Low-rank and sparse methods for
high-dimensional approximation and model order
reduction
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What are tensors ?

Tensor product of vectors

For I = {1,..., N}, an element v of the vector space R/ is identified with the set of its
coefficients (v;)jc; on a certain basis {e;};c; of R/,

v = E vie;.

iel
Given d index sets IY = {1,..., N, }, 1 < v < d, we introduce the multi-index set
I=h x...xlq.
An element v of R’ is called a tensor of order d and is identified with a multidimensional array
(Viiet = (Vip,...ig)ineh,....ig€ly

which represents the coefficients of v on a certain basis of R/.
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What are tensors ?

Tensor product of vectors

The entries of the multidimensional array are equivalently denoted
v(i) = v(i1,...,id)-

Given d vectors v(¥) € R, 1 < v < d, the tensor product of these vectors
vV i= v(1)®...®v(d)

is defined by
v(i) = v® (i) .. v @D (iy).

Such a tensor is called an elementary tensor. For d = 2, using matrix notations, v ® w is

identified with the matrix vw .
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What are tensors ?

Tensor product of vectors

The tensor space R/ = R1X--xld | also denoted Rt @ ... ® R, is defined by

RI=Rhr@...@R4Y =span{vM @...@v(? . vV c RV 1 <v < d}

A canonical basis for R/ is given by

e =e€;...0e€, f=(i1,...,fd)€l.

where
(i) = ey (j1) - - €, (a) = Six jy - - - 0iy jy = bij

A tensor v € R/ can be written

v:Zv(i)ei: Z Z v(in,...,iq)ey, ® .

icl in€h  iyEly

A natural norm on R/ is given by

vl = > v(i)?

iel

which makes R/ a Hilbert space.
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What are tensors ?

Tensor product of functions

Let X, CR, 1 <v <d, be an interval and V,, be a space of functions defined on X,,.
The tensor product of functions v(¥) € V,,, denoted
v = v(1)®...®v(d)7
is a multivariate function defined on X = X3 x ... x X4 and such that
v(x) = vixt, .., xq) = vO () .. v (xg)

or X =(X1,...,X4) € X. For example, or i € N§, the monomial Xi =x.. .XI is an
) » Xd 0 1 d
elementary tensor.
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What are tensors ?

Tensor product of functions

The algebraic tensor product of spaces V,, is defined as
VIR...® Vd:span{v(1)®.l.®v(d) v ¢ Vi, 1<v <d}

which is the space of multivariate functions v which can be written as a finite linear combination
of elementary (separated functions), i.e.

v(x) = Z vﬁl)(xl) .. v,gd)(xd).
k=1

Up to a formal definition of the tensor product ®, the above construction can be extended to
arbitrary vector spaces V,, (not only spaces of functions).
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What are tensors ?

Infinite dimensional tensor spaces

For infinite dimensional spaces V,, a Hilbert (or Banach) tensor space equipped with a norm
|| - || is obtained by the completion (w.r.t. || - ||) of the algebraic tensor space

VH'H :m\\'ll.

Example 1 (LP spaces)
Let 1 < p<oo. If V, =L (X)), then

LB, (A1) ®...® LB (Xg) C LA(XL X ... X Xy)

with = p1 ® ... ® pg, and

LfL1(X1)®~~~®Lde(Xd) :LZ(XlX...XXd)

where || - || is the natural norm on L (X1 X ... X Xy).

| \

Example 2 (Bochner spaces)

Let X be equipped with a finite measure u, and let W be a Hilbert (or Banach) space. For
1 < p < oo, the Bochner space L}, (X; W) is the set of Bochner-measurable functions
u: X — W with bounded norm |Jull, = ([ ||u(x)||f,vp(dx))1/’3, and

|l
(W) =W LE(x) .
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What are tensors ?

Tensor product basis

If {1/’5”)}76/” is a basis of V,,, then a basisof V=V, ® ... ® V, is given by
{¢i:¢l(.11)®...®¢f:):iel:h X ... X Id}.

A tensor v € V admits a decomposition

v=>aliwi=Y > al,. i @ e v,

icl i€l ig€ly
and v can be identified with the set of its coefficients

aeR.
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What are tensors ?

Orthogonal tensor product basis

If the V,, are Hilbert spaces with inner products (-, ), and associated norms || - ||,,, a canonical
inner product on V can be first defined for elementary tensors

. v WD g, owd) = (VD wd) (D )

and then extended by linearity to the whole space V. The associated norm || - || is called the
canonical norm.

If the {w,(u)}fel,, are orthonormal bases of spaces V,,, then {%);};c; is an orthonormal basis of

v="> ai

iel

Ivil = /> a2 =llal.
iel

Therefore, the map W which associates to a tensor a € R/ the tensor v = W(a) := Dier aivi

VIl A tensor

is such that

defines a linear isometry from R/ to V for finite dimensional spaces, and between £>(1) and VM
for infinite dimensional spaces.
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What are tensors ?

Curse of dimensionality

A tensor a € R/ = R X--Xld or a corresponding tensor v = > icr @i, when #£1, = O(n) for
each v, has a storage complexity

#1 = #h ... #ly = O(n%)

which grows exponentially with the dimension.

Manipulating tensors requires exploiting special properties of tensors such as sparsity or low
rankness.
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Sparse tensors Sparse tensors

Sparse tensors

A tensor a € R/ is said to be A-sparse, with A a subset of indices in /, if

ai=0 VigA.

A A-sparse tensor (left) and the set A (right)
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A tensor

V:Za,"tﬁ,'e 1%

iel
is said to be A-sparse relatively to the tensor product basis {¢; = 1/)511) ®...0 wf:)},-el of V if
the tensor a = (a;);¢; of its coefficients is A-sparse.
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Sparse tensors Sparse tensors

Structured subsets of multi-indices

The set of multi-indices in | = Ng with p-norm bounded by m is

maxy i for p = 0o

:p\1/P
. . . i for0 < p < o0
N={iel: il <mb il = {(Zk ) P
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Sparse tensors Sparse tensors

Structured subsets of multi-indices

Example 3

Consider the tensor basis of monomials

hilx) = x = xit xS

o A={i:|lillcc < m} corresponds to the set of polynomials with partial degree less than m,
with
#A = (m+1)¢

o A= {i:|i|l1 £ m} corresponds to the set of polynomials with total degree less than m, with

_ (m+d)!
m!d!

#A
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Sparse tensors Sparse tensors

Structured subsets of multi-indices

The set of multi-indices in | = Ng with weighted p-norm bounded by m is

P Wkpif)l/p for 0 < p < o0

AN=Ai:Nlillpw <m}, lillp,w = { : —
maxy Wy for p = oo

w = (1,2) m=6,p=1/2, w=(1,2)
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The choice of anisotropic sets is the key for high-dimensional approximation.
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Algorithms for sparse tensor approximation Greedy algorithms

Greedy algorithms

Standard greedy algorithms can be applied for sparse tensor approximation by considering as the
dictionary D the tensor product basis

D={yi=vl®. . oy iel}
Greedy algorithms construct a sequence of approximations (un),>1 such that
un € span{e; : i € N}
where (An)p>1 is an increasing sequence of subsets such that

Ao =NAoaU{i"}, "€l

L4
e
L]

A1 :{il} /\1U{i2} /\2U{i3} /\3U{i4}
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Algorithms for sparse tensor approximation Convex relaxation methods

Convex relaxation methods

Convex relaxation methods for sparse tensor approximation consists in solving problems of the
form

min J(a) + AQ(a)

acR/

where J is the cost functional and where Q(a) is a convex function which induces sparsity in the
resulting tensor a € R/.

Note that in practice, for the problem to be tractable, the tensor is constrained to be A-sparse
for a given A with moderate cardinality.
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Algorithms for sparse tensor approximation Convex relaxation methods

Convex relaxation methods

The standard approach uses the 1-norm
Qa) = [lalls = D _ lail,
icl

which is the convex relaxation of the natural measure of sparsity ||aljo = #{i € | : a; # 0}.

A weighted version of the 1-norm can be defined as

Qa) = Jlallrw = Y wilail,
ieN

()

where the weights can be deduced from a sequence of weights w; "’ associated with univariate
v

) @
id

functions 111,(:) according to w; = wy

Also, by introducing a partition {A,}X_, of A (e.g. associated with a hierarchy of tensor spaces),
we can consider

K
Qa) = > willan,Il2
k=1

for inducing group sparsity.
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@ Working set algorithms
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Algorithms for sparse tensor approximation

Working set algorithms

Working set algorithms

Working set algorithms for sparse tensor approximation construct an increasing sequence of

subsets (An)n>1 in | and a sequence of approximations u, € V), computed through
interpolation, regression or other projection methods.

The sequence of subsets is defined by

/\n = An—l U An

where A, is a subset of a candidate set NV,.

An—1 Nn An

The definition of N, requires to define a strategy for the exploration of the set of multi-indices /.
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Algorithms for sparse tensor approximation Working set algorithms

Hierarchy of tensor spaces

A A-sparse tensor v is an element of the space

VA =span{¢; : i € N}.

A basis {1} }icy, in Vi, defines a hierarchy of spaces H}, = span{%y,...,%},} such that

Hy C...CH,C...

For example, when considering canonical polynomial bases on &, HY, = Pn(X).

m
For i € I, the product set
Ri={0,...ia} x...x{0,...,ig}={jel:j<i}

defines a tensor space
Hi = Vg =HL ®...@ H

which only depends on the spaces HI?; and not on the choice of bases {1, ...

For two multi-indices i,j € I,

i<j implies R; CR; and H;CH,
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Algorithms for sparse tensor approximation Working set algorithms

Downward closed sets

A set A C | is downward closed if for j € I,

(iehandj<i) = jEN

Downward closed Not downward closed

4t e o 4t e .
3t e ° 3te . .
2t e ° . 2t e .
1te . . . . ite . . . .
Ot e ° . . . Ot e . ° . .
0 1 2 3 4 0 1 2 3 4
4 o
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Algorithms for sparse tensor approximation Working set algorithms

Downward closed sets

For A downward closed, the space
VA =span{v; : i € N}

only depends on the hierarchy of spaces H}, and not on the particular choice of bases
{¥g§,...,¥p,} for these spaces.

Example 4 (Polynomial spaces)

If H,’;, = P,, and A is downward closed, then
Vi = span{x’ = X{l ...X;d tie N}

whatever the choice of polynomial basis {1§,...,15} of Pp,.
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Algorithms for sparse tensor approximation Working set algorithms

Downward closed sets

An element i of a set A is said maximal if and only if there is no j € A such that i < j and i # j.

A downward closed set A is completely determined by the set of its maximal elements

A= U R;.

ien
i maximal
A R1,4) Ria,1)

4o @
3dle e
2le o
ite . . . O]
Ole e o o @

o 1 2 3 4

The resulting space V, is such that

Va= > Hi= > Hi®..®H.

iEN ien
i maximal i maximal
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Algorithms for sparse tensor approximation Working set algorithms

Margins

For a given set A, a natural neighborhood is the margin of A, defined by
MN)={iel\N:FjeAst. ||i—jl1 =1}
Also, we define the reduced margin of A as

M AN)={i€l\N:i—e €Nforall ks.t. iy >1}

A set A and its margin M(A) A set A and its reduced margin M, (A)
o A A

5le e o M(A) sle e M,(4)
4t e ° ° 4re L]
3le e o 3le e o
2t e ° ° ° ° 2te ° ° °
1te ° ° ° ° ° ite ° ° ° °
0 . ° ° ° Ote ° o ° o °

0 1 2 3 4 0 1 3 4 5

v v

For a downward closed set A, an interesting property of the reduced margin M,(A) is that for
any subset A C M,(A), AU A is downward closed.
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Sparse interpolation

Sparse interpolation

Let {t"}i>0 be a sequence of points such that I';, = {t§,..., t},} is unisolvent for H};, that
means for all y € R™+1, there exists a unique function v € HY, such that v(t!) = y; for all
0 <i<m. Let {¢;""(t)}, be the interpolation functions in H.

We define the interpolation operator Z}, which associates to a function v the unique function
Ty (v) € HY, such that Tk (v)(t}) = v(t?) for 0 < i < m,
m
Th(v)(E) = > v(E)e ™ (1)

i=0

The interpolation operator can be written as the sum of difference operators

m
Iy =Y AY
i=0

with
AY =TV -1V, T§=o.
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Sparse interpolation

Sparse interpolation

To a multi-index i corresponds a point

x,-:(t,-ll,...,tf;).

For the product set of indices R; = {j € I : j < i}, we define the tensor product grid
Fi={xi:i € R},
which is unisolvent for the tensor space Vg, = H; = H,i ®...® Hin and the associated
interpolation operator Z; = Il.ll R...® I;Z such that
i iy

L)) =D oo D vl(ths et () £09 (xg) = Y v()E(%).

=0 j4=0 Jer;

Z; can be expressed as

=Y A

J<i

where
Aj=A0L ®... 04
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Sparse interpolation

Sparse interpolation

The above construction can be generalized to an arbitrary downward closed set A, with the
definition of an interpolation operator

Zn =ZA,'

ien
onto the space V), associated with the sparse grid
r/\Z{X;:iE/\}.

The grid I'p is unisolvent for the space Vj.
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