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Computing with tensor networks

We here present some algorithms for the approximation of tensors (or functions) using
tensor networks.

Different contexts depending on the available information on the tensor:

all entries of the tensor,

equations satisfied by the tensor,

some entries, either arbitrary or structured,

more general functionals of the tensor.
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Available software

tensap. A Python package for the approximation of functions and tensors. (link to
GitHub page).

ApproximationToolbox. An object-oriented MATLAB toolbox for the approximation
of functions and tensors. (link to GitHub page).
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Hilbertian setting

We consider a tensor u in a Hilbert tensor space V 1 ⊗ . . .⊗ V d and we assume that u is
given as a full tensor or in a certain low-rank format.

We present truncation schemes for finding a low-rank approximation of u with reduced
complexity, relying on the standard singular value decomposition of order-two tensors.

We denote by ‖ · ‖ the canonical norm on V 1 ⊗ . . .⊗ V d .

For an algebraic tensor in RI1 ⊗ . . .⊗ RId , ‖ · ‖ is the Frobenius norm

‖u‖2 =
∑
i1∈I1

. . .
∑
id∈Id

u(i1, . . . , id)2
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Truncated singular value decomposition for order-two tensors

An order-two tensor u in V 1 ⊗ V 2 admits a singular value decomposition

u =
∑
k≥1

σkv
1
k ⊗ v2

k ,

where the singular values σ(u) = {σk}k≥1 are sorted by decreasing order.

An element of best approximation of u in the set of tensors with rank bounded by r is
provided by the truncated singular value decomposition

ur =
r∑

k=1

σkv
1
k ⊗ v2

k ,

with an error
‖u − ur‖2 = min

rank(v)≤r
‖u − v‖2 =

∑
k≥r+1

σ2
k .
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Truncated singular value decomposition for order-two tensors

An approximation ur with relative precision ε, such that

‖u − ur‖ ≤ ε‖u‖,

can be obtained by choosing a rank r such that∑
k≥r+1

σ2
k ≤ ε2

∑
k≥1

σ2
k .

The complexity of computing the singular value decomposition of a tensor u is O(n3) if
dim(V 1) = dim(V 2) = n. If u is given in low-rank format u =

∑R
k=1 ak ⊗ bk , with a rank

R < n, the complexity breaks down to O(R3 + 2Rn2).
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Higher-order singular value decomposition

For a non-empty subset α in D = {1, . . . , d}, a tensor u ∈ V 1 ⊗ . . .⊗ V d can be
identified with its matricisation

Mα(u) ∈ V α ⊗ V αc

,

an order-two tensor which admits a singular value decomposition

Mα(u) =
∑
k≥1

σαk v
α
k ⊗ wαc

k ≡ u.

σα(u) := {σαk }k≥1 are the α-singular values of u.

The α-rank of u is the number of non-zero α-singular values

rankα(u) = ‖σα(u)‖0.
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Higher-order singular value decomposition

By sorting the α-singular values by decreasing order, an approximation ur with α-rank r
can be obtained by retaining the r largest α-singular values, i.e.

ur ≡
r∑

k=1

σαk v
α
k ⊗ wαc

k ,

The vectors {vα1 , . . . , vαrα} are the dominant α-singular vectors of u or α-principal
components of u.

The space Uαrα = span{vα1 , . . . , vαrα} is the dominant α-principal subpace of u.

Denote by PUα
rα

the orthogonal projection from V α to Uαrα and by PUα
rα

= PUα
rα
⊗ idαc

the orthogonal projection defined on V such that for vα ⊗ wαc

∈ V α ⊗ V αc

,

PUα
rα

(vα ⊗ wαc

) = (PUα
rα
vα)⊗ wαc

We have
ur = PUα

rα
u

and
‖u − ur‖2 = min

rankα(v)≤r
‖u − v‖2 =

∑
k>r

(σαk )2.
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Truncation scheme for tree-based tensor formats

For tree-based tensor formats

T T
r (V ) = {v ∈ V : rankα(v) ≤ rα, α ∈ T},

where T is a dimension partition tree over D = {1, . . . , d}, different variants of higher
order singular value decomposition (also called hierarchical singular value decomposition)
can be defined from singular value decompositions of matricisationsMα(u) of a tensor
u.
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Leaves to root truncation scheme for tree-based tensor formats

For each leaf node α, let Uαrα be the rα-dimensional α-principal subspace of u.

For each interior node α ∈ T \ {D} with children S(α), define a tensor space

Vα =
⊗
β∈S(α)

Uβrβ

and let Uαrα ⊂ Vα be the rα-dimensional α-principal subspace of

uα = PVαu
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Leaves to root truncation scheme for tree-based tensor formats

Finally define ur as the orthogonal projection onto the tensor space VD =
⊗

α∈S(D) Uα

ur = P(1)
r u = P(1)

r . . .P(L)
r u
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Leaves to root truncation scheme for tree-based tensor formats

The obtained approximation ur is such that

‖u − ur‖2 ≤
∑

α∈T\D

min
rankα(v)≤rα

‖u − v‖2 =
∑

α∈T\D

∑
kα>rα

(σαkα)2,

from which we deduce that ur is a quasi-optimal approximation of u in T T
r such that

‖u − ur‖ ≤ C(T ) min
v∈T T

r

‖u − v‖,

where C(T ) =
√

#T − 1 is the square root of the number of projections applied to the
tensor. The number of nodes of a dimension partition tree T being bounded by 2d − 1,

C(T ) ≤
√
2d − 2.

Also, if we select the ranks (rα)α∈T\D such that for all α∑
kα>rα

(σαkα)2 ≤ ε2

C(T )2

∑
kα≥1

(σαkα)2 =
ε2

C(T )2 ‖u‖
2,

we finally obtain an approximation ur with relative precision ε,

‖u − ur‖ ≤ ε‖u‖.

14 / 58



Leaves to root truncation scheme for tree-based tensor formats

The obtained approximation ur is such that

‖u − ur‖2 ≤
∑

α∈T\D

min
rankα(v)≤rα

‖u − v‖2 =
∑

α∈T\D

∑
kα>rα

(σαkα)2,

from which we deduce that ur is a quasi-optimal approximation of u in T T
r such that

‖u − ur‖ ≤ C(T ) min
v∈T T

r

‖u − v‖,

where C(T ) =
√

#T − 1 is the square root of the number of projections applied to the
tensor. The number of nodes of a dimension partition tree T being bounded by 2d − 1,

C(T ) ≤
√
2d − 2.

Also, if we select the ranks (rα)α∈T\D such that for all α∑
kα>rα

(σαkα)2 ≤ ε2

C(T )2

∑
kα≥1

(σαkα)2 =
ε2

C(T )2 ‖u‖
2,

we finally obtain an approximation ur with relative precision ε,

‖u − ur‖ ≤ ε‖u‖.

14 / 58



Leaves to root truncation scheme for tree-based tensor formats

If u is in some tensor space W = W1 ⊗ . . .⊗Wd and V = V1 ⊗ . . .⊗ Vd is a
finite-dimensional tensor subspace of W , an approximation in the tensor format T T

r (V )
can be obtained by modifying the procedure for the leaves.

For each leaf node α, Uαrα is defined as a α-principal subspace of uα = PVαu.

Theorem (Fixed rank)

For a given T -rank, we obtain an approximation ur ∈ T T
r (V ) such that

‖ur − u‖2 ≤ C(T )2 min
v∈T T

r

‖v − u‖2 +
∑

leaves α

‖u − PVαu‖
2

Theorem (Fixed precision)

For a desired precision ε, if the α-ranks are determined such that

‖PUα
rα
uα − uα‖ ≤

ε

C(T )
‖uα‖,

we obtain an approximation ur such that

‖ur − u‖2 ≤ ε2‖u‖2 +
∑

leaves α

‖u − PVαu‖
2.
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Efficient truncation algorithms

Recent works for efficient truncation algorithms

Randomized linear algebra [Che/Wei’19,Sun’20,Huber’17]

Block-wise tensor compressions [Ehrlacher’21]

Parallel algorithms [Grigori/Kumar’20,Daas’20]

...
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Learning from structured evaluations

For the approximation of a tensor (or function) in tree-based format from evaluations of
the tensor at some entries, different strategies have been proposed, either based on cross
approximation [Oseledets’10, Ballani’13] or principal component analysis [Nouy’19,
Haberstich’21].

These methods rely on structured evaluations

u(x i
α, x

j
αc )

where x i
α are samples of the variables xα, and x j

αc samples of the variables xαc .
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Learning from principal component analysis

Assume that X = (X1, . . . ,Xd) has a probability measure µ = µ1 ⊗ . . .⊗ µd with support
X = X1 × . . .×Xd .

Consider a multivariate function u ∈ L2
µ(X ) and assume that we can evaluate the

function for arbitrary instance x of X .

For each a subset of variables α and its complementary subset αc = D \ α, u is identified
with a bivariate function which admits a singular value decomposition

u(xα, xαc ) =

rankα(u)∑
k=1

σαk v
α
k (xα)vα

c

k (xαc )
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Learning from principal component analysis

The subspace of α-principal components

Uα = span{vα1 , . . . , vαrα}

is such that
urα(·, xαc ) = PUαu(·, xαc )

It is solution of
min

dim(Uα)=rα
‖u − PUαu‖

2

that is for ‖ · ‖ the L2
µ(X )-norm,

min
dim(Uα)=rα

E
(
‖u(·,Xαc )− PUαu(·,Xαc )‖2L2

µα
(Xα)

)
where u is seen as a function-valued random variable

u(·,Xαc ) ∈ L2
µα

(Xα).
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Learning algorithm based on principal component analysis

In order to construct an approximation in the tree-based format T T
r (V ), with V some

feature tensor space, we apply the root to leaves procedure.

For a feasible algorithm using samples:

Replacement of orthogonal projections by sampled-based projections.

Statistical estimation of principal subspaces.
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From orthogonal to sampled-based projections

Orthogonal projections PVα on subspaces Vα are replaced by oblique projections IVα

using samples, typically interpolation or least-squares projection.

For a function u and a given value xαc of the group of variables Xαc ,

IVαu(·, xαc ) =

Mα∑
i=1

ai (xαc )ψαi (·)

where the ψαi form a basis of Vα, and the coefficients ai (xαc ) depend on evaluations
u(xk

α, xαc ) for some samples xk
α of Xα (interpolation points or random samples).

In practice,

for interpolation, possible use of magic points x i
α [Nouy ’19],

for least-squares projection, possible use of optimal weighted least-squares for a
control of the norm of operators IVα [Cohen/Migliorati’17,Habertisch ’21].
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Statistical estimation of principal subspaces

The α-principal subspaces Uα of uα = IVαu are defined by

min
dim(Uα)=rα

E
(
‖IVαu(·,Xαc )− PUαIVαu(·,Xαc )‖2L2

µα
(Xα)

)
Principal subspaces can be estimated using i.i.d. samples u(·, x j

αc ) of this random variable
and by solving

min
dim(Uα)=rα

1
Nα

Nα∑
j=1

‖IVαu(·, x j
αc )− PUαIVαu(·, x j

αc )‖2L2
µα

(Xα)

where {x j
αc }Nα

j=1 are i.i.d. samples of the group of variables Xαc .

If the projection IVα is based on a set of Mα samples of Xα, this requires the evaluation
of u at the Mα × Nα points

{(x i
α, x

j
αc ) : 1 ≤ i ≤ Mα, 1 ≤ j ≤ Nα}.
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Direct optimization in subsets of tensor networks

Consider a subset of tensorsMr that admits a multilinear parametrization of the form

v(x1, . . . , xd) =

r1∑
k1=1

. . .

rL∑
kL=1

d∏
ν=1

v (ν) (xν , (ki )i∈Sν )
M∏

ν=d+1

v (ν) ((ki )i∈Sν )

where v = {v (ν)}Mν=1 is a tensor network, and each tensor v (ν) is in a space P(ν).

We have
Mr = {v = Ψ(v (1), . . . , v (M)) : v (ν) ∈ P(ν), 1 ≤ ν ≤ M},

where Ψ is a multilinear map.

The problem
min
v∈Mr

J (v)

can be written as an optimization problem over the parameters

min
v (1)

. . .min
v (M)
J (Ψ(v (1), . . . , v (M))).
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Alternating minimization algorithm

The alternating minimization algorithm consists in solving successively minimization
problems

min
v (ν)∈P(ν)

J (Ψ(v (1), . . . , v (ν), . . . , v (M))) := min
v (ν)∈P(ν)

Jν(v (ν)) (1)

over the parameter v (ν), letting the other parameters v (η), η 6= ν, fixed.

When P(ν) is a linear vector space, problem (1) is a linear approximation problem.

If J is a convex (resp. differentiable) functional, then Jν is a convex (resp.
differentiable) functional.
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Direct optimization in subsets of tensor networks

Other optimization algorithms (e.g. gradient descent, Newton) can be used, possibly
exploiting the geometry of tree tensor networks manifolds.

Under rather standard assumptions, some results have been obtained for the convergence
of algorithms: local convergence to a global optimizer, or global convergence to
stationary points.

But no guaranty for obtaining a global optimizer of a general (even convex) functional in
subsets of tensor networks (NP-hard problem).
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Rank adaptation

For the adaptation of ranks, different strategies have been proposed:

Modified alternating minimization algorithms [Holtz et al ’12] or DMRG, where rank
adaptation is performed during optimization,

Alternating minimal energy methods [Dolgov et al ’14], where optimization is also
combined with rank adaptation,

Optimization in a subset with fixed rank followed by rank adaptation
[Grelier/Nouy/Chevreuil’18, Grelier/Nouy/Lebrun’19,Grasedyck/Kramer ’19]
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Modified alternating minimization algorithm

Modified alternating minimization algorithm1 is a modification of the alternating
minimization algorithm which allows for an rank adaptation "on the fly".

It can be used for optimization with tree tensor nteworks or more general tensor networks.

At each step of the algorithm, we consider two nodes ν and η connected by an edge e
and we update simultaneously the associated parameters p(ν) and p(η).

ν η
e

1known as DMRG algorithm (for Density Matrix Renormalization Group) for tensor networks.
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Modified alternating minimization algorithm

In the expression of a tensor v = Ψ(v (1), . . . , v (M)), the two tensors v (ν) and v (η)

connected by the edge e appear as

re∑
ke=1

v (ν)(ke , ...)v
(η)(ke , ...) := v (e)(...)

where v (e) is a tensor of order

order(v (e)) = order(v (ν)) + order(v (η))− 2.

v (ν) v (η)

ke
←→ v (e)

This corresponds to a new tensor networks where the nodes ν and η and edge e are
replaced by a single node e, and a new parametrization

v = Ψe(. . . , v (e), . . .).
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Modified alternating minimization algorithm

We first solve an optimization problem

min
v (e)
J (Ψe(. . . , v (e), . . .))

for obtaining an new value of the tensor v (e).

Then, we compute a low-rank approximation of the tensor v (e)

v (e)(...) ≈
re∑

ke=1

v (ν)(ke , ...)v
(η)(ke , ...)

where the rank re in general differs from the initial rank.

In practice, the approximation is obtained using truncated singular value decomposition.
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Iterative methods with tensor truncation

Another strategy for solving an operator equation

Au = b

or a more general optimization problem

min
v∈V
J (v)

is to rely on classical iterative methods by interpreting all standard algebraic operations
on vector spaces as algebraic operations in tensor spaces.
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Iterative methods with tensor truncation

As a motivating example, consider a simple Richardson algorithm

un = un−1 − ω(Aun−1 − b).

For A and b given in tensor formats, computing un involves standard algebraic
operations.

However, the representation rank of the iterates dramatically increases since

rank(un) ≈ rank(A) rank(un−1) + rank(un−1) + rank(b).

This requires additional truncation steps for reducing the ranks of the iterates, such as

un = T (un−1 − ω(Aun−1 − b)),

where T (v) provides a low-rank approximation of v .

We now analyze the behavior of these algorithms depending on the properties of the
truncation operator T .
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Fixed point iterations algorithm

Let us consider a problem which can be written as a fixed point problem

F (u) = u,

where F : V → V is a contractive map, such that for all u, v ∈ V ,

‖F (u)− F (v)‖ ≤ ρ‖u − v‖,

with 0 ≤ ρ < 1.

Then, consider the fixed point iterations algorithm

un+1 = F (un)

which provides a sequence (un)n≥1 which converges to u, such that

‖u − un‖ ≤ ρn‖u − u0‖.

Example
For a problem Au = b, consider F (u) = u − ω(Au − b), with ω such that ‖I − ωA‖ < 1.
Fixed point iterations un+1 = un − ω(Aun − b) correspond to Richardson iterations.
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Perturbed fixed point iterations algorithm

Now consider the perturbed fixed point iterations

vn+1 = F (un), un+1 = T (vn+1)

where T is a mapping which for a tensor v provides an approximation (called truncation)
T (v) in a certain low-rank formatMr .
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Truncations with controlled relative precision

Suppose that the mapping T provides an approximation with relative precision ε, i.e.

‖T (v)− v‖ ≤ ε‖v‖.

This is made possible by using an adaptation of the ranks.

Then the sequence (un)n≥1 is such that

‖u − un‖ ≤ γn‖u − u0‖+
ε

1− γ ‖u‖,

with γ = ρ(1 + ε). Therefore, if γ < 1

lim sup
n→∞

‖u − un‖ ≤ ε

1− γ ‖u‖

which means that the sequence tends to enter a neighborhood of u with radius ε
1−γ ‖u‖.

The drawback of this algorithm is that the ranks of the iterates are not controlled and
may become very high during the iterations.
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Truncations in fixed subsets

Now consider that the mapping T provides an approximation in a fixed subset of tensors
Mr with rank bounded by r .

Let us assume that for all v , T (v) provides a quasi-optimal approximation of v such that

‖T (v)− v‖ ≤ C min
w∈Mr

‖v − w‖. (2)

A practical realization of a mapping T verifying (2) is provided by truncated higher-order
singular value decompositions, where

C = O(
√
d).
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Truncations in fixed subsets

Let ur be an element of best approximation of u, with

‖u − ur‖ = min
v∈Mr

‖u − v‖.

The sequence (un)n≥1 is such that

‖u − un‖ ≤ γn‖u − u0‖+
C

1− γ ‖u − ur‖,

with γ = ρ(1 + C). If γ < 1 (which may be quite restrictive on ρ), we obtain

lim sup
n→∞

‖u − un‖ ≤ C

1− γ min
v∈Mr

‖u − v‖,

which means that the sequence tends to enter a neighborhood of u with radius C
1−γ σr ,

where σr is the best approximation error of u by elements ofMr .

An advantage of this approach is that the ranks of the iterates are controlled. A
drawback is that the condition γ < 1 imposes to rely on an iterative method with small
contractivity constant ρ < (1 + C)−1, which may be quite restrictive (requires good
preconditioners).
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Truncations with non-expansive maps

Now we assume that the mapping T providing an approximation in low-rank format is
non-expansive, i.e.

‖T (v)− T (w)‖ ≤ ‖v − w‖ (3)

The sequence un is defined by
un+1 = G(un),

where G = T ◦ F is a contractive mapping with the same contractivity constant ρ as F .
Therefore, the sequence un converges to the unique fixed point u? of G such that

G(u?) = u?,

with
‖u? − un‖ ≤ ρn‖u? − u0‖.

The obtained approximation u? is such that

(1 + ρ)−1‖u − T (u)‖ ≤ ‖u − u?‖ ≤ (1− ρ)−1‖u − T (u)‖.

A practical realization of a mapping T verifying (2) is provided by a truncation operator
based on soft thresholding of singular values. The ranks of the iterates are not controlled.
However, it is observed in practice that the ranks of iterates are usually lower than with
truncations with controlled relative precision.
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Thresholding of singular values

Consider an order two tensor u in a Hilbert tensor space V ⊗W . equipped with the
canonical norm.
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Hard thresholding of singular values

The hard singular value thresholding operator HTτ is defined for an order-two tensor u
with singular value decomposition

∑
k≥1 σkvk ⊗ wk by

HTτ (u) =
∑
k≥1

HTτ (σk)vk ⊗ wk ,

where HTτ (t) = t 1|t|>τ is the hard thresholding function such that

HTτ (σk) =

{
σk if σk > τ

0 if σk ≤ τ
.

The error after hard thresholding is

‖u −HTτ (u)‖2 =
∑
k≥1

σ2
k 1σk≤τ .

HTτ (u) is a solution of the problem

min
v
‖u − v‖2 + τ2 rank(v)

where rank(v) = ‖σ(v)‖0.
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Soft thresholding of singular values

The soft singular value thresholding operator STτ is defined for a tensor u with singular
value decomposition

∑
k≥1 σkvk ⊗ wk by

STτ (u) =
∑
k≥1

STτ (σk)vk ⊗ wk ,

where STτ (t) = (|t| − τ)+ sign(t) is the soft thresholding function, such that

STτ (σk) = (σk − τ)+ =

{
σk − τ if σk ≥ τ
0 if σk < τ

.

The error after soft thresholding is

‖u − STτ (u)‖2 =
∑
k≥1

(σk − (σk − τ)+)2 =
∑
σk≤τ

σk
2 +

∑
σk>τ

τ2.
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Soft thresholding of singular values

STτ (u) is a solution of the problem

min
v

1
2
‖u − v‖2 + τ‖σ(v)‖1

where ‖σ(v)‖1 is the nuclear norm of v , which is a convex regularization of the
functional v 7→ rank(v).

In convex analysis, STτ is known as the proximal operator of the convex function
v 7→ τ‖σ(v)‖1.

The operator STτ is non-expansive, that means for all u, v ,

‖STτ (u)− STτ (v)‖ ≤ ‖u − v‖,

which is an important property for the analysis of algorithms with tensor truncations.
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Convex relaxation

A general optimization problem over a subset of tensors with bounded rank

min
rank(v)≤r

J (v)

is equivalent to
min
v
J (v) + τ rank(v)

for some value of τ .

A convex optimization problem is obtained by replacing rank(v) = ‖σ(v)‖0 by the
function ‖σ(v)‖1 = ‖v‖∗ (the nuclear norm of v)

min
v
J (v) + τ‖v‖∗
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Proximal algorithms

Consider the problem
min
v
J (v) + τ‖v‖∗

A proximal algorithm constructs a sequence (un)n≥1 as follows.

At iteration n, we linearize the function J around un and define un+1 as the solution of

min
v
J (un) + (∇J (un), v − un) +

β

2
‖u − un‖2 + τ‖v‖∗

where β is a parameter.

This is equivalent to solving

min
v

1
2
‖v − (un − β−1∇J (un))‖2 +

τ

β
‖v‖∗

whose solution is provided by

un+1 = STτ/β(un − β−1∇J (un))

where STτ/β is the proximal operator of v 7→ τ
β
‖v‖∗.
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Hard and soft singular values thresholding for higher order tensors

For a higher order tensor u in a Hilbert tensor space V = V1 ⊗ . . .⊗Vd , we can naturally
define hard and soft singular values thresholding operators HSατ and ST ατ associated
with the singular value decomposition of the matricisationMα(u) of u.

These operators are such that

HSατ (u) = arg min
v
‖u − v‖2 + τ2 rankα(v),

and
ST ατ (u) = arg min

v

1
2
‖u − v‖2 + τ‖σα(u)‖1.
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Hard and soft singular values thresholding for higher order tensors

Hard and soft thresholding operators can then be defined for the approximation in a
tree-based format T T

r (V ), with T a dimension tree (or a subset T of a dimension tree),

Hard and soft thresholding operators HT T
τ and ST T

τ can be respectively defined as
compositions of hard and soft thresholding operators (sequence of truncations from the
root to the leaves),

HT T
τ = HT αM

τ ◦ . . . ◦ HT α1
τ

and
ST T

τ = ST αM
τ ◦ . . . ◦ ST α1

τ

where the set of nodes {α1, . . . , αM} = T \ {D} is sorted by increasing level.

The soft-thresholding operator ST T
τ is non-expansive, i.e.

‖ST T
τ (u)− ST T

τ (v)‖ ≤ ‖u − v‖

for all tensors u, v .

See [Rauhut’17] and [Bachmayr’16] for further details and applications to tensor
completion and solution of operator equations.
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Convex relaxation for tree-based formats

Given a tree-based format T T
r (V ), a convex relaxation of the problem

min
v∈T T

r (V )
J (v)

can be defined as
min
v∈V
J (v) + τ

∑
α∈T\{D}

‖σα(u)‖1. (?)

Algorithms based on soft thresholding of singular values appear as specific
algorithms for solving the relaxed optimization problem (?).

But this relaxation is known to be far from optimal convex relaxation.

For Tucker tensors, a better convex relaxation is based on tensor nuclear norm
[Yuan/Zhang’16].

Finding a good convex relaxation for general tree-based formats remains an open
problem.
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