Journées du GDR AMORE, Dec. 2016

Tensor numerical methods for high-dimensional
problems

Part 1
High-dimensional approximation, low-rank tensor formats

Anthony Nouy 1/50



© High dimensional approximation
© What are tensors ?
© Low-rank format for order-two tensors

© Low-rank formats for higher-order tensors

Anthony Nouy 2/50



© High dimensional approximation
© What are tensors ?
© Low-rank format for order-two tensors

@ Low-rank formats for higher-order tensors

Anthony Nouy 3/50



High dimensional approximation

High-dimensional problems in physics

@ Schrodinger equation

@ Boltzmann equation

o Fokker-Planck equation

@ Master equation
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High dimensional approximation

High-dimensional problems in stochastic analysis

Stochastic differential equations (SDEs)
dX; = a(Xe, t)dt + o(Xe, t)dWs, X: € RY

o Fokker-Planck equation for probability density function p(xi,...,xq,t) of X;

0
== =—Za aip) + 5 Zax (0o 7)ip)

e Feynman-Kac formula for

T (s
u(x, t) = X~ ( / eli rXendre(x s)ds)
t

yields a high-dimensional PDE
Ou+Lu+ru+f=0 inRIx(0,T), ulx,T)=0

@ Functional approach to SDEs using a parametrization of the noise
=> &ei(t), &~N(O,1),
i=1
Xe(w) = u(t, & (w), &2(w), - )
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High dimensional approximation

High-dimensional problems in uncertainty quantification

Parameter-dependent models

M(u(X); X)=0

where X = (X4,..., Xy) are random variables.

o Forward problem: evaluation of statistics, probability of events, sensitivity indices...

E(f(u(X))) = / flu(xe, ..., xd))p(x1,. .., xq)dxs ... dxq
Rd
@ Inverse problem: from (partial) observations of u, estimate the density of X

p(x1, ..., Xd)
@ Meta-models: approximation of the high-dimensional function

u(xy, ..., xd)
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High dimensional approximation

High-dimensional approximation

The goal of approximation is to replace a function
u(xt, ..., Xd)

by a simpler function (easy to evaluate) depending on a few parameters.

For a certain subset of functions X, described by n parameters (or O(n) parameters), the
error of best approximation of u by elements of X, is defined by

en(u) = inf d(u,v)

veXy
where d is a distance measuring the quality of an approximation.
A sequence of subsets (X,),>1 is called an approximation tool. We distinguish linear

approximation, where X, are linear spaces, from nonlinear approximation, where X, are
nonlinear spaces.
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High dimensional approximation

High-dimensional approximation

Fundamental problems are

@ to determine if and how fast e,(u) tends to 0 for a certain class of functions and a
certain approximation tool,

@ to provide algorithms which produce approximations u, € X, such that
d(u, un) < Cen(u)

with C independent of n or C(n)e,(u) — 0 as n = o
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High dimensional approximation

The curse of dimensionality

Let consider u in X = LP(X) with X = (0,1) and the natural distance
d(u,v) = |lu—vl||er on X. Let X, be the space of piecewise polynomials of partial
degree m, with n = (m + 1)h™9 parameters.

If uis in the Sobolev space W*P(X) for a certain k < m+ 1,
en(u) < Mn=*/4

We observe

o the curse of dimensionality : deterioration of the rate of approximation when d
increases. Exponential growth with d of the complexity for reaching a given
accuracy.

o the blessing of smoothness : improvement of the rate of approximation when k
increases.

We may ask if the curse of dimensionality is due to the particular choice of
approximation tool (polynomials) for approximating functions in W*P(X) ? We may
also ask if the curse of dimensionality is still present if k = co (smooth functions) ?
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High dimensional approximation

The curse of dimensionality

For a set of functions K in a normed vector space X, the Kolmogorov n-width of K is

D= iflyn ol L, V)

where the infimum is taken over all linear subspaces of dimension n. d,(K) measures
how well the set of functions K can be approximated by a n-dimensional space. It
measures the ideal performance that we can expect from linear approximation methods.

Let X = LP(X) with X = (0,1)“.
o For K the unit ball of W*?(X), we have

dn(K) ~ n*/d
e For K ={v e C>®(X) :sup, ||DV||tee < o0}, we have
min{n: do(K) < 1/2} > c2%/2

Extra smoothness does not help !

@ Similar results are obtained for non-linear widths measuring the ideal performance of
nonlinear approximation methods. Nonlinear methods can not help !
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High dimensional approximation

How to beat the curse of dimensionality ?

The key is to consider classes of functions with specific low-dimensional structures and to
propose approximation formats (models) which exploit these structures
(application-dependent).

Approximations are searched in subsets X, with a number of parameters

n= 0(d”)
but
@ X, is usually nonlinear, and
@ X, may be non smooth.
This turns approximation problems
ind
g du:v)

into nonlinear and possibly non smooth optimization problems.
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High dimensional approximation

Low-dimensional models for high-dimensional approximation

@ Low-order interactions, e.g.

o No interaction (additive model)

u(xay ..., xd) &~ uo+ ui(xt) + ... + ug(xq)
o First-order interactions
u(xty ..., Xd) & uo + Z ui(xi) + Z ui j(xi, x;)
i i#j

@ Small number of interactions

o For a given A C 2t%+++9} (set of interaction groups),

u(xy,...,xd) = Z Ua(Xa)

a€c

o A\ as a parameter

u(xa, ..., xq) = Z Ua(Xa) with #A=n

a€cN
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High dimensional approximation

Low-dimensional models for high-dimensional approximation

@ Sparsity relatively to a basis or frame {¢a }aen

u(xy, ..., xd) = Za(,dja(xl,...,xd), #N=n
aeN

@ Sparsity relatively to a dictionary D

n
u(xa, ..., Xd) = Z aii(xa, ..., xd4), i €D
i=1
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High dimensional approximation

Low-dimensional models for high-dimensional approximation

o Low rank, e.g.
u(xa, ..., xq) = ui(x1) ... ua(xq)

r
u(xa, ..., xq) = Z uri(x1) ... ug,i(xq)
i=1
fd—1

r
U(X1, - ,Xd) ~ Z P Z U1,,‘1(X1)U,‘1,,‘2(X2) . uidfpl(xd)

=1 iy_,=1

Multilinear approximation, a first step between linear approximation and nonlinear
approximation.
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What are tensors ?

Tensor product of vectors

For I ={1,..., N}, an element v of the vector space R’ is identified with the set of its
coefficients (v;)je; on a certain basis {ei}ics of R/,
vV = Z Vi€;.
icl
Given d index sets I, = {1,..., N, }, 1 <v < d, we introduce the multi-index set
/:IlX...XId.

An element v of R’ is called a tensor of order d and is identified with a multidimensional
array

(vi)ier = (Via,..ig )in€ln,..sig€ly
which represents the coefficients of v on a certain basis of R'.
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What are tensors ?

Tensor product of vectors

The entries of the multidimensional array are equivalently denoted
v(i)=v(i,..., i)

Given d vectors v(*) € R, 1 < v < d, the tensor product of these vectors
v = v(1)®...®v(d)

is defined by

V(I) = V(l)(il) e V(d)(id)
and is called an elementary tensor.

Using matrix notations, v ® w is
identified with the matrix vw .
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The tensor space R = R**-*! also denoted R* @ ... @ R", is defined by

R':R"@...@R"’:span{v(1)®...®v(d) : v(")ER"’,lgugd}
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What are tensors ?

Tensor product of functions

Let X, CR, 1< v <d, be an interval and V, be a space of functions defined on X, .
The tensor product of functions v(*) € V,,, denoted
v = v(1)®...®v(d),
is a multivariate function defined on X = X1 X ... x X4 and such that
v(x) = v(xa, .. xa) = v a) . v (xd)

for x = (x1,...,x4) € X. For example, for i € N&, the monomial x' = x* ... x% is an
elementary tensor.
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What are tensors ?

Tensor product of functions

The algebraic tensor product of spaces V,, is defined as
Vig...® Vd:span{v(1)®...®v(d) v ¢ V,,1<v<d}

which is the space of multivariate functions v which can be written as a finite linear
combination of elementary (separated functions), i.e.

v(x) = Z vﬁl)(xl) e vﬁd)(xd).

Up to a formal definition of the tensor product ®, the above construction can be
extended to arbitrary vector spaces V, (not only spaces of functions).
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What are tensors ?

Infinite dimensional tensor spaces

For infinite dimensional spaces V,, a Hilbert (or Banach) tensor space equipped with a
norm || - || is obtained by the completion (w.r.t. || - ||) of the algebraic tensor space

VlI‘H :m\l'”.

Example 1 (LP spaces)

Let 1 <p<oo. If V, =1L (X)), then
ZI(X1)®...®LP (Xd)CL (X1>< XXd)

with =1 ® ... ® pg, and

(X)) ® - ® L, (Xa) | = L5(& x ... x Xy)

where || - || is the natural norm on Lf (X1 x ... x Xy).

Example 2 (Bochner spaces)

Let X be equipped with a finite measure p, and let W be a Hilbert (or Banach) space.
For 1 < p < oo, the Bochner space L, (X; W) is the set of Bochner-measurable
functions v : X — W with bounded norm ||ull, = ([, [|u(x)]5, p(dx))*/?, and

T —— (W) = Wea L) . 105



What are tensors ?

Infinite dimensional tensor spaces

Example 3 (Sobolev spaces)

The Sobolev space H*(X) of functions defined on X = &1 x ... x Xy, equipped with the

norm

2 2
lullf = > 11D ullZz,

|1 <k

is a Hilbert tensor space

H (X)) = HK(X) ® ... ® Hk()(d)”'“Hk_

The Sobolev space H%, (X) equipped with the norm

2 2
lulfe, = > ID%ullz,
mix

|or] oo <k

is a different tensor Hilbert space

|-
Hr,;ux(X) = Hk(Xl) ® 000 ® Hk(./Yd)‘| HH!‘;/'X'

l|lul|2, is the canonical tensor norm on H*(X1) ® ... ® H*(Xy).

Anthony Nouy
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What are tensors ?

Tensor product basis

If {1/)fu)},-elu is a basis of V,, then a basisof V=V, ®...® V, is given by

i1

{vi=vle.  @uici=nx..xl}.

A tensor v € V admits a decomposition

v=alii =Y Y Al i @ o,

icl nEh  igEly
and v can be identified with the set of its coefficients

aeR.
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What are tensors ?

Hilbert tensor spaces

If the V, are Hilbert spaces with inner products (-,-), and associated norms | - ||, a
canonical inner product on V can be first defined for elementary tensors

(VWe.. . av? wPg. .  @w?) = w®). (V9w

and then extended by linearity to the whole space V. The associated norm || - || is called
the canonical norm.

If the {w,(”)};ely are orthonormal bases of spaces V,, then {¢;}ic; is an orthonormal

basis of VH'”. A tensor
=Y

iel

2 2
Ivi* =" af = 1lal*

iel

is such that

Therefore, the map W which associates to a tensor a € R the tensor
v=V(a):= Zfel aj); defines a linear isometry from R’ to V for finite dimensional

spaces, and between ¢»(/) and V" for infinite dimensional spaces.
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What are tensors ?

Curse of dimensionality

A tensor a € R/ = R"*--X! or a corresponding tensor v = > ici aithi, when 41, = O(n)
for each v, has a storage complexity

#1 =#h ... #1y = 0(n%)

which grows exponentially with the dimension.

Manipulating tensors requires exploiting special properties of tensors such as sparsity or
low rankness.
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Low-rank format for order-two tensors

Rank of order-two tensors

The rank of an order-two tensor u € V ® W, denoted rank(u), is the minimal integer r

such that
r
u= Z Vi @ Wi
k=1

for some v € V and w, € W.

A tensor u € R" @ R is identified with a matrix in u € R"*™. The rank of u coincides
with the matrix rank, which is the minimal integer r such that

r

T T

u= g vkw, = VW',
k=1

where V = (vi,...,v) ER™ and W = (w1, ..., w,) € R™*".
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Low-rank format for order-two tensors

Singular value decomposition

Consider the case of a tensor space V ® W”'Hv, where V and W are Hilbert spaces (e.g.
spaces of functions), even infinite-dimensional, and where || - ||v denote the injective
norm on V ® W (the spectral norm for a matrix).

Atensorue V® wl v can be identified with a compact operator from W to V.

It admits a singular value decomposition

u= E OkVik & Wk,
k>1

where v, and wy are orthonormal vectors.

The set of singular values of u is o(u) = {ok(u) }k>1.
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Low-rank format for order-two tensors

Singular value decomposition of order-two tensors

Example 4 (Proper Orthogonal Decomposition)

For Q x | a space-time domain and V a Hilbert space of functions defined on Q, a
function u € L*(/; V) admits a singular value decomposition

u(t) = Z ok vikwi(t)

k=1

which is known as the Proper Orthogonal Decomposition (POD).

Example 5 (Karhunen-Loeve decomposition)

For a probability space (2, 1), an element u € L2(Q; V) is a second-order V-valued
random variable. If u is zero-mean, the singular value decomposition of u is known as
the Karhunen-Loeve decomposition

u(w) = Z ok Viewik (w)
k=1

where wy : © — R are uncorrelated (orthogonal) random variables.
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Low-rank format for order-two tensors

Singular value decomposition

The canonical norm
ull = llo(u)l2
is also called the Hilbert-Schmidt norm.
It is a particular case of Schatten p-norms which are defined for 1 < p < oo by
l[ullo, = llo(u)llp-
The rank of u is the number of non-zero singular values,
rank(u) = [lo(u)llo = #{k : ox(u) # 0}.

A tensor u has low rank if the vector of its singular values o(u) is sparse.
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Low-rank format for order-two tensors

Low-rank format for order-two tensors

The set of tensors in V @ W with rank bounded by r, denoted
Rr = {v:rank(v) <r},
is not a linear space nor a convex set. However, it has many favorable properties for a

numerical use.

@ The application v — rank(v) is lower semi-continuous, and therefore the set R, is
closed, which makes best approximation problems in R, well posed.

@ R, is the union of smooth manifolds of tensors with fixed rank.
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Low-rank formats for higher-order tensors Canonical format

@ Canonical format
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Low-rank formats for higher-order tensors Canonical format

Canonical rank of higher-order tensors

For tensors u € V1 ® ... ® V4 with d > 3, there are different notions of rank.

The canonical rank, which is the natural extension of the notion of rank for order-two

tensors, is the minimal integer r such that

u:2v,51)®...®v,£d),
k=1

for some vectors v,E”) cV,.

Anthony Nouy 20 /50



Low-rank formats for higher-order tensors Canonical format

Canonical format

The subset of tensors in V = V4 ® ... ® V4 with canonical rank bounded by r is denoted
R, ={v e V rank(v) <r}.

A tensor in R, has a representation
v(xi,...,xd) = Z V,El)(X1) e V,Ed)(Xd) = Z v (a, k) v (g, k).
k=1 k=1
The storage complexity of tensors in R, is
d
storage(R,) = erim(V,,) = O(rdn)
v=1

for dim(V,) = O(n).
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Low-rank formats for higher-order tensors Canonical format

Canonical format

For d > 3, the set R, looses many of the favorable properties of the case d = 2.
@ Determining the rank of a given tensor is a NP-hard problem.
@ The set R, is not an algebraic variety.
@ No notion of singular value decomposition.

@ The application v — rank(v) is not lower semi-continuous and therefore, R, is not
closed. The consequence is that for most problems involving approximation in
canonical format R,, there is no robust method when d > 2.
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

o (Tree-based) Tucker formats
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

a-rank

For a non-empty subset o of D = {1,...,d}, atensoru e V=V;®...® V4 can be
identified with an order-two tensor

Ma(u) € Vo ® Vae,

where Vo, = @, ¢, Vo, and o = D\ a. The operator My =V — Vi, ® Ve is called
the matricisation operator.

My M2y

The a-rank of u, denoted rank.(u), is the rank of the order-two tensor M (u),
rankq (u) = rank(Maq (u)),

which is the minimal integer r, such that
r'ov
Ma(u) = v @ wy
k=1

for some v¢' € V,, and WE‘C € V,e. We note that rank, (uv) = rankae(u).
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

a-rank

A multivariate function u(xa, ..., xq) with ranks(u) < ry is such that

T

u(x) = Z Vit (xa )WE (Xac)

k=1

for some functions v (x.) and wg (xac) of groups of variables

Xa = {X}vea and  xac = {X }rcac.

Example 6
u(x1,...,xd) = u1(x1) + ...+ ug(xa) where vy, ..., uq are non constant functions
satlsﬂes rank (u) = for aII a.
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

a-rank and minimal subspace

For a subset a of D = {1,...,d}, the minimal subspace
UT"(u)
of atensor u € Vi ® ... ® Vg is defined as the smallest subspace

UUCV :®Vy

vea

such that
Ma(u) € Us ® Vie.

The a-rank of u is the dimension of the minimal subspace UT"(u),

ranke (u) = dim(U2" (u)).
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

Subset of tensors with bounded a-rank

For a given subset @ C D, we define the subset of tensors with a-rank bounded by r, as
77({!0‘} ={v € V :ranko(v) < ro}.

Elements of 7;:*} admit the representation

V(xa %) = D D Clka kac)v™ (Xar ko)W (Xa<, kac)

k=1 kgqe=1

c
where C € R™*" and v® and w® are order-two tensors.

Xao Xac
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

Subset of tensors with bounded a-rank

The motivation behind the definition of tensor formats based on a-ranks is to benefit
from the nice properties of the two dimensional case.

@ The set
T = {v e H :ranka(v) < ra}
of tensors with a-rank bounded by r, is closed (and therefore proximinal).
@ For a given tensor u, Mq(u) admits a singular value decomposition.

@ The determination of the a-rank of a tensor is feasible.

° T,io‘} is a union of smooth manifolds of tensors with fixed a-rank.
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

a-ranks and related low-rank formats

For T a collection of subsets of D, we define the T-rank of a tensor v, denoted
rankr(u), as the tuple
rankr(v) = {ranka(v)}aer.

The subset of tensors in V with T-rank bounded by r = (ra)acT is
T, ={veV:rankr(v)<r} = m ﬁia}.
aeT
As a finite intersection of subsets ’ﬁia}, 7.7 inherits from nice geometrical and
topological properties:

o 7,7 is closed.
o 7,7 is a union of smooth manifolds of tensors with fixed T-rank.
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

a-ranks and related low-rank formats

Different choices for T yield different tensor formats, the standard formats being
o the Tucker format,
o the Tensor Train format,

o and more general tree-based (or hierarchical) Tucker formats.
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

Tucker format

For

T= {{1}7 [ERE) {d}}v

the tuple
rankr(v) = {rank{1}(v),...,rank{g1(v)}

is called the Tucker (or multilinear) rank of the tensor v.
The set of tensors with Tucker rank bounded by r = (r1,. .., rq), denoted
Tr ={v:ranky(v) <n,1 <v < d},

is such that
Tr={veli®...@ Uy :dim(U,) =r,1 <v <d}.
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

Tucker format

A tensor in v € T; admits a representation

r

rd
Via,.oxa) = 3> Clhay o kg (s k) v (xa, k).

ki=1  kg=1

where C € R** % is an order-d tensor and the v(*) are order-two tensors.

X1 X2 Xd

The storage complexity is

d d
storage(7;) = [ [ n + Y _ rdim(V,) = O(R? + Rnd)
v=1 v=1

with r, = O(R) and dim(V,,) = O(n). This format still suffers from the curse of

dimensionality.

Anthony Nouy
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

Tensor train format

For

T={{1}{1,2},....{L,...,d — 1}},

the tuple
rankr(v) = {rankyy}(v), rankgy 23(v),...,rankgy  g-13(v)}

is called the TT-rank of the tensor v.

For a tuple r = (r1,...,rs—1), the set 7,7 of tensors with TT-rank bounded by r is
denoted

w(v) =rankpyr oy (v) <1 <v<d -1}

,,,,,
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

Tensor train format

A tensor v in 77T, has a representation

rn rd—1

X1 X2 Xd—1 Xd
The storage complexity of an element in 77, is
storage(77r) Z ry_1r, dim(V,) = O(dnR?)
v=1

with dim(V,,) = O(n), r, = O(R). Here we use the convention rp = ry = 1.
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

Tree-based (hierarchical) Tucker format

Tree-based (or hierarchical) Tucker formats are associated with a dimension partition
tree T over D = {1,...,d}, with root D and leaves {v}, 1 <v <d.

{1,2,3,4,5,6}

{2} {3}

The tree-based rank of a tensor v is the tuple rankr(v) = (ranka(v))acT.
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

Tree-based (hierarchical) Tucker format

Let v be a tensor in 7,” with r = (ra)acT. At the first level, v admits the representation

81 Bs
D B Bs
V(X): Z C( )(k517'-'7k/35)v( 1)(X517k/31)"'v( )(Xﬁwkﬁs)'
kpy =t k=1

where {01, ..., 8s} = S(D) are the children of the root node D.

ka5,6

ki2,3

{1’ 27 37 47 5’ 6}

{1,2,3} {4,5,6}
X{1,2,3} X{4,5,6}
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

Tree-based (hierarchical) Tucker format

Then, for an interior node « of the tree, with children S(a) = {f1, ..., s}, the tensor
v(®) admits the representation

81 Bs
V(O’)(Xo"ka) = Z Z C(G’)(kavkﬁ:u--'7kﬂs)v(‘dl)(xﬁlfkﬂ1)"'V(‘JS)(Xﬁs?kﬁs)'

kg =1 kps=1

{17 27 37 47 5’ 6}

{1,2,3} {4,5,6}

{1H2,3} {4} {5} {6}
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

Tree-based (hierarchical) Tucker format

Finally, denoting by £(T) = {{v} : v € D} the leaves of the tree, the tensor v admits
the Tucker-like representation

= S (XTI ke (kadsesie)) vV k) - v (s ko)

1<k, <n, 1<ka<ro p€T\L(T)
ve{l,.,d} aET\L(T)

{17 27 37 47 5’ 6}

{1,2,3} {4,5,6}

{1} {4} {5} {6}
{2} {3}
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Low-rank formats for higher-order tensors

Tree-based (hierarchical) formats

(Tree-based) Tucker formats

Particular trees:
@ Trivial tree with one level: Tucker format
o Balanced binary tree: Hierarchical Tucker format

@ Linear tree : Tensor Train format

{1,2,3,4}
{1,2,3,4}
{1,2} {3,4}

{1} {2} {3t {4}

Tucker {1 {2p {3 {4}

Hierarchical Tucker (HT)

Anthony Nouy

{1,2,3,4}

{2}
Tensor Train (TT)
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Low-rank formats for higher-order tensors Tensor networks

Tensor networks

More general tensor formats, called tensor networks, are associated with graphs

G = (N, &) with nodes N and edges &.

Tree-based tensor formats are particular cases of tensor networks, called tree tensor
networks, where G is a dimension partition tree.
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@ Parametrization of low-rank tensor formats
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Parametrization and storage of low-rank tensor formats

Ultimately, a tensor in a certain low-rank tensor format M, admits a multilinear
parametrization of the form

rn rn d M
Vi) = D> [TPY (o (ki)ies,) TT P ((i)ies,
ki=1 k=1v=1 v=d+1

where the parameter p(*) is an element of a tensor space P*) which depends on a subset
of summation variables (ki)ics, := ks, .

Approximation in low-rank tensor formats is the first step between linear approximation
and nonlinear approximation.

The storage complexity is
storage(M,) = O(dnR®* + (M — d)R®')
where r; = O(R), #S, = O(s) for v < d and #S, = O(s') for v > d.
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Parametrization and storage of low-rank tensor formats

Examples
o Canonical format: L=1, M =d, S, = {1} for all v.
storage(R,) = O(ndR)

storage(7;) = O(ndR + R?)

Tensor train format: L=d —1, M =d, $; = {1}, So = {d — 1} and
SS={v—1lv}ifor2<v<d-1

storage(7°7;) = O(ndR?)

S, ={v} for 1 <v <d and S, cointains the sons of the node {v} for v > d.
storage(7,” ) = O(ndR + dR*™)

where k is the maximal number of sons of the nodes (k = 2 for a binary tree).
@ Tensor networks: arbitrary L and M and #{v:i€ S,} =2 forall1 <i <L

Tucker format: L=d, M=d+1,S, ={v} forl <v <d, and Sg1 ={1,...,d}.

Tree-based tensor format (for a dimension partition tree T): L=#T —1, M = #T,
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