Low-rank and sparse methods for high-dimensional approximation and model order reduction

Lecture 10 Quantized tensor formats

Quantization of vectors and functions

From vectors to tensors

Let consider a vector

$$v \in \mathbb{R}^{2^d}$$
.

By introducing the binary representation $(i_1, \ldots, i_d) \in \{0, 1\}^d$ of an integer $i \in \{0, \ldots, 2^d - 1\}$, the vector v can be identified with an order-d tensor

$$\mathbf{v} \in \underbrace{\mathbb{R}^2 \otimes \ldots \otimes \mathbb{R}^2}_{d \text{ times}} := \mathbb{R}^{2 \otimes d},$$

such that

$$\mathbf{v}(i) = \mathbf{v}(i_1,\ldots,i_d) \quad ext{for} \quad i = \sum_{
u=1}^d 2^{
u-1} i_
u.$$

From vectors to tensors

It there exists a low-rank representation of the tensor **v** with representation ranks bounded by R, then the vector v of dimension $N = 2^d$ has a storage complexity

$$N_d = ext{storage}(\mathbf{v}) \lesssim dR^k = \log_2(N)R^k.$$

A representation of v in tensor train format is called a Quantized Tensor Train (QTT) representation.

Quantization of vectors and functions

Quantized representation of functions

Let f(x) be a function defined on the interval (0, 1) and let v be the vector of evaluations of f(x) on a uniform grid $\{x_i = ih\}_{i=0}^{N-1}$ with $N = 2^d$ points,

$$v(i) = f(x_i), \quad v \in \mathbb{R}^{2^d}$$

The vector $v \in \mathbb{R}^{2^d}$ can be identified with an order-*d* tensor $\mathbf{v} \in (\mathbb{R}^2)^{\otimes d}$

Anthony Nouy

Quantized representation of functions

Example 1

The function $f(x) = \exp(ax)$ is such that

$$v(i) = \exp(ax_i) = \exp(ahi) = \exp(ah\sum_{\nu=1}^d 2^{\nu-1}i_{\nu}) = \prod_{\nu=1}^d \exp(ah2^{\nu-1}i_{\nu}).$$

Therefore, the associated tensor \mathbf{v} has a rank one, with

$$\mathbf{v}(i_1,\ldots,i_d)=\mathbf{v}^{(1)}(i_1)\ldots\mathbf{v}^{(d)}(i_d),\quad \mathbf{v}^{(\nu)}=\begin{pmatrix}1\\\exp(ah2^{\nu-1})\end{pmatrix}.$$

The storage complexity of **v** is $N_d = 2d = 2\log_2(N)$.

Quantized representation of functions

Example 2

The function $f(x) = \sin(ax + b)$ on (0, 1) is such that

$$v(i) = \sin(\phi + \omega x_i) = \sin(\phi + \sum_{\nu=1}^d 2^{\nu-1} \omega i_\nu).$$

The associated tensor **v** admits a representation in tensor-train format with TT-rank (2, ..., 2) and storage complexity $N_d = 8d = 8 \log_2(N)$.

The discretization of the function f with $\omega = 2\pi * 2^{100}$ (which means 2^{100} periods on (0, 1)) with 16 points per period requires $N = 2^{104}$ points and a storage complexity of $N_d = 832$ in QTT format !!!

Quantized representation of multivariate functions

Let $f(x_1, ..., x_n)$ be a *n*-dimensional function defined on $(0, 1)^n$ and let v be the order-n tensor of its evaluations on a uniform tensorized grid

$$x_i = (i_1 h, \dots, i_n h), \quad i = (i_1, \dots, i_n) \in \{0, \dots, 2^d - 1\}^n$$

such that

$$f(x_i) = v(i_1,\ldots,i_n).$$

Then, v can be identified with a tensor $\mathbf{v} \in \mathbb{R}^{2^{\otimes nd}}$ of order *nd* such that

$$\mathbf{v}(\underbrace{i_{1,1},\ldots,i_{1,d}}_{\text{dimension 1}},\ldots,\underbrace{i_{n,1},\ldots,i_{n,d}}_{\text{dimension n}})=\mathbf{v}(i_1,\ldots,i_n),$$

where $(i_{k,1}, \ldots, i_{k,d})$ is the binary representation of the integer i_k .

Up to a permutation, v can also be identified with the tensor $\mathbf{v} \in \mathbb{R}^{2^{\otimes nd}}$ such that

$$\mathbf{v}(\underbrace{i_{1,1},\ldots,i_{n,1}}_{\text{level }1},\ldots,\underbrace{i_{1,d},\ldots,i_{n,d}}_{\text{level }d})=\mathbf{v}(i_1,\ldots,i_n),$$

These different choices yield different representation ranks for the tensor \mathbf{v} .

Anthony Nouy

Approximation of functions in quantized tensor format

Let $f_N(x) = \sum_{i=0}^{N-1} v(i)\varphi_i(x)$ be an interpolation of f(x) on the uniform grid with 2^d points and assume that

$$\|f-f_N\| \lesssim N^{-\alpha}.$$

If we assume that the tensor \mathbf{v} has a representation in a certain low-rank format with a storage complexity growing not too fast with d, say

$$N_d \lesssim d^k$$
.

Then

$$\|f - f_N\| \lesssim 2^{-\alpha N_d^{1/k}} = \exp(-\beta N_d^{1/k}),$$

which provides an exponential convergence of f_N with respect to the storage complexity N_d .

Approximation of functions in quantized tensor format

Approximation of functions in quantized tensor format

Example 3

Consider the partial differential equation

$$-\Delta u - ku = 1 \quad \text{on } \Omega = (0, 1)^2,$$
$$u = 0 \quad \text{on } \partial \Omega,$$

with $k = 2.10^3$, and consider a piecewise linear finite element approximation on a uniform grid with $N = 2^d \times 2^d$ nodes.

For d = 9, N = 260100 and the discrete solution is identified with a tensor **u** of order 2d = 18, which admits an approximate representation in tensor-train format with relative precision 10^{-3} (resp. 10^{-4} , 10^{-5}) and with storage complexity $N_d = 3532$ (resp. $N_d = 4656$, $N_d = 6170$).

Quantized tensor structure of PDEs

A partial differential equation

$$Au = f$$
,

defined on a product domain $(0, 1)^n$ and discretized with a finite difference scheme on a uniform tensorized grid with 2^d nodes per dimension can be interpreted as a tensor structured equation

Au = b,

where $\mathbf{u} \in (\mathbb{R}^2)^{\otimes dn}$ represents the values of the approximation on the grid, where $\mathbf{b} \in (\mathbb{R}^2)^{\otimes dn}$ is the tensor of evaluations of f on the grid, and

$$\textbf{A} \in (\mathbb{R}^{2 \times 2})^{\otimes \textit{nd}}$$

is the discrete differential operator.

For a partial differential operator $\mathcal{A} = \sum_{\alpha} a_{\alpha} D^{\alpha}$ with constant coefficients,

$$\mathbf{A} = \sum_{lpha} \mathbf{a}_{lpha} \mathbf{D}^{lpha},$$

where \mathbf{D}^{α} is the discrete version of the operator D^{α} .

Anthony Nouy

Quantized tensor structure of PDEs

Example 4 (QTT representation of the finite difference Laplace operator with Dirichlet boundary conditions)

The discrete Laplace operator on a uniform grid of $(0,1)^n$ with 2^d nodes per dimension is first identified with an order *n* tensor $\mathbf{\Delta} \in (\mathbb{R}^{2^d \times 2^d})^{\otimes n}$ with a representation in TT format with rank $(2, \ldots, 2)$,

$$\boldsymbol{\Delta} = \begin{pmatrix} \boldsymbol{\Delta}_1 & \boldsymbol{\mathsf{I}} \end{pmatrix} \bowtie \begin{pmatrix} \boldsymbol{\mathsf{I}} & \boldsymbol{\mathsf{0}} \\ \boldsymbol{\Delta}_1 & \boldsymbol{\mathsf{I}} \end{pmatrix} \bowtie \ldots \bowtie \begin{pmatrix} \boldsymbol{\mathsf{I}} & \boldsymbol{\mathsf{0}} \\ \boldsymbol{\Delta}_1 & \boldsymbol{\mathsf{I}} \end{pmatrix} \bowtie \begin{pmatrix} \boldsymbol{\mathsf{I}} \\ \boldsymbol{\Delta}_1 \end{pmatrix},$$

where the matrix $\mathbf{\Delta}_1 = h^{-2} \operatorname{diag}(-1, 2, -1) \in \mathbb{R}^{2^d \times 2^d}$ is the discrete Laplace operator in one dimension (with homogeneous Dirichlet boundary conditions).

The matrix Δ_1 can then be identified with a tensor $\Delta_1 \in (\mathbb{R}^{2 \times 2})^{\otimes d}$ with a representation in tensor train format with ranks $(3, \ldots, 3)$

$$\begin{split} \boldsymbol{\Delta}_{1} &= \begin{pmatrix} \mathbf{I} & \mathbf{J}^{T} & \mathbf{J} \end{pmatrix} \bowtie \begin{pmatrix} \mathbf{I} & \mathbf{J}^{T} & \mathbf{J} \\ \mathbf{0} & \mathbf{J} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{J}^{T} \end{pmatrix} \bowtie \ldots \bowtie \begin{pmatrix} \mathbf{I} & \mathbf{J}^{T} & \mathbf{J} \\ \mathbf{0} & \mathbf{J} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{J}^{T} \end{pmatrix} \bowtie \begin{pmatrix} 2\mathbf{I} - \mathbf{J} - \mathbf{J}^{T} \\ -\mathbf{J} \\ -\mathbf{J}^{T} \end{pmatrix}, \\ \mathbf{I} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{J} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}. \end{split}$$