Low-rank and sparse methods for high-dimensional approximation and model order reduction

Lecture 1

High-dimensional approximation

Outline

(1) High dimensional problems
(2) High-dimensional approximation and the curse of dimensionality
(3) How to beat the curse of dimensionality?

Outline

(1) High dimensional problems
(2) High-dimensional approximation and the curse of dimensionality
(3) How to beat the curse of dimensionality?

High-dimensional problems in physics

- Navier-Stokes equation in a 3-dimensional domain Ω

$$
\begin{gathered}
u\left(x_{1}, x_{2}, x_{3}, t\right) \\
\frac{\partial u}{\partial t}+u \cdot \nabla u=-\nabla p+\nu \Delta u
\end{gathered}
$$

- Multiscale problems

$$
x \equiv(x, y), \quad u(x, t) \equiv u(x, y, t), \quad x \in \Omega, y \in Y
$$

High-dimensional problems in physics

- Schrodinger equation

$$
\begin{gathered}
\Psi\left(x_{1}, \ldots, x_{d}, t\right) \\
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar}{2 \mu} \Delta \Psi+V \Psi
\end{gathered}
$$

- Boltzmann equation

$$
\begin{gathered}
p\left(x_{1}, \ldots, x_{d}, t\right) \\
\frac{\partial p}{\partial t}+\sum_{i=1}^{d} v_{i} \frac{\partial p}{\partial x_{i}}=H(p, p)
\end{gathered}
$$

- Fokker-Planck equation

$$
\begin{gathered}
p\left(x_{1}, \ldots, x_{d}, t\right) \\
\frac{\partial p}{\partial t}+\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}}\left(a_{i} p\right)-\frac{1}{2} \sum_{i, j=1}^{d} \frac{\partial^{2}}{\partial x_{i} x_{j}}\left(b_{i j} p\right)=0
\end{gathered}
$$

- Master equation

$$
\begin{gathered}
P\left(x_{1}, \ldots, x_{d}, t\right), \quad\left(x_{1}, \ldots, x_{d}\right) \in \mathcal{X}=\{1, \ldots, N\}^{d} \\
\frac{\partial P}{\partial t}(x, t)=\sum_{y \in \mathcal{X}} A(x, y) P(y, t)
\end{gathered}
$$

High-dimensional problems in stochastic analysis

Stochastic differential equations (SDEs)

$$
d X_{t}=a\left(X_{t}, t\right) d t+\sigma\left(X_{t}, t\right) d W_{t}, \quad X_{t} \in \mathbb{R}^{d}
$$

- Fokker-Planck equation for probability density function $p\left(x_{1}, \ldots, x_{d}, t\right)$ of X_{t}

$$
\frac{\partial p}{\partial t}=\mathcal{L} p=-\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}}\left(a_{i} p\right)+\frac{1}{2} \sum_{i, j=1}^{d} \frac{\partial^{2}}{\partial x_{i} x_{j}}\left(\left(\sigma \sigma^{T}\right)_{i j} p\right)
$$

- Feynman-Kac formula for

$$
u(x, t)=\mathbb{E}^{X_{t}=x}\left(\int_{t}^{T} e^{\int_{t}^{s} r\left(X_{r}, r\right) d r} f\left(X_{s}, s\right) d s\right)
$$

yields a high-dimensional PDE

$$
\partial_{t} u+\mathcal{L}^{*} u+r u+f=0 \quad \text { in } \mathbb{R}^{d} \times(0, T), \quad u(x, T)=0
$$

- Functional approach to SDEs using a parametrization of the noise

$$
\begin{gathered}
W_{t}=\sum_{i=1}^{\infty} \xi_{i} \varphi_{i}(t), \quad \xi_{i} \sim N(0, I), \\
X_{t}(\omega) \equiv u\left(t, \xi_{1}(\omega), \xi_{2}(\omega), \ldots\right)
\end{gathered}
$$

High-dimensional problems in uncertainty quantification

Parameter-dependent models

$$
\mathcal{M}(u(X) ; X)=0
$$

where $X=\left(X_{1}, \ldots, X_{d}\right)$ are random variables.

- Forward problem: evaluation of statistics, probability of events, sensitivity indices...

$$
\mathbb{E}(f(u(X)))=\int_{\mathbb{R}^{d}} f\left(u\left(x_{1}, \ldots, x_{d}\right)\right) p\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d}
$$

- Inverse problem: from (partial) observations of u, estimate the density of X

$$
p\left(x_{1}, \ldots, x_{d}\right)
$$

- Meta-models: approximation of the high-dimensional function

$$
u\left(x_{1}, \ldots, x_{d}\right)
$$

Outline

(1) High dimensional problems
(2) High-dimensional approximation and the curse of dimensionality
(3) How to beat the curse of dimensionality?

High-dimensional approximation

The goal of approximation is to replace a function

$$
u\left(x_{1}, \ldots, x_{d}\right)
$$

by a simpler function (easy to evaluate) depending on a few parameters.

For a certain subset of functions X_{n} described by n parameters (or $O(n)$ parameters), the error of best approximation of u by elements of X_{n} is defined by

$$
e_{n}(u)=\inf _{v \in X_{n}} d(u, v)
$$

where d is a distance measuring the quality of an approximation.
A sequence of subsets $\left(X_{n}\right)_{n \geq 1}$ is called an approximation tool. We distinguish linear approximation, where X_{n} are linear spaces, from nonlinear approximation, where X_{n} are nonlinear spaces.

High-dimensional approximation

Fundamental problems are

- to determine if and how fast $e_{n}(u)$ tends to 0 for a certain class of functions and a certain approximation tool,
- to provide algorithms which produce approximations $u_{n} \in X_{n}$ such that

$$
\left\|u-u_{n}\right\| \leq C e_{n}(u)
$$

with C independent of n or $C(n) e_{n}(u) \rightarrow 0$ as $n \rightarrow \infty$

The curse of dimensionality

Let consider u in $X=L^{p}(\mathcal{X})$ with $\mathcal{X}=(0,1)^{d}$ and the natural distance $d(u, v)=\|u-v\|_{L p}$ on X. Let X_{n} be the space of polynomials of partial degree m, with $n=(m+1)^{d}$ parameters.

If u is in the Sobolev space $W^{k, p}(\mathcal{X})$ for a certain $k \leq m+1$,

$$
e_{n}(u) \leq M n^{-k / d}
$$

We observe

- the curse of dimensionality : deterioration of the rate of approximation when d increases. Exponential growth with d of the complexity for reaching a given accuracy.
- the blessing of smoothness : improvement of the rate of approximation when k increases.

We may ask if the curse of dimensionality is due to the particular choice of approximation tool (polynomials) for approximating functions in $W^{k, p}(\mathcal{X})$? We may also ask if the curse of dimensionality is still present if $k=\infty$ (smooth functions) ?

The curse of dimensionality

For a set of functions K in a normed vector space X, the Kolmogorov n-width of K is

$$
d_{n}(K)=\inf _{\operatorname{dim}\left(X_{n}\right)=n} \sup _{u \in K} \inf _{v \in X_{n}} d(u, v)
$$

where the infimum is taken over all linear subspaces of dimension $n . d_{n}(K)$ measures how well the set of functions K can be approximated by a n-dimensional space. It measures the ideal performance that we can expect from linear approximation methods.

Let $X=L^{p}(\mathcal{X})$ with $\mathcal{X}=(0,1)^{d}$.

- For K the unit ball of $W^{k, p}(\mathcal{X})$, we have

$$
d_{n}(K) \sim n^{-k / d}
$$

- For $K=\left\{v \in C^{\infty}(\mathcal{X}): \sup _{\alpha}\left\|D^{\alpha} v\right\|_{L \infty}<\infty\right\}$, we have

$$
\min \left\{n: d_{n}(K) \leq 1 / 2\right\} \geq c 2^{d / 2}
$$

Extra smoothness does not help!

- Similar results are obtained for non-linear widths measuring the ideal performance of nonlinear approximation methods. Nonlinear methods can not help!

Outline

(1) High dimensional problems
(2) High-dimensional approximation and the curse of dimensionality
(3) How to beat the curse of dimensionality?

How to beat the curse of dimensionality ?

The key is to consider classes of functions with specific low-dimensional structures and to propose approximation formats (models) which exploit these structures (application-dependent).

Approximations are searched in subsets X_{n} with a number of parameters

$$
n=O\left(d^{p}\right)
$$

but

- X_{n} is usually nonlinear, and
- X_{n} may be non smooth.

This turns approximation problems

$$
\min _{v \in X_{n}} d(u, v)
$$

into nonlinear and possibly non smooth optimization problems.

How to beat the curse of dimensionality ?

Low-dimensional models for high-dimensional approximation

- Low-order interactions, e.g.
- No interaction (additive model)

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx u_{0}+u_{1}\left(x_{1}\right)+\ldots+u_{d}\left(x_{d}\right)
$$

- First-order interactions

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx u_{0}+\sum_{i} u_{i}\left(x_{i}\right)+\sum_{i \neq j} u_{i, j}\left(x_{i}, x_{j}\right)
$$

- Small number of interactions
- For a given $\Lambda \subset 2^{\{1, \ldots, d\}}$ (set of interaction groups),

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{\alpha \in \Lambda} u_{\alpha}\left(x_{\alpha}\right)
$$

- Λ as a parameter

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{\alpha \in \Lambda} u_{\alpha}\left(x_{\alpha}\right) \quad \text { with } \quad \# \Lambda=n
$$

Low-dimensional models for high-dimensional approximation

- Sparsity relatively to a basis or frame $\left\{\psi_{\alpha}\right\}_{\alpha \in \mathbb{N}}$

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{\alpha \in \Lambda} a_{\alpha} \psi_{\alpha}\left(x_{1}, \ldots, x_{d}\right), \quad \# \Lambda=n
$$

- Sparsity relatively to a dictionary \mathcal{D}

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{i=1}^{n} a_{i} \psi_{i}\left(x_{1}, \ldots, x_{d}\right), \quad \psi_{i} \in \mathcal{D}
$$

Low-dimensional models for high-dimensional approximation

- Low rank, e.g.

$$
\begin{gathered}
u\left(x_{1}, \ldots, x_{d}\right) \approx u_{1}\left(x_{1}\right) \ldots u_{d}\left(x_{d}\right) \\
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{i=1}^{r} u_{1, i}\left(x_{1}\right) \ldots u_{d, i}\left(x_{d}\right) \\
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{i_{1}=1}^{r_{1}} \ldots \sum_{i_{d-1}=1}^{r_{d-1}} u_{1, i_{1}}\left(x_{1}\right) u_{i_{1}, i_{2}}\left(x_{2}\right) \ldots u_{i_{d-1}, 1}\left(x_{d}\right)
\end{gathered}
$$

Low-dimensional models for high-dimensional approximation

Structures possibly discovered with suitable transformations, which may also be considered as additional parameters:

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx g\left(y_{1}, \ldots, y_{m}\right), \quad\left(y_{1}, \ldots, y_{m}\right)=h\left(x_{1}, \ldots, x_{d}\right)
$$

- One-dimensional model after linear transformation (Generalized Linear Model)

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx g\left(\alpha_{1} x_{1}+\ldots+\alpha_{d} x_{d}\right)
$$

- Additive model after linear transformations (Projection Pursuit)

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx g_{1}\left(y_{1}\right)+\ldots+g_{m}\left(y_{m}\right), \quad y_{k}=\alpha_{1}^{k} x_{1}+\ldots+\alpha_{d}^{k} x_{d}
$$

Neural networks (single hidden layer) as a particular case where functions g_{k} are equal and fixed.

