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Sparse approximation

We want to approximate a function u in a certain function (or vector) space X equipped with a
norm ‖ · ‖.

Consider a set D of functions in X (called a dictionary) such that the linear span of D is dense in
X .

As a basic example, consider the case where D = {ψk}k≥0 is a basis of X .

Sparse approximation methods rely on the fact that a good approximation (or even an exact
decomposition) of the solution can be obtained by only considering a small subset of functions in
the dictionary:

u ≈ un =
∑
ψ∈Dn

cψψ; Dn ⊂ D, #Dn = n.

un is called a n-term approximation of u. We say that un is n-sparse relatively to D.
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Dictionaries for high-dimensional approximation

For high-dimensional approximation problems, dictionaries must have low-dimensional
parametrizations.

Typical choices are:

Tensorized basis (e.g. polynomial basis, wavelets basis, ...):

D = {ψα(x) = ψα1 (x1) . . . ψαd (xd ) : α ∈ F}

Separated (rank-one) functions:

D = {u1(x1) . . . ud (xd ) : u1 ∈ H1, . . . , ud ∈ Hd}

Perceptrons (for neural networks):

D = {σ(aT x + b) : a ∈ Rd , b ∈ R}

Functions of linear combinations of variables (for projection pursuit):

D = {g(aT x) : a ∈ Rd , g ∈ H}

...
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A motivating example
We consider the Borehole function which models the water flow through a borehole:

u(X ) =
2πTu(Hu − Hl )

ln(r/rw )
(
1 + 2LTu

ln(r/rw )r2wKw
+ Tu

Tl

) , X = (rw , r , ,Tu ,Hu ,Tl ,Hl , L,Kw ) ∼ PX

Consider D = {ψk} as the set of multivariate polynomials (orthogonal w.r.t PX ).

The following plot shows the coefficients ck of u associated with polynomial functions ψk of
total degree less than 4 (colors indicate the total degree of ψk ).
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What can we expect from sparse approximation methods ?

Convergence of best n-term approximation

For a given dictionary D, the ideal performance of sparse approximation methods is quantified by
the best n-term approximation error

σn(u) = min
v∈Σn

‖u − v‖

where Σn =
{∑

ψ∈Dn
cψψ : #Dn = n

}
is the set of n-sparse elements.

Let us assume that u admits the decomposition

u =
∞∑
k=1

ckψk , ψk ∈ D.

Then
σn(u) = min

v∈Σn

‖u − v‖ ≤ min
#Λ=n

‖u − uΛ‖, with uΛ =
∑
k∈Λ

ckψk .

Assuming that the elements of D are normalized, we obtain

σn(u) ≤ min
#Λ=n

‖
∑
k /∈Λ

ckψk‖ ≤ min
#Λ=n

∑
k /∈Λ

|ck | =
∑
k /∈Λn

|ck |,

where Λn corresponds to the n largest coefficients |ck |.
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What can we expect from sparse approximation methods ?

Convergence of best n-term approximation

Equivalently, we obtain

σn(u) ≤
∞∑

k=n+1

c∗k

where c∗ = (c∗k )k≥1 is a decreasing rearrangement of (|ck |)k≥1.

Therefore, if u admits a decomposition with rapidly decaying coefficients, we can expect a fast
convergence of best n-term approximation error.

In particular:

If c∗n decays exponentially, σn(u) decays exponentially with the same rate.

If c∗ ∈ `p with 0 < p < 1, then σn(u) ≤ ‖c∗‖`pn−r with r = 1/p − 1.

Of course, for a given function, the performance of sparse approximation methods strongly
depends on the choice of the dictionary...
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What can we expect from sparse approximation methods ?

Quasi best n-term approximation

In practice, n-term approximations un are defined by

J (un) = min
v∈Σn

J (v) (1)

where J is a computable functional.

If J (v) measures a distance from v to u such that

α‖u − v‖ ≤ J (v) ≤ β‖u − v‖, (2)

then the solution un of (1) is such that

‖u − un‖ ≤
1
α
J (un) =

1
α

min
v∈Σn

J (v) ≤
β

α
min
v∈Σn

‖u − v‖,

which means that un is a quasi-optimal n-term approximation.

Property (2) is satisfied when using variational methods for solving operator equations Au = b,
where

J (v) = ‖b − Av‖

with A an operator such that
α‖v‖ ≤ ‖Av‖ ≤ β‖v‖.
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What can we expect from sparse approximation methods ?

Approximation using partial information

Sometimes, we only have partial information on the function u, such as the evaluations
yk = u(xk ) of the function u at some points xk , k = 1, . . . ,m.

More generally, we assume that m measurements of u are given by

y = Au

where A : X → Rm is a linear operator.

The functional

J (v) = ‖y − Av‖2 =
1
m

m∑
k=1

(yk − (Av)k )2

then provides a distance between the measurements y and the prediction Av . When too few
observations are available, the optimization problem

min
v∈X
J (v) (3)

is ill-posed.

Example 1 (Least-Squares)

In the case where (Av) = v(xk ) is the evaluation of v at point xk , then (3) is a standard
least-squares problem.
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What can we expect from sparse approximation methods ?

Approximation using partial information

Imposing the approximation to be n-sparse by solving

min
v∈Σn

‖y − Av‖2 (4)

is a possible way to make the problem well-posed.

Assuming that u is r -sparse and that A satisfies

(1− δ)‖v‖2 ≤ ‖Av‖2 ≤ (1 + δ)‖v‖2 for all v ∈ Σs , (5)

which is a restricted isometry property, then for all n ≤ s − r , problem (4) admits a solution un
such that

‖u − un‖ ≤ C min
v∈Σn

‖u − v‖,

with C2 = 1+δ
1−δ .

Property (5) depends on the dictionary and of the measurement operator A.
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What can we expect from sparse approximation methods ?

Approximation using partial information

Example 2 (Least-Squares with orthonormal basis)

Consider the case where D = {ψi}Ni=1 is an orthonormal basis in L2
PX

(X ). A function

v =
∑N

i=1 aiψi is such that ‖v‖ = ‖a‖2, with a ∈ RN .

Assume that the operator A provides evaluations at points {xk}mk=1, i.e. Av = (v(xk ))mk=1. Then

‖Av‖2 − ‖v‖2 =
1
m
‖Φa‖22 − ‖a‖22 = ((G− I)a, a),

where Φ = (ψi (x
k )) ∈ Rm×N is the matrix of evaluations of functions ψi at points xk , and

G =
1
m

ΦTΦ = (
1
m

m∑
k=1

ψi (x
k )ψj (x

k ))ij .

The problem is then to analyze how far the restriction of the matrix G to the subset of sparse
vectors is from the identity matrix I.

When xk are m samples of X ∼ PX , G is an unbiased and convergent estimate of I. Under some
assumptions and results from random matrix theory, restricted isometry property for s-sparse
elements can be proved to be satisfied with high probability for a number of measurements m in
O(s).
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What can we expect from sparse approximation methods ?

Statistical point of view

We consider a pair of random variables (X ,Y ) with values in (X ,R) such that

Y = u(X ) + ε

where ε represents a noise.

The aim is to estimate (or learn) u from a sample S = {(x1, y1), . . . , (xn, yn)} of (X ,Y ) (a
training set).

For that, we minimize an empirical risk

J (v) := R̂n(v) =
1
n

n∑
k=1

`(yk , v(xk ))

where `(y , v(x)) is a certain loss function which measures a certain error (a cost) when replacing
y by the prediction v(x).

The empirical risk is a statistical estimate of the risk functional

R(v) = E(`(Y , v(X )))
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What can we expect from sparse approximation methods ?

Statistical point of view

For least-square regression, we consider the loss `(y , v(x)) = (y − v(x))2, so that

J (v) =
1
n

n∑
k=1

(yk − v(xk ))2

and
R(v) = E((Y − v(X ))2).

Assuming that ε is zero mean and independent of X , we have

R(v) = E((u(X )− v(X ))2) + Var(ε),

and the empirical risk minimization is a statistical approach for L2 approximation.
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What can we expect from sparse approximation methods ?

About solving the best n-term approximation problem

Assuming that D = {ψk}Nk=1, solving the best n-term approximation problem

min
v∈Σn

J (v) (6)

a priori requires testing all possible subsets of n functions in D. When N <∞, that means
(N
n

)
possibilities (NP-hard problem). And obviously, the situation is even worse when N is infinite or
D is not a countable set !

In practice, we rely on algorithms which produce approximate solutions to problem (6), such as

Greedy algorithms,

Convex relaxation methods,

Working set algorithms.
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Greedy algorithms

Greedy algorithms

Given a dictionary D in X , greedy algorithms aim to build a sequence of suboptimal yet good
n-terms approximations (un)n≥0 with

un ∈ Xn := span{ψ1, . . . , ψn}

where the elements (ψn)n≥1 are selected one-by-one in D.

In the case where D is finite, greedy algorithms allow to break the combinatorial complexity of
the best n-term approximation problem. When D is not a finite set, it provides a simple way to
construct n-term approximations.

There are several variants of greedy algorithms depending on how to select the ψn and how to
compute the approximation in Xn.

Anthony Nouy 15 / 22



Greedy algorithms

Standard greedy algorithms

A pure greedy algorithm (PGA) defines

un = un−1 + cnψn

with
J (un−1 + cnψn) = min

ψ∈D,c∈R
J (un−1 + cψ). (7)

The orthogonal greedy algorithm (OGA) selects ψn based on (7) but the n-term approximation
un is defined as the projection onto the generated subspace Xn = span{ψ1, . . . , ψn}

J (un) = arg min
v∈Xn

J (v).

When X is a Hilbert space, J (v) = ‖u − v‖ and D is an orthonormal basis of X , greedy
algorithms provide a sequence of best n-term approximations un. For other dictionaries D, the
obtained n-term approximations may be far from best n-term approximations.
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Convex relaxation methods

Reformulations of best n-term approximation problem

We consider the case of a finite dictionary D = {ψk}Nk=1.

We denote by Ψ : RN → X the operator which associates to a set of coefficients a = (ak )Nk=1 the
element

Ψa =
N∑

k=1

akψk ∈ X .

The set of n-sparse elements is
Σn = {Ψa : ‖a‖0 ≤ n}

where ‖ · ‖0 is the so-called “`0-norm” of the set of coefficients

‖a‖0 = #{k : ak 6= 0}.

The best n-term approximation problem

min
v∈Σn

J (v)

is then equivalent to
min

a
J (Ψa) subject to ‖a‖0 ≤ n.
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Convex relaxation methods

Reformulations of best n-term approximation problem

A related formulation if given by the unconstrained minimization problem

min
a∈Rm

J (Ψa) + λ‖a‖0. (8)

When increasing λ, problem (8) provides sparser and sparser solutions a.

If X is a Hilbert space, J (v) = ‖u − v‖2, with ‖ · ‖ associated with an inner product (·, ·), and
D is an orthonormal basis, then the solution of (8) is

ai = HT√λ(ci ), ci = (u, ψi ),

where
HTτ (t) = t 1|t|>τ

is the hard thresholding function, which means

ai =

{
ci if |ci | >

√
λ

0 if |ci | ≤
√
λ
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Convex relaxation methods

Convex relaxation

The problem can be replaced by

min
a∈Rm

J (Ψa) + λ‖a‖1. (9)

If J is convex, it is a convex optimization problem.

If X is a Hilbert space, J (v) = 1
2‖u − v‖2, with ‖ · ‖ associated with an inner product (·, ·), and

D is an orthonormal basis, then the solution of (9) is

ai = STλ(ci ), ci = (u, ψi ),

where
STλ(t) = (|t| − τ)+ sign(t)

is the soft thresholding function, which means

ai =


ci − λ if ci > λ

0 if |ci | ≤ λ
ci + λ if ci < −λ

Increasing λ yields sparser and sparser solutions.
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Convex relaxation methods

Convex relaxation

About algorithms for solving problem (9):

It is a non-differentiable optimization problem.

For a convex functional J , algorithms for non-differentiable convex optimization are
available (e.g. proximal methods).

In the case where J (Ψa) = ‖y −Φa‖22, (9) is the LASSO problem. The LARS homotopy
algorithm provides the set of solutions for all values of λ.

About the selection of regularization parameter:

Computing the solution for many values of λ provides a set of solutions aλ with different
sparsity patterns Λλ = {k : aλk 6= 0}.
A particular solution can be selected using error estimates.

For a given pattern Λλ, the best approximation can be computed by solving

min
a
J (Ψa) subject to ak = 0 for k /∈ Λλ (10)

In a statistical framework, validation or cross-validation error estimates can be used. Note
that for usual functionals J , cross-validation error estimates can be obtained very efficiently
for the solutions of problem (10).
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Convex relaxation methods

Convex relaxation

Other notions of sparsity can be imposed by considering problems of the form

min
a∈RN

J (Ψa) + λΩ(a) (11)

with a suitable choice for Ω.

Weighted sparsity with weighted `1 norm:

Ω(a) = ‖a‖1,ω =
N∑

k=1

ωk |ak |

Group sparsity with `1 − `2 norms:

Ω(a) =
K∑
ν=1

‖aJν ‖2,
K⋃
ν=1

Jν = {1, . . . ,N}

...
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Working set algorithms

Working set algorithms

For a finite (or countable) dictionary D = {ψk}k≥1, working set algorithms are algorithms which
construct an increasing sequence of index sets (Λn)n≥1.

For a given pattern Λ, an approximation uΛ =
∑

k∈Λ akψk is computed using interpolation,
regression or other projection methods.

At step n, Λn is defined by
Λn = Λn−1 ∪ An

where An is a set of new indices picked in a set of candidate indices Nn, based on some selection
criterium.

If for each k ∈ Nn we can estimate a profit e(k) of adding k to Λn, we can choose An = {kn}
with

e(kn) = max
k∈Nn

e(k),

or even An as the set of all indices k ∈ Nn such that

e(k) ≥ θmax
j∈Nn

e(j).
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