Low-rank and sparse methods for
high-dimensional approximation and model order
reduction

Lecture 10
Quantized tensor formats
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Quantization of vectors and functions

From vectors to tensors

Let consider a vector B
v eR?.

By introducing the binary representation (i, ..., iy) € {0,1}9 of an integer i € {0,...

the vector v can be identified with an order-d tensor
2 2 2®d
VER*®...QR“:=R ,
S ——
d times
such that

d
v(i)=v(ir,...,iq) for i=> 2""ti,

v=1
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Q ization of and fi

From vectors to tensors

It there exists a low-rank representation of the tensor v with representation ranks bounded by R,

then the vector v of dimension N = 29 has a storage complexity

Ny = storage(v) < dR* = log,(N)R*.

A representation of v in tensor train format is called a Quantized Tensor Train (QTT)
representation.
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Quantization of vectors and functions

Quantized representation of functions

Let f(x) be a function defined on the interval (0,1) and let v be the vector of evaluations of
f(x) on a uniform grid {x; = ih}lN:Bl with N = 29 points,

v(i) = f(x;), veR¥.

————————eo —o ——o d=2
—o—9o—90o—90o—0o—0o 9o d=3
o000 000000000000 d=14

d=5

The vector v € R2* can be identified with an order-d tensor v € (R2)®d
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Quantization of vectors and functions

Quantized representation of functions

Example 1

The function f(x) = exp(ax) is such that

d d
v(i) = exp(ax;) = exp(ahi) = exp(ahz vl = H exp(ah2V~1i,).

v=1 v=1

Therefore, the associated tensor v has a rank one, with

: . . . , 1
v(’17 ooy Id) = v(l)(ll) to v(d)(ld)7 V( = (exp(ahzl/—l)) o

The storage complexity of v is Ny = 2d = 2log,(N).
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Quantization of vectors and functions

Quantized representation of functions

Example 2
The function f(x) = sin(ax + b) on (0, 1) is such that

d
v(i) = sin(¢ + wx;) = sin(¢ + Z 2"_1wi1,).

v=1

The associated tensor v admits a representation in tensor-train format with TT-rank (2,...,2)
and storage complexity Ny = 8d = 8log,(N).

The discretization of the function f with w = 27 % 21%0 (which means 21°° periods on (0, 1))
with 16 points per period requires N = 2194 points and a storage complexity of Ny = 832 in
QTT format !!!
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Quantization of vectors and functions

Quantized representation of multivariate functions

Let f(x1,...,xn) be a n-dimensional function defined on (0,1)"” and let v be the order-n tensor
of its evaluations on a uniform tensorized grid

xi = (ith,...,inh), i=(i1,...,in)€{0,...,29 —1}"

such that
F(x) = V(its- ., ).

Then, v can be identified with a tensor v € R?’Q"d of order nd such that

V(i 1,y di,ds - esindy e sing) = V(i1 ..., in),
dimension 1 dimension n
where (ik1,. .., ik,q) is the binary representation of the integer i.

. . - . nd
Up to a permutation, v can also be identified with the tensor v € R2“"™ such that

V(1,15 sdndy ey iidy e sing) = v(iL, ..., in),

level 1 level d

These different choices yield different representation ranks for the tensor v.
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Approxi ion of fi i in ized tensor format

Approximation of functions in quantized tensor format

Let fy(x) = Z,’.V:T)l v(i)pi(x) be an interpolation of f(x) on the uniform grid with 29 points and
assume that
I —full < N7

If we assume that the tensor v has a representation in a certain low-rank format with a storage
complexity growing not too fast with d, say

Ny < dk.

Then Lk
If — full S 279N = exp(—BNL),

which provides an exponential convergence of fj with respect to the storage complexity Ng.
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Approxi ion of fi i in ized tensor format

Approximation of functions in quantized tensor format

Example 3

Consider the partial differential equation

—Au—ku=1 onQ=(0,1)2
u=0 on 909,

with k = 2.103, and consider a piecewise linear finite element approximation on a uniform grid

with N = 29 x 29 nodes.
N

For d =9, N = 260100 and the discrete solution is identified with a tensor u of order 2d = 18,
which admits an approximate representation in tensor-train format with relative precision 103
(resp. 104, 1075) and with storage complexity Ny = 3532 (resp. Ny = 4656, Ny = 6170).
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Quantized tensor structure of PDEs

Quantized tensor structure of PDEs

A partial differential equation
Au=f,

defined on a product domain (0,1)" and discretized with a finite difference scheme on a uniform
tensorized grid with 29 nodes per dimension can be interpreted as a tensor structured equation

Au = b,

where u € (R2)®9" represents the values of the approximation on the grid, where b € (R2)®9" is
the tensor of evaluations of f on the grid, and

Ac (R2X2)®nd

is the discrete differential operator.

For a partial differential operator A = Za aq D% with constant coefficients,
A= Z a, DY,
«

where D¢ is the discrete version of the operator D¢.
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Quantized tensor structure of PDEs

Quantized tensor structure of PDEs

Example 4 (QTT representation of the finite difference Laplace operator with Dirichlet boundary

conditions)

The discrete Laplace operator on a uniform grid of (0,1)" with 2¢ nodes per dimension is first
. i . d s od . . .
identified with an order n tensor A € (R?"X2")®" with a representation in TT format with rank

(2,...,2), ) — 1 0 |
A (A1 I)N(Al I)M.,.M(Al I)M(Al),

where the matrix A; = h—2diag(—1,2,-1) € R2/%2% is the discrete Laplace operator in one
dimension (with homogeneous Dirichlet boundary conditions).

The matrix A; can then be identified with a tensor A; € (szz)‘g’d with a representation in
tensor train format with ranks (3,...,3)

1 J7 J [ J 210—J—J7
Ar=(0 JT JHx (0 J 0| x..x [0 J 0 | x —J ,
0o 0 JT 0o o0 JT —)r
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