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What are tensors ?

Tensor product of vectors
For I = {1, . . . ,N}, an element v of the vector space RI is identified with the set of its
coefficients (vi )i∈I on a certain basis {ei}i∈I of RI ,

v =
∑
i∈I

viei .

Given d index sets Iν = {1, . . . ,Nν}, 1 ≤ ν ≤ d , we introduce the multi-index set

I = I1 × . . .× Id .

An element v of RI is called a tensor of order d and is identified with a multidimensional array

(vi )i∈I = (vi1,...,id )i1∈I1,...,id∈Id

which represents the coefficients of v on a certain basis of RI .

d = 1 d = 2 d = 3
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What are tensors ?

Tensor product of vectors
The entries of the multidimensional array are equivalently denoted

v(i) = v(i1, . . . , id ).

Given d vectors v (ν) ∈ RIν , 1 ≤ ν ≤ d , the tensor product of these vectors

v := v (1) ⊗ . . .⊗ v (d)

is defined by
v(i) = v (1)(i1) . . . v (d)(id ).

Such a tensor is called an elementary tensor. For d = 2, using matrix notations, v ⊗ w is
identified with the matrix vwT .

d = 2

⊗ ≡

d = 3

⊗ ⊗ ≡
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What are tensors ?

Tensor product of vectors

The tensor space RI = RI1×...×Id , also denoted RI1 ⊗ . . .⊗ RId , is defined by

RI = RI1 ⊗ . . .⊗ RId = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ RIν , 1 ≤ ν ≤ d}

A canonical basis for RI is given by

ei = ei1 ⊗ . . .⊗ eid , i = (i1, . . . , id ) ∈ I .

where
ei (j) = ei1 (j1) . . . eid (jd ) = δi1,j1 . . . δid ,jd = δi,j , ∀j ∈ I .

A tensor v ∈ RI can be written

v =
∑
i∈I

v(i)ei =
∑
i1∈I1

. . .
∑
id∈Id

v(i1, . . . , id )ei1 ⊗ . . .⊗ eid

A natural norm on RI is given by

‖v‖ =

√∑
i∈I

v(i)2

which makes RI a Hilbert space.
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What are tensors ?

Tensor product of functions

Let Xν ⊂ R, 1 ≤ ν ≤ d , be an interval and Vν be a space of functions defined on Xν .

The tensor product of functions v (ν) ∈ Vν , denoted

v = v (1) ⊗ . . .⊗ v (d),

is a multivariate function defined on X = X1 × . . .×Xd and such that

v(x) = v(x1, . . . , xd ) = v (1)(x1) . . . v (d)(xd )

for x = (x1, . . . , xd ) ∈ X . For example, for i ∈ Nd
0 , the monomial x i = x i11 . . . x

id
d is an

elementary tensor.

Anthony Nouy 6 / 27



What are tensors ?

Tensor product of functions

The algebraic tensor product of spaces Vν is defined as

V1 ⊗ . . .⊗ Vd = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ Vν , 1 ≤ ν ≤ d}

which is the space of multivariate functions v which can be written as a finite linear combination
of elementary (separated functions), i.e.

v(x) =
n∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd ).

Up to a formal definition of the tensor product ⊗, the above construction can be extended to
arbitrary vector spaces Vν (not only spaces of functions).
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What are tensors ?

Infinite dimensional tensor spaces
For infinite dimensional spaces Vν , a Hilbert (or Banach) tensor space equipped with a norm
‖ · ‖ is obtained by the completion (w.r.t. ‖ · ‖) of the algebraic tensor space

V
‖·‖

= V1 ⊗ . . .⊗ Vd
‖·‖
.

Example 1 (Lp spaces)

Let 1 ≤ p <∞. If Vν = Lpµν (Xν), then

Lpµ1 (X1)⊗ . . .⊗ Lpµd
(Xd ) ⊂ Lpµ(X1 × . . .×Xd )

with µ = µ1 ⊗ . . .⊗ µd , and

Lpµ1 (X1)⊗ . . .⊗ Lpµd
(Xd )

‖·‖
= Lpµ(X1 × . . .×Xd )

where ‖ · ‖ is the natural norm on Lpµ(X1 × . . .×Xd ).

Example 2 (Bochner spaces)

Let X be equipped with a finite measure µ, and let W be a Hilbert (or Banach) space. For
1 ≤ p <∞, the Bochner space Lpµ(X ;W ) is the set of Bochner-measurable functions
u : X →W with bounded norm ‖u‖p = (

∫
X ‖u(x)‖pWµ(dx))1/p , and

Lpµ(X ;W ) = W ⊗ Lpµ(X )
‖·‖p

.
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What are tensors ?

Tensor product basis

If {ψ(ν)
i }i∈Iν is a basis of Vν , then a basis of V = V1 ⊗ . . .⊗ Vd is given by{

ψi = ψ
(1)
i1
⊗ . . .⊗ ψ(d)

id
: i ∈ I = I1 × . . .× Id

}
.

A tensor v ∈ V admits a decomposition

v =
∑
i∈I

a(i)ψi =
∑
i1∈I1

. . .
∑
id∈Id

a(i1, . . . , id )ψ
(1)
i1
⊗ . . .⊗ ψ(d)

id
,

and v can be identified with the set of its coefficients

a ∈ RI .
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What are tensors ?

Orthogonal tensor product basis

If the Vν are Hilbert spaces with inner products (·, ·)ν and associated norms ‖ · ‖ν , a canonical
inner product on V can be first defined for elementary tensors

(v (1) ⊗ . . .⊗ v (d),w (1) ⊗ . . .⊗ w (d)) = (v (1),w (1)) . . . (v (d),w (d))

and then extended by linearity to the whole space V . The associated norm ‖ · ‖ is called the
canonical norm.

If the {ψ(ν)
i }i∈Iν are orthonormal bases of spaces Vν , then {ψi}i∈I is an orthonormal basis of

V
‖·‖. A tensor

v =
∑
i∈I

aiψi

is such that

‖v‖ =

√∑
i∈I

a2
i := ‖a‖.

Therefore, the map Ψ which associates to a tensor a ∈ RI the tensor v = Ψ(a) :=
∑

i∈I aiψi

defines a linear isometry from RI to V for finite dimensional spaces, and between `2(I ) and V
‖·‖

for infinite dimensional spaces.
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What are tensors ?

Curse of dimensionality

A tensor a ∈ RI = RI1×...×Id or a corresponding tensor v =
∑

i∈I aiψi , when #Iν = O(n) for
each ν, has a storage complexity

#I = #I1 . . .#Id = O(nd )

which grows exponentially with the dimension.

Manipulating tensors requires exploiting special properties of tensors such as sparsity or low
rankness.
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Sparse tensors Sparse tensors

Sparse tensors
A tensor a ∈ RI is said to be Λ-sparse, with Λ a subset of indices in I , if

ai = 0 ∀i /∈ Λ.

A Λ-sparse tensor (left) and the set Λ (right)

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

A tensor
v =

∑
i∈I

aiψi ∈ V

is said to be Λ-sparse relatively to the tensor product basis {ψi = ψ
(1)
i1
⊗ . . .⊗ ψ(d)

id
}i∈I of V if

the tensor a = (ai )i∈I of its coefficients is Λ-sparse.
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Sparse tensors Sparse tensors

Structured subsets of multi-indices

The set of multi-indices in I = Nd
0 with p-norm bounded by m is

Λ = {i ∈ I : ‖i‖p ≤ m}, ‖i‖p =

{(∑
k i

p
k

)1/p for 0 < p <∞
maxk ik for p =∞

m = 6, p =∞ m = 6, p = 1 m = 6, p = 1/2
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Sparse tensors Sparse tensors

Structured subsets of multi-indices

Example 3

Consider the tensor basis of monomials

ψi (x) = x i = x i11 . . . x
id
d

Λ = {i : ‖i‖∞ ≤ m} corresponds to the set of polynomials with partial degree less than m,
with

#Λ = (m + 1)d

Λ = {i : ‖i‖1 ≤ m} corresponds to the set of polynomials with total degree less than m, with

#Λ =
(m + d)!

m!d!
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Sparse tensors Sparse tensors

Structured subsets of multi-indices

The set of multi-indices in I = Nd
0 with weighted p-norm bounded by m is

Λ = {i : ‖i‖p,w ≤ m}, ‖i‖p,w =

{(∑
k wk

p ipk
)1/p for 0 < p <∞

maxk wk ik for p =∞

m = 6, p =∞, w = (1, 2) m = 6, p = 1, w = (1, 2) m = 6, p = 1/2, w = (1, 2)

The choice of anisotropic sets is the key for high-dimensional approximation.
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Algorithms for sparse tensor approximation Greedy algorithms

Greedy algorithms

Standard greedy algorithms can be applied for sparse tensor approximation by considering as the
dictionary D the tensor product basis

D = {ψi = ψ
(1)
i1
⊗ . . .⊗ ψ(d)

id
: i ∈ I}.

Greedy algorithms construct a sequence of approximations (un)n≥1 such that

un ∈ span{ψi : i ∈ Λn}

where (Λn)n≥1 is an increasing sequence of subsets such that

Λn = Λn−1 ∪ {in}, in ∈ I .

i1

i2

i3

i4

Λ1 = {i1} Λ1 ∪ {i2} Λ2 ∪ {i3} Λ3 ∪ {i4}

...
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Algorithms for sparse tensor approximation Convex relaxation methods
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Algorithms for sparse tensor approximation Convex relaxation methods

Convex relaxation methods

Convex relaxation methods for sparse tensor approximation consists in solving problems of the
form

min
a∈RI

J(a) + λΩ(a)

where J is the cost functional and where Ω(a) is a convex function which induces sparsity in the
resulting tensor a ∈ RI .

Note that in practice, for the problem to be tractable, the tensor is constrained to be Λ-sparse
for a given Λ with moderate cardinality.
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Algorithms for sparse tensor approximation Convex relaxation methods

Convex relaxation methods

The standard approach uses the 1-norm

Ω(a) = ‖a‖1 =
∑
i∈I
|ai |,

which is the convex relaxation of the natural measure of sparsity ‖a‖0 = #{i ∈ I : ai 6= 0}.

A weighted version of the 1-norm can be defined as

Ω(a) = ‖a‖1,ω =
∑
i∈Λ

ωi |ai |,

where the weights can be deduced from a sequence of weights ω(ν)
iν

associated with univariate

functions ψ(ν)
iν

according to ωi = ω
(1)
i1
. . . ω

(d)
id

.

Also, by introducing a partition {Λk}Kk=1 of Λ (e.g. associated with a hierarchy of tensor spaces),
we can consider

Ω(a) =
K∑

k=1

ωk‖aΛk
‖2

for inducing group sparsity.

Anthony Nouy 18 / 27



Algorithms for sparse tensor approximation Working set algorithms
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Algorithms for sparse tensor approximation Working set algorithms

Working set algorithms

Working set algorithms for sparse tensor approximation construct an increasing sequence of
subsets (Λn)n≥1 in I and a sequence of approximations un ∈ VΛn computed through
interpolation, regression or other projection methods.

The sequence of subsets is defined by

Λn = Λn−1 ∪ An

where An is a subset of a candidate set Nn.

...

Λn−1 Nn An Λn

...

The definition of Nn requires to define a strategy for the exploration of the set of multi-indices I .
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Algorithms for sparse tensor approximation Working set algorithms

Hierarchy of tensor spaces

A Λ-sparse tensor v is an element of the space

VΛ = span{ψi : i ∈ Λ}.

A basis {ψνi }i∈Iν in Vν defines a hierarchy of spaces Hνm = span{ψν0 , . . . , ψνm} such that

Hν0 ⊂ . . . ⊂ Hνm ⊂ . . . (1)

For example, when considering canonical polynomial bases on Xν , Hνm = Pm(Xν).

For i ∈ I , the product set

Ri = {0, . . . i1} × . . .× {0, . . . , id} = {j ∈ I : j ≤ i}

defines a tensor space
Hi := VRi

= H1
i1 ⊗ . . .⊗ Hd

id

which only depends on the spaces Hνiν and not on the choice of bases {ψν0 , . . . , ψνiν } for H
ν
iν
.

For two multi-indices i , j ∈ I ,

i ≤ j implies Ri ⊂ Rj and Hi ⊂ Hj
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Algorithms for sparse tensor approximation Working set algorithms

Downward closed sets

A set Λ ⊂ I is downward closed if for j ∈ I ,

(i ∈ Λ and j ≤ i) ⇒ j ∈ Λ

Downward closed Not downward closed
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Algorithms for sparse tensor approximation Working set algorithms

Downward closed sets

For Λ downward closed, the space

VΛ = span{ψi : i ∈ Λ}

only depends on the hierarchy of spaces Hνm and not on the particular choice of bases
{ψν0 , . . . , ψνm} for these spaces.

Example 4 (Polynomial spaces)

If Hk
m = Pm and Λ is downward closed, then

VΛ = span{x i = x i11 . . . x
id
d : i ∈ Λ}

whatever the choice of polynomial basis {ψk
0 , . . . , ψ

k
m} of Pm.
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Algorithms for sparse tensor approximation Working set algorithms

Downward closed sets
An element i of a set Λ is said maximal if and only if there is no j ∈ Λ such that i ≤ j and i 6= j .

A downward closed set Λ is completely determined by the set of its maximal elements

Λ =
⋃
i∈Λ

i maximal

Ri .

Λ R(1,4) R(4,1)

The resulting space VΛ is such that

VΛ =
∑
i∈Λ

i maximal

Hi =
∑
i∈Λ

i maximal

H1
i1 ⊗ . . .⊗ Hd

id
.
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Algorithms for sparse tensor approximation Working set algorithms

Margins
For a given set Λ, a natural neighborhood is the margin of Λ, defined by

M(Λ) = {i ∈ I \ Λ : ∃j ∈ Λ s.t. ‖i − j‖1 = 1}

Also, we define the reduced margin of Λ as

Mr (Λ) = {i ∈ I \ Λ : i − ek ∈ Λ for all k s.t. ik > 1}

A set Λ and its marginM(Λ) A set Λ and its reduced marginMr (Λ)

For a downward closed set Λ, an interesting property of the reduced marginMr (Λ) is that for
any subset A ⊂Mr (Λ), Λ ∪ A is downward closed.
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Sparse interpolation

Sparse interpolation

Let {tνi }i≥0 be a sequence of points such that Γνm = {tν0 , . . . , tνm} is unisolvent for Hνm, that
means for all y ∈ Rm+1, there exists a unique function v ∈ Hνm such that v(tνi ) = yi for all
0 ≤ i ≤ m. Let {`ν,mi (t)}mi=0 be the interpolation functions in Hνm.

We define the interpolation operator Iνm which associates to a function v the unique function
Iνm(v) ∈ Hνm such that Iνm(v)(tνi ) = v(tνi ) for 0 ≤ i ≤ m,

Iνm(v)(t) =
m∑
i=0

v(tνi )`ν,mi (t).

The interpolation operator can be written as the sum of difference operators

Iνm =
m∑
i=0

∆ν
i

with
∆ν

i = Iνi − I
ν
i−1, Iν0 = 0.
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Sparse interpolation

Sparse interpolation

To a multi-index i corresponds a point

xi = (t1i1 , . . . , t
d
id

).

For the product set of indices Ri = {j ∈ I : j ≤ i}, we define the tensor product grid

Γi = {xi : i ∈ Ri},

which is unisolvent for the tensor space VRi
= Hi = H1

i1
⊗ . . .⊗ Hd

id
, and the associated

interpolation operator Ii = I1
i1
⊗ . . .⊗ Idid such that

Ii (v)(x) =

i1∑
j1=0

. . .

id∑
jd=0

v(t1j1 , . . . , t
d
jd

)`1,i1j1
(x1) . . . `

d,id
jd

(xd ) :=
∑
j∈Γi

v(xj )`
i
j (x).

Ii can be expressed as
Ii =

∑
j≤i

∆j

where
∆j = ∆1

j1 ⊗ . . .⊗∆d
jd
.
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Sparse interpolation

Sparse interpolation

The above construction can be generalized to an arbitrary downward closed set Λ, with the
definition of an interpolation operator

IΛ =
∑
i∈Λ

∆i

onto the space VΛ, associated with the sparse grid

ΓΛ = {xi : i ∈ Λ}.

The grid ΓΛ is unisolvent for the space VΛ.
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