Low-rank and sparse methods for
high-dimensional approximation and model order
reduction
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High-dimensional approximation
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High dimensional problems

High-dimensional problems in physics

o Navier-Stokes equation in a 3-dimensional domain Q
u(x1, X2, x3, t)

%erVu:prJruAu

@ Multiscale problems

x=(xy), ulx,t)=u(xyt), x€Q yeY
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High dimensional problems

High-dimensional problems in physics

@ Schrodinger equation

@ Boltzmann equation

o Fokker-Planck equation

@ Master equation

P(X;[7 e
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High dimensional problems

High-dimensional problems in stochastic analysis

Stochastic differential equations (SDEs)
dX; = a(Xe, t)dt + o(Xe, t)dWs, X: € RY

o Fokker-Planck equation for probability density function p(xi,...,xq,t) of X;

0
== =—Za aip) + 5 Zax (0o 7)ip)

e Feynman-Kac formula for

T (s
u(x, t) = X~ ( / eli rXendre(x s)ds)
t

yields a high-dimensional PDE
Ou+Lu+ru+f=0 inRIx(0,T), ulx,T)=0

@ Functional approach to SDEs using a parametrization of the noise
= &Gei(t), &~ N(,I),
i=1
Xe(w) = u(t, & (w), &2(w), - - )
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High dimensional problems

High-dimensional problems in uncertainty quantification

Parameter-dependent models

M(u(X); X)=0

where X = (X4,..., Xy) are random variables.

o Forward problem: evaluation of statistics, probability of events, sensitivity indices...

E(f(u(X))) = / flu(xe, ..., xd))p(x1,. .., xq)dxs ... dxq
Rd
@ Inverse problem: from (partial) observations of u, estimate the density of X

p(x1, ..., Xd)
@ Meta-models: approximation of the high-dimensional function

u(xy, ..., xd)
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High-dii ional approxi ion and the curse of dimensionality

High-dimensional approximation

The goal of approximation is to replace a function
u(xt, ..., Xd)

by a simpler function (easy to evaluate) depending on a few parameters.

For a certain subset of functions X, described by n parameters (or O(n) parameters), the
error of best approximation of u by elements of X, is defined by

en(u) = inf d(u,v)

veXy
where d is a distance measuring the quality of an approximation.
A sequence of subsets (X,),>1 is called an approximation tool. We distinguish linear

approximation, where X, are linear spaces, from nonlinear approximation, where X, are
nonlinear spaces.
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High-dii ional approxi ion and the curse of dimensionality

High-dimensional approximation

Fundamental problems are

@ to determine if and how fast e,(u) tends to 0 for a certain class of functions and a
certain approximation tool,

@ to provide algorithms which produce approximations u, € X, such that
lu = uall < Cen(u)

with C independent of n or C(n)e,(u) — 0 as n = o
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High-dii ional approxi ion and the curse of dimensionality

The curse of dimensionality

Let consider u in X = LP(X) with X = (0,1) and the natural distance
d(u,v) = |lu—v||r on X. Let X, be the space of polynomials of partial degree m, with
n=(m+ 1) parameters.

If uis in the Sobolev space W*P(X) for a certain k < m+ 1,
en(u) < Mn=*/4

We observe

o the curse of dimensionality : deterioration of the rate of approximation when d
increases. Exponential growth with d of the complexity for reaching a given
accuracy.

o the blessing of smoothness : improvement of the rate of approximation when k
increases.

We may ask if the curse of dimensionality is due to the particular choice of
approximation tool (polynomials) for approximating functions in W*P(X) ? We may
also ask if the curse of dimensionality is still present if k = co (smooth functions) ?
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High-di . 1

approxil and the curse of dimensionality

The curse of dimensionality

For a set of functions K in a normed vector space X, the Kolmogorov n-width of K is

do(K)= _inf sup inf d(u,v)

dim(Xp)=n yck vEXn

where the infimum is taken over all linear subspaces of dimension n. d,(K) measures
how well the set of functions K can be approximated by a n-dimensional space. It
measures the ideal performance that we can expect from linear approximation methods.

Let X = LP(X) with X = (0,1)“.
o For K the unit ball of W*?(X), we have
dn(K) ~ n*/d
e For K ={v e C>®(X) :sup, ||DV||tee < o0}, we have
min{n: do(K) < 1/2} > c2%/2
Extra smoothness does not help !

@ Similar results are obtained for non-linear widths measuring the ideal performance of
nonlinear approximation methods. Nonlinear methods can not help !
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How to beat the curse of dimensionality ?

How to beat the curse of dimensionality ?

The key is to consider classes of functions with specific low-dimensional structures and to
propose approximation formats (models) which exploit these structures
(application-dependent).

Approximations are searched in subsets X, with a number of parameters

n= 0(d”)
but
@ X, is usually nonlinear, and
@ X, may be non smooth.
This turns approximation problems
ind
g du:v)

into nonlinear and possibly non smooth optimization problems.
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How to beat the curse of dimensionality ?

Low-dimensional models for high-dimensional approximation

@ Low-order interactions, e.g.

o No interaction (additive model)

u(xay ..., xd) &~ uo+ ui(xt) + ... + ug(xq)
o First-order interactions
u(xty ..., Xd) & uo + Z ui(xi) + Z ui j(xi, x;)
i i#j

@ Small number of interactions

o For a given A C 2t%+++9} (set of interaction groups),

u(xy,...,xd) = Z Ua(Xa)

a€c

o A\ as a parameter

u(xa, ..., xq) = Z Ua(Xa) with #A=n

a€cN
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How to beat the curse of dimensionality ?

Low-dimensional models for high-dimensional approximation

@ Sparsity relatively to a basis or frame {¢a }aen

u(xy, ..., xd) = Za(,dja(xl,...,xd), #N=n
aeN

@ Sparsity relatively to a dictionary D

n
u(xa, ..., Xd) = Z aii(xa, ..., xd4), i €D
i=1
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How to beat the curse of dimensionality ?

Low-dimensional models for high-dimensional approximation

o Low rank, e.g.
u(xy,. .., xd) = ui(x1) ... uds(xa)

r
U(X17 e 7Xd) ~ Z u1,,-(X1) e ud_,-(xd)
i=1

fd—1

n
u(xt, ..., Xxd) = Z .. Z Uiy (X)) uiy i (x2) - w4 1(Xd)

=1 iy_q=1
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How to beat the curse of dimensionality ?

Low-dimensional models for high-dimensional approximation

Structures possibly discovered with suitable transformations, which may also be
considered as additional parameters:

ulxe, ... xa) = g,y ¥m)y (O, y¥m) = h(xa,. .., xq),

@ One-dimensional model after linear transformation (Generalized Linear Model)
u(xy,...,xd) = glaixs + ...+ adxq)
o Additive model after linear transformations (Projection Pursuit)
ulxa, ... xa) ~gi(a) + o 8n(Ym)s Yk =aix1 4 ...+ ohxg

Neural networks (single hidden layer) as a particular case where functions g are
equal and fixed.
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