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High dimensional approximation

High-dimensional problems in physics

Schrodinger equation
Ψ(x1, . . . , xd , t)

i~∂Ψ

∂t
= − ~

2µ
∆Ψ + VΨ

Boltzmann equation
p(x1, . . . , xd , t)

∂p

∂t
+

d∑
i=1

vi
∂p

∂xi
= H(p, p)

Fokker-Planck equation
p(x1, . . . , xd , t)

∂p

∂t
+

d∑
i=1

∂

∂xi
(aip)− 1

2

d∑
i,j=1

∂2

∂xixj
(bijp) = 0

Master equation

P(x1, . . . , xd , t), (x1, . . . , xd) ∈ X = {1, . . . ,N}d

∂P

∂t
(x , t) =

∑
y∈X

A(x , y)P(y , t)
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High dimensional approximation

High-dimensional problems in stochastic analysis

Stochastic differential equations (SDEs)

dXt = a(Xt , t)dt + σ(Xt , t)dWt , Xt ∈ Rd

Fokker-Planck equation for probability density function p(x1, . . . , xd , t) of Xt

∂p

∂t
= Lp = −

d∑
i=1

∂

∂xi
(aip) +

1
2

d∑
i,j=1

∂2

∂xixj
((σσT )ijp)

Feynman-Kac formula for

u(x , t) = EXt=x

(∫ T

t

e
∫ s
t r(Xr ,r)dr f (Xs , s)ds

)
yields a high-dimensional PDE

∂tu + L∗u + ru + f = 0 in Rd × (0,T ), u(x ,T ) = 0

Functional approach to SDEs using a parametrization of the noise

Wt =
∞∑
i=1

ξiϕi (t), ξi ∼ N (0, I ),

Xt(ω) ≡ u(t, ξ1(ω), ξ2(ω), . . .)
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High dimensional approximation

High-dimensional problems in uncertainty quantification

Parameter-dependent models
M(u(X );X ) = 0

where X = (X1, . . . ,Xd) are random variables.

Forward problem: evaluation of statistics, probability of events, sensitivity indices...

E(f (u(X ))) =

∫
Rd

f (u(x1, . . . , xd))p(x1, . . . , xd)dx1 . . . dxd

Inverse problem: from (partial) observations of u, estimate the density of X

p(x1, . . . , xd)

Meta-models: approximation of the high-dimensional function

u(x1, . . . , xd)

Anthony Nouy 5 / 50



High dimensional approximation

High-dimensional approximation

The goal of approximation is to replace a function

u(x1, . . . , xd)

by a simpler function (easy to evaluate) depending on a few parameters.

For a certain subset of functions Xn described by n parameters (or O(n) parameters), the
error of best approximation of u by elements of Xn is defined by

en(u) = inf
v∈Xn

d(u, v)

where d is a distance measuring the quality of an approximation.

A sequence of subsets (Xn)n≥1 is called an approximation tool. We distinguish linear
approximation, where Xn are linear spaces, from nonlinear approximation, where Xn are
nonlinear spaces.
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High dimensional approximation

High-dimensional approximation

Fundamental problems are

to determine if and how fast en(u) tends to 0 for a certain class of functions and a
certain approximation tool,

to provide algorithms which produce approximations un ∈ Xn such that

d(u, un) ≤ Cen(u)

with C independent of n or C(n)en(u)→ 0 as n→∞
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High dimensional approximation

The curse of dimensionality

Let consider u in X = Lp(X ) with X = (0, 1)d and the natural distance
d(u, v) = ‖u − v‖Lp on X . Let Xn be the space of piecewise polynomials of partial
degree m, with n = (m + 1)dh−d parameters.

If u is in the Sobolev space W k,p(X ) for a certain k ≤ m + 1,

en(u) ≤ Mn−k/d

We observe

the curse of dimensionality : deterioration of the rate of approximation when d
increases. Exponential growth with d of the complexity for reaching a given
accuracy.

the blessing of smoothness : improvement of the rate of approximation when k
increases.

We may ask if the curse of dimensionality is due to the particular choice of
approximation tool (polynomials) for approximating functions in W k,p(X ) ? We may
also ask if the curse of dimensionality is still present if k =∞ (smooth functions) ?
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High dimensional approximation

The curse of dimensionality

For a set of functions K in a normed vector space X , the Kolmogorov n-width of K is

dn(K) = inf
dim(Xn)=n

sup
u∈K

inf
v∈Xn

d(u, v)

where the infimum is taken over all linear subspaces of dimension n. dn(K) measures
how well the set of functions K can be approximated by a n-dimensional space. It
measures the ideal performance that we can expect from linear approximation methods.

Let X = Lp(X ) with X = (0, 1)d .

For K the unit ball of W k,p(X ), we have

dn(K) ∼ n−k/d

For K = {v ∈ C∞(X ) : supα ‖Dαv‖L∞ <∞}, we have

min{n : dn(K) ≤ 1/2} ≥ c2d/2

Extra smoothness does not help !

Similar results are obtained for non-linear widths measuring the ideal performance of
nonlinear approximation methods. Nonlinear methods can not help !

Anthony Nouy 9 / 50



High dimensional approximation

How to beat the curse of dimensionality ?

The key is to consider classes of functions with specific low-dimensional structures and to
propose approximation formats (models) which exploit these structures
(application-dependent).

Approximations are searched in subsets Xn with a number of parameters

n = O(dp)

but

Xn is usually nonlinear, and

Xn may be non smooth.

This turns approximation problems

min
v∈Xn

d(u, v)

into nonlinear and possibly non smooth optimization problems.
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High dimensional approximation

Low-dimensional models for high-dimensional approximation

Low-order interactions, e.g.
No interaction (additive model)

u(x1, . . . , xd) ≈ u0 + u1(x1) + . . .+ ud(xd)

First-order interactions

u(x1, . . . , xd) ≈ u0 +
∑
i

ui (xi ) +
∑
i 6=j

ui,j(xi , xj)

Small number of interactions
For a given Λ ⊂ 2{1,...,d} (set of interaction groups),

u(x1, . . . , xd) ≈
∑
α∈Λ

uα(xα)

Λ as a parameter

u(x1, . . . , xd) ≈
∑
α∈Λ

uα(xα) with #Λ = n
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High dimensional approximation

Low-dimensional models for high-dimensional approximation

Sparsity relatively to a basis or frame {ψα}α∈N

u(x1, . . . , xd) ≈
∑
α∈Λ

aαψα(x1, . . . , xd), #Λ = n

Sparsity relatively to a dictionary D

u(x1, . . . , xd) ≈
n∑

i=1

aiψi (x1, . . . , xd), ψi ∈ D
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High dimensional approximation

Low-dimensional models for high-dimensional approximation

Low rank, e.g.
u(x1, . . . , xd) ≈ u1(x1) . . . ud(xd)

u(x1, . . . , xd) ≈
r∑

i=1

u1,i (x1) . . . ud,i (xd)

u(x1, . . . , xd) ≈
r1∑

i1=1

. . .

rd−1∑
id−1=1

u1,i1(x1)ui1,i2(x2) . . . uid−1,1(xd)

...

Multilinear approximation, a first step between linear approximation and nonlinear
approximation.
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What are tensors ?

Tensor product of vectors

For I = {1, . . . ,N}, an element v of the vector space RI is identified with the set of its
coefficients (vi )i∈I on a certain basis {ei}i∈I of RI ,

v =
∑
i∈I

viei .

Given d index sets Iν = {1, . . . ,Nν}, 1 ≤ ν ≤ d , we introduce the multi-index set

I = I1 × . . .× Id .

An element v of RI is called a tensor of order d and is identified with a multidimensional
array

(vi )i∈I = (vi1,...,id )i1∈I1,...,id∈Id
which represents the coefficients of v on a certain basis of RI .

d = 1 d = 2 d = 3
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What are tensors ?

Tensor product of vectors

The entries of the multidimensional array are equivalently denoted

v(i) = v(i1, . . . , id).

Given d vectors v (ν) ∈ RIν , 1 ≤ ν ≤ d , the tensor product of these vectors

v := v (1) ⊗ . . .⊗ v (d)

is defined by
v(i) = v (1)(i1) . . . v (d)(id)

and is called an elementary tensor.

d = 2

⊗ ≡

Using matrix notations, v ⊗ w is
identified with the matrix vwT .

d = 3

⊗ ⊗ ≡
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What are tensors ?

Tensor product of vectors

The tensor space RI = RI1×...×Id , also denoted RI1 ⊗ . . .⊗ RId , is defined by

RI = RI1 ⊗ . . .⊗ RId = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ RIν , 1 ≤ ν ≤ d}
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What are tensors ?

Tensor product of functions

Let Xν ⊂ R, 1 ≤ ν ≤ d , be an interval and Vν be a space of functions defined on Xν .

The tensor product of functions v (ν) ∈ Vν , denoted

v = v (1) ⊗ . . .⊗ v (d),

is a multivariate function defined on X = X1 × . . .×Xd and such that

v(x) = v(x1, . . . , xd) = v (1)(x1) . . . v (d)(xd)

for x = (x1, . . . , xd) ∈ X . For example, for i ∈ Nd
0 , the monomial x i = x i1

1 . . . x
id
d is an

elementary tensor.
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What are tensors ?

Tensor product of functions

The algebraic tensor product of spaces Vν is defined as

V1 ⊗ . . .⊗ Vd = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ Vν , 1 ≤ ν ≤ d}

which is the space of multivariate functions v which can be written as a finite linear
combination of elementary (separated functions), i.e.

v(x) =
n∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd).

Up to a formal definition of the tensor product ⊗, the above construction can be
extended to arbitrary vector spaces Vν (not only spaces of functions).
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What are tensors ?

Infinite dimensional tensor spaces

For infinite dimensional spaces Vν , a Hilbert (or Banach) tensor space equipped with a
norm ‖ · ‖ is obtained by the completion (w.r.t. ‖ · ‖) of the algebraic tensor space

V
‖·‖

= V1 ⊗ . . .⊗ Vd
‖·‖
.

Example 1 (Lp spaces)

Let 1 ≤ p <∞. If Vν = Lp
µν

(Xν), then

Lp
µ1(X1)⊗ . . .⊗ Lp

µd
(Xd) ⊂ Lp

µ(X1 × . . .×Xd)

with µ = µ1 ⊗ . . .⊗ µd , and

Lp
µ1(X1)⊗ . . .⊗ Lp

µd (Xd)
‖·‖

= Lp
µ(X1 × . . .×Xd)

where ‖ · ‖ is the natural norm on Lp
µ(X1 × . . .×Xd).

Example 2 (Bochner spaces)

Let X be equipped with a finite measure µ, and let W be a Hilbert (or Banach) space.
For 1 ≤ p <∞, the Bochner space Lp

µ(X ;W ) is the set of Bochner-measurable
functions u : X →W with bounded norm ‖u‖p = (

∫
X ‖u(x)‖pWµ(dx))1/p, and

Lp
µ(X ;W ) = W ⊗ Lp

µ(X )
‖·‖p

.Anthony Nouy 19 / 50



What are tensors ?

Infinite dimensional tensor spaces

Example 3 (Sobolev spaces)

The Sobolev space Hk(X ) of functions defined on X = X1 × . . .×Xd , equipped with the
norm

‖u‖2Hk =
∑
|α|1≤k

‖Dαu‖2L2 ,

is a Hilbert tensor space

Hk(X ) = Hk(X1)⊗ . . .⊗ Hk(Xd)
‖·‖

Hk
.

The Sobolev space Hk
mix(X ) equipped with the norm

‖u‖2Hk
mix

=
∑
|α|∞≤k

‖Dαu‖2L2 ,

is a different tensor Hilbert space

Hk
mix(X ) = Hk(X1)⊗ . . .⊗ Hk(Xd)

‖·‖
Hk
mix .

‖u‖2
Hk
mix

is the canonical tensor norm on Hk(X1)⊗ . . .⊗ Hk(Xd).
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What are tensors ?

Tensor product basis

If {ψ(ν)
i }i∈Iν is a basis of Vν , then a basis of V = V1 ⊗ . . .⊗ Vd is given by{

ψi = ψ
(1)
i1
⊗ . . .⊗ ψ(d)

id
: i ∈ I = I1 × . . .× Id

}
.

A tensor v ∈ V admits a decomposition

v =
∑
i∈I

a(i)ψi =
∑
i1∈I1

. . .
∑
id∈Id

a(i1, . . . , id)ψ
(1)
i1
⊗ . . .⊗ ψ(d)

id
,

and v can be identified with the set of its coefficients

a ∈ RI .
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What are tensors ?

Hilbert tensor spaces

If the Vν are Hilbert spaces with inner products (·, ·)ν and associated norms ‖ · ‖ν , a
canonical inner product on V can be first defined for elementary tensors

(v (1) ⊗ . . .⊗ v (d),w (1) ⊗ . . .⊗ w (d)) = (v (1),w (1)) . . . (v (d),w (d))

and then extended by linearity to the whole space V . The associated norm ‖ · ‖ is called
the canonical norm.

If the {ψ(ν)
i }i∈Iν are orthonormal bases of spaces Vν , then {ψi}i∈I is an orthonormal

basis of V
‖·‖

. A tensor
v =

∑
i∈I

aiψi

is such that
‖v‖2 =

∑
i∈I

a2
i := ‖a‖2.

Therefore, the map Ψ which associates to a tensor a ∈ RI the tensor
v = Ψ(a) :=

∑
i∈I aiψi defines a linear isometry from RI to V for finite dimensional

spaces, and between `2(I ) and V
‖·‖

for infinite dimensional spaces.
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What are tensors ?

Curse of dimensionality

A tensor a ∈ RI = RI1×...×Id or a corresponding tensor v =
∑

i∈I aiψi , when #Iν = O(n)
for each ν, has a storage complexity

#I = #I1 . . .#Id = O(nd)

which grows exponentially with the dimension.

Manipulating tensors requires exploiting special properties of tensors such as sparsity or
low rankness.
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Low-rank format for order-two tensors

Rank of order-two tensors

The rank of an order-two tensor u ∈ V ⊗W , denoted rank(u), is the minimal integer r
such that

u =
r∑

k=1

vk ⊗ wk

for some vk ∈ V and wk ∈W .

A tensor u ∈ Rn ⊗ Rm is identified with a matrix in u ∈ Rn×m. The rank of u coincides
with the matrix rank, which is the minimal integer r such that

u =
r∑

k=1

vkw
T
k = VW T ,

where V = (v1, . . . , vr ) ∈ Rn×r and W = (w1, . . . ,wr ) ∈ Rm×r .

= + + =
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Low-rank format for order-two tensors

Singular value decomposition

Consider the case of a tensor space V ⊗W
‖·‖∨ , where V and W are Hilbert spaces (e.g.

spaces of functions), even infinite-dimensional, and where ‖ · ‖∨ denote the injective
norm on V ⊗W (the spectral norm for a matrix).

A tensor u ∈ V ⊗W
‖·‖∨ can be identified with a compact operator from W to V .

It admits a singular value decomposition

u =
∑
k≥1

σkvk ⊗ wk ,

where vk and wk are orthonormal vectors.

The set of singular values of u is σ(u) = {σk(u)}k≥1.
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Low-rank format for order-two tensors

Singular value decomposition of order-two tensors

Example 4 (Proper Orthogonal Decomposition)

For Ω× I a space-time domain and V a Hilbert space of functions defined on Ω, a
function u ∈ L2(I ;V ) admits a singular value decomposition

u(t) =
∞∑
k=1

σkvkwk(t)

which is known as the Proper Orthogonal Decomposition (POD).

Example 5 (Karhunen-Loeve decomposition)

For a probability space (Ω, µ), an element u ∈ L2
µ(Ω;V ) is a second-order V -valued

random variable. If u is zero-mean, the singular value decomposition of u is known as
the Karhunen-Loeve decomposition

u(ω) =
∞∑
k=1

σkvkwk(ω)

where wk : Ω→ R are uncorrelated (orthogonal) random variables.
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Low-rank format for order-two tensors

Singular value decomposition

The canonical norm
‖u‖ = ‖σ(u)‖2

is also called the Hilbert-Schmidt norm.

It is a particular case of Schatten p-norms which are defined for 1 ≤ p ≤ ∞ by

‖u‖σp = ‖σ(u)‖p.

The rank of u is the number of non-zero singular values,

rank(u) = ‖σ(u)‖0 = #{k : σk(u) 6= 0}.

A tensor u has low rank if the vector of its singular values σ(u) is sparse.
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Low-rank format for order-two tensors

Low-rank format for order-two tensors

The set of tensors in V ⊗W with rank bounded by r , denoted

Rr = {v : rank(v) ≤ r},

is not a linear space nor a convex set. However, it has many favorable properties for a
numerical use.

The application v 7→ rank(v) is lower semi-continuous, and therefore the set Rr is
closed, which makes best approximation problems in Rr well posed.

Rr is the union of smooth manifolds of tensors with fixed rank.
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Low-rank formats for higher-order tensors
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Low-rank formats for higher-order tensors Canonical format

Canonical rank of higher-order tensors

For tensors u ∈ V1 ⊗ . . .⊗ Vd with d ≥ 3, there are different notions of rank.

The canonical rank, which is the natural extension of the notion of rank for order-two
tensors, is the minimal integer r such that

u =
r∑

k=1

v
(1)
k ⊗ . . .⊗ v

(d)
k ,

for some vectors v (ν)
k ∈ Vν .
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Low-rank formats for higher-order tensors Canonical format

Canonical format

The subset of tensors in V = V1 ⊗ . . .⊗ Vd with canonical rank bounded by r is denoted

Rr = {v ∈ V : rank(v) ≤ r}.

A tensor in Rr has a representation

v(x1, . . . , xd) =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd) :=

r∑
k=1

v (1)(x1, k) . . . v (d)(xd , k).

The storage complexity of tensors in Rr is

storage(Rr ) = r
d∑
ν=1

dim(Vν) = O(rdn)

for dim(Vν) = O(n).
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Low-rank formats for higher-order tensors Canonical format

Canonical format

For d ≥ 3, the set Rr looses many of the favorable properties of the case d = 2.

Determining the rank of a given tensor is a NP-hard problem.

The set Rr is not an algebraic variety.

No notion of singular value decomposition.

The application v 7→ rank(v) is not lower semi-continuous and therefore, Rr is not
closed. The consequence is that for most problems involving approximation in
canonical format Rr , there is no robust method when d > 2.

Anthony Nouy 31 / 50



Low-rank formats for higher-order tensors (Tree-based) Tucker formats
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

α-rank

For a non-empty subset α of D = {1, . . . , d}, a tensor u ∈ V = V1 ⊗ . . .⊗ Vd can be
identified with an order-two tensor

Mα(u) ∈ Vα ⊗ Vαc ,

where Vα =
⊗

ν∈α Vν , and αc = D \ α. The operatorMα = V → Vα ⊗ Vαc is called
the matricisation operator.

M{1}←−−−−
M{2}−−−−→

The α-rank of u, denoted rankα(u), is the rank of the order-two tensorMα(u),

rankα(u) = rank(Mα(u)),

which is the minimal integer rα such that

Mα(u) =

rα∑
k=1

vαk ⊗ wαc

k

for some vαk ∈ Vα and wαc

k ∈ Vαc . We note that rankα(u) = rankαc (u).
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

α-rank

A multivariate function u(x1, . . . , xd) with rankα(u) ≤ rα is such that

u(x) =

rα∑
k=1

vαk (xα)wαc

k (xαc )

for some functions vαk (xα) and wαc

k (xαc ) of groups of variables

xα = {xν}ν∈α and xαc = {xν}ν∈αc .

Example 6

u(x1, . . . , xd) = u1(x1) + . . .+ ud(xd) where u1, . . . , ud are non constant functions
satisfies rankα(u) = 2 for all α.
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

α-rank and minimal subspace

For a subset α of D = {1, . . . , d}, the minimal subspace

Umin
α (u)

of a tensor u ∈ V1 ⊗ . . .⊗ Vd is defined as the smallest subspace

Uα ⊂ Vα =
⊗
ν∈α

Vν

such that
Mα(u) ∈ Uα ⊗ Vαc .

The α-rank of u is the dimension of the minimal subspace Umin
α (u),

rankα(u) = dim(Umin
α (u)).
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

Subset of tensors with bounded α-rank

For a given subset α ⊂ D, we define the subset of tensors with α-rank bounded by rα as

T {α}rα = {v ∈ V : rankα(v) ≤ rα}.

Elements of T {α}rα admit the representation

v(xα, xαc ) =

rα∑
kα=1

rα∑
kαc =1

C(kα, kαc )vα(xα, kα)wαc

(xαc , kαc )

where C ∈ Rrα×rα and vα and wαc

are order-two tensors.

C

vα

xα

kα

wαc

xαc

kαc
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

Subset of tensors with bounded α-rank

The motivation behind the definition of tensor formats based on α-ranks is to benefit
from the nice properties of the two dimensional case.

The set
T {α}rα = {v ∈ H : rankα(v) ≤ rα}

of tensors with α-rank bounded by rα is closed (and therefore proximinal).

For a given tensor u,Mα(u) admits a singular value decomposition.

The determination of the α-rank of a tensor is feasible.

T {α}rα is a union of smooth manifolds of tensors with fixed α-rank.
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

α-ranks and related low-rank formats

For T a collection of subsets of D, we define the T -rank of a tensor v , denoted
rankT (u), as the tuple

rankT (v) = {rankα(v)}α∈T .

The subset of tensors in V with T -rank bounded by r = (rα)α∈T is

T T
r = {v ∈ V : rankT (v) ≤ r} =

⋂
α∈T

T {α}rα .

As a finite intersection of subsets T {α}rα , T T
r inherits from nice geometrical and

topological properties:

T T
r is closed.

T T
r is a union of smooth manifolds of tensors with fixed T -rank.
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Low-rank formats for higher-order tensors (Tree-based) Tucker formats

α-ranks and related low-rank formats

Different choices for T yield different tensor formats, the standard formats being

the Tucker format,

the Tensor Train format,

and more general tree-based (or hierarchical) Tucker formats.
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Tucker format

For
T = {{1}, . . . , {d}},

the tuple
rankT (v) = {rank{1}(v), . . . , rank{d}(v)}

is called the Tucker (or multilinear) rank of the tensor v .

The set of tensors with Tucker rank bounded by r = (r1, . . . , rd), denoted

Tr = {v : rank{ν}(v) ≤ rν , 1 ≤ ν ≤ d},

is such that
Tr = {v ∈ U1 ⊗ . . .⊗ Ud : dim(Uν) = rν , 1 ≤ ν ≤ d}.
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Tucker format

A tensor in v ∈ Tr admits a representation

v(x1, . . . , xd) =

r1∑
k1=1

. . .

rd∑
kd=1

C(k1, . . . , kd)v (1)(x1, k1) . . . v (d)(xd , kd).

where C ∈ Rr1×...×rd is an order-d tensor and the v (ν) are order-two tensors.

C

v (1)

x1

k1

v (2)

x2

k2

... v (d)

xd

kd

The storage complexity is

storage(Tr ) =
d∏
ν=1

rν +
d∑
ν=1

rν dim(Vν) = O(Rd + Rnd)

with rν = O(R) and dim(Vν) = O(n). This format still suffers from the curse of
dimensionality.
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Tensor train format

For
T = {{1}, {1, 2}, . . . , {1, . . . , d − 1}},

the tuple
rankT (v) = {rank{1}(v), rank{1,2}(v), . . . , rank{1,...,d−1}(v)}

is called the TT-rank of the tensor v .

For a tuple r = (r1, . . . , rd−1), the set T T
r of tensors with TT-rank bounded by r is

denoted

T Tr = {v : rank{1,...,ν}(v) = rank{ν+1,...,d}(v) ≤ rν , 1 ≤ ν ≤ d − 1}.
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Tensor train format

A tensor v in T Tr has a representation

v(x) =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

v (1)(x1, k1)v (2)(k1, x2, k2) . . . v (d)(kd−1, xd).

v (1) v (2) v (d−1) v (d)

x1 x2 xd−1 xd

k1 k2 kd−1 kd

The storage complexity of an element in T Tr is

storage(T Tr ) =
d∑
ν=1

rν−1rν dim(Vν) = O(dnR2)

with dim(Vν) = O(n), rν = O(R). Here we use the convention r0 = rd = 1.
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Tree-based (hierarchical) Tucker format

Tree-based (or hierarchical) Tucker formats are associated with a dimension partition
tree T over D = {1, . . . , d}, with root D and leaves {ν}, 1 ≤ ν ≤ d .

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

The tree-based rank of a tensor v is the tuple rankT (v) = (rankα(v))α∈T .
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Tree-based (hierarchical) Tucker format

Let v be a tensor in T T
r with r = (rα)α∈T . At the first level, v admits the representation

v(x) =

rβ1∑
kβ1 =1

. . .

rβs∑
kβs =1

C (D)(kβ1 , . . . , kβs )v (β1)(xβ1 , kβ1) . . . v (βs )(xβs , kβs ).

where {β1, . . . , βs} = S(D) are the children of the root node D.

{1, 2, 3, 4, 5, 6}

{1, 2, 3} {4, 5, 6}

C (D)

v (1,2,3)

x{1,2,3}

k1,2,3

v (4,5,6)

x{4,5,6}

k4,5,6
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Tree-based (hierarchical) Tucker format

Then, for an interior node α of the tree, with children S(α) = {β1, . . . , βs}, the tensor
v (α) admits the representation

v (α)(xα, kα) =

rβ1∑
kβ1 =1

. . .

rβs∑
kβs =1

C (α)(kα, kβ1 , . . . , kβs )v (β1)(xβ1 , kβ1) . . . v (βs )(xβs , kβs ).

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}{2, 3}

{4, 5, 6}

{4} {5} {6}

C (D)

C (1,2,3)

v (1)

x1

k1

v (2,3)

x2,3

k2,3

k1,2,3

C (4,5,6)

v (4)

x4

k4

v (5)

x5

k5

v (6)

x6

k6

k4,5,6
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Tree-based (hierarchical) Tucker format

Finally, denoting by L(T ) = {{ν} : ν ∈ D} the leaves of the tree, the tensor v admits
the Tucker-like representation

v(x) =
∑

1≤kν≤rν
ν∈{1,...,d}

( ∑
1≤kα≤rα
α∈T\L(T )

∏
µ∈T\L(T )

C (µ)(kµ, (kβ)β∈S(α))
)
v (1)(x1, k1) . . . v (d)(xd , kd)

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

C (D)

C (1,2,3)

v (1)

x1

k1

C (2,3)

v (2)

x2

k2

v (3)

x3

k3

k2,3

k1,2,3

C (4,5,6)

v (4)

x4

k4

v (5)

x5

k5

v (6)

x6

k6

k4,5,6
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Tree-based (hierarchical) formats

Particular trees:

Trivial tree with one level: Tucker format

Balanced binary tree: Hierarchical Tucker format

Linear tree : Tensor Train format

{1, 2, 3, 4}

{1} {2} {3} {4}

Tucker

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Hierarchical Tucker (HT)

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1}

{2}

{3}

{4}

Tensor Train (TT)
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Tensor networks

More general tensor formats, called tensor networks, are associated with graphs
G = (N , E) with nodes N and edges E .

v (1)

x1

v (2)

x2

v (3)

x3

v (4)

x4

C (5)

k1,2

k3,4

k2,4

k1,5

k2,5

k1,3

k3,5

Tree-based tensor formats are particular cases of tensor networks, called tree tensor
networks, where G is a dimension partition tree.

Anthony Nouy 48 / 50



Low-rank formats for higher-order tensors Parametrization of low-rank tensor formats

1 High dimensional approximation

2 What are tensors ?

3 Low-rank format for order-two tensors

4 Low-rank formats for higher-order tensors
Canonical format
(Tree-based) Tucker formats
Tensor networks
Parametrization of low-rank tensor formats

Anthony Nouy 49 / 50



Low-rank formats for higher-order tensors Parametrization of low-rank tensor formats

Parametrization and storage of low-rank tensor formats

Ultimately, a tensor in a certain low-rank tensor formatMr admits a multilinear
parametrization of the form

v(x1, . . . , xd) =

r1∑
k1=1

. . .

rL∑
kL=1

d∏
ν=1

p(ν) (xν , (ki )i∈Sν )
M∏

ν=d+1

p(ν) ((ki )i∈Sν )

where the parameter p(ν) is an element of a tensor space P(ν) which depends on a subset
of summation variables (ki )i∈Sν := kSν .

Approximation in low-rank tensor formats is the first step between linear approximation
and nonlinear approximation.

The storage complexity is

storage(Mr ) = O(dnR s + (M − d)R s′)

where ri = O(R), #Sν = O(s) for ν ≤ d and #Sν = O(s ′) for ν > d .
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Parametrization and storage of low-rank tensor formats

Examples

Canonical format: L = 1, M = d , Sν = {1} for all ν.
storage(Rr ) = O(ndR)

Tucker format: L = d , M = d + 1, Sν = {ν} for 1 ≤ ν ≤ d , and Sd+1 = {1, . . . , d}.

storage(Tr ) = O(ndR + Rd)

Tensor train format: L = d − 1, M = d , S1 = {1}, Sd = {d − 1} and
Sν = {ν − 1, ν} for 2 ≤ ν ≤ d − 1.

storage(T Tr ) = O(ndR2)

Tree-based tensor format (for a dimension partition tree T ): L = #T − 1, M = #T ,
Sν = {ν} for 1 ≤ ν ≤ d and Sν cointains the sons of the node {ν} for ν > d .

storage(T T
r ) = O(ndR + dRk+1)

where k is the maximal number of sons of the nodes (k = 2 for a binary tree).

Tensor networks: arbitrary L and M and #{ν : i ∈ Sν} = 2 for all 1 ≤ i ≤ L.
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