Low-rank and sparse methods for high-dimensional approximation and model order reduction

Lecture 2 Sparse approximation

We want to approximate a function u in a certain function (or vector) space X equipped with a norm $\|\cdot\|$.

Consider a set \mathcal{D} of functions in X (called a dictionary) such that the linear span of \mathcal{D} is dense in X.

As a basic example, consider the case where $\mathcal{D} = \{\psi_k\}_{k\geq 0}$ is a basis of X.

Sparse approximation methods rely on the fact that a good approximation (or even an exact decomposition) of the solution can be obtained by only considering a small subset of functions in the dictionary:

$$u \approx u_n = \sum_{\psi \in \mathcal{D}_n} c_{\psi} \psi; \quad \mathcal{D}_n \subset \mathcal{D}, \quad \# \mathcal{D}_n = n.$$

 u_n is called a n-term approximation of u. We say that u_n is n-sparse relatively to \mathcal{D} .

Dictionaries for high-dimensional approximation

For high-dimensional approximation problems, dictionaries must have low-dimensional parametrizations.

Typical choices are:

• Tensorized basis (e.g. polynomial basis, wavelets basis, ...):

$$\mathcal{D} = \{\psi_{\alpha}(\mathsf{x}) = \psi_{\alpha_1}(\mathsf{x}_1) \dots \psi_{\alpha_d}(\mathsf{x}_d) : \alpha \in \mathcal{F}\}$$

• Separated (rank-one) functions:

$$\mathcal{D} = \{u_1(x_1) \dots u_d(x_d) : u_1 \in \mathcal{H}_1, \dots, u_d \in \mathcal{H}_d\}$$

• Perceptrons (for neural networks):

$$\mathcal{D} = \{\sigma(a^T x + b) : a \in \mathbb{R}^d, b \in \mathbb{R}\}$$

• Functions of linear combinations of variables (for projection pursuit):

$$\mathcal{D} = \{g(a^T x) : a \in \mathbb{R}^d, g \in \mathcal{H}\}$$

• ...

A motivating example

We consider the Borehole function which models the water flow through a borehole:

$$u(X) = \frac{2\pi T_u(H_u - H_l)}{\ln(r/r_w) \left(1 + \frac{2LT_u}{\ln(r/r_w)r_w^2 K_w} + \frac{T_u}{T_l}\right)}, \quad X = (r_w, r, T_u, H_u, T_l, H_l, L, K_w) \sim P_X$$

Consider $\mathcal{D} = \{\psi_k\}$ as the set of multivariate polynomials (orthogonal w.r.t P_X).

The following plot shows the coefficients c_k of u associated with polynomial functions ψ_k of total degree less than 4 (colors indicate the total degree of ψ_k).

- What can we expect from sparse approximation methods ?
- Greedy algorithms
- Convex relaxation methods
- Working set algorithms

Outline

1 What can we expect from sparse approximation methods ?

- 2 Greedy algorithms
- Convex relaxation methods
- Working set algorithms

What can we expect from sparse approximation methods ?

Convergence of best *n*-term approximation

For a given dictionary D, the ideal performance of sparse approximation methods is quantified by the best *n*-term approximation error

$$\sigma_n(u) = \min_{v \in \Sigma_n} \|u - v\|$$

where $\Sigma_n = \left\{ \sum_{\psi \in \mathcal{D}_n} c_{\psi} \psi : \# \mathcal{D}_n = n \right\}$ is the set of *n*-sparse elements.

Let us assume that u admits the decomposition

$$u = \sum_{k=1}^{\infty} c_k \psi_k, \quad \psi_k \in \mathcal{D}.$$

Then

$$\sigma_n(u) = \min_{v \in \Sigma_n} \|u - v\| \le \min_{\#\Lambda = n} \|u - u_\Lambda\|, \quad \text{with } u_\Lambda = \sum_{k \in \Lambda} c_k \psi_k.$$

Assuming that the elements of \mathcal{D} are normalized, we obtain

$$\sigma_n(u) \leq \min_{\#\Lambda=n} \|\sum_{k\notin\Lambda} c_k \psi_k\| \leq \min_{\#\Lambda=n} \sum_{k\notin\Lambda} |c_k| = \sum_{k\notin\Lambda_n} |c_k|,$$

where Λ_n corresponds to the *n* largest coefficients $|c_k|$.

Convergence of best *n*-term approximation

Equivalently, we obtain

$$\sigma_n(u) \leq \sum_{k=n+1}^{\infty} c_k^*$$

where $\mathbf{c}^* = (c_k^*)_{k \ge 1}$ is a decreasing rearrangement of $(|c_k|)_{k \ge 1}$.

Therefore, if u admits a decomposition with rapidly decaying coefficients, we can expect a fast convergence of best n-term approximation error.

In particular:

- If c_n^* decays exponentially, $\sigma_n(u)$ decays exponentially with the same rate.
- If $\mathbf{c}^* \in \ell_p$ with $0 , then <math>\sigma_n(u) \leq \|\mathbf{c}^*\|_{\ell_p} n^{-r}$ with r = 1/p 1.

Of course, for a given function, the performance of sparse approximation methods strongly depends on the choice of the dictionary...

What can we expect from sparse approximation methods ? Quasi best *n*-term approximation

In practice, *n*-term approximations u_n are defined by

$$\mathcal{J}(u_n) = \min_{v \in \Sigma_n} \mathcal{J}(v) \tag{1}$$

where \mathcal{J} is a computable functional.

If $\mathcal{J}(v)$ measures a distance from v to u such that

$$\alpha \|\boldsymbol{u} - \boldsymbol{v}\| \le \mathcal{J}(\boldsymbol{v}) \le \beta \|\boldsymbol{u} - \boldsymbol{v}\|,\tag{2}$$

then the solution u_n of (1) is such that

$$\|u-u_n\| \leq \frac{1}{\alpha}\mathcal{J}(u_n) = \frac{1}{\alpha}\min_{v\in\Sigma_n}\mathcal{J}(v) \leq \frac{\beta}{\alpha}\min_{v\in\Sigma_n}\|u-v\|,$$

which means that u_n is a quasi-optimal *n*-term approximation.

Property (2) is satisfied when using variational methods for solving operator equations Au = b, where

$$\mathcal{J}(v) = \|b - Av\|$$

with A an operator such that

$$\alpha \|\mathbf{v}\| \le \|\mathbf{A}\mathbf{v}\| \le \beta \|\mathbf{v}\|.$$

What can we expect from sparse approximation methods ?

Approximation using partial information

Sometimes, we only have partial information on the function u, such as the evaluations $y^k = u(x^k)$ of the function u at some points x^k , k = 1, ..., m.

More generally, we assume that m measurements of u are given by

$$y = Au$$

where $A: X \to \mathbb{R}^m$ is a linear operator.

The functional

$$\mathcal{J}(v) = \|y - Av\|^2 = \frac{1}{m} \sum_{k=1}^m (y^k - (Av)_k)^2$$

then provides a distance between the measurements y and the prediction Av. When too few observations are available, the optimization problem

$$\min_{v \in X} \mathcal{J}(v) \tag{3}$$

is ill-posed.

Example 1 (Least-Squares)

In the case where $(Av) = v(x^k)$ is the evaluation of v at point x^k , then (3) is a standard least-squares problem.

What can we expect from sparse approximation methods ?

Approximation using partial information

Imposing the approximation to be *n*-sparse by solving

$$\min_{v\in\Sigma_n} \|y - Av\|^2 \tag{4}$$

is a possible way to make the problem well-posed.

Assuming that u is r-sparse and that A satisfies

$$(1-\delta)\|v\|^2 \le \|Av\|^2 \le (1+\delta)\|v\|^2 \quad \text{for all } v \in \Sigma_s, \tag{5}$$

which is a restricted isometry property, then for all $n \leq s - r$, problem (4) admits a solution u_n such that

$$\|u-u_n\|\leq C\min_{v\in\Sigma_n}\|u-v\|,$$

with $C^2 = \frac{1+\delta}{1-\delta}$.

Property (5) depends on the dictionary and of the measurement operator A.

Approximation using partial information

Example 2 (Least-Squares with orthonormal basis)

Consider the case where $\mathcal{D} = \{\psi_i\}_{i=1}^N$ is an orthonormal basis in $L^2_{P_X}(\mathcal{X})$. A function $v = \sum_{i=1}^N a_i \psi_i$ is such that $\|v\| = \|\mathbf{a}\|_2$, with $\mathbf{a} \in \mathbb{R}^N$.

Assume that the operator A provides evaluations at points $\{x^k\}_{k=1}^m$, i.e. $Av = (v(x^k))_{k=1}^m$. Then

$$\|Av\|^2 - \|v\|^2 = \frac{1}{m} \|\Phi \mathbf{a}\|_2^2 - \|\mathbf{a}\|_2^2 = ((\mathbf{G} - \mathbf{I})\mathbf{a}, \mathbf{a}),$$

where $\mathbf{\Phi} = (\psi_i(x^k)) \in \mathbb{R}^{m \times N}$ is the matrix of evaluations of functions ψ_i at points x^k , and

$$\mathbf{G} = \frac{1}{m} \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} = (\frac{1}{m} \sum_{k=1}^{m} \psi_i(x^k) \psi_j(x^k))_{ij}.$$

The problem is then to analyze how far the restriction of the matrix ${\bf G}$ to the subset of sparse vectors is from the identity matrix ${\bf I}.$

When x^k are *m* samples of $X \sim P_X$, **G** is an unbiased and convergent estimate of **I**. Under some assumptions and results from random matrix theory, restricted isometry property for *s*-sparse elements can be proved to be satisfied with high probability for a number of measurements *m* in O(s).

What can we expect from sparse approximation methods ? Statistical point of view

We consider a pair of random variables (X, Y) with values in $(\mathcal{X}, \mathbb{R})$ such that

 $Y = u(X) + \epsilon$

where ϵ represents a noise.

The aim is to estimate (or learn) u from a sample $S = \{(x^1, y^1), \dots, (x^n, y^n)\}$ of (X, Y) (a training set).

For that, we minimize an empirical risk

$$\mathcal{J}(\mathbf{v}) := \widehat{\mathcal{R}}_n(\mathbf{v}) = \frac{1}{n} \sum_{k=1}^n \ell(\mathbf{y}^k, \mathbf{v}(\mathbf{x}^k))$$

where $\ell(y, v(x))$ is a certain loss function which measures a certain error (a cost) when replacing y by the prediction v(x).

The empirical risk is a statistical estimate of the risk functional

$$\mathcal{R}(v) = \mathbb{E}(\ell(Y, v(X)))$$

Statistical point of view

For least-square regression, we consider the loss $\ell(y, \nu(x)) = (y - \nu(x))^2$, so that

$$\mathcal{J}(\mathbf{v}) = \frac{1}{n} \sum_{k=1}^{n} (y^k - \mathbf{v}(x^k))^2$$

and

$$\mathcal{R}(v) = \mathbb{E}((Y - v(X))^2).$$

Assuming that ϵ is zero mean and independent of X, we have

$$\mathcal{R}(v) = \mathbb{E}((u(X) - v(X))^2) + Var(\epsilon),$$

and the empirical risk minimization is a statistical approach for L^2 approximation.

About solving the best *n*-term approximation problem

Assuming that $\mathcal{D} = \{\psi_k\}_{k=1}^N$, solving the best *n*-term approximation problem

$$\min_{v \in \Sigma_n} \mathcal{J}(v) \tag{6}$$

a priori requires testing all possible subsets of *n* functions in \mathcal{D} . When $N < \infty$, that means $\binom{N}{n}$ possibilities (*NP*-hard problem). And obviously, the situation is even worse when *N* is infinite or \mathcal{D} is not a countable set !

In practice, we rely on algorithms which produce approximate solutions to problem (6), such as

- Greedy algorithms,
- Convex relaxation methods,
- Working set algorithms.

Outline

What can we expect from sparse approximation methods ?

Greedy algorithms

- Convex relaxation methods
- Working set algorithms

Greedy algorithms

Given a dictionary \mathcal{D} in X, greedy algorithms aim to build a sequence of suboptimal yet good *n*-terms approximations $(u_n)_{n\geq 0}$ with

$$u_n \in X_n := span\{\psi_1, \ldots, \psi_n\}$$

where the elements $(\psi_n)_{n>1}$ are selected one-by-one in \mathcal{D} .

In the case where \mathcal{D} is finite, greedy algorithms allow to break the combinatorial complexity of the best *n*-term approximation problem. When \mathcal{D} is not a finite set, it provides a simple way to construct *n*-term approximations.

There are several variants of greedy algorithms depending on how to select the ψ_n and how to compute the approximation in X_n .

Greedy algorithms Standard greedy algorithms

A pure greedy algorithm (PGA) defines

$$u_n = u_{n-1} + c_n \psi_n$$

with

$$\mathcal{J}(u_{n-1}+c_n\psi_n)=\min_{\psi\in\mathcal{D},c\in\mathbb{R}}\mathcal{J}(u_{n-1}+c\psi). \tag{7}$$

The orthogonal greedy algorithm (OGA) selects ψ_n based on (7) but the *n*-term approximation u_n is defined as the projection onto the generated subspace $X_n = span\{\psi_1, \ldots, \psi_n\}$

$$\mathcal{J}(u_n) = \arg\min_{v\in X_n} \mathcal{J}(v).$$

When X is a Hilbert space, $\mathcal{J}(v) = ||u - v||$ and \mathcal{D} is an orthonormal basis of X, greedy algorithms provide a sequence of best *n*-term approximations u_n . For other dictionaries \mathcal{D} , the obtained *n*-term approximations may be far from best *n*-term approximations.

Outline

- What can we expect from sparse approximation methods ?
- Greedy algorithms
- Convex relaxation methods
- Working set algorithms

Reformulations of best *n*-term approximation problem

We consider the case of a finite dictionary $\mathcal{D} = \{\psi_k\}_{k=1}^N$.

We denote by $\Psi : \mathbb{R}^N \to X$ the operator which associates to a set of coefficients $\mathbf{a} = (a_k)_{k=1}^N$ the element

$$\Psi \mathbf{a} = \sum_{k=1}^{N} a_k \psi_k \in X.$$

The set of *n*-sparse elements is

$$\boldsymbol{\Sigma}_n = \{\boldsymbol{\Psi} \mathbf{a} : \|\mathbf{a}\|_0 \le n\}$$

where $\|\cdot\|_0$ is the so-called " $\ell_0\text{-norm"}$ of the set of coefficients

$$\|\mathbf{a}\|_0 = \#\{k : a_k \neq 0\}.$$

The best *n*-term approximation problem

 $\min_{v\in\Sigma_n}\mathcal{J}(v)$

is then equivalent to

$$\min_{\mathbf{a}} \mathcal{J}(\Psi \mathbf{a}) \quad \text{subject to} \quad \|\mathbf{a}\|_0 \leq n.$$

Reformulations of best *n*-term approximation problem

A related formulation if given by the unconstrained minimization problem

$$\min_{\mathbf{a}\in\mathbb{R}^m} \mathcal{J}(\Psi \mathbf{a}) + \lambda \|\mathbf{a}\|_0.$$
(8)

When increasing λ , problem (8) provides sparser and sparser solutions **a**.

If X is a Hilbert space, $\mathcal{J}(v) = ||u - v||^2$, with $|| \cdot ||$ associated with an inner product (\cdot, \cdot) , and \mathcal{D} is an orthonormal basis, then the solution of (8) is

$$a_i = HT_{\sqrt{\lambda}}(c_i), \quad c_i = (u, \psi_i),$$

where

$$HT_{\tau}(t) = t \, \mathbb{1}_{|t| > \tau}$$

is the hard thresholding function, which means

$$\mathsf{a}_i = egin{cases} \mathsf{c}_i & ext{if } |\mathsf{c}_i| > \sqrt{\lambda} \ \mathsf{0} & ext{if } |\mathsf{c}_i| \leq \sqrt{\lambda} \end{cases}$$

Convex relaxation methods

Convex relaxation

The problem can be replaced by

$$\min_{\mathbf{a}\in\mathbb{R}^m}\mathcal{J}(\Psi\mathbf{a})+\lambda\|\mathbf{a}\|_1.$$
(9)

If $\mathcal J$ is convex, it is a convex optimization problem.

If X is a Hilbert space, $\mathcal{J}(v) = \frac{1}{2} ||u - v||^2$, with $|| \cdot ||$ associated with an inner product (\cdot, \cdot) , and \mathcal{D} is an orthonormal basis, then the solution of (9) is

$$a_i = ST_\lambda(c_i), \quad c_i = (u, \psi_i),$$

where

$${\it ST}_\lambda(t)=(|t|- au)_+\operatorname{sign}(t)$$

is the soft thresholding function, which means

$$\mathbf{a}_{i} = \begin{cases} \mathbf{c}_{i} - \lambda & \text{if } \mathbf{c}_{i} > \lambda \\ \mathbf{0} & \text{if } |\mathbf{c}_{i}| \leq \lambda \\ \mathbf{c}_{i} + \lambda & \text{if } \mathbf{c}_{i} < -\lambda \end{cases}$$

Increasing λ yields sparser and sparser solutions.

Convex relaxation methods

Convex relaxation

About algorithms for solving problem (9):

- It is a non-differentiable optimization problem.
- For a convex functional \mathcal{J} , algorithms for non-differentiable convex optimization are available (e.g. proximal methods).
- In the case where $\mathcal{J}(\Psi \mathbf{a}) = \|\mathbf{y} \mathbf{\Phi}\mathbf{a}\|_2^2$, (9) is the LASSO problem. The LARS homotopy algorithm provides the set of solutions for all values of λ .

About the selection of regularization parameter:

- Computing the solution for many values of λ provides a set of solutions \mathbf{a}^{λ} with different sparsity patterns $\Lambda^{\lambda} = \{k : a_k^{\lambda} \neq 0\}$.
- A particular solution can be selected using error estimates.
- For a given pattern Λ^{λ} , the best approximation can be computed by solving

$$\min_{\mathbf{a}} \mathcal{J}(\Psi \mathbf{a}) \quad \text{subject to } a_k = 0 \text{ for } k \notin \Lambda^\lambda \tag{10}$$

• In a statistical framework, validation or cross-validation error estimates can be used. Note that for usual functionals \mathcal{J} , cross-validation error estimates can be obtained very efficiently for the solutions of problem (10).

Convex relaxation methods

Convex relaxation

Other notions of sparsity can be imposed by considering problems of the form

$$\min_{\mathbf{a}\in\mathbb{R}^{N}}\mathcal{J}(\Psi\mathbf{a})+\lambda\Omega(\mathbf{a})$$
(11)

with a suitable choice for Ω .

• Weighted sparsity with weighted ℓ_1 norm:

$$\Omega(\mathbf{a}) = \|\mathbf{a}\|_{1,\omega} = \sum_{k=1}^{N} \omega_k |a_k|$$

• Group sparsity with
$$\ell_1 - \ell_2$$
 norms:

$$\Omega(\mathbf{a}) = \sum_{\nu=1}^{K} \|\mathbf{a}_{J_{\nu}}\|_{2}, \quad \bigcup_{\nu=1}^{K} J_{\nu} = \{1, \dots, N\}$$

• ...

Outline

- What can we expect from sparse approximation methods ?
- Greedy algorithms
- Convex relaxation methods
- Working set algorithms

Working set algorithms

Working set algorithms

For a finite (or countable) dictionary $\mathcal{D} = \{\psi_k\}_{k \ge 1}$, working set algorithms are algorithms which construct an increasing sequence of index sets $(\Lambda_n)_{n \ge 1}$.

For a given pattern Λ , an approximation $u_{\Lambda} = \sum_{k \in \Lambda} a_k \psi_k$ is computed using interpolation, regression or other projection methods.

At step *n*, Λ_n is defined by

$$\Lambda_n = \Lambda_{n-1} \cup A_n$$

where A_n is a set of new indices picked in a set of candidate indices N_n , based on some selection criterium.

If for each $k \in N_n$ we can estimate a profit e(k) of adding k to Λ_n , we can choose $A_n = \{k^n\}$ with

$$e(k^n) = \max_{k \in N_n} e(k),$$

or even A_n as the set of all indices $k \in N_n$ such that

$$e(k) \geq \theta \max_{j \in N_n} e(j).$$