An element v of \mathbb{R}^{\prime} is called a tensor of order d and is identified with a multidimensional array

$$
\left(v_{i}\right)_{i \in I}=\left(v_{i_{1}, \ldots, i_{d}}\right)_{i_{\mathbf{1}} \in l_{1}, \ldots, i_{d} \in l_{d}}
$$

which represents the coefficients of v on a certain basis of \mathbb{R}^{\prime}.

Tensor product of vectors

The entries of the multidimensional array are equivalently denoted

$$
v(i)=v\left(i_{1}, \ldots, i_{d}\right) .
$$

Given d vectors $v^{(\nu)} \in \mathbb{R}^{l_{\nu}}, 1 \leq \nu \leq d$, the tensor product of these vectors

$$
v:=v^{(1)} \otimes \ldots \otimes v^{(d)}
$$

is defined by

$$
v(i)=v^{(1)}\left(i_{1}\right) \ldots v^{(d)}\left(i_{d}\right)
$$

and is called an elementary tensor.

Using matrix notations, $v \otimes w$ is identified with the matrix $v w^{T}$.

Tensor product of vectors

The tensor space $\mathbb{R}^{\prime}=\mathbb{R}^{l_{\mathbf{1}} \times \ldots \times l_{d}}$, also denoted $\mathbb{R}^{/_{\mathbf{1}}} \otimes \ldots \otimes \mathbb{R}^{l_{d}}$, is defined by

$$
\mathbb{R}^{\prime}=\mathbb{R}^{/ 1} \otimes \ldots \otimes \mathbb{R}^{\prime d}=\operatorname{span}\left\{v^{(1)} \otimes \ldots \otimes v^{(d)}: v^{(\nu)} \in \mathbb{R}^{\prime \nu}, 1 \leq \nu \leq d\right\}
$$

Tensor product of functions

Let $\mathcal{X}_{\nu} \subset \mathbb{R}, 1 \leq \nu \leq d$, be an interval and V_{ν} be a space of functions defined on \mathcal{X}_{ν}. The tensor product of functions $v^{(\nu)} \in V_{\nu}$, denoted

$$
v=v^{(1)} \otimes \ldots \otimes v^{(d)},
$$

is a multivariate function defined on $\mathcal{X}=\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}$ and such that

$$
v(x)=v\left(x_{1}, \ldots, x_{d}\right)=v^{(1)}\left(x_{1}\right) \ldots v^{(d)}\left(x_{d}\right)
$$

for $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathcal{X}$. For example, for $i \in \mathbb{N}_{0}^{d}$, the monomial $x^{i}=x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}$ is an elementary tensor.

Tensor product of functions

The algebraic tensor product of spaces V_{ν} is defined as

$$
V_{1} \otimes \ldots \otimes V_{d}=\operatorname{span}\left\{v^{(1)} \otimes \ldots \otimes v^{(d)}: v^{(\nu)} \in V_{\nu}, 1 \leq \nu \leq d\right\}
$$

which is the space of multivariate functions v which can be written as a finite linear combination of elementary (separated functions), i.e.

$$
v(x)=\sum_{k=1}^{n} v_{k}^{(1)}\left(x_{1}\right) \ldots v_{k}^{(d)}\left(x_{d}\right) .
$$

Up to a formal definition of the tensor product \otimes, the above construction can be extended to arbitrary vector spaces V_{ν} (not only spaces of functions).

Infinite dimensional tensor spaces

For infinite dimensional spaces V_{ν}, a Hilbert (or Banach) tensor space equipped with a norm $\|\cdot\|$ is obtained by the completion (w.r.t. $\|\cdot\|$) of the algebraic tensor space

$$
\bar{V}^{\|\cdot\|}={\overline{V_{1} \otimes \ldots \otimes V_{d}}}^{\|\cdot\|}
$$

Example 1 (L^{p} spaces)

Let $1 \leq p<\infty$. If $V_{\nu}=L_{\mu_{\nu}}^{p}\left(\mathcal{X}_{\nu}\right)$, then

$$
L_{\mu_{1}}^{p}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes L_{\mu_{d}}^{p}\left(\mathcal{X}_{d}\right) \subset L_{\mu}^{p}\left(\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}\right)
$$

with $\mu=\mu_{1} \otimes \ldots \otimes \mu_{d}$, and

$$
\overline{L_{\mu_{1}}^{p}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes L_{\mu_{d}}^{p}\left(\mathcal{X}_{d}\right)}{ }^{\|\cdot\|}=L_{\mu}^{p}\left(\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}\right)
$$

where $\|\cdot\|$ is the natural norm on $L_{\mu}^{p}\left(\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}\right)$.

Example 2 (Bochner spaces)

Let \mathcal{X} be equipped with a finite measure μ, and let W be a Hilbert (or Banach) space.
For $1 \leq p<\infty$, the Bochner space $L_{\mu}^{p}(\mathcal{X} ; W)$ is the set of Bochner-measurable functions $u: \mathcal{X} \rightarrow W$ with bounded norm $\|u\|_{p}=\left(\int_{\mathcal{X}}\|u(x)\|_{W}^{p} \mu(d x)\right)^{1 / p}$, and

$$
L_{\mu}^{p}(\mathcal{X} ; W)=\overline{W \otimes L_{\mu}^{p}(\mathcal{X})}{ }^{\|\cdot\|_{p}}
$$

Infinite dimensional tensor spaces

Example 3 (Sobolev spaces)

The Sobolev space $H^{k}(\mathcal{X})$ of functions defined on $\mathcal{X}=\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}$, equipped with the norm

$$
\|u\|_{H^{k}}^{2}=\sum_{|\alpha|_{1} \leq k}\left\|D^{\alpha} u\right\|_{L^{2}}^{2},
$$

is a Hilbert tensor space

$$
H^{k}(\mathcal{X})={\overline{H^{k}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes H^{k}\left(\mathcal{X}_{d}\right)}}^{\|\cdot\|_{H^{k}}}
$$

The Sobolev space $H_{m i x}^{k}(\mathcal{X})$ equipped with the norm

$$
\|u\|_{H_{\text {mix }}^{k}}^{2}=\sum_{|\alpha|_{\infty} \leq k}\left\|D^{\alpha} u\right\|_{L^{2}}^{2},
$$

is a different tensor Hilbert space

$$
H_{m i x}^{k}(\mathcal{X})=\overline{H^{k}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes H^{k}\left(\mathcal{X}_{d}\right)}{ }^{\|\cdot\|_{H_{m i x}^{k}} .}
$$

$\|u\|_{H_{\text {mix }}^{k}}^{2}$ is the canonical tensor norm on $H^{k}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes H^{k}\left(\mathcal{X}_{d}\right)$.

Tensor product basis

If $\left\{\psi_{i}^{(\nu)}\right\}_{i \in I_{\nu}}$ is a basis of V_{ν}, then a basis of $V=V_{1} \otimes \ldots \otimes V_{d}$ is given by

$$
\left\{\psi_{i}=\psi_{i_{1}}^{(1)} \otimes \ldots \otimes \psi_{i_{d}}^{(d)}: i \in I=I_{1} \times \ldots \times I_{d}\right\} .
$$

A tensor $v \in V$ admits a decomposition

$$
v=\sum_{i \in I} a(i) \psi_{i}=\sum_{i_{1} \in I_{\mathbf{1}}} \ldots \sum_{i_{d} \in I_{d}} a\left(i_{1}, \ldots, i_{d}\right) \psi_{i_{1}}^{(1)} \otimes \ldots \otimes \psi_{i_{d}}^{(d)},
$$

and v can be identified with the set of its coefficients

$$
a \in \mathbb{R}^{\prime} .
$$

Hilbert tensor spaces

If the V_{ν} are Hilbert spaces with inner products $(\cdot, \cdot)_{\nu}$ and associated norms $\|\cdot\|_{\nu}$, a canonical inner product on V can be first defined for elementary tensors

$$
\left(v^{(1)} \otimes \ldots \otimes v^{(d)}, w^{(1)} \otimes \ldots \otimes w^{(d)}\right)=\left(v^{(1)}, w^{(1)}\right) \ldots\left(v^{(d)}, w^{(d)}\right)
$$

and then extended by linearity to the whole space V. The associated norm $\|\cdot\|$ is called the canonical norm.

If the $\left\{\psi_{i}^{(\nu)}\right\}_{i \in I_{\nu}}$ are orthonormal bases of spaces V_{ν}, then $\left\{\psi_{i}\right\}_{i \in I}$ is an orthonormal basis of $\bar{V}^{\|\cdot\|}$. A tensor

$$
v=\sum_{i \in I} a_{i} \psi_{i}
$$

is such that

$$
\|v\|^{2}=\sum_{i \in I} a_{i}^{2}:=\|a\|^{2}
$$

Therefore, the map Ψ which associates to a tensor $a \in \mathbb{R}^{\prime}$ the tensor $v=\Psi(a):=\sum_{i \in I} a_{i} \psi_{i}$ defines a linear isometry from \mathbb{R}^{\prime} to V for finite dimensional spaces, and between $\ell_{2}(I)$ and $\bar{V}^{\|\cdot\|}$ for infinite dimensional spaces.

Curse of dimensionality

A tensor $a \in \mathbb{R}^{\prime}=\mathbb{R}^{I_{1} \times \ldots \times I_{d}}$ or a corresponding tensor $v=\sum_{i \in I} a_{i} \psi_{i}$, when $\# I_{\nu}=O(n)$ for each ν, has a storage complexity

$$
\# I=\# I_{1} \ldots \# I_{d}=O\left(n^{d}\right)
$$

which grows exponentially with the dimension.

Manipulating tensors requires exploiting special properties of tensors such as sparsity or low rankness.

Low-rank format for order-two tensors

Outline

(1) High dimensional approximation

(2) What are tensors ?
(3) Low-rank format for order-two tensors

4 Low-rank formats for higher-order tensors

Rank of order-two tensors

The rank of an order-two tensor $u \in V \otimes W$, denoted $\operatorname{rank}(u)$, is the minimal integer r such that

$$
u=\sum_{k=1}^{r} v_{k} \otimes w_{k}
$$

for some $v_{k} \in V$ and $w_{k} \in W$.
A tensor $u \in \mathbb{R}^{n} \otimes \mathbb{R}^{m}$ is identified with a matrix in $u \in \mathbb{R}^{n \times m}$. The rank of u coincides with the matrix rank, which is the minimal integer r such that

$$
u=\sum_{k=1}^{r} v_{k} w_{k}^{T}=V W^{T}
$$

where $V=\left(v_{1}, \ldots, v_{r}\right) \in \mathbb{R}^{n \times r}$ and $W=\left(w_{1}, \ldots, w_{r}\right) \in \mathbb{R}^{m \times r}$.

Singular value decomposition

 spaces of functions), even infinite-dimensional, and where $\|\cdot\|_{\vee}$ denote the injective norm on $V \otimes W$ (the spectral norm for a matrix).

A tensor $u \in \overline{V \otimes W^{\|} \cdot \| v}$ can be identified with a compact operator from W to V.

It admits a singular value decomposition

$$
u=\sum_{k \geq 1} \sigma_{k} v_{k} \otimes w_{k}
$$

where v_{k} and w_{k} are orthonormal vectors.

The set of singular values of u is $\sigma(u)=\left\{\sigma_{k}(u)\right\}_{k \geq 1}$.

Singular value decomposition of order-two tensors

Example 4 (Proper Orthogonal Decomposition)

For $\Omega \times I$ a space-time domain and V a Hilbert space of functions defined on Ω, a function $u \in L^{2}(I ; V)$ admits a singular value decomposition

$$
u(t)=\sum_{k=1}^{\infty} \sigma_{k} v_{k} w_{k}(t)
$$

which is known as the Proper Orthogonal Decomposition (POD).

Example 5 (Karhunen-Loeve decomposition)

For a probability space (Ω, μ), an element $u \in L_{\mu}^{2}(\Omega ; V)$ is a second-order V-valued random variable. If u is zero-mean, the singular value decomposition of u is known as the Karhunen-Loeve decomposition

$$
u(\omega)=\sum_{k=1}^{\infty} \sigma_{k} v_{k} w_{k}(\omega)
$$

where $w_{k}: \Omega \rightarrow \mathbb{R}$ are uncorrelated (orthogonal) random variables.

Singular value decomposition

The canonical norm

$$
\|u\|=\|\sigma(u)\|_{2}
$$

is also called the Hilbert-Schmidt norm.
It is a particular case of Schatten p-norms which are defined for $1 \leq p \leq \infty$ by

$$
\|u\|_{\sigma_{\rho}}=\|\sigma(u)\|_{\rho} .
$$

The rank of u is the number of non-zero singular values,

$$
\operatorname{rank}(u)=\|\sigma(u)\|_{0}=\#\left\{k: \sigma_{k}(u) \neq 0\right\} .
$$

A tensor u has low rank if the vector of its singular values $\sigma(u)$ is sparse.

Low-rank format for order-two tensors

The set of tensors in $V \otimes W$ with rank bounded by r, denoted

$$
\mathcal{R}_{r}=\{v: \operatorname{rank}(v) \leq r\},
$$

is not a linear space nor a convex set. However, it has many favorable properties for a numerical use.

- The application $v \mapsto \operatorname{rank}(v)$ is lower semi-continuous, and therefore the set \mathcal{R}_{r} is closed, which makes best approximation problems in \mathcal{R}_{r} well posed.
- \mathcal{R}_{r} is the union of smooth manifolds of tensors with fixed rank.

Outline

(1) High dimensional approximation
(2) What are tensors ?
(3) Low-rank format for order-two tensors

4 Low-rank formats for higher-order tensors
(1) High dimensional approximation
(2) What are tensors ?
(3) Low-rank format for order-two tensors

4 Low-rank formats for higher-order tensors

- Canonical format
- (Tree-based) Tucker formats
- Tensor networks
- Parametrization of low-rank tensor formats

Canonical rank of higher-order tensors

For tensors $u \in V_{1} \otimes \ldots \otimes V_{d}$ with $d \geq 3$, there are different notions of rank.
The canonical rank, which is the natural extension of the notion of rank for order-two tensors, is the minimal integer r such that

$$
u=\sum_{k=1}^{r} v_{k}^{(1)} \otimes \ldots \otimes v_{k}^{(d)}
$$

for some vectors $v_{k}^{(\nu)} \in V_{\nu}$.

Canonical format

The subset of tensors in $V=V_{1} \otimes \ldots \otimes V_{d}$ with canonical rank bounded by r is denoted

$$
\mathcal{R}_{r}=\{v \in V: \operatorname{rank}(v) \leq r\} .
$$

A tensor in \mathcal{R}_{r} has a representation

$$
v\left(x_{1}, \ldots, x_{d}\right)=\sum_{k=1}^{r} v_{k}^{(1)}\left(x_{1}\right) \ldots v_{k}^{(d)}\left(x_{d}\right):=\sum_{k=1}^{r} v^{(1)}\left(x_{1}, k\right) \ldots v^{(d)}\left(x_{d}, k\right) .
$$

The storage complexity of tensors in \mathcal{R}_{r} is

$$
\operatorname{storage}\left(\mathcal{R}_{r}\right)=r \sum_{\nu=1}^{d} \operatorname{dim}\left(V_{\nu}\right)=O(r d n)
$$

for $\operatorname{dim}\left(V_{\nu}\right)=O(n)$.

Canonical format

For $d \geq 3$, the set \mathcal{R}_{r} looses many of the favorable properties of the case $d=2$.

- Determining the rank of a given tensor is a NP-hard problem.
- The set \mathcal{R}_{r} is not an algebraic variety.
- No notion of singular value decomposition.
- The application $v \mapsto \operatorname{rank}(v)$ is not lower semi-continuous and therefore, \mathcal{R}_{r} is not closed. The consequence is that for most problems involving approximation in canonical format \mathcal{R}_{r}, there is no robust method when $d>2$.
(1) High dimensional approximation
(2) What are tensors ?
(3) Low-rank format for order-two tensors

4 Low-rank formats for higher-order tensors

- Canonical format
- (Tree-based) Tucker formats
- Tensor networks
- Parametrization of low-rank tensor formats

α-rank

For a non-empty subset α of $D=\{1, \ldots, d\}$, a tensor $u \in V=V_{1} \otimes \ldots \otimes V_{d}$ can be identified with an order-two tensor

$$
\mathcal{M}_{\alpha}(u) \in V_{\alpha} \otimes V_{\alpha^{c}}
$$

where $V_{\alpha}=\bigotimes_{\nu \in \alpha} V_{\nu}$, and $\alpha^{c}=D \backslash \alpha$. The operator $\mathcal{M}_{\alpha}=V \rightarrow V_{\alpha} \otimes V_{\alpha^{c}}$ is called the matricisation operator.

The α-rank of u, denoted $\operatorname{rank}_{\alpha}(u)$, is the rank of the order-two tensor $\mathcal{M}_{\alpha}(u)$,

$$
\operatorname{rank}_{\alpha}(u)=\operatorname{rank}\left(\mathcal{M}_{\alpha}(u)\right),
$$

which is the minimal integer r_{α} such that

$$
\mathcal{M}_{\alpha}(u)=\sum_{k=1}^{r_{\alpha}} v_{k}^{\alpha} \otimes w_{k}^{\alpha^{c}}
$$

for some $v_{k}^{\alpha} \in V_{\alpha}$ and $w_{k}^{\alpha^{c}} \in V_{\alpha^{c}}$. We note that $\operatorname{rank}_{\alpha}(u)=\operatorname{rank}_{\alpha^{c}}(u)$.

A multivariate function $u\left(x_{1}, \ldots, x_{d}\right)$ with $\operatorname{rank}_{\alpha}(u) \leq r_{\alpha}$ is such that

$$
u(x)=\sum_{k=1}^{r_{\alpha}} v_{k}^{\alpha}\left(x_{\alpha}\right) w_{k}^{\alpha^{c}}\left(x_{\alpha^{c}}\right)
$$

for some functions $v_{k}^{\alpha}\left(x_{\alpha}\right)$ and $w_{k}^{\alpha^{c}}\left(x_{\alpha} c\right)$ of groups of variables

$$
x_{\alpha}=\left\{x_{\nu}\right\}_{\nu \in \alpha} \quad \text { and } \quad x_{\alpha} c=\left\{x_{\nu}\right\}_{\nu \in \alpha^{c}} .
$$

Example 6

$u\left(x_{1}, \ldots, x_{d}\right)=u_{1}\left(x_{1}\right)+\ldots+u_{d}\left(x_{d}\right)$ where u_{1}, \ldots, u_{d} are non constant functions satisfies $\operatorname{rank}_{\alpha}(u)=2$ for all α.

α-rank and minimal subspace

For a subset α of $D=\{1, \ldots, d\}$, the minimal subspace

$$
U_{\alpha}^{\min }(u)
$$

of a tensor $u \in V_{1} \otimes \ldots \otimes V_{d}$ is defined as the smallest subspace

$$
U_{\alpha} \subset V_{\alpha}=\bigotimes_{\nu \in \alpha} V_{\nu}
$$

such that

$$
\mathcal{M}_{\alpha}(u) \in U_{\alpha} \otimes V_{\alpha^{c}}
$$

The α-rank of u is the dimension of the minimal subspace $U_{\alpha}^{\min }(u)$,

$$
\operatorname{rank}_{\alpha}(u)=\operatorname{dim}\left(U_{\alpha}^{\min }(u)\right)
$$

Subset of tensors with bounded α-rank

For a given subset $\alpha \subset D$, we define the subset of tensors with α-rank bounded by r_{α} as

$$
\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}=\left\{v \in V: \operatorname{rank}_{\alpha}(v) \leq r_{\alpha}\right\}
$$

Elements of $\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}$ admit the representation

$$
v\left(x_{\alpha}, x_{\alpha^{c}}\right)=\sum_{k_{\alpha}=1}^{r_{\alpha}} \sum_{k_{\alpha^{c}=1}^{r_{\alpha}}}^{C}\left(k_{\alpha}, k_{\alpha^{c}}\right) v^{\alpha}\left(x_{\alpha}, k_{\alpha}\right) w^{\alpha^{c}}\left(x_{\alpha^{c}}, k_{\alpha^{c}}\right)
$$

where $C \in \mathbb{R}^{r_{\alpha} \times r_{\alpha}}$ and v^{α} and $w^{\alpha^{c}}$ are order-two tensors.

Subset of tensors with bounded α-rank

The motivation behind the definition of tensor formats based on α-ranks is to benefit from the nice properties of the two dimensional case.

- The set

$$
\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}=\left\{v \in \mathcal{H}: \operatorname{rank}_{\alpha}(v) \leq r_{\alpha}\right\}
$$

of tensors with α-rank bounded by r_{α} is closed (and therefore proximinal).

- For a given tensor $u, \mathcal{M}_{\alpha}(u)$ admits a singular value decomposition.
- The determination of the α-rank of a tensor is feasible.
- $\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}$ is a union of smooth manifolds of tensors with fixed α-rank.

For T a collection of subsets of D, we define the T-rank of a tensor v, denoted $\operatorname{rank}_{T}(u)$, as the tuple

$$
\operatorname{rank}_{T}(v)=\left\{\operatorname{rank}_{\alpha}(v)\right\}_{\alpha \in T}
$$

The subset of tensors in V with T-rank bounded by $r=\left(r_{\alpha}\right)_{\alpha \in T}$ is

$$
\mathcal{T}_{r}^{T}=\left\{v \in V: \operatorname{rank}_{T}(v) \leq r\right\}=\bigcap_{\alpha \in T} \mathcal{T}_{r_{\alpha}}^{\{\alpha\}}
$$

As a finite intersection of subsets $\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}, \mathcal{T}_{r}^{T}$ inherits from nice geometrical and topological properties:

- $\mathcal{T}_{r}{ }^{\top}$ is closed.
- $\mathcal{T}_{r}{ }^{T}$ is a union of smooth manifolds of tensors with fixed T-rank.

α-ranks and related low-rank formats

Different choices for T yield different tensor formats, the standard formats being

- the Tucker format,
- the Tensor Train format,
- and more general tree-based (or hierarchical) Tucker formats.

Tucker format

For

$$
T=\{\{1\}, \ldots,\{d\}\}
$$

the tuple

$$
\operatorname{rank}_{T}(v)=\left\{\operatorname{rank}_{\{1\}}(v), \ldots, \operatorname{rank}_{\{d\}}(v)\right\}
$$

is called the Tucker (or multilinear) rank of the tensor v.
The set of tensors with Tucker rank bounded by $r=\left(r_{1}, \ldots, r_{d}\right)$, denoted

$$
\mathcal{T}_{r}=\left\{v: \operatorname{rank}_{\{\nu\}}(v) \leq r_{\nu}, 1 \leq \nu \leq d\right\}
$$

is such that

$$
\mathcal{T}_{r}=\left\{v \in U_{1} \otimes \ldots \otimes U_{d}: \operatorname{dim}\left(U_{\nu}\right)=r_{\nu}, 1 \leq \nu \leq d\right\}
$$

Tucker format

A tensor in $v \in \mathcal{T}_{r}$ admits a representation

$$
v\left(x_{1}, \ldots, x_{d}\right)=\sum_{k_{1}=1}^{r_{1}} \ldots \sum_{k_{d}=1}^{r_{d}} C\left(k_{1}, \ldots, k_{d}\right) v^{(1)}\left(x_{1}, k_{1}\right) \ldots v^{(d)}\left(x_{d}, k_{d}\right)
$$

where $C \in \mathbb{R}^{r_{1} \times \ldots \times r_{d}}$ is an order- d tensor and the $v^{(\nu)}$ are order-two tensors.

The storage complexity is

$$
\operatorname{storage}\left(\mathcal{T}_{r}\right)=\prod_{\nu=1}^{d} r_{\nu}+\sum_{\nu=1}^{d} r_{\nu} \operatorname{dim}\left(V_{\nu}\right)=O\left(R^{d}+R n d\right)
$$

with $r_{\nu}=O(R)$ and $\operatorname{dim}\left(V_{\nu}\right)=O(n)$. This format still suffers from the curse of dimensionality.

Tensor train format

For

$$
T=\{\{1\},\{1,2\}, \ldots,\{1, \ldots, d-1\}\}
$$

the tuple

$$
\operatorname{rank}_{T}(v)=\left\{\operatorname{rank}_{\{1\}}(v), \operatorname{rank}_{\{1,2\}}(v), \ldots, \operatorname{rank}_{\{1, \ldots, d-1\}}(v)\right\}
$$

is called the TT-rank of the tensor v.
For a tuple $r=\left(r_{1}, \ldots, r_{d-1}\right)$, the set \mathcal{T}_{r}^{T} of tensors with TT-rank bounded by r is denoted

$$
\mathcal{T} \mathcal{T}_{r}=\left\{v: \operatorname{rank}_{\{1, \ldots, \nu\}}(v)=\operatorname{rank}_{\{\nu+1, \ldots, d\}}(v) \leq r_{\nu}, 1 \leq \nu \leq d-1\right\} .
$$

Tensor train format

A tensor v in $\mathcal{T} \mathcal{T}_{r}$ has a representation

$$
v(x)=\sum_{k_{1}=1}^{r_{1}} \ldots \sum_{k_{d-1}=1}^{r_{d-1}} v^{(1)}\left(x_{1}, k_{1}\right) v^{(2)}\left(k_{1}, x_{2}, k_{2}\right) \ldots v^{(d)}\left(k_{d-1}, x_{d}\right)
$$

The storage complexity of an element in $\mathcal{T} \mathcal{T}_{r}$ is

$$
\text { storage }\left(\mathcal{T} \mathcal{T}_{r}\right)=\sum_{\nu=1}^{d} r_{\nu-1} r_{\nu} \operatorname{dim}\left(V_{\nu}\right)=O\left(d n R^{2}\right)
$$

with $\operatorname{dim}\left(V_{\nu}\right)=O(n), r_{\nu}=O(R)$. Here we use the convention $r_{0}=r_{d}=1$.

Tree-based (hierarchical) Tucker format

Tree-based (or hierarchical) Tucker formats are associated with a dimension partition tree T over $D=\{1, \ldots, d\}$, with root D and leaves $\{\nu\}, 1 \leq \nu \leq d$.

The tree-based rank of a tensor v is the tuple $\operatorname{rank}_{T}(v)=\left(\operatorname{rank}_{\alpha}(v)\right)_{\alpha \in T}$.

Tree-based (hierarchical) Tucker format

Let v be a tensor in \mathcal{T}_{r}^{T} with $r=\left(r_{\alpha}\right)_{\alpha \in T}$. At the first level, v admits the representation

$$
v(x)=\sum_{k_{\beta_{1}}=1}^{r_{\beta_{1}}} \ldots \sum_{k_{\beta_{s}}=1}^{r_{\beta_{s}}} C^{(D)}\left(k_{\beta_{\mathbf{1}}}, \ldots, k_{\beta_{s}}\right) v^{\left(\beta_{1}\right)}\left(x_{\beta_{1}}, k_{\beta_{1}}\right) \ldots v^{\left(\beta_{s}\right)}\left(x_{\beta_{s}}, k_{\beta_{s}}\right)
$$

where $\left\{\beta_{1}, \ldots, \beta_{s}\right\}=S(D)$ are the children of the root node D.

Tree-based (hierarchical) Tucker format

Then, for an interior node α of the tree, with children $S(\alpha)=\left\{\beta_{1}, \ldots, \beta_{s}\right\}$, the tensor $v^{(\alpha)}$ admits the representation

$$
v^{(\alpha)}\left(x_{\alpha}, k_{\alpha}\right)=\sum_{k_{\beta_{1}}=1}^{r_{\beta_{1}}} \ldots \sum_{k_{\beta_{s}}=1}^{r_{\beta_{s}}} C^{(\alpha)}\left(k_{\alpha}, k_{\beta_{\mathbf{1}}}, \ldots, k_{\beta_{s}}\right) v^{\left(\beta_{1}\right)}\left(x_{\beta_{\mathbf{1}}}, k_{\beta_{1}}\right) \ldots v^{\left(\beta_{s}\right)}\left(x_{\beta_{s}}, k_{\beta_{s}}\right)
$$

Tree-based (hierarchical) Tucker format

Finally, denoting by $\mathcal{L}(T)=\{\{\nu\}: \nu \in D\}$ the leaves of the tree, the tensor v admits the Tucker-like representation

$$
v(x)=\sum_{\substack{1 \leq k_{1} \leq r_{\nu} \\ \nu \in\{1, \ldots, d\}}}\left(\sum_{\substack{1 \leq k_{\alpha} \leq r_{\alpha} \\ \alpha \in T \backslash \mathcal{L}(T)}} \prod_{\mu \in T \backslash \mathcal{L}(T)} C^{(\mu)}\left(k_{\mu},\left(k_{\beta}\right)_{\beta \in S(\alpha)}\right)\right) v^{(1)}\left(x_{1}, k_{1}\right) \ldots v^{(d)}\left(x_{d}, k_{d}\right)
$$

Tree-based (hierarchical) formats

Particular trees:

- Trivial tree with one level: Tucker format
- Balanced binary tree: Hierarchical Tucker format
- Linear tree : Tensor Train format

(1) High dimensional approximation
(2) What are tensors ?
(3) Low-rank format for order-two tensors

4 Low-rank formats for higher-order tensors

- Canonical format
- (Tree-based) Tucker formats
- Tensor networks
- Parametrization of low-rank tensor formats

Tensor networks

More general tensor formats, called tensor networks, are associated with graphs $\mathcal{G}=(\mathcal{N}, \mathcal{E})$ with nodes \mathcal{N} and edges \mathcal{E}.

Tree-based tensor formats are particular cases of tensor networks, called tree tensor networks, where \mathcal{G} is a dimension partition tree.
(1) High dimensional approximation
(2) What are tensors ?
(3) Low-rank format for order-two tensors

44 Low-rank formats for higher-order tensors

- Canonical format
- (Tree-based) Tucker formats
- Tensor networks
- Parametrization of low-rank tensor formats

Parametrization and storage of low-rank tensor formats

Ultimately, a tensor in a certain low-rank tensor format \mathcal{M}_{r} admits a multilinear parametrization of the form

$$
v\left(x_{1}, \ldots, x_{d}\right)=\sum_{k_{1}=1}^{r_{1}} \ldots \sum_{k_{L}=1}^{r_{L}} \prod_{\nu=1}^{d} p^{(\nu)}\left(x_{\nu},\left(k_{i}\right)_{i \in S_{\nu}}\right) \prod_{\nu=d+1}^{M} p^{(\nu)}\left(\left(k_{i}\right)_{i \in S_{\nu}}\right)
$$

where the parameter $p^{(\nu)}$ is an element of a tensor space $P^{(\nu)}$ which depends on a subset of summation variables $\left(k_{i}\right)_{i \in S_{\nu}}:=k s_{\nu}$.

Approximation in low-rank tensor formats is the first step between linear approximation and nonlinear approximation.

The storage complexity is

$$
\operatorname{storage}\left(\mathcal{M}_{r}\right)=O\left(d n R^{s}+(M-d) R^{s^{\prime}}\right)
$$

where $r_{i}=O(R), \# S_{\nu}=O(s)$ for $\nu \leq d$ and $\# S_{\nu}=O\left(s^{\prime}\right)$ for $\nu>d$.

Parametrization and storage of low-rank tensor formats

Examples

- Canonical format: $L=1, M=d, S_{\nu}=\{1\}$ for all ν.

$$
\operatorname{storage}\left(\mathcal{R}_{r}\right)=O(n d R)
$$

- Tucker format: $L=d, M=d+1, S_{\nu}=\{\nu\}$ for $1 \leq \nu \leq d$, and $S_{d+1}=\{1, \ldots, d\}$.

$$
\operatorname{storage}\left(\mathcal{T}_{r}\right)=O\left(n d R+R^{d}\right)
$$

- Tensor train format: $L=d-1, M=d, S_{1}=\{1\}, S_{d}=\{d-1\}$ and $S_{\nu}=\{\nu-1, \nu\}$ for $2 \leq \nu \leq d-1$.

$$
\text { storage }\left(\mathcal{T} \mathcal{T}_{r}\right)=O\left(n d R^{2}\right)
$$

- Tree-based tensor format (for a dimension partition tree T): $L=\# T-1, M=\# T$, $S_{\nu}=\{\nu\}$ for $1 \leq \nu \leq d$ and S_{ν} cointains the sons of the node $\{\nu\}$ for $\nu>d$.

$$
\operatorname{storage}\left(\mathcal{T}_{r}^{T}\right)=O\left(n d R+d R^{k+1}\right)
$$

where k is the maximal number of sons of the nodes ($k=2$ for a binary tree).

- Tensor networks: arbitrary L and M and $\#\left\{\nu: i \in S_{\nu}\right\}=2$ for all $1 \leq i \leq L$.

