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High dimensional problems

High-dimensional problems in physics

Navier-Stokes equation in a 3-dimensional domain Ω

u(x1, x2, x3, t)

∂u

∂t
+ u · ∇u = −∇p + ν∆u

Multiscale problems

x ≡ (x , y), u(x , t) ≡ u(x , y , t), x ∈ Ω, y ∈ Y

ΩΩΩΩΩΩΩΩΩΩ

Y
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High dimensional problems

High-dimensional problems in physics

Schrodinger equation
Ψ(x1, . . . , xd , t)

i~∂Ψ

∂t
= − ~

2µ
∆Ψ + VΨ

Boltzmann equation
p(x1, . . . , xd , t)

∂p

∂t
+

d∑
i=1

vi
∂p

∂xi
= H(p, p)

Fokker-Planck equation
p(x1, . . . , xd , t)

∂p

∂t
+

d∑
i=1

∂

∂xi
(aip)− 1

2

d∑
i,j=1

∂2

∂xixj
(bijp) = 0

Master equation

P(x1, . . . , xd , t), (x1, . . . , xd) ∈ X = {1, . . . ,N}d

∂P

∂t
(x , t) =

∑
y∈X

A(x , y)P(y , t)
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High dimensional problems

High-dimensional problems in stochastic analysis

Stochastic differential equations (SDEs)

dXt = a(Xt , t)dt + σ(Xt , t)dWt , Xt ∈ Rd

Fokker-Planck equation for probability density function p(x1, . . . , xd , t) of Xt

∂p

∂t
= Lp = −

d∑
i=1

∂

∂xi
(aip) +

1
2

d∑
i,j=1

∂2

∂xixj
((σσT )ijp)

Feynman-Kac formula for

u(x , t) = EXt=x

(∫ T

t

e
∫ s
t r(Xr ,r)dr f (Xs , s)ds

)
yields a high-dimensional PDE

∂tu + L∗u + ru + f = 0 in Rd × (0,T ), u(x ,T ) = 0

Functional approach to SDEs using a parametrization of the noise

Wt =
∞∑
i=1

ξiϕi (t), ξi ∼ N(0, I ),

Xt(ω) ≡ u(t, ξ1(ω), ξ2(ω), . . .)
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High dimensional problems

High-dimensional problems in uncertainty quantification

Parameter-dependent models
M(u(X );X ) = 0

where X = (X1, . . . ,Xd) are random variables.

Forward problem: evaluation of statistics, probability of events, sensitivity indices...

E(f (u(X ))) =

∫
Rd

f (u(x1, . . . , xd))p(x1, . . . , xd)dx1 . . . dxd

Inverse problem: from (partial) observations of u, estimate the density of X

p(x1, . . . , xd)

Meta-models: approximation of the high-dimensional function

u(x1, . . . , xd)
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High-dimensional approximation and the curse of dimensionality

High-dimensional approximation

The goal of approximation is to replace a function

u(x1, . . . , xd)

by a simpler function (easy to evaluate) depending on a few parameters.

For a certain subset of functions Xn described by n parameters (or O(n) parameters), the
error of best approximation of u by elements of Xn is defined by

en(u) = inf
v∈Xn

d(u, v)

where d is a distance measuring the quality of an approximation.

A sequence of subsets (Xn)n≥1 is called an approximation tool. We distinguish linear
approximation, where Xn are linear spaces, from nonlinear approximation, where Xn are
nonlinear spaces.
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High-dimensional approximation and the curse of dimensionality

High-dimensional approximation

Fundamental problems are

to determine if and how fast en(u) tends to 0 for a certain class of functions and a
certain approximation tool,

to provide algorithms which produce approximations un ∈ Xn such that

‖u − un‖ ≤ Cen(u)

with C independent of n or C(n)en(u)→ 0 as n→∞
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High-dimensional approximation and the curse of dimensionality

The curse of dimensionality

Let consider u in X = Lp(X ) with X = (0, 1)d and the natural distance
d(u, v) = ‖u − v‖Lp on X . Let Xn be the space of polynomials of partial degree m, with
n = (m + 1)d parameters.

If u is in the Sobolev space W k,p(X ) for a certain k ≤ m + 1,

en(u) ≤ Mn−k/d

We observe

the curse of dimensionality : deterioration of the rate of approximation when d
increases. Exponential growth with d of the complexity for reaching a given
accuracy.

the blessing of smoothness : improvement of the rate of approximation when k
increases.

We may ask if the curse of dimensionality is due to the particular choice of
approximation tool (polynomials) for approximating functions in W k,p(X ) ? We may
also ask if the curse of dimensionality is still present if k =∞ (smooth functions) ?
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High-dimensional approximation and the curse of dimensionality

The curse of dimensionality

For a set of functions K in a normed vector space X , the Kolmogorov n-width of K is

dn(K) = inf
dim(Xn)=n

sup
u∈K

inf
v∈Xn

d(u, v)

where the infimum is taken over all linear subspaces of dimension n. dn(K) measures
how well the set of functions K can be approximated by a n-dimensional space. It
measures the ideal performance that we can expect from linear approximation methods.

Let X = Lp(X ) with X = (0, 1)d .

For K the unit ball of W k,p(X ), we have

dn(K) ∼ n−k/d

For K = {v ∈ C∞(X ) : supα ‖Dαv‖L∞ <∞}, we have

min{n : dn(K) ≤ 1/2} ≥ c2d/2

Extra smoothness does not help !

Similar results are obtained for non-linear widths measuring the ideal performance of
nonlinear approximation methods. Nonlinear methods can not help !
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How to beat the curse of dimensionality ?

How to beat the curse of dimensionality ?

The key is to consider classes of functions with specific low-dimensional structures and to
propose approximation formats (models) which exploit these structures
(application-dependent).

Approximations are searched in subsets Xn with a number of parameters

n = O(dp)

but

Xn is usually nonlinear, and

Xn may be non smooth.

This turns approximation problems

min
v∈Xn

d(u, v)

into nonlinear and possibly non smooth optimization problems.
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How to beat the curse of dimensionality ?

Low-dimensional models for high-dimensional approximation

Low-order interactions, e.g.
No interaction (additive model)

u(x1, . . . , xd) ≈ u0 + u1(x1) + . . .+ ud(xd)

First-order interactions

u(x1, . . . , xd) ≈ u0 +
∑
i

ui (xi ) +
∑
i 6=j

ui,j(xi , xj)

Small number of interactions
For a given Λ ⊂ 2{1,...,d} (set of interaction groups),

u(x1, . . . , xd) ≈
∑
α∈Λ

uα(xα)

Λ as a parameter

u(x1, . . . , xd) ≈
∑
α∈Λ

uα(xα) with #Λ = n
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How to beat the curse of dimensionality ?

Low-dimensional models for high-dimensional approximation

Sparsity relatively to a basis or frame {ψα}α∈N

u(x1, . . . , xd) ≈
∑
α∈Λ

aαψα(x1, . . . , xd), #Λ = n

Sparsity relatively to a dictionary D

u(x1, . . . , xd) ≈
n∑

i=1

aiψi (x1, . . . , xd), ψi ∈ D
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How to beat the curse of dimensionality ?

Low-dimensional models for high-dimensional approximation

Low rank, e.g.
u(x1, . . . , xd) ≈ u1(x1) . . . ud(xd)

u(x1, . . . , xd) ≈
r∑

i=1

u1,i (x1) . . . ud,i (xd)

u(x1, . . . , xd) ≈
r1∑

i1=1

. . .

rd−1∑
id−1=1

u1,i1(x1)ui1,i2(x2) . . . uid−1,1(xd)

...
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How to beat the curse of dimensionality ?

Low-dimensional models for high-dimensional approximation

Structures possibly discovered with suitable transformations, which may also be
considered as additional parameters:

u(x1, . . . , xd) ≈ g(y1, . . . , ym), (y1, . . . , ym) = h(x1, . . . , xd),

One-dimensional model after linear transformation (Generalized Linear Model)

u(x1, . . . , xd) ≈ g(α1x1 + . . .+ αdxd)

Additive model after linear transformations (Projection Pursuit)

u(x1, . . . , xd) ≈ g1(y1) + . . .+ gm(ym), yk = αk
1x1 + . . .+ αk

dxd

Neural networks (single hidden layer) as a particular case where functions gk are
equal and fixed.

...
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