Low-rank and sparse methods for
high-dimensional approximation and model order
reduction

Lecture 2
Sparse approximation
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Sparse approximation

We want to approximate a function u in a certain function (or vector) space X equipped with a
norm || - ||.

Consider a set D of functions in X (called a dictionary) such that the linear span of D is dense in
X.

As a basic example, consider the case where D = {9 },>0 is a basis of X.

Sparse approximation methods rely on the fact that a good approximation (or even an exact
decomposition) of the solution can be obtained by only considering a small subset of functions in
the dictionary:

umRup= Y cy; DaCD, #Dn=n.
$ED,

up is called a n-term approximation of u. We say that uj, is n-sparse relatively to D.
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Dictionaries for high-dimensional approximation

For high-dimensional approximation problems, dictionaries must have low-dimensional
parametrizations.

Typical choices are:

@ Tensorized basis (e.g. polynomial basis, wavelets basis, ...):
D = {ta(x) = s (1) ... Yy (x0) : @ € F}
@ Separated (rank-one) functions:
D={ui(x1).. . ug(xq) :u1 € Hi,...,uq € Ha}
@ Perceptrons (for neural networks):
D={o(a"x+b):acR) beR}
@ Functions of linear combinations of variables (for projection pursuit):

D={g(a"x):acR? geH}
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A motivating example

We consider the Borehole function which models the water flow through a borehole:

27 Tu(H, — H,
u(X) = ™ Tu(Hy — Hi) v X = (rwstyy Tuy Huy Ti, Hiy Ly Kw) ~ Px

- 2LT, T,
In(r/r) (14 g ficitame, + )

Consider D = {9k} as the set of multivariate polynomials (orthogonal w.r.t Px).

The following plot shows the coefficients ¢, of u associated with polynomial functions ¢, of
total degree less than 4 (colors indicate the total degree of ).
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@ What can we expect from sparse approximation methods ?
© Greedy algorithms
© Convex relaxation methods

@ Working set algorithms
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What can we expect from sparse approximation methods ?

Convergence of best n-term approximation

For a given dictionary D, the ideal performance of sparse approximation methods is quantified by
the best n-term approximation error

u)= min |lu—v
oo(u) = min [lu=v|
where X, = {ZweDn cyY 1 #Dp = n} is the set of n-sparse elements.

Let us assume that u admits the decomposition

oo
U:ZCHZ% Y €D.
k=1
Then
= i — < i — ith = .
on(u) = min flu— vl < min flu—unll,  with ua >t

ke

Assuming that the elements of D are normalized, we obtain

on(u) < min 1> cpull < min > ledl = 3 e,

kgN k&N k&N,

where A, corresponds to the n largest coefficients |cy|.
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What can we expect from sparse approximation methods ?

Convergence of best n-term approximation

Equivalently, we obtain
oo
on(u) < Z cr
k=n+1

where ¢* = (¢} )«>1 is a decreasing rearrangement of (|ci|)k>1-

Therefore, if u admits a decomposition with rapidly decaying coefficients, we can expect a fast
convergence of best n-term approximation error.

In particular:
o If ¢} decays exponentially, op(u) decays exponentially with the same rate.

o If ¢* € £, with 0 < p < 1, then o4(u) < ||c*[|¢,n™" with r=1/p — 1.

Of course, for a given function, the performance of sparse approximation methods strongly
depends on the choice of the dictionary...
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What can we expect from sparse approximation methods ?

Quasi best n-term approximation

In practice, n-term approximations u, are defined by
= mi 1
T (wn) = min T(v) (1)

where J is a computable functional.
If J(v) measures a distance from v to u such that

aflu—v|| < IT(v) < Bllu—vl, (2
then the solution u, of (1) is such that

1 1 . B .

o= uall < 27 (un) = = min 7(v) < 2 min flu— vl

o « vEL, « vEXL,

which means that u, is a quasi-optimal n-term approximation.

Property (2) is satisfied when using variational methods for solving operator equations Au = b,
where

J(v) = Ilb— Av||

with A an operator such that
allvll < JJAv] < Blivil.
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What can we expect from sparse approximation methods ?

Approximation using partial information

Sometimes, we only have partial information on the function u, such as the evaluations
k

yk = u(x*) of the function u at some points x¥, k =1,..., m.
More generally, we assume that m measurements of u are given by

y =Au

where A : X — R™ is a linear operator.

The functional

T(v) =y —Av|? = Z(y (Av)«

then provides a distance between the measurements y and the prediction Av. When too few
observations are available, the optimization problem

min 7 (v) (3)

is ill-posed.

Example 1 (Least-Squares)

In the case where (Av) = v(x¥) is the evaluation of v at point x¥, then (3) is a standard
least-squares problem.
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What can we expect from sparse approximation methods ?

Approximation using partial information

Imposing the approximation to be n-sparse by solving
i — Av|? 4
min fly — Av]| 4)
is a possible way to make the problem well-posed.
Assuming that u is r-sparse and that A satisfies
(L =8)vI® <AV < (1 +8)[v]? forall v e X, (5)
which is a restricted isometry property, then for all n < s — r, problem (4) admits a solution u,

such that
= unl| < € min flu— vl
VEX,

. 2 _ 146
with C< = iTs

Property (5) depends on the dictionary and of the measurement operator A.
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What can we expect from sparse approximation methods ?

Approximation using partial information

Example 2 (Least-Squares with orthonormal basis)

Consider the case where D = {1);} | is an orthonormal basis in L2 (X). A function
= X
v= Z,N:l aj; is such that ||v|| = ||a]|2, with a € RV,

Assume that the operator A provides evaluations at points {x*}7_, i.e. Av = (v(xX))™_ . Then
2 2_ 1 2 2
[AvI= —lIvl= = —li®allz - [lall2 = ((G - I)a, a),

where ® = (1;(x*)) € R™*N is the matrix of evaluations of functions v; at points x*, and
loT 1 k k
G=—0T0=(=3 vi(x)(x);
m m

The problem is then to analyze how far the restriction of the matrix G to the subset of sparse
vectors is from the identity matrix I.

When x¥ are m samples of X ~ Px, G is an unbiased and convergent estimate of I. Under some
assumptions and results from random matrix theory, restricted isometry property for s-sparse
elements can be proved to be satisfied with high probability for a number of measurements m in

O(s).
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What can we expect from sparse approximation methods ?

Statistical point of view

We consider a pair of random variables (X, Y) with values in (X,R) such that
Y=ulX)+e¢

where € represents a noise.

The aim is to estimate (or learn) u from a sample S = {(x*, y1),...,(x",y™)} of (X,Y) (a
training set).

For that, we minimize an empirical risk

n

TO) 1= Ralv) = = S 0H, vlx))

k=1

where £(y, v(x)) is a certain loss function which measures a certain error (a cost) when replacing
y by the prediction v(x).

The empirical risk is a statistical estimate of the risk functional

R(v) = E(¢(Y, v(X)))

Anthony Nouy 12 /22



What can we expect from sparse approximation methods ?

Statistical point of view

For least-square regression, we consider the loss £(y, v(x)) = (y — v(x))?, so that

n

T =2 30 - b2

k=1

and

R(v) = E((Y = v(X))?).
Assuming that € is zero mean and independent of X, we have

R(v) = E((u(X) = v(X))?) + Var(e),

and the empirical risk minimization is a statistical approach for L2 approximation.
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What can we expect from sparse approximation methods ?

About solving the best n-term approximation problem

Assuming that D = {wk}i\’:l, solving the best n-term approximation problem

min J(v) (6)

vEX,

a priori requires testing all possible subsets of n functions in D. When N < oo, that means (IX)
possibilities (NP-hard problem). And obviously, the situation is even worse when N is infinite or
D is not a countable set !

In practice, we rely on algorithms which produce approximate solutions to problem (6), such as
o Greedy algorithms,
o Convex relaxation methods,

e Working set algorithms.
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Greedy algorithms

Greedy algorithms

Given a dictionary D in X, greedy algorithms aim to build a sequence of suboptimal yet good
n-terms approximations (un),>o with

up € Xp 1= span{wlz o 7'¢’n}

where the elements (¢5),>1 are selected one-by-one in D.

In the case where D is finite, greedy algorithms allow to break the combinatorial complexity of
the best n-term approximation problem. When D is not a finite set, it provides a simple way to
construct n-term approximations.

There are several variants of greedy algorithms depending on how to select the v, and how to
compute the approximation in X,.
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Greedy algorithms

Standard greedy algorithms

A pure greedy algorithm (PGA) defines
Up = Up—1 + ann
with

T (un—1 + cntpn) = wengi’rgek T (un—1 + ). (7)

The orthogonal greedy algorithm (OGA) selects v, based on (7) but the n-term approximation
up is defined as the projection onto the generated subspace X, = span{1,...,%n}

J(un) = arg min J(v).

When X is a Hilbert space, J(v) = ||u — v|| and D is an orthonormal basis of X, greedy
algorithms provide a sequence of best n-term approximations u,. For other dictionaries D, the
obtained n-term approximations may be far from best n-term approximations.
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Convex relaxation methods

Reformulations of best n-term approximation problem

We consider the case of a finite dictionary D = {1, }}_,.

We denote by W : RV — X the operator which associates to a set of coefficients a = (ak)’k\’:1 the
element

N
\Ua:Zakd)k € X.

k=1

The set of n-sparse elements is
Y, ={WVa: |alo < n}

where || - ||o is the so-called “fg-norm” of the set of coefficients

llallo = #{k : ax # 0}.
The best n-term approximation problem
2, I
is then equivalent to

main J(Va) subject to |aljo < n.
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Convex relaxation methods

Reformulations of best n-term approximation problem

A related formulation if given by the unconstrained minimization problem
min 7(Wa) + Alallo. (®)
acRm

When increasing A, problem (8) provides sparser and sparser solutions a.

If X is a Hilbert space, J(v) = ||u — v||?, with || - || associated with an inner product (-,-), and
D is an orthonormal basis, then the solution of (8) is

ai = HT s(ci), ¢ = (u, ),

where
HT-(t) = t115r

is the hard thresholding function, which means

R if [ci| > VX
"Tlo if gl <V
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Convex relaxation methods

Convex relaxation

he problem can be replaced by
mi Va) + A . 9
aeﬁ{}"J( a) llall2 (9)

If J is convex, it is a convex optimization problem.

If X is a Hilbert space, J(v) = %Hu — v||?, with || - || associated with an inner product (-, ), and
D is an orthonormal basis, then the solution of (9) is

aj = STx(ci), ¢ = (u,vi),

where
STa(t) = (Jt| — 7)+ sign(t)

is the soft thresholding function, which means

¢ —X if¢g>A
aj = 0 if|C,‘|§A
g+ ifg<—A

Increasing A yields sparser and sparser solutions.
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Convex relaxation methods

Convex relaxation

About algorithms for solving problem (9):
e It is a non-differentiable optimization problem.

o For a convex functional J, algorithms for non-differentiable convex optimization are
available (e.g. proximal methods).

o In the case where J(Wa) = ||y — ®a||3, (9) is the LASSO problem. The LARS homotopy
algorithm provides the set of solutions for all values of A.

About the selection of regularization parameter:
e Computing the solution for many values of A provides a set of solutions a* with different
sparsity patterns A* = {k : a? # 0}.
@ A particular solution can be selected using error estimates.

o For a given pattern A*, the best approximation can be computed by solving

min J(Wa) subject to a, = 0 for k ¢ A* (10)
a

@ In a statistical framework, validation or cross-validation error estimates can be used. Note
that for usual functionals 7, cross-validation error estimates can be obtained very efficiently
for the solutions of problem (10).
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Convex relaxation methods

Convex relaxation

Other notions of sparsity can be imposed by considering problems of the form

min J(WVa) + A\Q(a) (11)
acRN

with a suitable choice for Q.

o Weighted sparsity with weighted ¢1 norm:

N
Q(a) = Jlallrw = Y wilakl

k=1

e Group sparsity with ¢1 — £> norms:

K K
Q@) => layll2 |Jh=A{1....N}
v=1 v=1
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Working set algorithms

Working set algorithms

For a finite (or countable) dictionary D = {1, }«>1, working set algorithms are algorithms which
construct an increasing sequence of index sets (An),>1.

For a given pattern A, an approximation uy = Zke/\ axy is computed using interpolation,
regression or other projection methods.

At step n, A, is defined by
/\n = /\nfl U An
where A, is a set of new indices picked in a set of candidate indices N,,, based on some selection

criterium.

If for each k € N, we can estimate a profit e(k) of adding k to An, we can choose A, = {k"}
with
k™) = k
e(k") = max e(k),
or even A, as the set of all indices kK € N, such that

K)>0 .
e(k) > 1!2?\,):9(1)
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