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Approximation tools based on tree tensor networks

For the approximation of a target function u(x1, . . . , xd), a first approach is to introduce
subspaces V ν

Nν of finite dimension (e.g. polynomials, splines, wavelets...) and consider
tensor networks f ∈ T T

r (VN) with

VN = V 1
N1 ⊗ . . .⊗ V d

Nd

e.g. with the tensor train format

f (x1, . . . , xd) =

v1 v2 vd

φ1 φ2 φd

x1 x2 xd

with φν a feature map associated with V ν
Nν .

Spaces V ν
Nν have to be well chosen, e.g. polynomials for analytic functions, splines with a

degree adapted to the regularity of the target function...
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Approximation tools based on tree tensor networks

An approximation tool Φ = (Φn)n∈N is then defined by

Φn = {f ∈ T T
r (VN) : N ∈ Nd , r ∈ NT , compl(f ) ≤ n}.

The dimensions N and the ranks r are free parameters, and compl(·) is some complexity
measure.
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Approximation tools based on tree tensor networks

An alternative is to rely on tensorization of functions. A d-variate function f is identified
with a tensor

f = Tb,d(f ) ∈ (Rb)⊗Ld ⊗ (R[0,1))⊗d

such that

f (x1, . . . , xd) = f (i11 , . . . , i
1
d , . . . , i

L
1 , . . . , i

L
d , y1, . . . , yd) with xν = b−L([i1ν . . . i

L
ν ]b + yν).

Then we consider functions whose tensorization at resolution L are in the tensor space

V L = (Rb)⊗Ld ⊗ S⊗d

with S ⊂ R[0,1) some subspace of univariate functions.

If S = Pm, VL = T−1
b,d (V L) is identified with the space of multivariate splines of degree m

over a uniform partition with bdL elements, i.e.

VL = V 1
N1 ⊗ . . .⊗ V d

Nd

with N1 = ... = Nd = bL and V ν
Nν a space of univariate splines of degree m over a

uniform partition with Nν = bL intervals.

Note that different resolutions Lν could be used to tensorize the different variables xν .
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Approximation tools based on tree tensor networks

Then as an approximation tool, we consider functions f whose tensorization is a tensor
network in T TL

r (V L), with TL a dimension tree over {1, . . . , Ld + d}.

Using the tensor train format, the corresponding function f (x1, . . . , xd) has the
representation

f (x1, . . . , xd) =

v1 v2 vLd vLd+1 vLd+d

i11 i12 iLd φS φS

y1 yd

with φS the feature map associated with S . This is similar to the quantized tensor train
(QTT) format [Kazeev, Khoromskij, Oseledets, Schwab, ...]

Later on, we consider S = Pm and φS(y) = (1, y , ..., ym+1) or any other polynomial basis.
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Approximation tools based on tree tensor networks

An approximation tool Φ = (Φn)n∈N is then defined by

Φn = {f ∈ ΦL,TL,r : L ∈ N0, r ∈ NTL , compl(f ) ≤ n}

with ΦL,TL,r the functions whose tensorization at resolution L is in T TL
r (VL).

The resolution L and ranks r are free parameters, and compl(·) is some complexity
measure.
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Complexity measures and corresponding approximation tools

The complexity compl(f ) of f is defined as the complexity of the associated tensor
network v = {vα}α∈T .

Number of parameters (full tensors network)

complF (f ) =
∑
α

number_of_entries(vα)

Number of non-zero parameters (sparse tensors network)

complS(f ) =
∑
α

‖vα‖0

Complexity measures complF and complS yield two different approximation tools

ΦFn and ΦSn

such that
ΦFn ⊂ ΦSn
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Approximation with tree tensor networks

Given a function f from a Banach space X , the best approximation error of f by an
element of Φn is

E(f ,Φn)X := inf
g∈Φn

‖f − g‖X

Fundamental questions are:

does E(f ,Φn)X converge to 0 for any f ?
(universality)

does a best approximation exist ?
(proximinality)

how fast does it converge for functions from classical function classes ?
(expressivity)

what are the functions for which E(f ,Φn)X converges with some given rate ?
(characterization of approximation classes)

Another fundamental problem (addressed later) is to provide algorithms to practically
compute approximations using available information on the function (model equations,
samples...)
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Universality

First note that for any algebraic feature tensor space V , and any tree T ,⋃
r

T T
r (V ) = V .

so the question of universality of tree tensor networks boils down to conditions on the
tensor feature spaces.

Consider the first family of approximation tools with variable feature spaces VN ,
N ∈ Nd .

If
⋃

N VN is dense in X , then the tools are universal for functions in X .

In particular, this is true for X = Lp((0, 1)d), p <∞, and for polynomial or splines
spaces VN .

Consider the second family of approximation tools using tensorization.

If
⋃

L VL is dense in X , then the tools are universal for functions in X .

In particular, this is true for X = Lp((0, 1)d), p <∞, assuming that S contains the
function one.
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Proximinality

For any tree T , any T -rank r , and any finite dimensional tensor space V of X , T T
r (V ) is

a closed set in V .

Φn is a finite union of such sets, all contained in a single finite dimensional space V ∗.
Then Φn is a closed set of a finite dimensional space V ∗ and is therefore proximinal in X .
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Expressivity

Different ways to analyse the expressivity of tree tensor networks

Exploit known results on other approximation tools and estimate the complexity to
encode these tools using tree tensor networks.

Directly encode a function using tree tensor networks (with controlled errors)

Analyse the convergence of bilinear approximations

u(xα, xαc ) ≈
rα∑
k=1

uαk (xα)uα
c

k (xαc )

or the approximability of partial evaluations u(·, xαc ) by linear approximation spaces
of dimension rα
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Approximation of functions from smoothness classes

We consider approximation tools based on tensorization and functions from classical
smoothness classes:

Sobolev and Besov functions

Analytic functions

Analytic functions with singularities
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Approximation of functions from Besov spaces Bα
q (L

p)

From results on spline approximation and their encoding with tensor networks, we obtain

Theorem
Let f ∈ Bα∞(Lp) with α > 0 and 0 < p ≤ ∞. Then

E(f ,ΦFn )Lp ≤ Cn−α̃/d |f |Bα∞(Lp)

for arbitrary α̃ < α.

Tensor networks achieve (near to) optimal performance for any Besov regularity
order (measured in Lp norm).

They perform as well as optimal linear approximation tools (e.g. splines), without
requiring to adapt the tool to the regularity order α.

The depth (resolution L) of the network is crucial to capture extra regularity.
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Approximation of functions from Besov spaces Bα
q (L

τ )

Now consider the much harder problem of approximating functions from Besov spaces
Bαq (Lτ ) where regularity is measured in a Lτ -norm weaker than Lp-norm.

From results on best n-term approximation using dilated splines, we obtain

Theorem
Let f ∈ Bαq (Lτ ) with α > 0, 0 < q ≤ τ < p <∞, 1 ≤ p <∞ and

α

d
>

1
τ
− 1

p
.

Then
E(f ,ΦSn )Lp ≤ Cn−α

′/d |f |Bαq (Lτ ), E(f ,ΦFn )Lp ≤ Cn−α
′/(2d)|f |Bαq (Lτ ),

for arbitrary α′ < α.

Sparse tensor networks achieve arbitrarily close to optimal rates in O(n−α/d) for
functions with any Besov smoothness α (measured in Lτ norm), without the need to
adapt the tool to the regularity order α.

Here depth and sparsity are crucial for obtaining near to optimal performance.

Full tensor networks have slightly lower performance in O(n−α/(2d)).
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Analytic functions

For function f : [0, 1] with analytic extension on an open complex domain

Dρ = {z ∈ C : dist(z , [0, 1])) <
ρ− 1
2
}, ρ > 1,

we obtain an exponential convergence

E(f ,ΦFn )L∞ ≤ Cγ−n1/3 ,

with γ = min{ρ, b(m+1)/b}.

The proof relies on the approximation of analytic functions with polynomials and the
encoding of polynomials with tree tensor networks: a chebychev polynomial p of deree m̄
is such that

‖f − p‖L∞ ≤
2

ρ− 1
‖f ‖L∞(Dρ)ρ

−m̄

A polynomial of degree m̄ can be approximated by ϕ in ΦL,r,m with an error in
O(b−L(m+1)), so that

‖f − ϕ‖L∞ . ρ−m̄ + b−L(m+1)

We obtain the result by choosing m̄ ∼ n1/3 and L ∼ b−1n1/3, so that complF (ϕ) ≤ n.
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Functions with singularities

Consider the approximation u(x) = xα, 0 < α ≤ 1, in L∞.

Piecewise constant linear approximation.

u ∈ Bα∞(L∞), u /∈ Bβ∞(L∞) for β > α,

and a piecewise constant approximation on a uniform mesh with n elements gives a
convergence in O(n−α) in L∞,

Piecewise constant nonlinear approximation.

u ∈ BV ⊂ B1
∞(L1),

and a piecewise constant approximation on an optimal mesh with n elements gives a
convergence in O(n−1) in L∞,

Piecewise constant approximation and tensor networks.
A piecewise constant approximation on a uniform mesh with 2d elements exploiting
low-rank structures gives an exponential convergence in O(β−n), where n is the
complexity of the representation. Achieves the performance of h-p methods.

19 / 36



Functions with singularities

Consider the approximation u(x) = xα, 0 < α ≤ 1, in L∞.

Piecewise constant linear approximation.

u ∈ Bα∞(L∞), u /∈ Bβ∞(L∞) for β > α,

and a piecewise constant approximation on a uniform mesh with n elements gives a
convergence in O(n−α) in L∞,

Piecewise constant nonlinear approximation.

u ∈ BV ⊂ B1
∞(L1),

and a piecewise constant approximation on an optimal mesh with n elements gives a
convergence in O(n−1) in L∞,

Piecewise constant approximation and tensor networks.
A piecewise constant approximation on a uniform mesh with 2d elements exploiting
low-rank structures gives an exponential convergence in O(β−n), where n is the
complexity of the representation. Achieves the performance of h-p methods.

19 / 36



Functions with singularities

Consider the approximation u(x) = xα, 0 < α ≤ 1, in L∞.

Piecewise constant linear approximation.

u ∈ Bα∞(L∞), u /∈ Bβ∞(L∞) for β > α,

and a piecewise constant approximation on a uniform mesh with n elements gives a
convergence in O(n−α) in L∞,

Piecewise constant nonlinear approximation.

u ∈ BV ⊂ B1
∞(L1),

and a piecewise constant approximation on an optimal mesh with n elements gives a
convergence in O(n−1) in L∞,

Piecewise constant approximation and tensor networks.
A piecewise constant approximation on a uniform mesh with 2d elements exploiting
low-rank structures gives an exponential convergence in O(β−n), where n is the
complexity of the representation. Achieves the performance of h-p methods.

19 / 36



High-dimensional approximation

For Besov spaces Bαq (Lp), tensor networks achieve (near to) optimal rate in
O(n−α/d) which deteriorates with d , that is the curse of dimensionality.

For Besov spaces with mixed smoothness MBαq (Lp) , sparse tensor networks achieve
near to optimal performance in O(n−α log(n)d). But still the curse of dimensionality.

For Besov spaces with anisotropic smoothness ABα
q (Lp), sparse tensor networks also

achieve near to optimal rates in O(n−s(α)/d) with

s(α)/d = (α−1
1 + . . .+ α−1

d )−1

the aggregated smoothness. Curse of dimensionality can be circumvented with
sufficient anisotropy.

Curse of dimensionality can be circumvented for non usual function classes such as
compositions of smooth functions (see Bachmayr, Nouy and Schneider 2021).
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Compositional functions

Consider a tree-structured composition of smooth functions {fα : α ∈ T}, see [Mhaskar,
Liao, Poggio 2016] for deep neural networks.

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Assuming that the functions fα ∈W k,∞ with ‖fα‖L∞ ≤ 1 and ‖fα‖W k,∞ ≤ B, the
complexity to achieve an accuracy ε

C(ε) . ε−3/k(L + 1)3B3Ld1+3/2k

with L = log2(d) for a balanced tree and L + 1 = d for a linear tree.

Bad influence of the depth through the norm B of functions fα (roughness).

For a balanced tree, complexity scales polynomially in d : no curse of dimensionality !

For B ≤ 1 (and even for 1-Lipschitz functions), the complexity only scales
polynomially in d whatever the tree: no curse of dimensionality !
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For a balanced tree, complexity scales polynomially in d : no curse of dimensionality !

For B ≤ 1 (and even for 1-Lipschitz functions), the complexity only scales
polynomially in d whatever the tree: no curse of dimensionality !
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Canonical versus tree-based format

Consider a finite dimensional tensor space V = V 1 ⊗ . . .⊗ V d with dim(Vν) = RN ,
which is identified with RN×...×N . Denote by T T

r = {v : rankα(v) ≤ r , α ∈ T}.
From canonical format to tree-based format.
For any v in V and any α ⊂ D, the α-rank is bounded by the canonical rank:

rankα(v) ≤ rank(v).

Therefore, for any tree T ,
Rr ⊂ T T

r ,

so that an element in Rr with storage complexity O(dNr) admits a representation in
T T
r with a storage complexity O(dNr + dr s+1) where s is the arity of the tree T .

From tree-based format to canonical format. For a balanced or linear binary tree,
the subset

S = {v ∈ T T
r : rank(v) < qd/2}, q = min{N, r},

is of Lebesgue measure 0.

Then a typical element v ∈ T T
r with storage complexity of order dNr + dr3 admits a

representation in canonical format with a storage complexity of order dNqd/2.
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Influence of the tree

For some functions, the choice of tree is not crucial. For example, an additive
function

u1(x1) + . . .+ ud(xd)

has α-ranks equal to 2 whatever α ⊂ D.

But usually, different trees lead to different complexities of representations.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

TB (Balanced tree)
{1} {2}

{3}

{4}

T L (Linear tree)

• If rankTL(u) ≤ r then rankTB (u) ≤ r2

• If rankTB (u) ≤ r then rankTL(u) ≤ r log2(d)/2
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Influence of the tree

Given a tree T and a permutation σ of D = {1, . . . , d}, we define a tree Tσ

Tσ = {σ(α) : α ∈ T}

having the same structure as T but different nodes.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

T

{1, 2, 3, 4}

{1, 3}

{3} {1}

{2, 4}

{2} {4}

Tσ with σ = (3, 1, 2, 4)

If rankT (u) ≤ r then rankTσ (u) typically depends on d .
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Influence of the tree

Consider the Henon-Heiles potential

u(x) =
1
2

d∑
i=1

x2
i + 0.2

d−1∑
i=1

(xix
2
i+1 − x3

i ) +
0.22

16

d−1∑
i=1

(x2
i + x2

i+1)2

Using a linear tree T = {{1}, {2}, . . . , {d}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1},D},

rankT (u) ≤ 4, storage(u) = O(d)

but for the permutation

σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) (?)

and the corresponding linear tree Tσ,

rankTσ (u) ≤ 2d + 1, storage(u) = O(d3).

For a typical tensor in T T
r with T a binary tree, its representation in tree based

format with tree Tσ, with σ as in (?), has a complexity scaling exponentially with d .
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Influence of the tree

Consider the probability distribution f (x) = P(X = x) of a Markov chain
X = (X1, . . . ,Xd) given by

f (x) = f1(x1)f2|1(x2|x1) . . . fd|d−1(xd |xd−1)

where bivariate functions fi|i−1 have a rank r .

• With the linear tree T containing interior nodes
{1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1}, f admits a representation in tree-based
format with storage complexity in r4.

• The canonical rank of f is exponential in d .
• But when considering the linear tree Tσ obtained by applying permutation
σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) to the tree T , the storage complexity in
tree-based format is also exponential in d .
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How to choose a good tree ?

A combinatorial problem...

{2} {3}

{7}

{5} {4}

{8}

{1} {6} {2} {7}

{4}

{8} {1} {5} {3}

{6}

{1} {4}{2} {8}

{3} {7} {6}

{5}

{3} {2}{4}

{7}{5}

{8}{6} {1}
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Properties of tree tensor networks

We here consider approximation tools based on tensor networks with tensorized functions
(with or without sparsity).

They satisfy

(P1) Φ0 = {0}, 0 ∈ Φn

(P2) aΦn = Φn for any a ∈ R \ {0} (cone)
(P3) Φn ⊂ Φn+1 (nestedness)

(P4) Φn + Φn ⊂ Φcn for some constant c (not too nonlinear)

For X = Lp, they further satisfy

(P5)
⋃

n Φn is dense in Lp for 0 < p <∞ (universality),

(P6) for each f ∈ Lp for 0 < p ≤ ∞, there exists a best approximation in Φn (proximinal
sets).
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Approximation classes

For an approximation tool Φ = (Φn)n∈N, we define for any α > 0 the approximation class

Aα∞(Lp) := Aα∞(Lp,Φ)

of functions f ∈ Lp such that
E(f ,Φn)Lp ≤ Cn−α

Properties (P1)-(P4) of Φ imply that Aα∞(Lp) is a quasi-Banach spaces with
quasi-semi-norm

|f |Aα∞ := sup
n≥1

nαE(f ,Φn)Lp

Full and sparse complexity measures yield two different approximation spaces

Fα∞(Lp) = Aα∞(Lp,ΦF ), Sα∞(Lp) = Aα∞(Lp,ΦS)

such that
Fα∞(Lp) ↪→ Sα∞(Lp) ↪→ Fα/2∞ (Lp)
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Direct embeddings

From results on the approximation properties for Besov spaces, we have the following
results.

Let α > 0 and 0 < p ≤ ∞. For arbitrary α̃ < α,

Bαq (Lp) ↪→ F α̃/dq (Lp)

and
MBαq (Lp) ↪→ Sα̃q (Lp).

For arbitrary s̃ < s(α) := d(α−1
1 + . . .+ α−1

d )−1,

ABα
q (Lp) ↪→ S s̃/d

q (Lp)

For α > 0, 1 ≤ p <∞, 0 < q ≤ τ < p <∞ and α
d
> 1

τ
− 1

p
,

Bαq (Lτ ) ↪→ Sα̃/d∞ (Lp)↪→ F α̃/(2d)
∞ (Lp)

for arbitrary α̃ < α, and similar results for anisotropic and mixed smoothness.
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No inverse embedding

For any α > 0, q ≤ ∞, and any β,

Fα∞(Lp) 6↪→ Bβ∞(Lp).

That means that approximation classes contain functions that have no smoothness in a
classical sense.

Tensor networks may be useful for the approximation of functions beyond standard
smoothness classes.
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Open questions

What are the properties of the approximation tool with free tree

Φn = {f ∈ ΦL,TL,r : L ∈ N0,TL ⊂ 2{1,...,(L+1)d}, r ∈ N#T , compl(f ) ≤ n}

Higher expressivity (or larger approximation classes) but how much higher ?

What about expressivity and approximation classes of more general tensor networks ?
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