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Tensor networks

Tensor networks are prominent tools for the representation or approximation of
multivariate functions or multidimensional arrays.

A long history in quantum physics.

Tree tensor networks appeared independently in numerical analysis, as an extension
of low-rank decompositions to high-order tensors.

Growing use in statistics, data science and probabilistic modelling.
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Computing with tensor networks

For the approximation of a known tensor u with respect to a certain norm, we aim
at finding a tensor network v with low complexity that minimizes

‖u − v‖.

Here, the aim is the compression of u or the extraction of information from u (data
analysis).

For the solution of an equation Au = b (e.g. in quantum physics, uncertainty
quantification, stochastic calculus), we aim at finding a tensor network v with low
complexity that minimizes some distance to u, e.g. some residual norm

‖Av − b‖.

The aim is here to obtain an approximation of the solution u with a low
computational complexity.
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Computing with tensor networks

In tensor completion, knowing some entries (u(i))i∈Ω of a multidimensional array, we
try to find a tensor network that suitably fit the data, e.g. by minimizing∑

i∈Ω

|u(i)− v(i)|2,

The aim is here to recover (or complete) a tensor from partial information, by
exploiting low-rank structures of the tensor.

For inverse problems, we want to identify a tensor u from indirect and partial
observations y = Au or y = Au + ε, where A is an observation map. We try to find
a tensor network that suitably fit the observations by minimizing some distance

d(y ,Av)

between observations and the prediction Av .
Exploiting low-rank structures in u allows to reduce the number of parameters to
estimate and possibly makes the problem well-posed.
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Computing with tensor networks

Approximating a function u from evaluations u(xk) at some points xk , e.g. by
minimizing

1
n

n∑
k=1

(u(xk)− v(xk))2.

Depending on the context, points can be given or chosen. Here we want to exploit
at best the given evaluations or obtain a good approximation using a small number
of evaluations.
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Computing with tensor networks

In supervised or unsupervised learning, tensor networks are used as a powerful model
class for high-dimensional tasks.
Supervised learning of the relation between a random variable Y and another
random variable X . Introduction of a risk functional

R(v) = E(`(Y , v(X )))

that quantifies some expected distance between observations Y and predictions
v(X ). In practice, using samples {(xk , yk)}nk=1, we optimize an empirical risk

1
n

n∑
k=1

`(y k , v(xk))

Estimation of the density of a random variable X from samples {xk}nk=1. If the
density u minimizes some functional

R(v) = E(γ(v ,X )),

we minimize in practice an empirical risk

1
n

n∑
k=1

γ(v , xk)
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Outline of the course

Part I: Tensors, ranks and tensor networks

Part II: Approximation theory of tree tensor networks

Part III: Computational aspects
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Algebraic tensors

Given d index sets Iν = {1, . . . ,Nν}, 1 ≤ ν ≤ d , we introduce the multi-index set

I = I1 × . . .× Id .

An element v of the vector space RI is a tensor of order d .

It can be represented by a multidimensional array

(vi )i∈I = (vi1,...,id )i1∈I1,...,id∈Id

that contains the coefficients of v in the canonical basis of RI , also denoted

v(i) = v(i1, . . . , id).

The order d is the number of dimensions, also known as ways or modes.

d = 1 d = 2 d = 3
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Tensor diagram notations

A tensor is represented by a solid shape and tensor indices are notated by lines emanating
from this shape.

d = 1

i1

d = 2

i1

i2

d = 3

i1

i2

i3

Connecting two index lines means contraction (or summation) over the corresponding
indices.

i A v
j

=
∑
j

A(i , j)v(j)
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Algebraic tensors

Given d vectors v (ν) ∈ RIν , 1 ≤ ν ≤ d , the tensor product of these vectors

v := v (1) ⊗ . . .⊗ v (d)

is called an elementary tensor and is such that

v(i) = v (1)(i1) . . . v (d)(id)

d = 2

⊗ ≡

Using matrix notations, v ⊗ w is
identified with the matrix vwT .

d = 3

⊗ ⊗ ≡
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Algebraic tensors

The tensor space RI = RI1×...×Id , also denoted RI1 ⊗ . . .⊗ RId , is defined by

RI = RI1 ⊗ . . .⊗ RId = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ RIν , 1 ≤ ν ≤ d}

The canonical norm on RI , also called the Frobenius norm, is given by

‖v‖ =

√∑
i∈I

v(i)2

and makes RI a Hilbert space. It coincides with the natural norm on `2(I ). It is the only
norm associated with an inner product and having the crossnorm property

‖v (1) ⊗ . . .⊗ v (d)‖ = ‖v (1)‖2 . . . ‖v (d)‖2.

In tensor diagram notations

‖v‖2 =
∑
i∈I

v(i)2 = v v

i1
i2

id−1

id
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Tensor product of functions

Let Vν ⊂ RXν be a space of functions defined on Xν .

Xν can be (a subset of) R, C, N, Z, or a set of vectors, sequences, graphs, images...

The tensor product of functions v (ν) ∈ Vν , denoted

v = v (1) ⊗ . . .⊗ v (d),

is a multivariate function defined on X = X1 × . . .×Xd and such that

v(x1, . . . , xd) = v (1)(x1) . . . v (d)(xd)

Example

For i ∈ Nd
0 , the monomial x i = x i1

1 . . . x
id
d is an elementary tensor.

15 / 63



Tensor product of functions

Let Vν ⊂ RXν be a space of functions defined on Xν .

Xν can be (a subset of) R, C, N, Z, or a set of vectors, sequences, graphs, images...

The tensor product of functions v (ν) ∈ Vν , denoted

v = v (1) ⊗ . . .⊗ v (d),

is a multivariate function defined on X = X1 × . . .×Xd and such that

v(x1, . . . , xd) = v (1)(x1) . . . v (d)(xd)

Example

For i ∈ Nd
0 , the monomial x i = x i1

1 . . . x
id
d is an elementary tensor.

15 / 63



Tensor product of functions

The algebraic tensor product of spaces Vν is defined as

V1 ⊗ . . .⊗ Vd = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ Vν , 1 ≤ ν ≤ d}

which is the space of multivariate functions v which can be written as a finite linear
combination of elementary (separated functions), i.e.

v(x1, . . . , xd) =
n∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd).

Example

A polynomial
∑

i aix
i with x i = x i1

1 . . . x
id
d .

Up to a formal definition of the tensor product ⊗, the above construction can be
extended to more general vector spaces (not only spaces of functions), including spaces
of matrices or operators.
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Infinite dimensional tensor spaces

For infinite dimensional spaces Vν , a Hilbert (or Banach) tensor space equipped with a
norm ‖ · ‖ is obtained by the completion (w.r.t. ‖ · ‖) of the algebraic tensor space

V
‖·‖

= V1 ⊗ . . .⊗ Vd
‖·‖
.

If the Vν are Hilbert spaces with inner products (·, ·)ν and associated norms ‖ · ‖ν , a
canonical inner product on V can be first defined for elementary tensors

(v (1) ⊗ . . .⊗ v (d),w (1) ⊗ . . .⊗ w (d)) = (v (1),w (1)) . . . (v (d),w (d))

and then extended by linearity to the whole space V .

The associated norm ‖ · ‖ is called the canonical norm.
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Infinite dimensional tensor spaces

Example (Lp spaces)

Let 1 ≤ p <∞. If Vν = Lp
µν (Xν), then

Lp
µ1(X1)⊗ . . .⊗ Lp

µd
(Xd) ⊂ Lp

µ(X1 × . . .×Xd)

with µ = µ1 ⊗ . . .⊗ µd , and

Lp
µ1(X1)⊗ . . .⊗ Lp

µd (Xd)
‖·‖

= Lp
µ(X1 × . . .×Xd)

where ‖ · ‖ is the natural norm on Lp
µ(X1 × . . .×Xd).

Example (Bochner spaces)

Let X be equipped with a finite measure µ, and let W be a Hilbert (or Banach) space.
For 1 ≤ p <∞, the Bochner space Lp

µ(X ;W ) is the set of Bochner-measurable functions
u : X →W with bounded norm ‖u‖p = (

∫
X ‖u(x)‖pWµ(dx))1/p, and

Lp
µ(X ;W ) = W ⊗ Lp

µ(X )
‖·‖p

.
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Infinite dimensional tensor spaces

Example (Sobolev spaces)

The Sobolev space Hk(X ) of functions defined on X = X1 × . . .×Xd , equipped with the
norm

‖u‖2Hk =
∑
|α|1≤k

‖Dαu‖2L2 ,

is a Hilbert tensor space

Hk(X ) = Hk(X1)⊗ . . .⊗ Hk(Xd)
‖·‖

Hk
.

The Sobolev space Hk
mix(X ) equipped with the norm

‖u‖2Hk
mix

=
∑
|α|∞≤k

‖Dαu‖2L2 ,

is a different tensor Hilbert space

Hk
mix(X ) = Hk(X1)⊗ . . .⊗ Hk(Xd)

‖·‖
Hk
mix .

‖u‖Hk
mix

is the canonical tensor norm on Hk(X1)⊗ . . .⊗ Hk(Xd).
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Tensor product basis

If {φ(ν)
i }i∈Iν is a basis of Vν , then a basis of V = V1 ⊗ . . .⊗ Vd is given by{

φi = φ
(1)
i1
⊗ . . .⊗ φ(d)

id
: i ∈ I = I1 × . . .× Id

}
.

A tensor v ∈ V admits a decomposition

v =
∑
i∈I

aiφi =
∑
i1∈I1

. . .
∑
id∈Id

ai1,...,idφ
(1)
i1
⊗ . . .⊗ φ(d)

id
,

and v can be identified with the set of its coefficients

a ∈ RI .
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Hilbert tensor spaces

If the {φ(ν)
i }i∈Iν are orthonormal bases of spaces Vν , then {φi}i∈I is an orthonormal basis

of the Hilbert tensor space V
‖·‖

equipped with the canonical norm. A tensor

v =
∑
i∈I

aiφi

is such that
‖v‖2 =

∑
i∈I

a2
i := ‖a‖2.

Therefore, the map
a 7→

∑
i∈I

aiφi

defines a linear isometry from `2(I ) to V for finite dimensional spaces, and between `2(I )

and V
‖·‖

for infinite dimensional spaces.
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Tensor product feature map

If V is a space of functions defined on X = X1 × . . .×Xd , we introduce the feature map
φ(ν)(xν) = (φ

(ν)
iν

(xν))iν∈Iν ∈ RIν and the tensor product feature map Φ : X → RI such
that

Φ(x) = φ(1)(x1)⊗ . . .⊗ φ(d)(xd) ∈ RI

and a tensor v in V admits the representation

v(x) = (a,Φ(x)) =

a

φ(1)

x1

φ(2)

x2

... φ(d)

x1

i1 i2 id
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Rank of order-two tensors

The rank of an order-two tensor u ∈ V ⊗W , denoted rank(u), is the minimal integer r
such that

u =
r∑

k=1

vk ⊗ wk

for some vk ∈ V and wk ∈W .

A tensor u ∈ Rn ⊗Rm is identified with a matrix u ∈ Rn×m. The rank of u coincides with
the matrix rank, which is the minimal integer r such that

u =
r∑

k=1

vkw
T
k = VW T ,

where V = (v1, . . . , vr ) ∈ Rn×r and W = (w1, . . . ,wr ) ∈ Rm×r .

= + + =
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Singular value decomposition of order-two tensors

When V and W are Hilbert spaces (possibly infinite-dimensional), an algebraic tensor
u ∈ V ⊗W admits a singular value decomposition

u =
∑
k≥1

σkvk ⊗ wk ,

where vk and wk are orthonormal vectors (singular vectors) and σk ∈ R+ are the singular
values.

The rank of u is finite and coincides with the number of non-zero singular values,

rank(u) = #{k : σk 6= 0}.

Example (Singular value decomposition of matrices)

For V = Rn and W = Rm, u is identified with a matrix in Rn×m and

u =

rank(u)∑
k=1

σkvkw
T
k = VSWT

with orthogonal matrices V and W, and a diagonal matrix S.
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Singular value decomposition of order-two tensors

An algebraic tensor u ∈ V ⊗W can be identified with a linear operator from W to V
with rank equal to rank(u).

For infinite dimensional Hilbert spaces, the closure V ⊗W
‖·‖∨ of V ⊗W with respect to

the injective norm (corresponding to the operator norm or spectral norm) coincides with
the space of compact operators.

A tensor u ∈ V ⊗W
‖·‖∨ still admits a singular value decomposition

u =
∑
k≥1

σkvk ⊗ wk .

and the rank (number of non-zero singular values) is possibly infinite.
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Singular value decomposition of order-two tensors

Example (Proper Orthogonal Decomposition)

For Ω× I a space-time domain and V a Hilbert space of functions defined on Ω, a
function u ∈ L2(I ;V ) admits a singular value decomposition

u(t) =
∞∑
k=1

σkvkwk(t)

which is known as the Proper Orthogonal Decomposition (POD).

Example (Karhunen-Loeve decomposition)

For a probability space (Ω, µ), an element u ∈ L2
µ(Ω;V ) is a second-order V -valued

random variable. If u is zero-mean, the singular value decomposition of u is known as the
Karhunen-Loeve decomposition

u(ω) =
∞∑
k=1

σkvkwk(ω)

where wk : Ω→ R are uncorrelated (orthogonal) random variables.
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Low-rank format for order-two tensors

The set of tensors in V ⊗W with rank bounded by r , denoted

Rr = {v : rank(v) ≤ r},

is not a linear space nor a convex set. However, it has many favorable properties for a
numerical use.

The application v 7→ rank(v) is lower semi-continuous, and therefore the set Rr is
closed, which makes best approximation problems in Rr well posed.

Rr is the union of smooth manifolds of tensors with fixed rank.
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Canonical rank of higher-order tensors

For tensors u ∈ V1 ⊗ . . .⊗ Vd with d ≥ 3, there are different notions of rank.

The canonical rank, which is the natural extension of the notion of rank for order-two
tensors, is the minimal integer r such that

u(x1, . . . , xd) =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd),

for some vectors v (ν)
k ∈ Vν .

Example

A monomial x i = x i1
1 . . . x

id
d has rank 1.

A polynomial
∑

i∈Λ aix
i has rank #Λ.

A Gaussian function exp(−α‖x − a‖22) =
∏d

i=1 exp(−α(xi − ai )
2) has rank 1.

The function 1
‖x‖2 has infinite rank.
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Canonical format

The subset of tensors in V = V1 ⊗ . . .⊗ Vd with canonical rank bounded by r is denoted

Rr = {v ∈ V : rank(v) ≤ r}.

A tensor in Rr has a representation

v(x1, . . . , xd) =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd)

The storage complexity of tensors in Rr is

storage(Rr ) = r
d∑
ν=1

dim(Vν) = O(rdn)

for dim(Vν) = O(n).
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Canonical format

For d ≥ 3, the set Rr looses many of the favorable properties of the case d = 2.
Determining the rank of a given tensor is a NP-hard problem.

The set Rr is not an algebraic variety.
No notion of singular value decomposition.
The application v 7→ rank(v) is not lower semi-continuous and therefore, Rr is not
closed.

Example
Consider the order-3 tensor

v = a⊗ a⊗ b + a⊗ b ⊗ a + b ⊗ a⊗ a

where a and b are linearly independent vectors in Rm. The rank of v is 3. The sequence
of rank-2 tensors

vn = n(a +
1
n
b)⊗ (a +

1
n
b)⊗ (a +

1
n
b)− na⊗ a⊗ a

converges to v as n→∞.

The consequence is that for most problems involving approximation in canonical
format Rr , there is no robust method when d > 2.
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where a and b are linearly independent vectors in Rm. The rank of v is 3. The sequence
of rank-2 tensors

vn = n(a +
1
n
b)⊗ (a +

1
n
b)⊗ (a +

1
n
b)− na⊗ a⊗ a
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The consequence is that for most problems involving approximation in canonical
format Rr , there is no robust method when d > 2.

31 / 63



α-rank

For a non-empty subset α of D = {1, . . . , d}, a tensor u ∈ V = V1 ⊗ . . .⊗ Vd can be
identified with an order-two tensor

Mα(u) ∈ Vα ⊗ Vαc ,

where Vα =
⊗

ν∈α Vν , and αc = D \ α. The operatorMα = V → Vα ⊗ Vαc is called
the matricisation (or unfolding) operator.

M{1}←−−−−
M{2}−−−−→

The α-rank of u, denoted rankα(u), is the rank of the order-two tensorMα(u),

rankα(u) = rank(Mα(u)),

which is the minimal integer rα such that

Mα(u) =

rα∑
k=1

vαk ⊗ wαc

k

for some vαk ∈ Vα and wαc

k ∈ Vαc . We note that rankα(u) = rankαc (u).
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α-rank

A multivariate function u(x1, . . . , xd) with rankα(u) ≤ rα is such that

u(x) =

rα∑
k=1

vαk (xα)wαc

k (xαc )

for some functions vαk (xα) and wαc

k (xαc ) of groups of variables

xα = {xν}ν∈α and xαc = {xν}ν∈αc .
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α-rank

Example

u(x) = u1(x1) . . . ud(xd) can be written u(x) = uα(xα)uα
c

(xαc ), with
uα(xα) =

∏
ν∈α uν(xν). Therefore, for any α, rankα(u) = 1.

u(x) =
∑r

k=1 u
1
k (x1) . . . ud

k (xd) can be written
∑r

k=1 u
α
k (xα)uα

c

k (xαc ) with
uαk (xα) =

∏
ν∈α uνk (xν). Therefore, for any α, rankα(u) ≤ r , with equality if the

functions {uαk (xα)} and the functions {uα
c

k (xαc )} are linearity independent.

We deduce the following relation between α-ranks and canonical rank:

rankα(u) ≤ rank(u), for any α.

u(x) = u1(x1) + . . .+ ud(xd) can be written u(x) = uα(xα) + uα
c

(xαc ), with
uα(xα) =

∑
ν∈α uν(xν). Therefore, rankα(u) ≤ 2.

u(x) =
∏
α∈T uα(xα) with T a collection of disjoint subsets, is such that

rankα(u) = 1 for all α ∈ T , and rankγ(u) ≤
∏
α∈T ,α∩γ 6=∅ rankγ∩α(uα) for all γ.
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α-ranks and minimal subspaces

For a subset α of D = {1, . . . , d}, the minimal subspace

Umin
α (u)

of a tensor u ∈ V1 ⊗ . . .⊗ Vd is defined as the smallest subspace

Uα ⊂ Vα =
⊗
ν∈α

Vν

such that
Mα(u) ∈ Uα ⊗ Vαc .

The α-rank of u is the dimension of the minimal subspace Umin
α (u),

rankα(u) = dim(Umin
α (u)).

If u admits the representation

u(x) =

rankα(v)∑
k=1

vαk (xα)vα
c

(xαc )

then Umin
α (u) = span{vαk : 1 ≤ k ≤ rankα(u)}.

35 / 63



α-ranks and minimal subspaces

For any partition {α1, . . . , αm} of D, an algebraic tensor u is such that

u ∈ Umin
α1 (u)⊗ . . .⊗ Umin

αm
(u)

Moreover, for any α ⊂ D and any partition {β1, . . . , βs} of α, it holds

Umin
α (u) ⊂ Umin

β1 (u)⊗ . . .⊗ Umin
βs (u)

that implies

rankα(u) ≤
s∏

k=1

rankβk (u)

Also, for any p ∈ {1, ..., s}

rankβp (u) ≤ rankα(u)
s∏

k=1
k 6=p

rankβk (u)
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α-ranks and minimal subspaces

Example
The function

u(x1, x2, x3) = cos(x1 +x2)+x1(x2 +2x3) = cos(x1) cos(x2)−sin(x1) sin(x2)+x1x2 +2x1x3

has for minimal subspaces and ranks

Umin
1 (u) = span{cos(x1), sin(x1), x1}, r1 = 3

Umin
2 (u) = span{cos(x2), sin(x2), x2}, r2 = 3

Umin
3 (u) = span{1, x3}, r3 = 2

Umin
1,2 (u) = span{cos(x1 + x2), x1x2, x1}, r1,2 = 3

Umin
2,3 (u) = span{cos(x2), sin(x2), x2 + 2x3}, r2,3 = 3

Umin
1,3 (u) = span{cos(x1), sin(x1), x1, x1x3}, r1,3 = 4

In particular, we can check that

Umin
1,3 (u) ⊂ Umin

1 (u)⊗ Umin
3 (u) = span{cos(x1), sin(x1), x1, cos(x1)x3, sin(x1)x3, x1x3}

r1,3 ≤ r1r3, r1 ≤ r1,3r3, r3 ≤ r1,3r1
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Tree-based tensor format

Tree-based (Hierarchical) tensor formats [Hackbusch-Kuhn’09] are subsets of tensors

T T
r = {v ∈ V : rankα(v) ≤ rα, α ∈ T}

where r = (rα)α∈T and where T is a dimension partition tree T over D = {1, . . . , d},
with root D and leaves L(T ) = {{ν} : 1 ≤ ν ≤ d}. All nodes in T are non empty
subsets of D. The set of children of α ∈ T is either empty (for a leaf node) or is a
nontrivial partition of α (for an interior node).

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

The tree-based rank of a tensor v is the tuple rankT (v) = (rankα(v))α∈T .

By convention, rankD(v) = 1.
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Tree-based tensor format

Elements of T T
r admit an explicit representation. Let v ∈ T T

r with T -rank r = (rα)α∈T .
At the first level, v admits the representation

v(x) =

rβ1∑
kβ1 =1

. . .

rβs∑
kβs =1

C
(D)
kβ1 ,...,kβs

v
(β1)
kβ1

(xβ1) . . . v
(βs )
kβs

(xβs )

where {β1, . . . , βs} = S(D) are the children of the root node D, and {v (β)
kβ
}1≤kβ≤rβ form

a basis of the minimal subspace Umin
β (v).

{1, 2, 3, 4, 5, 6}

{1, 2, 3} {4, 5, 6}

C (D)

v (1,2,3)

x1,2,3

k1,2,3

v (4,5,6)

x4,5,6

k4,5,6
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Tree-based tensor format

Then, for an interior node α of the tree, with children S(α) = {β1, . . . , βs}, the functions
(or tensors) v (α)

kα
admit the representation

v
(α)
kα

(xα) =

rβ1∑
kβ1 =1

. . .

rβs∑
kβs =1

C
(α)
kα,kβ1 ,...,kβs

v
(β1)
kβ1

(xβ1) . . . v
(βs )
kβs

(xβs ).

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}{2, 3}

{4, 5, 6}

{4} {5} {6}

C (D)

C (1,2,3)

v (1)

x1

k1

v (2,3)

x2,3

k2,3

k1,2,3

C (4,5,6)

v (4)

x4

k4

v (5)

x5

k5

v (6)

x6

k6

k4,5,6
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Tree-based tensor format as a tree tensor network

Finally, the tensor v admits the representation

v(x) =
∑

1≤kβ≤rβ
β∈T

∏
α∈T\L(T )

C
(α)
(kβ )β∈S(α),kα

∏
ν∈L(T )

v
(ν)
kν

(xν)

where the parameters Cα and v (ν) form a tree tensor network.

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

C (D)

C (1,2,3)

v (1)

x1

k1

C (2,3)

v (2)

x2

k2

v (3)

x3

k3

k2,3

k1,2,3

C (4,5,6)

v (4)

x4

k4

v (5)

x5

k5

v (6)

x6

k6

k4,5,6
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Tree-based tensor format as a tree tensor network

Given bases {φαiα(xα)}iα∈Iα of functions for the spaces Vα for α ∈ L(T ),

v(x) =
∑
i1∈I1

. . .
∑
id∈Id

a(i1, . . . , id)φi1(x1) . . . φid (xd)

with a(i1, . . . , id) =
∑

1≤kβ≤rβ
β∈T

∏
α∈T\L(T ) C

(α)
(kβ )β∈S(α),kα

∏
α∈L(T ) C

(α)
iα,kα

or using tensor

diagram notations

a(i1, . . . , id) =

C (D)

C (1,2,3)

C (1)

i1

k1

C (2,3)

C (2)

i2

k2

C (3)

i3

k3

k2,3

k1,2,3

C (4,5,6)

C (4)

i4

k4

C (5)

i5

k5

C (6)

i6

k6

k4,5,6
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Representation complexity

The representation complexity for the representation of a tensor in T T
r (V ) is

C(T , r) =
∑

α∈T\L(T )

rα
∏

β∈S(α)

rβ +
∑

ν∈L(T )

#Iαrα.

If rα = O(R) and #Iα = O(N),

C(T , r) = O(dNR + (#T − d − 1)R s+1 + R s),

where s = maxα∈T\L(T ) #S(α) is the arity of the tree.

Since #T ≤ 2d + 1,
C(T , r) = O(dNR + dR s+1 + R s)
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Tucker format

The Tucker format [Hitchcock’27] corresponds to a trivial tree with one level, arity
s = d , #T = d + 1,

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

The representation of a tensor u in T T
r is

x1 x2 x3 x4 x5

The representation complexity

C(T , r) = O(dNR + Rd)
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Tensor train Tucker format

The tensor train Tucker format corresponds to a linear binary tree

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

The representation of a tensor u in T T
r is

x1 x2

x3

x4

x5

The representation complexity C(T , r) = O(dNR + (d − 2)R3 + R2).
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Tensor train format

The tensor train format [Oseledets-Tyrtyshnikov’09] was discovered independently in
quantum physics [Baxter’68 , Affleck’87] and coined Matrix Product State (MPS).
It corresponds to a degenerate tree-based format where T is a subset of a linear tree

T = {{1}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , d}}

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

The representation of a tensor u in T T
r is

x1 x2 x3 x4 x5

or explicitly

u(x1, . . . , xd) =

r1∑
k1=1

. . .

r1,...,d−1∑
kd−1=1

v
(1)
k1

(x1)v
(2)
k1,k2

(x2) . . . v
(d−1)
kd−2,kd−1

(xd−1)v
(d)
kd−1

(xd)

The complexity is C(T , r) = O(dNR2).
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Tree tensor networks as a compositional function network

By identifying a tensor C (α) ∈ Rn1×...×ns×rα with a Rrα -valued multilinear function

f (α) : Rn1 × . . .× Rns → Rrα ,

a function v in T T
r admits a representation as a tree-structured composition of

multilinear functions {f (α)}α∈T .

f 1,2,3,4,5

f 1,2,3

f 1 f 2,3

f 2 f 3

f 4,5

f 4 f 5

v(x) = f D(f 1,2,3(f 1(Φ1(x1)), f 2,3(f 2(Φ2(x2)), f 3(Φ3(x3))), f 4,5(f 4(Φ4(x4)), f 5(Φ5(x5))))

where Φν(xν) = (φνiν (xν))iν∈Iν ∈ R#Iν .
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Tree tensor networks as feed-forward neural networks

It corresponds to a sum-product feed forward neural network with a sparse architecture
(given by T ), a number of hidden layers equal to depth(T ) + 1 (including a featuring
layer), and width at level ` related to the α-ranks of the nodes α of level `.

C 1,...,8

C 1,...,4 C 5,...,8

C 1,2,3

C 4

C 5,6,7

C 8C 1

C 2,3 C 5,6

C 7C 2 C 3 C 5 C 6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8

Figure: Tree tensor network and corresponding feed-forward sum-product neural network with 10
features per variable xν (right)
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Properties of tree-based tensor formats

Many favorable properties inherited from the matrix case.

Complexity is linear in d and polynomial in the rank for storage, evaluation,
differentiation, integration...

Not so nonlinear approximation tool. A tensor u in tree-based format admits a
multilinear parametrization with parameters (Cα)α∈T forming a tree tensor network,
i.e.

u = R((Cα)α∈T )

with R a multilinear map.

Topological properties ensure the well-posedness of optimization problems and
existence of stable algorithms

Geometrical properties can be exploited for optimization and dynamical
approximation.

Possible extensions of singular value decomposition for u in a Hilbert tensor space
V , and a way to obtain approximations ur in T T

r (V ) such that

‖u − ur‖ ≤ Cd inf
v∈T T

r (V )
‖u − v‖

with Cd ∼
√
d .
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General tensor networks

More general tensor networks are associated with graphs G = (N , E) with nodes
(vertices) N and edges E , d of the nodes being associated with variables xν , 1 ≤ ν ≤ d

v (1)

x1

v (2)

x2

v (3)

x3

v (4)

x4

C (5)

k1,2

k3,4

k2,4

k1,5

k2,5

k1,3

k3,5

They have a multilinear parametrization of the form

v(x1, . . . , xd) =
∑

1≤ke≤re
e∈E

d∏
ν=1

v (ν) (xν , (ke)e∈Eν )
N∏

ν=d+1

C (ν) ((ke)e∈Eν )

Tree tensor networks is a particular case where G is a tree.
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Examples of tensor networks

Tensor ring (MPS with periodic
boundary conditions)

PEPS MERA
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General tensor networks

When the graph contains cycles,

integers re (bond dimensions) may not have an interpretation as α-ranks,

no notion of singular value decomposition,

loss of nice geometrical and topological properties,

computational complexity increases,

but yet powerful for some high-dimensional applications.
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Tensorization of vectors

A vector v ∈ RN with N = bL can be identified with a tensor of order L

v ∈ Rb ⊗ . . .⊗ Rb = (Rb)⊗L

such that for i ∈ {0, . . . ,N − 1}

v(i) = v(i1, . . . , iL)

where (i1, . . . , iL) ∈ {0, . . . , b − 1} are the integers of the representation of i in base b

i =
d∑

k=1

ikb
L−k = [i1, . . . , iL]b.

The map which associates to v its tensorization v is a linear isometry from `2(RN) to
`2(Rb)⊗L.

Some matrix-vector operations can be efficiently implemented using tensor algebra, such
as the Hadamard transform

HLv ≡ (H1 ⊗ . . .⊗ H1)v
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Tensorization of tensors

A tensor v ∈ RN ⊗ . . .⊗ RN = (RN)⊗d with N = bL can be identified with a tensor of
order dL

v ∈ (Rb)⊗dL

with
v(i1, . . . , id) = v(i11 , . . . , i

L
1 , . . . , i

1
d , . . . , i

L
d )

where
iν = [i1ν . . . i

Lν
ν ]b

Other orderings of variables can be considered, such as

v(i1, . . . , id) = v(i11 , . . . , i
1
d , . . . , i

L
1 , . . . , i

L
d )

Tensors with different dimensions can be considered, i.e.

v ∈ RN1 ⊗ . . .⊗ RNd , Nν = bLν
ν

is identified with a tensor of order
∑d
ν=1 Lν .
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Tensorization of univariate functions

Consider a function f ∈ R[0,1) defined on the interval [0, 1).

For b, L ∈ N, we subdivide uniformly the interval [0, 1) into bL intervals. Any
x ∈ [0, 1) can be written

x = b−L(i + y), i ∈ {0, . . . , bL − 1}, y ∈ [0, 1).

0 1
•
x0 1 2 3

b−Ly

The integer i admits a representation in base b

i =
L∑

k=1

ikb
L−k = [i1 . . . iL]b, ik ∈ {0, . . . , b − 1}

0 100 01 10 11

f is thus identified with a multivariate function (tensor of order L + 1)

f ∈ (Rb)⊗L ⊗ R[0,1) such that f (x) = f (i1, . . . , iL, y)
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Tensorization of univariate functions

Examples of elementary tensors f (x) = v1(i1)...v
L(iL)v

L+1(y) (b = 2)

(a) δ0(i3) (b) δ1(i1)δ0(i3)δ0(i7) (c) δ0(i1)y (L = 4)
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Ranks of polynomials and splines

Polynomials
Consider a polynomial q(x) of degree p. For any α ⊂ {1, . . . , L},

q(x) = q(b−L(
L∑

k=1

ikb
L−k + y)) = q(g(iα) + g̃(iαc )) =

p∑
j=0

g(iα)jhj(iαc )

so that rankα(q) ≤ p + 1.

Trigonometric polynomials
The tensorization of function cos(ωx + ϕ) at resolution L has all ranks equal to 2.

Then a trigonometric polynomial q(x) of degree p is such that for any α ⊂ {1, . . . , L},

rankα(q) ≤ 2p + 1.
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Ranks of polynomials and splines

Splines
A spline ϕN of degree p over N b-adic intervals forming a partition of [0, 1) is such that

rank{1,...,ν}(ϕN) ≤

{
p + N, 1 ≤ ν < `.

p + 1, ` ≤ ν ≤ L.

where b−` is the minimal length of intervals.

60 / 63



Tensorization of multivariate functions

A function f (x1, . . . , xd) defined on [0, 1)d can be similarly identified with a tensor of
order (L + 1)d

f ∈ (Rb)⊗Ld ⊗ (R[0,1))⊗d

such that

f (x1, . . . , xd) = f (i11 , . . . , i
1
d , . . . , i

L
1 , . . . , i

L
d , y1, . . . , yd)

where xν = b−L(
L∑

k=1

ikνb
L−k + yν) = b−L([i1ν . . . i

L
ν ]b + yν)
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Tensorization of multivariate functions

The map Tb,d which associates to a function f its tensorization f is a linear isometry
from Lp([0, 1)d) to Lp({0, . . . , b − 1}Ld × [0, 1)d) for any 0 < p ≤ ∞.
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