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Quantization of vectors and functions

From vectors to tensors

Let consider a vector
v ∈ R2d .

By introducing the binary representation (i1, . . . , id ) ∈ {0, 1}d of an integer i ∈ {0, . . . , 2d − 1},
the vector v can be identified with an order-d tensor

v ∈ R2 ⊗ . . .⊗ R2︸ ︷︷ ︸
d times

:= R2⊗d
,

such that

v(i) = v(i1, . . . , id ) for i =
d∑
ν=1

2ν−1iν .

R8

←→
R2 ⊗ R4

←→
R2 ⊗ R2 ⊗ R2
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Quantization of vectors and functions

From vectors to tensors

It there exists a low-rank representation of the tensor v with representation ranks bounded by R,
then the vector v of dimension N = 2d has a storage complexity

Nd = storage(v) . dRk = log2(N)Rk .

A representation of v in tensor train format is called a Quantized Tensor Train (QTT)
representation.
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Quantization of vectors and functions

Quantized representation of functions

Let f (x) be a function defined on the interval (0, 1) and let v be the vector of evaluations of
f (x) on a uniform grid {xi = ih}N−1

i=0 with N = 2d points,

v(i) = f (xi ), v ∈ R2d .

d = 2

d = 3

d = 4

d = 5

The vector v ∈ R2d can be identified with an order-d tensor v ∈ (R2)⊗d
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Quantization of vectors and functions

Quantized representation of functions

Example 1

The function f (x) = exp(ax) is such that

v(i) = exp(axi ) = exp(ahi) = exp(ah
d∑
ν=1

2ν−1iν) =
d∏
ν=1

exp(ah2ν−1iν).

Therefore, the associated tensor v has a rank one, with

v(i1, . . . , id ) = v(1)(i1) . . . v(d)(id ), v(ν) =

(
1

exp(ah2ν−1)

)
.

The storage complexity of v is Nd = 2d = 2 log2(N).
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Quantization of vectors and functions

Quantized representation of functions

Example 2

The function f (x) = sin(ax + b) on (0, 1) is such that

v(i) = sin(φ+ ωxi ) = sin(φ+
d∑
ν=1

2ν−1ωiν).

The associated tensor v admits a representation in tensor-train format with TT-rank (2, . . . , 2)
and storage complexity Nd = 8d = 8 log2(N).

The discretization of the function f with ω = 2π ∗ 2100 (which means 2100 periods on (0, 1))
with 16 points per period requires N = 2104 points and a storage complexity of Nd = 832 in
QTT format !!!
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Quantization of vectors and functions

Quantized representation of multivariate functions

Let f (x1, . . . , xn) be a n-dimensional function defined on (0, 1)n and let v be the order-n tensor
of its evaluations on a uniform tensorized grid

xi = (i1h, . . . , inh), i = (i1, . . . , in) ∈ {0, . . . , 2d − 1}n

such that
f (xi ) = v(i1, . . . , in).

Then, v can be identified with a tensor v ∈ R2⊗nd
of order nd such that

v(i1,1, . . . , i1,d︸ ︷︷ ︸
dimension 1

, . . . , in,1, . . . , in,d︸ ︷︷ ︸
dimension n

) = v(i1, . . . , in),

where (ik,1, . . . , ik,d ) is the binary representation of the integer ik .

Up to a permutation, v can also be identified with the tensor v ∈ R2⊗nd
such that

v(i1,1, . . . , in,1︸ ︷︷ ︸
level 1

, . . . , i1,d , . . . , in,d︸ ︷︷ ︸
level d

) = v(i1, . . . , in),

These different choices yield different representation ranks for the tensor v.
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Approximation of functions in quantized tensor format

Approximation of functions in quantized tensor format

Let fN(x) =
∑N−1

i=0 v(i)ϕi (x) be an interpolation of f (x) on the uniform grid with 2d points and
assume that

‖f − fN‖ . N−α.

If we assume that the tensor v has a representation in a certain low-rank format with a storage
complexity growing not too fast with d , say

Nd . dk .

Then
‖f − fN‖ . 2−αN

1/k
d = exp(−βN1/k

d ),

which provides an exponential convergence of fN with respect to the storage complexity Nd .
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Approximation of functions in quantized tensor format

Approximation of functions in quantized tensor format

Example 3

Consider the partial differential equation

−∆u − ku = 1 on Ω = (0, 1)2,

u = 0 on ∂Ω,

with k = 2.103, and consider a piecewise linear finite element approximation on a uniform grid
with N = 2d × 2d nodes.

For d = 9, N = 260100 and the discrete solution is identified with a tensor u of order 2d = 18,
which admits an approximate representation in tensor-train format with relative precision 10−3

(resp. 10−4, 10−5) and with storage complexity Nd = 3532 (resp. Nd = 4656, Nd = 6170).
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Quantized tensor structure of PDEs

Quantized tensor structure of PDEs

A partial differential equation
Au = f ,

defined on a product domain (0, 1)n and discretized with a finite difference scheme on a uniform
tensorized grid with 2d nodes per dimension can be interpreted as a tensor structured equation

Au = b,

where u ∈ (R2)⊗dn represents the values of the approximation on the grid, where b ∈ (R2)⊗dn is
the tensor of evaluations of f on the grid, and

A ∈ (R2×2)⊗nd

is the discrete differential operator.

For a partial differential operator A =
∑
α aαDα with constant coefficients,

A =
∑
α

aαDα,

where Dα is the discrete version of the operator Dα.
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Quantized tensor structure of PDEs

Quantized tensor structure of PDEs

Example 4 (QTT representation of the finite difference Laplace operator with Dirichlet boundary
conditions)

The discrete Laplace operator on a uniform grid of (0, 1)n with 2d nodes per dimension is first
identified with an order n tensor ∆ ∈ (R2d×2d )⊗n with a representation in TT format with rank
(2, . . . , 2),

∆ =
(
∆1 I

)
on
(

I 0
∆1 I

)
on . . . on

(
I 0

∆1 I

)
on
(

I
∆1

)
,

where the matrix ∆1 = h−2 diag(−1, 2,−1) ∈ R2d×2d is the discrete Laplace operator in one
dimension (with homogeneous Dirichlet boundary conditions).

The matrix ∆1 can then be identified with a tensor ∆1 ∈ (R2×2)⊗d with a representation in
tensor train format with ranks (3, . . . , 3)

∆1 =
(
I JT J

)
on

 I JT J
0 J 0
0 0 JT

 on . . . on

 I JT J
0 J 0
0 0 JT

 on

2I− J− JT
−J
−JT

 ,

I =

(
1 0
0 1

)
, J =

(
0 1
0 0

)
.
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