Low-rank and sparse methods for high-dimensional approximation and model order reduction

Lecture 3 Tensors - Sparse tensors

Outline

What are tensors ?

2 Sparse tensors

3 Algorithms for sparse tensor approximation

Sparse interpolation

Outline

What are tensors ?

2 Sparse tensors

3 Algorithms for sparse tensor approximation

Operation Sparse interpolation

Tensor product of vectors

For $I = \{1, ..., N\}$, an element v of the vector space \mathbb{R}^{I} is identified with the set of its coefficients $(v_{i})_{i \in I}$ on a certain basis $\{e_{i}\}_{i \in I}$ of \mathbb{R}^{I} ,

$$v=\sum_{i\in I}v_ie_i.$$

Given d index sets $I^{\nu} = \{1, \dots, N_{\nu}\}$, $1 \leq \nu \leq d$, we introduce the multi-index set

$$I = I_1 \times \ldots \times I_d.$$

An element v of \mathbb{R}^{l} is called a tensor of order d and is identified with a multidimensional array

$$(v_i)_{i\in I} = (v_{i_1,\ldots,i_d})_{i_1\in I_1,\ldots,i_d\in I_d}$$

which represents the coefficients of v on a certain basis of \mathbb{R}^{I} .

Tensor product of vectors

The entries of the multidimensional array are equivalently denoted

$$v(i) = v(i_1,\ldots,i_d).$$

Given d vectors $v^{(\nu)} \in \mathbb{R}^{l_{\nu}}, \, 1 \leq \nu \leq d,$ the tensor product of these vectors

$$v := v^{(1)} \otimes \ldots \otimes v^{(d)}$$

is defined by

$$v(i) = v^{(1)}(i_1) \dots v^{(d)}(i_d).$$

Such a tensor is called an elementary tensor. For d = 2, using matrix notations, $v \otimes w$ is identified with the matrix vw^{T} .

Tensor product of vectors

The tensor space $\mathbb{R}^{l} = \mathbb{R}^{l_1 \times \ldots \times l_d}$, also denoted $\mathbb{R}^{l_1} \otimes \ldots \otimes \mathbb{R}^{l_d}$, is defined by

$$\mathbb{R}^{l} = \mathbb{R}^{l_{1}} \otimes \ldots \otimes \mathbb{R}^{l_{d}} = \mathsf{span}\{v^{(1)} \otimes \ldots \otimes v^{(d)} : v^{(\nu)} \in \mathbb{R}^{l_{\nu}}, 1 \leq \nu \leq d\}$$

A canonical basis for \mathbb{R}^{l} is given by

$$e_i = e_{i_1} \otimes \ldots \otimes e_{i_d}, \quad i = (i_1, \ldots, i_d) \in I.$$

where

$$e_i(j) = e_{i_1}(j_1) \dots e_{i_d}(j_d) = \delta_{i_1,j_1} \dots \delta_{i_d,j_d} = \delta_{i,j}, \quad \forall j \in I.$$

A tensor $v \in \mathbb{R}^{I}$ can be written

$$v = \sum_{i \in I} v(i)e_i = \sum_{i_1 \in I_1} \dots \sum_{i_d \in I_d} v(i_1, \dots, i_d)e_{i_1} \otimes \dots \otimes e_{i_d}$$

A natural norm on \mathbb{R}^{I} is given by

$$\|\mathbf{v}\| = \sqrt{\sum_{i \in I} \mathbf{v}(i)^2}$$

which makes \mathbb{R}^{I} a Hilbert space.

Let $\mathcal{X}_{\nu} \subset \mathbb{R}$, $1 \leq \nu \leq d$, be an interval and V_{ν} be a space of functions defined on \mathcal{X}_{ν} . The tensor product of functions $v^{(\nu)} \in V_{\nu}$, denoted

$$v = v^{(1)} \otimes \ldots \otimes v^{(d)},$$

is a multivariate function defined on $\mathcal{X}=\mathcal{X}_1\times\ldots\times\mathcal{X}_d$ and such that

$$v(x) = v(x_1, \ldots, x_d) = v^{(1)}(x_1) \ldots v^{(d)}(x_d)$$

for $x = (x_1, \ldots, x_d) \in \mathcal{X}$. For example, for $i \in \mathbb{N}_0^d$, the monomial $x^i = x_1^{i_1} \ldots x_d^{i_d}$ is an elementary tensor.

The algebraic tensor product of spaces V_{ν} is defined as

$$V_1 \otimes \ldots \otimes V_d = \operatorname{span}\{v^{(1)} \otimes \ldots \otimes v^{(d)} : v^{(\nu)} \in V_{\nu}, 1 \le \nu \le d\}$$

which is the space of multivariate functions v which can be written as a finite linear combination of elementary (separated functions), i.e.

$$v(x) = \sum_{k=1}^{n} v_k^{(1)}(x_1) \dots v_k^{(d)}(x_d).$$

Up to a formal definition of the tensor product \otimes , the above construction can be extended to arbitrary vector spaces V_{ν} (not only spaces of functions).

Infinite dimensional tensor spaces

For infinite dimensional spaces V_{ν} , a Hilbert (or Banach) tensor space equipped with a norm $\|\cdot\|$ is obtained by the completion (w.r.t. $\|\cdot\|$) of the algebraic tensor space

$$\overline{V}^{\|\cdot\|} = \overline{V_1 \otimes \ldots \otimes V_d}^{\|\cdot\|}.$$

Example 1 (L^p spaces)

Let $1 \leq p < \infty$. If $V_{\nu} = L^{p}_{\mu_{\nu}}(\mathcal{X}_{\nu})$, then

$$L^p_{\mu_1}(\mathcal{X}_1) \otimes \ldots \otimes L^p_{\mu_d}(\mathcal{X}_d) \subset L^p_{\mu}(\mathcal{X}_1 \times \ldots \times \mathcal{X}_d)$$

with $\mu = \mu_1 \otimes \ldots \otimes \mu_d$, and

$$\overline{L^p_{\mu_1}(\mathcal{X}_1)\otimes\ldots\otimes L^p_{\mu_d}(\mathcal{X}_d)}^{\|\cdot\|} = L^p_{\mu}(\mathcal{X}_1\times\ldots\times\mathcal{X}_d)$$

where $\|\cdot\|$ is the natural norm on $L^p_{\mu}(\mathcal{X}_1 \times \ldots \times \mathcal{X}_d)$.

Example 2 (Bochner spaces)

Let \mathcal{X} be equipped with a finite measure μ , and let W be a Hilbert (or Banach) space. For $1 \leq p < \infty$, the Bochner space $L^{\mu}_{\mu}(\mathcal{X}; W)$ is the set of Bochner-measurable functions $u : \mathcal{X} \to W$ with bounded norm $\|u\|_{\rho} = (\int_{\mathcal{X}} \|u(x)\|_{W}^{\rho} \mu(dx))^{1/\rho}$, and

$$L^p_\mu(\mathcal{X}; W) = \overline{W \otimes L^p_\mu(\mathcal{X})}^{\|\cdot\|_p}.$$

Tensor product basis

If $\{\psi_i^{(\nu)}\}_{i\in I_{\nu}}$ is a basis of V_{ν} , then a basis of $V=V_1\otimes\ldots\otimes V_d$ is given by

$$\left\{\psi_i=\psi_{i_1}^{(1)}\otimes\ldots\otimes\psi_{i_d}^{(d)}:i\in I=I_1\times\ldots\times I_d\right\}.$$

A tensor $v \in V$ admits a decomposition

$$\mathbf{v} = \sum_{i \in I} \mathbf{a}(i)\psi_i = \sum_{i_1 \in I_1} \dots \sum_{i_d \in I_d} \mathbf{a}(i_1, \dots, i_d)\psi_{i_1}^{(1)} \otimes \dots \otimes \psi_{i_d}^{(d)},$$

and v can be identified with the set of its coefficients

 $a \in \mathbb{R}^{\prime}$.

What are tensors ? Orthogonal tensor product basis

If the V_{ν} are Hilbert spaces with inner products $(\cdot, \cdot)_{\nu}$ and associated norms $\|\cdot\|_{\nu}$, a canonical inner product on V can be first defined for elementary tensors

$$(v^{(1)} \otimes \ldots \otimes v^{(d)}, w^{(1)} \otimes \ldots \otimes w^{(d)}) = (v^{(1)}, w^{(1)}) \dots (v^{(d)}, w^{(d)})$$

and then extended by linearity to the whole space V. The associated norm $\|\cdot\|$ is called the canonical norm.

If the $\{\psi_i^{(\nu)}\}_{i \in I_{\nu}}$ are orthonormal bases of spaces V_{ν} , then $\{\psi_i\}_{i \in I}$ is an orthonormal basis of $\overline{V}^{\|\cdot\|}$. A tensor

$$\mathsf{v} = \sum_{i \in I} \mathsf{a}_i \psi_i$$

is such that

$$\|v\| = \sqrt{\sum_{i \in I} a_i^2} := \|a\|.$$

Therefore, the map Ψ which associates to a tensor $a \in \mathbb{R}^{I}$ the tensor $v = \Psi(a) := \sum_{i \in I} a_{i}\psi_{i}$ defines a linear isometry from \mathbb{R}^{I} to V for finite dimensional spaces, and between $\ell_{2}(I)$ and $\overline{V}^{\|\cdot\|}$ for infinite dimensional spaces.

What are tensors ? Curse of dimensionality

A tensor $a \in \mathbb{R}^{l} = \mathbb{R}^{l_1 \times \dots \times l_d}$ or a corresponding tensor $v = \sum_{i \in I} a_i \psi_i$, when $\#I_{\nu} = O(n)$ for each ν , has a storage complexity

$$\#I = \#I_1 \dots \#I_d = O(n^d)$$

which grows exponentially with the dimension.

Manipulating tensors requires exploiting special properties of tensors such as sparsity or low rankness.

Outline

What are tensors ?

2 Sparse tensors

3 Algorithms for sparse tensor approximation

Operation Sparse interpolation

Sparse tensors

Sparse tensors

Sparse tensors

A tensor $a \in \mathbb{R}^{I}$ is said to be Λ -sparse, with Λ a subset of indices in I, if

$$a_i = 0 \quad \forall i \notin \Lambda.$$

A tensor

$$\mathsf{v} = \sum_{i \in I} \mathsf{a}_i \psi_i \in \mathsf{V}$$

is said to be Λ -sparse relatively to the tensor product basis $\{\psi_i = \psi_{i_1}^{(1)} \otimes \ldots \otimes \psi_{i_d}^{(d)}\}_{i \in I}$ of V if the tensor $a = (a_i)_{i \in I}$ of its coefficients is Λ -sparse.

Sparse tensors

Sparse tensors

Structured subsets of multi-indices

The set of multi-indices in $I = \mathbb{N}_0^d$ with *p*-norm bounded by *m* is

$$\Lambda = \{i \in I : \|i\|_p \le m\}, \quad \|i\|_p = \begin{cases} \left(\sum_k i_k^p\right)^{1/p} & \text{for } 0$$

Structured subsets of multi-indices

Example 3

Consider the tensor basis of monomials

$$\psi_i(x) = x^i = x_1^{i_1} \dots x_d^{i_d}$$

• $\Lambda = \{i : \|i\|_{\infty} \leq m\}$ corresponds to the set of polynomials with partial degree less than m, with

$$\#\Lambda = (m+1)^{\circ}$$

• $\Lambda = \{i : ||i||_1 \le m\}$ corresponds to the set of polynomials with total degree less than *m*, with

$$\#\Lambda = \frac{(m+d)!}{m!d!}$$

Sparse tensors

Sparse tensors

Structured subsets of multi-indices

The set of multi-indices in $I = \mathbb{N}_0^d$ with weighted *p*-norm bounded by *m* is

$$\Lambda = \{i : \|i\|_{p, \mathbf{w}} \le m\}, \quad \|i\|_{p, \mathbf{w}} = \begin{cases} \left(\sum_{k} w_{k}{}^{p}i_{k}^{p}\right)^{1/p} & \text{for } 0$$

The choice of anisotropic sets is the key for high-dimensional approximation.

Sparse tensors

3 Algorithms for sparse tensor approximation

- Greedy algorithms
- Convex relaxation methods
- Working set algorithms

Operation Sparse interpolation

2 Sparse tensors

3 Algorithms for sparse tensor approximation

Greedy algorithms

• Convex relaxation methods

• Working set algorithms

O Sparse interpolation

Algorithms for sparse tensor approximation

Greedy algorithms

Greedy algorithms

Standard greedy algorithms can be applied for sparse tensor approximation by considering as the dictionary \mathcal{D} the tensor product basis

$$\mathcal{D} = \{\psi_i = \psi_{i_1}^{(1)} \otimes \ldots \otimes \psi_{i_d}^{(d)} : i \in I\}.$$

Greedy algorithms construct a sequence of approximations $(u_n)_{n\geq 1}$ such that

 $u_n \in \operatorname{span}\{\psi_i : i \in \Lambda_n\}$

where $(\Lambda_n)_{n\geq 1}$ is an increasing sequence of subsets such that

$$\Lambda_n = \Lambda_{n-1} \cup \{i^n\}, \quad i^n \in I$$

2 Sparse tensors

3 Algorithms for sparse tensor approximation

Greedy algorithms

• Convex relaxation methods

• Working set algorithms

Sparse interpolation

Convex relaxation methods

Convex relaxation methods for sparse tensor approximation consists in solving problems of the form

 $\min_{a\in\mathbb{R}^I}J(a)+\lambda\Omega(a)$

where J is the cost functional and where $\Omega(a)$ is a convex function which induces sparsity in the resulting tensor $a \in \mathbb{R}^{I}$.

Note that in practice, for the problem to be tractable, the tensor is constrained to be Λ -sparse for a given Λ with moderate cardinality.

Algorithms for sparse tensor approximation Convex relaxation methods

Convex relaxation methods

The standard approach uses the 1-norm

$$\Omega(\mathbf{a}) = \|\mathbf{a}\|_1 = \sum_{i \in I} |\mathbf{a}_i|,$$

which is the convex relaxation of the natural measure of sparsity $||a||_0 = \#\{i \in I : a_i \neq 0\}$.

A weighted version of the 1-norm can be defined as

$$\Omega(\mathbf{a}) = \|\mathbf{a}\|_{1,\omega} = \sum_{i \in \Lambda} \omega_i |\mathbf{a}_i|,$$

where the weights can be deduced from a sequence of weights $\omega_{i_{\nu}}^{(\nu)}$ associated with univariate functions $\psi_{i_{\nu}}^{(\nu)}$ according to $\omega_i = \omega_{i_1}^{(1)} \dots \omega_{i_d}^{(d)}$.

Also, by introducing a partition $\{\Lambda_k\}_{k=1}^K$ of Λ (e.g. associated with a hierarchy of tensor spaces), we can consider

$$\Omega(a) = \sum_{k=1}^{K} \omega_k \|a_{\Lambda_k}\|_2$$

for inducing group sparsity.

2 Sparse tensors

- B Algorithms for sparse tensor approximation
 - Greedy algorithms
 - Convex relaxation methods
 - Working set algorithms

Sparse interpolation

Working set algorithms

Working set algorithms for sparse tensor approximation construct an increasing sequence of subsets $(\Lambda_n)_{n\geq 1}$ in I and a sequence of approximations $u_n \in V_{\Lambda_n}$ computed through interpolation, regression or other projection methods.

The sequence of subsets is defined by

$$\Lambda_n = \Lambda_{n-1} \cup A_n$$

where A_n is a subset of a candidate set N_n .

The definition of N_n requires to define a strategy for the exploration of the set of multi-indices I.

Algorithms for sparse tensor approximation Hierarchy of tensor spaces

A Λ -sparse tensor v is an element of the space

$$V_{\Lambda} = \operatorname{span}\{\psi_i : i \in \Lambda\}.$$

A basis $\{\psi_i^{\nu}\}_{i \in I_{\nu}}$ in V_{ν} defines a hierarchy of spaces $H_m^{\nu} = \text{span}\{\psi_0^{\nu}, \dots, \psi_m^{\nu}\}$ such that

$$H_0^{\nu} \subset \ldots \subset H_m^{\nu} \subset \ldots \tag{1}$$

For example, when considering canonical polynomial bases on \mathcal{X}_{ν} , $H_m^{\nu} = \mathbb{P}_m(\mathcal{X}_{\nu})$.

For $i \in I$, the product set

$$R_i = \{0, \ldots, i_1\} \times \ldots \times \{0, \ldots, i_d\} = \{j \in I : j \le i\}$$

defines a tensor space

$$H_i := V_{R_i} = H_{i_1}^1 \otimes \ldots \otimes H_{i_d}^d$$

which only depends on the spaces $H_{i_{\nu}}^{\nu}$ and not on the choice of bases $\{\psi_0^{\nu}, \ldots, \psi_{i_{\nu}}^{\nu}\}$ for $H_{i_{\nu}}^{\nu}$.

For two multi-indices $i, j \in I$,

$$i \leq j$$
 implies $R_i \subset R_i$ and $H_i \subset H_i$

Downward closed sets

A set $\Lambda \subset I$ is downward closed if for $j \in I$,

$$(i\in \Lambda ext{ and } j\leq i) ext{ } \Rightarrow ext{ } j\in \Lambda$$

Downward closed sets

For Λ downward closed, the space

$$V_{\Lambda} = \operatorname{span}\{\psi_i : i \in \Lambda\}$$

only depends on the hierarchy of spaces H_m^{ν} and not on the particular choice of bases $\{\psi_0^{\nu}, \ldots, \psi_m^{\nu}\}$ for these spaces.

Example 4 (Polynomial spaces)

If $H_m^k = \mathbb{P}_m$ and Λ is downward closed, then

$$V_{\Lambda} = \operatorname{span}\{x^{i} = x_{1}^{i_{1}} \dots x_{d}^{i_{d}} : i \in \Lambda\}$$

whatever the choice of polynomial basis $\{\psi_0^k, \ldots, \psi_m^k\}$ of \mathbb{P}_m .

Algorithms for sparse tensor approximation

Downward closed sets

An element *i* of a set Λ is said maximal if and only if there is no $j \in \Lambda$ such that $i \leq j$ and $i \neq j$.

A downward closed set Λ is completely determined by the set of its maximal elements

$$\Lambda = \bigcup_{\substack{i \in \Lambda \\ i \text{ maximal}}} R_i.$$

The resulting space V_{Λ} is such that

$$V_{\Lambda} = \sum_{\substack{i \in \Lambda \\ i \text{ maximal}}} H_i = \sum_{\substack{i \in \Lambda \\ i \text{ maximal}}} H_{i_1}^1 \otimes \ldots \otimes H_{i_d}^d.$$

Algorithms for sparse tensor approximation

Working set algorithms

Margins

For a given set Λ , a natural neighborhood is the margin of Λ , defined by

$$\mathcal{M}(\Lambda) = \{i \in I \setminus \Lambda : \exists j \in \Lambda \text{ s.t. } \|i - j\|_1 = 1\}$$

Also, we define the reduced margin of Λ as

$$\mathcal{M}_r(\Lambda) = \{i \in I \setminus \Lambda : i - e_k \in \Lambda \text{ for all } k \text{ s.t. } i_k > 1\}$$

For a downward closed set Λ , an interesting property of the reduced margin $\mathcal{M}_r(\Lambda)$ is that for any subset $A \subset \mathcal{M}_r(\Lambda)$, $\Lambda \cup A$ is downward closed.

Outline

What are tensors ?

2 Sparse tensors

3 Algorithms for sparse tensor approximation

Sparse interpolation

Sparse interpolation

Sparse interpolation

Let $\{t_i^{\nu}\}_{i\geq 0}$ be a sequence of points such that $\Gamma_m^{\nu} = \{t_0^{\nu}, \ldots, t_m^{\nu}\}$ is unisolvent for H_m^{ν} , that means for all $y \in \mathbb{R}^{m+1}$, there exists a unique function $v \in H_m^{\nu}$ such that $v(t_i^{\nu}) = y_i$ for all $0 \leq i \leq m$. Let $\{\ell_i^{\nu,m}(t)\}_{i=0}^m$ be the interpolation functions in H_m^{ν} .

We define the interpolation operator \mathcal{I}_m^{ν} which associates to a function ν the unique function $\mathcal{I}_m^{\nu}(\nu) \in H_m^{\nu}$ such that $\mathcal{I}_m^{\nu}(\nu)(t_i^{\nu}) = \nu(t_i^{\nu})$ for $0 \le i \le m$,

$$\mathcal{I}_m^
u(
u)(t) = \sum_{i=0}^m v(t_i^
u) \ell_i^{
u,m}(t).$$

The interpolation operator can be written as the sum of difference operators

$$\mathcal{I}_m^{\nu} = \sum_{i=0}^m \Delta_i^{\nu}$$

with

$$\Delta_i^{\nu} = \mathcal{I}_i^{\nu} - \mathcal{I}_{i-1}^{\nu}, \quad \mathcal{I}_0^{\nu} = 0.$$

Sparse interpolation

To a multi-index *i* corresponds a point

$$x_i = (t_{i_1}^1, \ldots, t_{i_d}^d).$$

For the product set of indices $R_i = \{j \in I : j \leq i\}$, we define the tensor product grid

$$\Gamma_i = \{x_i : i \in R_i\},\$$

which is unisolvent for the tensor space $V_{R_i} = H_i = H_{i_1}^1 \otimes \ldots \otimes H_{i_d}^d$, and the associated interpolation operator $\mathcal{I}_i = \mathcal{I}_{i_1}^1 \otimes \ldots \otimes \mathcal{I}_{i_d}^d$ such that

$$\mathcal{I}_{i}(v)(x) = \sum_{j_{1}=0}^{i_{1}} \dots \sum_{j_{d}=0}^{i_{d}} v(t_{j_{1}}^{1}, \dots, t_{j_{d}}^{d}) \ell_{j_{1}}^{1,i_{1}}(x_{1}) \dots \ell_{j_{d}}^{d,i_{d}}(x_{d}) := \sum_{j \in \Gamma_{i}} v(x_{j}) \ell_{j}^{i}(x).$$

 \mathcal{I}_i can be expressed as

$$\mathcal{I}_i = \sum_{j \leq i} \Delta_j$$

where

$$\Delta_j = \Delta_{j_1}^1 \otimes \ldots \otimes \Delta_{j_d}^d$$

Sparse interpolation

Sparse interpolation

The above construction can be generalized to an arbitrary downward closed set $\Lambda,$ with the definition of an interpolation operator

$$\mathcal{I}_{\Lambda} = \sum_{i \in \Lambda} \Delta_i$$

onto the space V_{Λ} , associated with the sparse grid

$$\Gamma_{\Lambda} = \{ x_i : i \in \Lambda \}.$$

The grid Γ_{Λ} is unisolvent for the space V_{Λ} .