Low-rank and sparse methods for high-dimensional approximation and model order reduction

Lecture 3
Tensors - Sparse tensors

Outline

(1) What are tensors?
(2) Sparse tensors
(3) Algorithms for sparse tensor approximation
(4) Sparse interpolation

Outline

(1) What are tensors?
(2) Sparse tensors
(3) Algorithms for sparse tensor approximation
(4) Sparse interpolation

Tensor product of vectors

For $I=\{1, \ldots, N\}$, an element v of the vector space \mathbb{R}^{I} is identified with the set of its coefficients $\left(v_{i}\right)_{i \in I}$ on a certain basis $\left\{e_{i}\right\}_{i \in I}$ of \mathbb{R}^{\prime},

$$
v=\sum_{i \in I} v_{i} e_{i}
$$

Given d index sets $I^{\nu}=\left\{1, \ldots, N_{\nu}\right\}, 1 \leq \nu \leq d$, we introduce the multi-index set

$$
I=I_{1} \times \ldots \times I_{d}
$$

An element v of $\mathbb{R}^{/}$is called a tensor of order d and is identified with a multidimensional array

$$
\left(v_{i}\right)_{i \in I}=\left(v_{i_{\mathbf{1}}}, \ldots, i_{d}\right)_{i_{\mathbf{1}} \in I_{\mathbf{1}}, \ldots, i_{d} \in I_{d}}
$$

which represents the coefficients of v on a certain basis of \mathbb{R}^{\prime}.

Tensor product of vectors

The entries of the multidimensional array are equivalently denoted

$$
v(i)=v\left(i_{1}, \ldots, i_{d}\right)
$$

Given d vectors $v^{(\nu)} \in \mathbb{R}^{L_{\nu}}, 1 \leq \nu \leq d$, the tensor product of these vectors

$$
v:=v^{(1)} \otimes \ldots \otimes v^{(d)}
$$

is defined by

$$
v(i)=v^{(1)}\left(i_{1}\right) \ldots v^{(d)}\left(i_{d}\right)
$$

Such a tensor is called an elementary tensor. For $d=2$, using matrix notations, $v \otimes w$ is identified with the matrix $v w^{\top}$.

Tensor product of vectors

The tensor space $\mathbb{R}^{I}=\mathbb{R}^{/_{\mathbf{1}} \times \ldots \times I_{d}}$, also denoted $\mathbb{R}^{/_{\mathbf{1}}} \otimes \ldots \otimes \mathbb{R}^{I_{d}}$, is defined by

$$
\mathbb{R}^{\prime}=\mathbb{R}^{/_{1}} \otimes \ldots \otimes \mathbb{R}^{I_{d}}=\operatorname{span}\left\{v^{(1)} \otimes \ldots \otimes v^{(d)}: v^{(\nu)} \in \mathbb{R}^{I^{\nu}}, 1 \leq \nu \leq d\right\}
$$

A canonical basis for \mathbb{R}^{l} is given by

$$
e_{i}=e_{i_{1}} \otimes \ldots \otimes e_{i_{d}}, \quad i=\left(i_{1}, \ldots, i_{d}\right) \in I .
$$

where

$$
e_{i}(j)=e_{i_{1}}\left(j_{1}\right) \ldots e_{i_{d}}\left(j_{d}\right)=\delta_{i_{1}, j_{1}} \ldots \delta_{i_{d}, j_{d}}=\delta_{i, j}, \quad \forall j \in I
$$

A tensor $v \in \mathbb{R}^{\prime}$ can be written

$$
v=\sum_{i \in I} v(i) e_{i}=\sum_{i_{\mathbf{1}} \in I_{\mathbf{1}}} \ldots \sum_{i_{d} \in I_{d}} v\left(i_{1}, \ldots, i_{d}\right) e_{i_{\mathbf{1}}} \otimes \ldots \otimes e_{i_{d}}
$$

A natural norm on \mathbb{R}^{\prime} is given by

$$
\|v\|=\sqrt{\sum_{i \in 1} v(i)^{2}}
$$

which makes \mathbb{R}^{\prime} a Hilbert space.

Tensor product of functions

Let $\mathcal{X}_{\nu} \subset \mathbb{R}, 1 \leq \nu \leq d$, be an interval and V_{ν} be a space of functions defined on \mathcal{X}_{ν}. The tensor product of functions $v^{(\nu)} \in V_{\nu}$, denoted

$$
v=v^{(1)} \otimes \ldots \otimes v^{(d)}
$$

is a multivariate function defined on $\mathcal{X}=\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}$ and such that

$$
v(x)=v\left(x_{1}, \ldots, x_{d}\right)=v^{(1)}\left(x_{1}\right) \ldots v^{(d)}\left(x_{d}\right)
$$

for $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathcal{X}$. For example, for $i \in \mathbb{N}_{0}^{d}$, the monomial $x^{i}=x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}$ is an elementary tensor.

Tensor product of functions

The algebraic tensor product of spaces V_{ν} is defined as

$$
V_{1} \otimes \ldots \otimes V_{d}=\operatorname{span}\left\{v^{(1)} \otimes \ldots \otimes v^{(d)}: v^{(\nu)} \in V_{\nu}, 1 \leq \nu \leq d\right\}
$$

which is the space of multivariate functions v which can be written as a finite linear combination of elementary (separated functions), i.e.

$$
v(x)=\sum_{k=1}^{n} v_{k}^{(1)}\left(x_{1}\right) \ldots v_{k}^{(d)}\left(x_{d}\right)
$$

Up to a formal definition of the tensor product \otimes, the above construction can be extended to arbitrary vector spaces V_{ν} (not only spaces of functions).

Infinite dimensional tensor spaces

For infinite dimensional spaces V_{ν}, a Hilbert (or Banach) tensor space equipped with a norm $\|\cdot\|$ is obtained by the completion (w.r.t. $\|\cdot\|$) of the algebraic tensor space

$$
\bar{V}^{\|\cdot\|}=\overline{V_{1} \otimes \ldots \otimes V_{d}}{ }^{\|\cdot\|}
$$

Example 1 (L^{p} spaces)

Let $1 \leq p<\infty$. If $V_{\nu}=L_{\mu_{\nu}}^{p}\left(\mathcal{X}_{\nu}\right)$, then

$$
L_{\mu_{1}}^{p}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes L_{\mu_{d}}^{p}\left(\mathcal{X}_{d}\right) \subset L_{\mu}^{p}\left(\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}\right)
$$

with $\mu=\mu_{1} \otimes \ldots \otimes \mu_{d}$, and

$$
\overline{L_{\mu_{1}}^{p}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes L_{\mu_{d}}^{p}\left(\mathcal{X}_{d}\right)}{ }^{\|\cdot\|}=L_{\mu}^{p}\left(\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}\right)
$$

where $\|\cdot\|$ is the natural norm on $L_{\mu}^{p}\left(\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}\right)$.

Example 2 (Bochner spaces)

Let \mathcal{X} be equipped with a finite measure μ, and let W be a Hilbert (or Banach) space. For $1 \leq p<\infty$, the Bochner space $L_{\mu}^{p}(\mathcal{X} ; W)$ is the set of Bochner-measurable functions $u: \mathcal{X} \rightarrow W$ with bounded norm $\|u\|_{p}=\left(\int_{\mathcal{X}}\|u(x)\|_{W}^{p} \mu(d x)\right)^{1 / p}$, and

$$
L_{\mu}^{p}(\mathcal{X} ; W)=\overline{W \otimes L_{\mu}^{p}(\mathcal{X})}{ }^{\|\cdot\|_{p}}
$$

Tensor product basis

If $\left\{\psi_{i}^{(\nu)}\right\}_{i \in I_{\nu}}$ is a basis of V_{ν}, then a basis of $V=V_{1} \otimes \ldots \otimes V_{d}$ is given by

$$
\left\{\psi_{i}=\psi_{i_{1}}^{(1)} \otimes \ldots \otimes \psi_{i_{d}}^{(d)}: i \in I=I_{1} \times \ldots \times I_{d}\right\}
$$

A tensor $v \in V$ admits a decomposition

$$
v=\sum_{i \in l} a(i) \psi_{i}=\sum_{i_{\mathbf{1}} \in I_{\mathbf{1}}} \ldots \sum_{i_{d} \in I_{d}} a\left(i_{1}, \ldots, i_{d}\right) \psi_{i_{\mathbf{1}}}^{(1)} \otimes \ldots \otimes \psi_{i_{d}}^{(d)}
$$

and v can be identified with the set of its coefficients

$$
a \in \mathbb{R}^{I}
$$

Orthogonal tensor product basis

If the V_{ν} are Hilbert spaces with inner products $(\cdot, \cdot)_{\nu}$ and associated norms $\|\cdot\|_{\nu}$, a canonical inner product on V can be first defined for elementary tensors

$$
\left(v^{(1)} \otimes \ldots \otimes v^{(d)}, w^{(1)} \otimes \ldots \otimes w^{(d)}\right)=\left(v^{(1)}, w^{(1)}\right) \ldots\left(v^{(d)}, w^{(d)}\right)
$$

and then extended by linearity to the whole space V. The associated norm $\|\cdot\|$ is called the canonical norm.

If the $\left\{\psi_{i}^{(\nu)}\right\}_{i \in I_{\nu}}$ are orthonormal bases of spaces V_{ν}, then $\left\{\psi_{i}\right\}_{i \in I}$ is an orthonormal basis of $\bar{V}^{\|\cdot\|}$. A tensor

$$
v=\sum_{i \in I} a_{i} \psi_{i}
$$

is such that

$$
\|v\|=\sqrt{\sum_{i \in 1} a_{i}^{2}}:=\|a\| .
$$

Therefore, the map ψ which associates to a tensor $a \in \mathbb{R}^{\prime}$ the tensor $v=\Psi(a):=\sum_{i \in I} a_{i} \psi_{i}$ defines a linear isometry from \mathbb{R}^{\prime} to V for finite dimensional spaces, and between $\ell_{2}(I)$ and $\bar{V}^{\|\cdot\|}$ for infinite dimensional spaces.

Curse of dimensionality

A tensor $a \in \mathbb{R}^{\prime}=\mathbb{R}^{I_{1} \times \ldots \times I_{d}}$ or a corresponding tensor $v=\sum_{i \in I} a_{i} \psi_{i}$, when $\# I_{\nu}=O(n)$ for each ν, has a storage complexity

$$
\# I=\# I_{1} \ldots \# I_{d}=O\left(n^{d}\right)
$$

which grows exponentially with the dimension.

Manipulating tensors requires exploiting special properties of tensors such as sparsity or low rankness.

Sparse tensors

Outline

(2) What are tensors?
(2) Sparse tensors
(3) Algorithms for sparse tensor approximation
(4) Sparse interpolation

Sparse tensors

A tensor $a \in \mathbb{R}^{I}$ is said to be Λ-sparse, with Λ a subset of indices in I, if

$$
a_{i}=0 \quad \forall i \notin \Lambda .
$$

A \wedge-sparse tensor (left) and the set \wedge (right)

A tensor

$$
v=\sum_{i \in I} a_{i} \psi_{i} \in V
$$

is said to be Λ-sparse relatively to the tensor product basis $\left\{\psi_{i}=\psi_{i_{1}}^{(1)} \otimes \ldots \otimes \psi_{i_{d}}^{(d)}\right\}_{i \in I}$ of V if the tensor $a=\left(a_{i}\right)_{i \in I}$ of its coefficients is Λ-sparse.

Structured subsets of multi-indices

The set of multi-indices in $I=\mathbb{N}_{o}^{d}$ with p-norm bounded by m is

$$
\Lambda=\left\{i \in I:\|i\|_{p} \leq m\right\}, \quad\|i\|_{p}= \begin{cases}\left(\sum_{k} i_{k}^{p}\right)^{1 / p} & \text { for } 0<p<\infty \\ \max _{k} i_{k} & \text { for } p=\infty\end{cases}
$$

Structured subsets of multi-indices

Example 3

Consider the tensor basis of monomials

$$
\psi_{i}(x)=x^{i}=x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}
$$

- $\Lambda=\left\{i:\|i\|_{\infty} \leq m\right\}$ corresponds to the set of polynomials with partial degree less than m, with

$$
\# \Lambda=(m+1)^{d}
$$

- $\Lambda=\left\{i:\|i\|_{1} \leq m\right\}$ corresponds to the set of polynomials with total degree less than m, with

$$
\# \Lambda=\frac{(m+d)!}{m!d!}
$$

Structured subsets of multi-indices

The set of multi-indices in $I=\mathbb{N}_{0}^{d}$ with weighted p-norm bounded by m is

$$
\Lambda=\left\{i:\|i\|_{p, w} \leq m\right\}, \quad\|i\|_{p, w}= \begin{cases}\left(\sum_{k} w_{k} p i_{k}^{p}\right)^{1 / p} & \text { for } 0<p<\infty \\ \max _{k} w_{k} i_{k} & \text { for } p=\infty\end{cases}
$$

$$
m=6, p=\infty, w=(1,2) \quad m=6, p=1, w=(1,2) \quad m=6, p=1 / 2, w=(1,2)
$$

The choice of anisotropic sets is the key for high-dimensional approximation.
(3) Algorithms for sparse tensor approximation

- Greedy algorithms
- Convex relaxation methods
- Working set algorithms
(4) Sparse interpolation
(1) What are tensors ?

2 Sparse tensors
(3) Algorithms for sparse tensor approximation

- Greedy algorithms
- Convex relaxation methods
- Working set algorithms
(4) Sparse interpolation

Greedy algorithms

Standard greedy algorithms can be applied for sparse tensor approximation by considering as the dictionary \mathcal{D} the tensor product basis

$$
\mathcal{D}=\left\{\psi_{i}=\psi_{i_{1}}^{(1)} \otimes \ldots \otimes \psi_{i_{d}}^{(d)}: i \in I\right\} .
$$

Greedy algorithms construct a sequence of approximations $\left(u_{n}\right)_{n \geq 1}$ such that

$$
u_{n} \in \operatorname{span}\left\{\psi_{i}: i \in \Lambda_{n}\right\}
$$

where $\left(\Lambda_{n}\right)_{n \geq 1}$ is an increasing sequence of subsets such that

$$
\Lambda_{n}=\Lambda_{n-1} \cup\left\{i^{n}\right\}, \quad i^{n} \in I
$$

(3) Algorithms for sparse tensor approximation

- Greedy algorithms
- Convex relaxation methods
- Working set algorithms

4 Sparse interpolation

Convex relaxation methods

Convex relaxation methods for sparse tensor approximation consists in solving problems of the form

$$
\min _{a \in \mathbb{R}^{\prime}} J(a)+\lambda \Omega(a)
$$

where J is the cost functional and where $\Omega(a)$ is a convex function which induces sparsity in the resulting tensor $a \in \mathbb{R}^{\prime}$.

Note that in practice, for the problem to be tractable, the tensor is constrained to be Λ-sparse for a given Λ with moderate cardinality.

Convex relaxation methods

The standard approach uses the 1-norm

$$
\Omega(a)=\|a\|_{1}=\sum_{i \in I}\left|a_{i}\right|,
$$

which is the convex relaxation of the natural measure of sparsity $\|a\|_{0}=\#\left\{i \in I: a_{i} \neq 0\right\}$.
A weighted version of the 1 -norm can be defined as

$$
\Omega(a)=\|a\|_{1, \omega}=\sum_{i \in \Lambda} \omega_{i}\left|a_{i}\right|,
$$

where the weights can be deduced from a sequence of weights $\omega_{i_{\nu}}^{(\nu)}$ associated with univariate functions $\psi_{i_{\nu}}^{(\nu)}$ according to $\omega_{i}=\omega_{i_{1}}^{(1)} \ldots \omega_{i_{d}}^{(d)}$.

Also, by introducing a partition $\left\{\Lambda_{k}\right\}_{k=1}^{K}$ of Λ (e.g. associated with a hierarchy of tensor spaces), we can consider

$$
\Omega(a)=\sum_{k=1}^{K} \omega_{k}\left\|a_{\wedge_{k}}\right\|_{2}
$$

for inducing group sparsity.
(1) What are tensors ?

2 Sparse tensors
(3) Algorithms for sparse tensor approximation

- Greedy algorithms
- Convex relaxation methods
- Working set algorithms
(4) Sparse interpolation

Working set algorithms

Working set algorithms for sparse tensor approximation construct an increasing sequence of subsets $\left(\Lambda_{n}\right)_{n \geq 1}$ in I and a sequence of approximations $u_{n} \in V_{\Lambda_{n}}$ computed through interpolation, regression or other projection methods.

The sequence of subsets is defined by

$$
\Lambda_{n}=\Lambda_{n-1} \cup A_{n}
$$

where A_{n} is a subset of a candidate set N_{n}.

The definition of N_{n} requires to define a strategy for the exploration of the set of multi-indices I.

Hierarchy of tensor spaces

A Λ-sparse tensor v is an element of the space

$$
V_{\Lambda}=\operatorname{span}\left\{\psi_{i}: i \in \Lambda\right\}
$$

A basis $\left\{\psi_{i}^{\nu}\right\}_{i \in I_{\nu}}$ in V_{ν} defines a hierarchy of spaces $H_{m}^{\nu}=\operatorname{span}\left\{\psi_{0}^{\nu}, \ldots, \psi_{m}^{\nu}\right\}$ such that

$$
\begin{equation*}
H_{0}^{\nu} \subset \ldots \subset H_{m}^{\nu} \subset \ldots \tag{1}
\end{equation*}
$$

For example, when considering canonical polynomial bases on $\mathcal{X}_{\nu}, H_{m}^{\nu}=\mathbb{P}_{m}\left(\mathcal{X}_{\nu}\right)$.
For $i \in I$, the product set

$$
R_{i}=\left\{0, \ldots i_{1}\right\} \times \ldots \times\left\{0, \ldots, i_{d}\right\}=\{j \in I: j \leq i\}
$$

defines a tensor space

$$
H_{i}:=V_{R_{i}}=H_{i_{1}}^{1} \otimes \ldots \otimes H_{i_{d}}^{d}
$$

which only depends on the spaces $H_{i_{\nu}}^{\nu}$ and not on the choice of bases $\left\{\psi_{0}^{\nu}, \ldots, \psi_{i_{\nu}}^{\nu}\right\}$ for $H_{i_{\nu}}^{\nu}$.
For two multi-indices $i, j \in I$,

$$
i \leq j \quad \text { implies } \quad R_{i} \subset R_{j} \quad \text { and } \quad H_{i} \subset H_{j}
$$

Downward closed sets

A set $\Lambda \subset I$ is downward closed if for $j \in I$,

$$
(i \in \Lambda \text { and } j \leq i) \quad \Rightarrow \quad j \in \Lambda
$$

Not downward closed

Downward closed sets

For Λ downward closed, the space

$$
V_{\Lambda}=\operatorname{span}\left\{\psi_{i}: i \in \Lambda\right\}
$$

only depends on the hierarchy of spaces H_{m}^{ν} and not on the particular choice of bases $\left\{\psi_{0}^{\nu}, \ldots, \psi_{m}^{\nu}\right\}$ for these spaces.

Example 4 (Polynomial spaces)

If $H_{m}^{k}=\mathbb{P}_{m}$ and Λ is downward closed, then

$$
V_{\Lambda}=\operatorname{span}\left\{x^{i}=x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}: i \in \Lambda\right\}
$$

whatever the choice of polynomial basis $\left\{\psi_{0}^{k}, \ldots, \psi_{m}^{k}\right\}$ of \mathbb{P}_{m}.

Downward closed sets

An element i of a set Λ is said maximal if and only if there is no $j \in \Lambda$ such that $i \leq j$ and $i \neq j$.
A downward closed set Λ is completely determined by the set of its maximal elements

$$
\Lambda=\bigcup_{\substack{i \in \Lambda \\ i \text { maximal }}} R_{i}
$$

The resulting space V_{\wedge} is such that

$$
V_{\Lambda}=\sum_{\substack{i \in \Lambda \\ i \text { maximal }}} H_{i}=\sum_{\substack{i \in \Lambda \\ i \text { maximal }}} H_{i_{\mathbf{1}}}^{1} \otimes \ldots \otimes H_{i_{d}}^{d}
$$

Margins

For a given set Λ, a natural neighborhood is the margin of Λ, defined by

$$
\mathcal{M}(\Lambda)=\left\{i \in I \backslash \Lambda: \exists j \in \Lambda \text { s.t. }\|i-j\|_{1}=1\right\}
$$

Also, we define the reduced margin of Λ as

$$
\mathcal{M}_{r}(\Lambda)=\left\{i \in I \backslash \Lambda: i-e_{k} \in \Lambda \text { for all } k \text { s.t. } i_{k}>1\right\}
$$

A set Λ and its margin $\mathcal{M}(\Lambda)$

A set Λ and its reduced margin $\mathcal{M}_{r}(\Lambda)$

For a downward closed set Λ, an interesting property of the reduced margin $\mathcal{M}_{r}(\Lambda)$ is that for any subset $A \subset \mathcal{M}_{r}(\Lambda), \Lambda \cup A$ is downward closed.

Sparse interpolation

Outline

(2) What are tensors ?
(2) Sparse tensors
(3) Algorithms for sparse tensor approximation

4 Sparse interpolation

Sparse interpolation

Sparse interpolation

Let $\left\{t_{i}^{\nu}\right\}_{i \geq 0}$ be a sequence of points such that $\Gamma_{m}^{\nu}=\left\{t_{0}^{\nu}, \ldots, t_{m}^{\nu}\right\}$ is unisolvent for H_{m}^{ν}, that means for all $y \in \mathbb{R}^{m+1}$, there exists a unique function $v \in H_{m}^{\nu}$ such that $v\left(t_{i}^{\nu}\right)=y_{i}$ for all $0 \leq i \leq m$. Let $\left\{\ell_{i}^{\nu, m}(t)\right\}_{i=0}^{m}$ be the interpolation functions in H_{m}^{ν}.

We define the interpolation operator \mathcal{I}_{m}^{ν} which associates to a function v the unique function $\mathcal{I}_{m}^{\nu}(v) \in H_{m}^{\nu}$ such that $\mathcal{I}_{m}^{\nu}(v)\left(t_{i}^{\nu}\right)=v\left(t_{i}^{\nu}\right)$ for $0 \leq i \leq m$,

$$
\mathcal{I}_{m}^{\nu}(v)(t)=\sum_{i=0}^{m} v\left(t_{i}^{\nu}\right) \ell_{i}^{\nu, m}(t)
$$

The interpolation operator can be written as the sum of difference operators

$$
\mathcal{I}_{m}^{\nu}=\sum_{i=0}^{m} \Delta_{i}^{\nu}
$$

with

$$
\Delta_{i}^{\nu}=\mathcal{I}_{i}^{\nu}-\mathcal{I}_{i-1}^{\nu}, \quad \mathcal{I}_{0}^{\nu}=0
$$

Sparse interpolation

Sparse interpolation

To a multi-index i corresponds a point

$$
x_{i}=\left(t_{i_{1}}^{1}, \ldots, t_{i_{d}}^{d}\right)
$$

For the product set of indices $R_{i}=\{j \in I: j \leq i\}$, we define the tensor product grid

$$
\Gamma_{i}=\left\{x_{i}: i \in R_{i}\right\},
$$

which is unisolvent for the tensor space $V_{R_{i}}=H_{i}=H_{i_{1}}^{1} \otimes \ldots \otimes H_{i_{d}}^{d}$, and the associated interpolation operator $\mathcal{I}_{i}=\mathcal{I}_{i_{1}}^{1} \otimes \ldots \otimes \mathcal{I}_{i_{d}}^{d}$ such that

$$
\mathcal{I}_{i}(v)(x)=\sum_{j_{1}=0}^{i_{1}} \ldots \sum_{j_{d}=0}^{i_{d}} v\left(t_{j_{1}}^{1}, \ldots, t_{j_{d}}^{d}\right) \ell_{j_{1}}^{1, i_{1}}\left(x_{1}\right) \ldots \ell_{j_{d}}^{d, i_{d}}\left(x_{d}\right):=\sum_{j \in \Gamma_{i}} v\left(x_{j}\right) \ell_{j}^{i}(x)
$$

\mathcal{I}_{i} can be expressed as

$$
\mathcal{I}_{i}=\sum_{j \leq i} \Delta_{j}
$$

where

$$
\Delta_{j}=\Delta_{j_{1}}^{1} \otimes \ldots \otimes \Delta_{j_{d}}^{d} .
$$

Sparse interpolation

Sparse interpolation

The above construction can be generalized to an arbitrary downward closed set Λ, with the definition of an interpolation operator

$$
\mathcal{I}_{\Lambda}=\sum_{i \in \Lambda} \Delta_{i}
$$

onto the space V_{Λ}, associated with the sparse grid

$$
\Gamma_{\wedge}=\left\{x_{i}: i \in \Lambda\right\} .
$$

The grid Γ_{Λ} is unisolvent for the space V_{Λ}.

