Low-rank and sparse methods for high-dimensional approximation and model order reduction

Lecture 10
Quantized tensor formats

From vectors to tensors

Let consider a vector

$$
v \in \mathbb{R}^{2^{d}} .
$$

By introducing the binary representation $\left(i_{1}, \ldots, i_{d}\right) \in\{0,1\}^{d}$ of an integer $i \in\left\{0, \ldots, 2^{d}-1\right\}$, the vector v can be identified with an order- d tensor

$$
\mathbf{v} \in \underbrace{\mathbb{R}^{2} \otimes \ldots \otimes \mathbb{R}^{2}}_{d \text { times }}:=\mathbb{R}^{2 \otimes d},
$$

such that

$$
v(i)=\mathbf{v}\left(i_{1}, \ldots, i_{d}\right) \quad \text { for } \quad i=\sum_{\nu=1}^{d} 2^{\nu-1} i_{\nu}
$$

From vectors to tensors

It there exists a low-rank representation of the tensor \mathbf{v} with representation ranks bounded by R, then the vector v of dimension $N=2^{d}$ has a storage complexity

$$
N_{d}=\text { storage }(\mathbf{v}) \lesssim d R^{k}=\log _{2}(N) R^{k}
$$

A representation of \mathbf{v} in tensor train format is called a Quantized Tensor Train (QTT) representation.

Quantized representation of functions

Let $f(x)$ be a function defined on the interval $(0,1)$ and let v be the vector of evaluations of $f(x)$ on a uniform grid $\left\{x_{i}=i h\right\}_{i=0}^{N-1}$ with $N=2^{d}$ points,

$$
v(i)=f\left(x_{i}\right), \quad v \in \mathbb{R}^{2^{d}}
$$

The vector $v \in \mathbb{R}^{2^{d}}$ can be identified with an order-d tensor $\mathbf{v} \in\left(\mathbb{R}^{2}\right)^{\otimes d}$

Quantized representation of functions

Example 1

The function $f(x)=\exp (a x)$ is such that

$$
v(i)=\exp \left(a x_{i}\right)=\exp (a h i)=\exp \left(a h \sum_{\nu=1}^{d} 2^{\nu-1} i_{\nu}\right)=\prod_{\nu=1}^{d} \exp \left(a h 2^{\nu-1} i_{\nu}\right)
$$

Therefore, the associated tensor \mathbf{v} has a rank one, with

$$
\mathbf{v}\left(i_{1}, \ldots, i_{d}\right)=\mathbf{v}^{(1)}\left(i_{1}\right) \ldots \mathbf{v}^{(d)}\left(i_{d}\right), \quad \mathbf{v}^{(\nu)}=\binom{1}{\exp \left(a h 2^{\nu-1}\right)} .
$$

The storage complexity of \mathbf{v} is $N_{d}=2 d=2 \log _{2}(N)$.

Quantized representation of functions

Example 2

The function $f(x)=\sin (a x+b)$ on $(0,1)$ is such that

$$
v(i)=\sin \left(\phi+\omega x_{i}\right)=\sin \left(\phi+\sum_{\nu=1}^{d} 2^{\nu-1} \omega i_{\nu}\right)
$$

The associated tensor \mathbf{v} admits a representation in tensor-train format with TT-rank $(2, \ldots, 2)$ and storage complexity $N_{d}=8 d=8 \log _{2}(N)$.

The discretization of the function f with $\omega=2 \pi * 2^{100}$ (which means 2^{100} periods on $(0,1)$) with 16 points per period requires $N=2^{104}$ points and a storage complexity of $N_{d}=832$ in QTT format !!!

Quantized representation of multivariate functions

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a n-dimensional function defined on $(0,1)^{n}$ and let v be the order- n tensor of its evaluations on a uniform tensorized grid

$$
x_{i}=\left(i_{1} h, \ldots, i_{n} h\right), \quad i=\left(i_{1}, \ldots, i_{n}\right) \in\left\{0, \ldots, 2^{d}-1\right\}^{n}
$$

such that

$$
f\left(x_{i}\right)=v\left(i_{1}, \ldots, i_{n}\right) .
$$

Then, v can be identified with a tensor $v \in \mathbb{R}^{2^{\otimes n d}}$ of order nd such that

$$
\mathbf{v}(\underbrace{i_{1,1}, \ldots, i_{1, d}}_{\text {dimension } 1}, \ldots, \underbrace{i_{n, 1}, \ldots, i_{n, d}}_{\text {dimension } n})=v\left(i_{1}, \ldots, i_{n}\right)
$$

where $\left(i_{k, 1}, \ldots, i_{k, d}\right)$ is the binary representation of the integer i_{k}.
Up to a permutation, v can also be identified with the tensor $\mathbf{v} \in \mathbb{R}^{2^{\otimes n d}}$ such that

$$
\mathbf{v}(\underbrace{i_{1,1}, \ldots, i_{n, 1}}_{\text {level } 1}, \ldots, \underbrace{i_{1, d}, \ldots, i_{n, d}}_{\text {level } d})=v\left(i_{1}, \ldots, i_{n}\right)
$$

These different choices yield different representation ranks for the tensor \mathbf{v}.

Approximation of functions in quantized tensor format

Let $f_{N}(x)=\sum_{i=0}^{N-1} v(i) \varphi_{i}(x)$ be an interpolation of $f(x)$ on the uniform grid with 2^{d} points and assume that

$$
\left\|f-f_{N}\right\| \lesssim N^{-\alpha} .
$$

If we assume that the tensor \mathbf{v} has a representation in a certain low-rank format with a storage complexity growing not too fast with d, say

$$
N_{d} \lesssim d^{k}
$$

Then

$$
\left\|f-f_{N}\right\| \lesssim 2^{-\alpha N_{d}^{1 / k}}=\exp \left(-\beta N_{d}^{1 / k}\right)
$$

which provides an exponential convergence of f_{N} with respect to the storage complexity N_{d}.

Approximation of functions in quantized tensor format

Example 3

Consider the partial differential equation

$$
\begin{aligned}
-\Delta u-k u=1 & \text { on } \Omega=(0,1)^{2}, \\
u=0 & \text { on } \partial \Omega,
\end{aligned}
$$

with $k=2.10^{3}$, and consider a piecewise linear finite element approximation on a uniform grid with $N=2^{d} \times 2^{d}$ nodes.

For $d=9, N=260100$ and the discrete solution is identified with a tensor \mathbf{u} of order $2 d=18$, which admits an approximate representation in tensor-train format with relative precision 10^{-3} (resp. $10^{-4}, 10^{-5}$) and with storage complexity $N_{d}=3532$ (resp. $N_{d}=4656, N_{d}=6170$).

Quantized tensor structure of PDEs

A partial differential equation

$$
\mathcal{A} u=f,
$$

defined on a product domain $(0,1)^{n}$ and discretized with a finite difference scheme on a uniform tensorized grid with 2^{d} nodes per dimension can be interpreted as a tensor structured equation

$$
\mathbf{A} \mathbf{u}=\mathbf{b},
$$

where $\mathbf{u} \in\left(\mathbb{R}^{2}\right)^{\otimes d n}$ represents the values of the approximation on the grid, where $\mathbf{b} \in\left(\mathbb{R}^{2}\right)^{\otimes d n}$ is the tensor of evaluations of f on the grid, and

$$
\mathbf{A} \in\left(\mathbb{R}^{2 \times 2}\right)^{\otimes n d}
$$

is the discrete differential operator.
For a partial differential operator $\mathcal{A}=\sum_{\alpha} a_{\alpha} D^{\alpha}$ with constant coefficients,

$$
\mathbf{A}=\sum_{\alpha} a_{\alpha} \mathbf{D}^{\alpha}
$$

where \mathbf{D}^{α} is the discrete version of the operator D^{α}.

Quantized tensor structure of PDEs

Example 4 (QTT representation of the finite difference Laplace operator with Dirichlet boundary conditions)

The discrete Laplace operator on a uniform grid of $(0,1)^{n}$ with 2^{d} nodes per dimension is first identified with an order n tensor $\boldsymbol{\Delta} \in\left(\mathbb{R}^{2^{d} \times 2^{d}}\right)^{\otimes n}$ with a representation in TT format with rank $(2, \ldots, 2)$,

$$
\Delta=\left(\begin{array}{ll}
\Delta_{1} & \mathbf{I}
\end{array}\right) \bowtie\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\boldsymbol{\Delta}_{1} & \mathbf{I}
\end{array}\right) \bowtie \ldots \bowtie\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\boldsymbol{\Delta}_{1} & \mathbf{I}
\end{array}\right) \bowtie\binom{\mathbf{I}}{\boldsymbol{\Delta}_{1}},
$$

where the matrix $\Delta_{1}=h^{-2} \operatorname{diag}(-1,2,-1) \in \mathbb{R}^{2^{d} \times 2^{d}}$ is the discrete Laplace operator in one dimension (with homogeneous Dirichlet boundary conditions).

The matrix Δ_{1} can then be identified with a tensor $\Delta_{1} \in\left(\mathbb{R}^{2 \times 2}\right)^{\otimes d}$ with a representation in tensor train format with ranks $(3, \ldots, 3)$

$$
\begin{gathered}
\boldsymbol{\Delta}_{1}=\left(\begin{array}{lll}
\mathbf{l} & \mathbf{J}^{T} & \mathbf{J}
\end{array}\right) \bowtie\left(\begin{array}{ccc}
\mathbf{l} & \mathbf{J}^{T} & \mathbf{J} \\
\mathbf{0} & \mathbf{J} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{J}^{T}
\end{array}\right) \bowtie \ldots \bowtie\left(\begin{array}{ccc}
\mathbf{1} & \mathbf{J}^{T} & \mathbf{J} \\
\mathbf{0} & \mathbf{J} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{J}^{T}
\end{array}\right) \bowtie\left(\begin{array}{c}
2 \mathbf{I}-\mathbf{J}-\mathbf{J}^{T} \\
-\mathbf{J} \\
-\mathbf{J}^{T}
\end{array}\right), \\
\mathbf{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{J}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

