
Exercise Sheet Tensor Methods
CEMRACS 2021

By Mazen Ali* & Anthony Nouy
July 21st, 2021

For this exercise, download the folder

https://github.com/MazenAli/CEMRACS2021/exercise

There, you will find the file exercise.pdf (this document), a Jupyter notebook exercise.ipynb containing
the programming exercises and a Jupyter notebook exercise solution.ipynb containing the solutions to
the programming exercises. We strongly recommend you work the problems before consulting the solutions.

For part I of this exercise, you will need python, the software package numpy and the Jupyter Notebook.
For part III, you will additionally need the software package tensap that you can download from

https://anthony-nouy.github.io/tensap

or install via pip install tensap. You will also need the tutorial file

tutorials/approximation/tutorial PCA FunctionalTensorPrincipalComponentAnalysis.py

contained in the download folder. Part III is based on the paper

Nouy, A. Higher-order principal component analysis for the approximation of tensors in tree-based low-rank
formats. Numer. Math. 141, 743–789 (2019).

Abbreviations:

� MPS = Matrix Product State

� PCA = Principal Component Analysis

� SVD = Singular Value Decomposition

� TT = Tensor Train

� TTN = Tree Tensor Network

� TN = Tensor Network

Part I: Basic TN Algebra (python)

Tensor networks come with an intuitive graphical notation known as tensor diagrams or Penrose graphical
notation. It is convenient and often necessary to use diagrams to understand, reason and compute with TNs.

In its simplest form, a TN diagram is an undirected graph with vertices and edges. A vertex corresponds
to a tensor – sometimes referred to as a core – and an edge corresponds to an index of that tensor. Connected
edges between vertices represent contractions of tensors – multiplying and summing over the corresponding
index. The number of summands corresponding to an edge is referred to as rank, and the number of outgoing
edges from a vertex is referred to as the order of the tensor corresponding to that vertex. A word of caution,
however: in physics and geometry it is common to refer to the order as the rank, degree, dimension, total
order, valence or type (in the case of co- and contravariant indices) of the tensor and the rank as the bond
dimension or dimension.

Elementary tensor products A⊗B can be represented by either putting two vertices next to each other
without a connecting edge or, equivalently, a (trivial) connecting edge corresponding to rank one. Free,
dangling or unconnected edges of a tensor correspond to unspecified (input) indices, i.e., their overall number
determines the order of the tensor object represented by the network. For instance, an order-d tensor object
X ∈ Rn1×...×nd as a TN must have d free edges and can have any number of internal or connected edges.

*mazen.ali@ec-nantes.fr

1



In particular, this means a TN can have any number of internal vertices – without free edges – that do not
affect the overall order of the tensor object.

TN representations are not unique which is sometimes referred to as gauge freedom in physics. For
reasons of numerical stability and certain theoretical considerations, some TN representations are favored
over others – e.g., TN representations with orthonormal cores. In general, TNs can have loops – most
common examples include matrix product states with periodic boundary conditions (MPS with periodic BC)
or tensor rings (TR), projected entangled pair states (PEPS) and the multiscale entanglement renormalization
ansatz (MERA) – and these are essential for certain applications. However, due to multiple theoretical and
numerical difficulties, loop free tree tensor networks are more common and better studied. In Figure 1, you
will find some examples of tensor diagrams. Familiarize yourself with this notation as you will need it for
the following exercises.

(a) Vector. (b) Matrix. (c) Matrix-vector multiplication.

(d) MPS or TT.

(e) Hierarchical Tucker.

Figure 1: Examples of TNs.

Exercise 1: TN to Tensor Conversion

1. Implement a function that converts a TN representation from Figure 2 into an explicitly entry-wise
stored tensor X ∈ Rn1×n2×n3 . We added labels to vertices and edges for your convenience, but you
are free to use any labeling you like.

Hint : the numpy function tensordot might be helpful.

O

C

A B

i1 i2

i3

i2

i1

i2

i1

i1

i2

Figure 2

2. Implement a function that converts a TN representation from Figure 3 into an explicitly entry-wise
stored tensor X ∈ Rn1×n2×n3 .

2



C

A B

i1

i2 i3

i1 i2

i3

i1i2

i3

Figure 3

Exercise 2: Tensor to TN Conversion

1. Implement a function that converts an explicitly entry-wise stored tensor X ∈ Rn1×n2×n3 into a TN
representation corresponding to Figure 2.

Hint : use a matrix factorization method.

2. Implement a function that converts an explicitly entry-wise stored tensor X ∈ Rn1×n2×n3 into a TN
representation corresponding to Figure 3.

Hint : any index/edge can be split in two by reshaping. You have some freedom in deciding how to
reshape.

Exercise 3: TT Truncation

The most commonly used TNs are matrix product states or tensor trains, see Figure 1d. The nodes correspond
to order-2 and order-3 tensors (cores) U1 ∈ Rn1×r1 , Uj ∈ Rrj−1×nj×rj , j = 2, . . . , d − 1, Ud ∈ Rnd×rd . The
TT ranks {rj}dj=1 corresponding to the edges in Figure 1d determine the complexity of a TN representation.

An important TN operation is truncation: for a TT X = TT(U1, . . . , Ud), find a representation X̃ =
TT(Ũ1, . . . , Ũd) with smaller ranks r̃j ≤ rj with error ‖X − X̃‖2 as small as possible. This is commonly
implemented via a higher-order singular value decomposition.

Suppose we want to truncate r3 in Figure 1d – of course, preferably without computing the full tensor
X ∈ Rn1×...×n5 explicitly. If d = 2 and X ∈ Rn1×n2 is a rank-r matrix, an SVD of X is the factorization

X = UΣV ∗,

where U is left orthonormal – U∗U = Ir×r – and V ∗ is right orthonormal – V ∗V = Ir×r, and Σ is the
diagonal matrix of singular values. For d = 5 and X as in Figure 1d, we can write

X(i1, . . . , i5) = U1(i1)U2(i2)U3(i3)U4(i4)U5(i5). (1)

Suppose U1, U2 are left orthonormal, i.e., the unfoldings Uj([m, ij ]; k) – where [m, ij ] is reshaped into a single
row index and k is the column index – are left orthonormal, i.e., the columns k = 1, 2, . . . of the tensor Uj
reshaped into the matrix Uj([m, ij ]; k) are orthonormal.

Similarly, suppose U4, U5 are right orthonormal – the unfoldings Uj(m; [ij , k]) are right orthonormal –
then an SVD of the unfolding U3([m, i3]; k) also provides an SVD of the TT from Figure 1d w.r.t. the 3rd
connected edge corresponding to r3.

1. Implement a function that, for a given TT representation and a given fixed mode number µ, computes
a TT representation of the same tensor such that all cores to the left of µ are left orthnormal, and all
cores to the right of µ are right orthonormal.

2. Implement a function that, for a given fixed mode µ, a fixed rank rµ and a TT representation with
orthogonal cores, computes a TT representation truncated in the µ-th core. Estimate the resulting
`2-error via the truncated singular values. Note that, for a truncation in a single core, the `2-error
should correspond exactly to the sum of the squared truncated singular values.

3



Part II: TNs for Functions (pen & paper)

There are several possibilites for adapting the TN framework to functions. In principle, an abstract TN
representation does not require a basis of functions. However, for numerical computations, continuous input
variables such as x ∈ R have to be discretized by, e.g., introducing a basis Φ := {ϕi}i – see below for an
illustration. In the multidimensional case, one can use a tensor product basis. TNs can be applied to one-
dimensional functions as well by introducing artificial variables through a process known as tensorization or
quantization.

A one-dimensional function f expanded in a basis Φ:

f(x) =
∑
i

ciϕi(x) = x f = x Φ c

A 5-dimensional function f expanded in a tensor product basis and as a TT:

f(x1, . . . , x5) =

x1

x2

x3

x4

x5

Φ1

Φ2

Φ3

Φ4

Φ5

c =

x1

x2

x3

x4

x5

Φ1

Φ2

Φ3

Φ4

Φ5

U1

U2

U3

U4

U5

Tensorization for a one-dimensional function, applying a general (possibly nonlinear) transformation T (x) =
(T1(x), . . . , T5(x)):

x

T1(x)

T2(x)

T3(x)

T4(x)

T5(x)

Φ1

Φ2

Φ3

Φ4

Φ5

U1

U2

U3

U4

U5

Exercise 4: Explicit TN Function Representations

Write down explicit TTN representations of the following functions. Think about the TN structure and
required ranks.

1.

u(x1, x2, x3, x4) = a1(x1)b1(x2)c1(x3)d(x4) + a2(x1)b2(x2)c2(x3)d(x4)

2.

u(x1, x2, x3, x4) = a(x1)c1(x3) + c2(x3)d1(x4) + d2(x4)b(x2)

3.

u(x1, x2, x3, x4) = b1(x2)c1(x3) + b2(x2)c2(x3)

+ b1(x2)c2(x3)a2(x1)d1(x4)

+ a1(x1)d1(x4) + a2(x1)d2(x4)

4



4. We can tensorize one-dimensional functions by introducing the transformation

x = T−1(i1, i2, i3, y) := 2−1i1 + 2−2i2 + 2−3i3 + 2−3y,

for binary i1, i2, i3 ∈ {0, 1} and y ∈ [0, 1). Any u : [0, 1)→ R is then tensorized via

u(i1, i2, i3, y) := u(T−1(i1, i2, i3, y)).

With the above tensorization, find an explicit TT representation of the linear function u(x) ≡ x.

Part III: Advanced Applications (python)

Tensor networks provide a powerful tool for analysis, approximation and simulation of high-dimensional
problems. Some common applications include eigenvalue problems in quantum mechanics, PDEs (both
high- and low-dimensional with quantized/tensorized formats), parameter dependent problems in model
order reduction, uncertainty quantification, compression, belief networks, neural networks, learning and
many more. In this exercise, we will examine one particular use case implemented in the tensap library that
you can download from

https://anthony-nouy.github.io/tensap/

We seek to approximate a function u : Ω → R based on samples {u(x) : x ∈ S ⊂ Ω}. Within a tree
tensor network, this can be accomplished with a higher-order principal component analysis (PCA) detailed
in the paper

Nouy, A. Higher-order principal component analysis for the approximation of tensors in tree-based low-rank
formats. Numer. Math. 141, 743–789 (2019).

This procedure uses partial evaluations of the function u in some of the variables (x1, . . . , xd), while
interpolating u on low-dimensional nested subspaces in the complementary variables. We briefly elaborate.

Let α ⊂ {1, . . . , d} be a node in a TTN, αc := {1, . . . , d} \ α and consider the variables xα := (xi)i∈α
and xαc defined accordingly. Furthermore, assume α has exactly two children in the TTN, α1 and α2. If we
are given two low-dimensional subspaces Uα1

and Uα2
, and partial evaluations u(·;xαc) for some randomly

sampled xαc , then we can interpolate each of these partial evaluations in the tensor product space Uα1
⊗Uα2

.
This interpolation is of low complexity provided both Uα1

and Uα2
are low-dimensional.

We thus obtain an interpolation of the partial evaluations u(·;xαc) in the variables xα for each sampled
xαc , and their linear span over all sampled xαc defines a subspace Vα ⊂ Uα1⊗Uα2 in the variables xα. Finally,
we apply SVD to determine the rα-dominant vectors of this subspace which defines the new interpolation
space Uα ⊂ Vα. We then proceed to the next node in the TTN. The complexity of the overall procedure
depends on the ranks rα of the TTN and the number of samples for the PCA/partial evaluations.

Exercise 5: Higher-Order PCA

1. Edit the source code of the file

tutorials/approximation/tutorial PCA FunctionalTensorPrincipalComponentAnalysis.py

such that it uses the Henon-Heiles potential as the test case and run it. What do you observe for the
required ranks and tree structure?

2. Run the same example with a random tree. What do you observe? Experiment with the library.

5


