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Low-rank order-two tensors

Rank of order-two tensors
The rank of an order-two tensor u ∈ V ⊗W , denoted rank(u), is the minimal integer r such that

u =
r∑

k=1

vk ⊗ wk

for some vk ∈ V and wk ∈W .

A tensor u ∈ Rn ⊗ Rm is identified with a matrix in u ∈ Rn×m. The rank of u coincides with the
matrix rank, which is the minimal integer r such that

u =
r∑

k=1

vkw
T
k = VWT ,

where V = (v1, . . . , vr ) ∈ Rn×r and W = (w1, . . . ,wr ) ∈ Rm×r .

= + + =
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Low-rank order-two tensors

Low-rank format for order-two tensors

The set of tensors in V ⊗W with rank bounded by r , denoted

Rr = {v : rank(v) ≤ r},

is not a linear space nor a convex set. However, it has many favorable properties for a numerical
use.

In particular, since the application v 7→ rank(v) is lower semi-continuous, the set Rr is closed,
which makes best approximation problems in Rr well posed.

Anthony Nouy 4 / 43



Canonical format

Outline

1 Low-rank order-two tensors

2 Canonical format

3 α-ranks and related low-rank tensor formats

4 Tensor networks

5 Parametrization of low-rank tensor formats

6 Approximation in low-rank tensor formats (a flavor)

Anthony Nouy 5 / 43



Canonical format

Canonical rank of higher-order tensors

For tensors u ∈ V1 ⊗ . . .⊗ Vd with d ≥ 3, there are different notions of rank.

The canonical rank, which is the natural extension of the notion of rank for order-two tensors, is
the minimal integer r such that

u =
r∑

k=1

v
(1)
k ⊗ . . .⊗ v

(d)
k ,

for some vectors v
(ν)
k ∈ Vν .

A multivariate function u(x1, . . . , xd ) with canonical rank bounded by r is such that

u(x) =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd ),

where the v
(ν)
k (xν) are in the function space Vν .
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Canonical format

Canonical format

The subset of tensors in V = V1 ⊗ . . .⊗ Vd with canonical rank bounded by r is denoted

Rr = {v ∈ V : rank(v) ≤ r}.

A tensor in Rr has a representation

v(x1, . . . , xd ) =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd ) :=

r∑
k=1

v (1)(x1, k) . . . v (d)(xd , k).

The storage complexity of tensors in Rr is

storage(Rr ) = r
d∑
ν=1

dim(Vν) = O(rdn)

for dim(Vν) = O(n).

The following equivalent representation

v(x1, . . . , xd ) =
d∑

k=1

Ckv
(1)
k (x1) . . . v

(d)
k (xd )

allows a normalization of the v
(ν)
k .

Anthony Nouy 6 / 43



Canonical format

Canonical format

For d ≥ 3, the set Rr looses many of the favorable properties of the case d = 2.

Determining the rank of a given tensor is a NP-hard problem.

The set Rr is not an algebraic variety.

The application v 7→ rank(v) is not lower semi-continuous and therefore, Rr is not closed.
The consequence is that for most problems involving approximation in canonical format Rr ,
there is no robust method when d > 2.

Example 1

Consider the 3-order tensor

v = a⊗ a⊗ b + a⊗ b ⊗ a + b ⊗ a⊗ a

where a and b are linearly independent vectors in Rm. The rank of v is 3. The sequence of
rank-2 tensors

vn = n(a +
1
n
b)⊗ (a +

1
n
b)⊗ (a +

1
n
b)− na⊗ a⊗ a

converges to v as n→∞.
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α-ranks and related low-rank tensor formats

α-rank

For a non-empty subset α of D = {1, . . . , d}, a tensor u ∈ V = V1 ⊗ . . .⊗ Vd can be identified
with an order-two tensor

Mα(u) ∈ Vα ⊗ Vαc ,

where Vα =
⊗
ν∈α Vν , and αc = D \ α. The operatorMα = V → Vα ⊗ Vαc is called the

matricisation operator.

M{1}←−−−−
M{2}−−−−→

The α-rank of u, denoted rankα(u), is the rank of the order two tensorMα(u),

rankα(u) = rank(Mα(u)),

which is the minimal integer rα such that

Mα(u) =

rα∑
k=1

vαk ⊗ wα
c

k

for some vαk ∈ Vα and wα
c

k ∈ Vαc . We note that rankα(u) = rankαc (u).
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α-ranks and related low-rank tensor formats

α-rank

A multivariate function u(x1, . . . , xd ) with rankα(u) ≤ rα is such that

u(x) =

rα∑
k=1

vαk (xα)wα
c

k (xαc )

for some functions vαk (xα) and wα
c

k (xαc ) of groups of variables

xα = {xν}ν∈α and xαc = {xν}ν∈αc .

Example 2

u(x1, . . . , xd ) = u1(x1) + . . .+ ud (xd ) where u1, . . . , ud are non constant functions satisfies
rankα(u) = 2 for all α.

Example 3

u(x1, x2, x3) = f (x1) + g(x2, x3) where f and g are non constant functions satisfies
rank{1}(u) = rank{2,3}(u) = 2, rank{2}(u) = rank{1,3} = rank(g) + 1 and
rank{3}(u) = rank{2,3} = rank(g) + 1.
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α-ranks and related low-rank tensor formats

α-rank and minimal subspace

For a subset α of D = {1, . . . , d}, the minimal subspace

Umin
α (u)

of a tensor u ∈ V1 ⊗ . . .⊗ Vd is defined as the smallest subspace

Uα ⊂ Vα =
⊗
ν∈α

Vν

such that
Mα(u) ∈ Uα ⊗ Vαc .

The α-rank of u is the dimension of the minimal subspace Umin
α (u),

rankα(u) = dim(Umin
α (u)).
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α-ranks and related low-rank tensor formats

Subset of tensors with bounded α-rank

For a given subset α ⊂ D, we define the subset of tensors with α-rank bounded by rα as

T {α}rα = {v ∈ V : rankα(v) ≤ rα}.

Elements of T {α}rα admit the representation

v(x) =

rα∑
k=1

vαk (xα)wα
c

k (xαc ) :=

rα∑
k=1

vα(xα, k)wα
c
(xαc , k)

with order-two tensors vα and wα
c
.

vα wα
c

xα xαc

k

The corresponding storage complexity is

storage(T {α}rα ) = rα(
∏
ν∈α

dim(Vν) +
∏
ν∈αc

dim(Vν)) = O(rα(n#α + n#αc
)).
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α-ranks and related low-rank tensor formats

Subset of tensors with bounded α-rank

Elements of T {α}rα also admit the following representation

v(xα, xαc ) =

rα∑
kα=1

rα∑
kαc =1

C(kα, kαc )vα(xα, kα)wα
c
(xαc , kαc )

where C ∈ Rrα×rα and vα and wα
c
are order-two tensors.

C

vα

xα

kα

wα
c

xαc

kαc

The corresponding storage complexity is

storage(T {α}rα ) = r2α + rα(
∏
ν∈α

dim(Vν) +
∏
ν∈αc

dim(Vν)) = O(r2α + rα(n#α + n#αc
)).
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α-ranks and related low-rank tensor formats

Subset of tensors with bounded α-rank

The motivation behind the definition of tensor formats based on α-ranks is to benefit from the
nice properties of the rank of order-two tensors.

The application v 7→ rankα(v) is lower semi-continuous and therefore, T {α}rα is closed.

For a given α ⊂ D, the determination of the α-rank of a tensor, which is equivalent to the
determination of the rank an order-two tensor, is feasible.

Also, T {α}rα is a smooth manifold.

Anthony Nouy 13 / 43



α-ranks and related low-rank tensor formats

α-ranks and related low-rank formats

For T a collection of subsets of D, we define the T -rank of a tensor v , denoted rankT (u), as the
tuple

rankT (v) = {rankα(v)}α∈T .

The subset of tensors in V with T -rank bounded by r = (rα)α∈T is

T T
r = {v ∈ V : rankT (v) ≤ r} =

⋂
α∈T
T {α}rα .

As a finite intersection of subsets T {α}rα , T T
r inherits from geometrical and topological properties

of the subsets T {α}rα which are favorable for numerical simulation. In particular, T T
r is closed.
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α-ranks and related low-rank tensor formats

α-ranks and related low-rank formats

Different choices for T yield different tensor formats, the standard formats being

the Tucker format,

the Tensor Train format,

and more general tree-based (or hierarchical) Tucker formats.
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α-ranks and related low-rank tensor formats Tucker format

Tucker format

For
T = {{1}, . . . , {d}},

the tuple
rankT (v) = {rank{1}(v), . . . , rank{d}(v)}

is called the Tucker (or multilinear) rank of the tensor v .

The set of tensors with Tucker rank bounded by r = (r1, . . . , rd ), denoted

Tr = {v : rank{ν}(v) ≤ rν , 1 ≤ ν ≤ d},

is such that
Tr = {v ∈ U1 ⊗ . . .⊗ Ud : dim(Uν) = rν , 1 ≤ ν ≤ d}.
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α-ranks and related low-rank tensor formats Tucker format

Tucker format
A tensor in v ∈ Tr admits a representation

v(x1, . . . , xd ) =

r1∑
k1=1

. . .

rd∑
kd=1

C(k1, . . . , kd )v (1)(x1, k1) . . . v (d)(xd , kd ).

where C ∈ Rr1×...×rd is an order-d tensor and the v (ν) are order-two tensors.

C

v (1)

x1

k1

v (2)

x2

k2

... v (d)

xd

kd

The storage complexity is

storage(Tr ) =
d∏
ν=1

rν +
d∑
ν=1

rν dim(Vν) = O(Rd + Rnd)

with rν = O(R) and dim(Vν) = O(n). This format still suffers from the curse of dimensionality.

Note that a tensor in canonical format admits a representation in Tucker format with a
super-diagonal tensor C such that C(k1, . . . , kd ) 6= 0 only for k1 = k2 = . . . = kd .
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α-ranks and related low-rank tensor formats Tensor Train format

Tensor train format

For
T = {{1}, {1, 2}, . . . , {1, . . . , d − 1}},

the tuple
rankT (v) = {rank{1}(v), rank{1,2}(v), . . . , rank{1,...,d−1}(v)}

is called the TT-rank of the tensor v .

For a tuple r = (r1, . . . , rd−1), the set T T
r of tensors with TT-rank bounded by r is denoted

T Tr = {v : rank{1,...,ν} = rank{ν+1,...,d}(v) ≤ rν , 1 ≤ ν ≤ d − 1}.
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α-ranks and related low-rank tensor formats Tensor Train format

Tensor train format

A tensor v in T Tr , since rank{2,...,d} ≤ r1, has the representation

v(x) =

r1∑
k1=1

v
(1)
k1

(x1)w
(1)
k1

(x2, . . . , xd ),

where {v (1)
k1
}r1k1=1 is a basis of Umin

{1}(v) and {w (1)
k1
}r1k1=1 is a basis of Umin

{2,...,d}(v).

Since rank{3,...,d}(v) ≤ r2, w
(1)
k1

has the representation

w
(1)
k1

(x2, . . . , xd ) =

r2∑
k2=1

v
(2)
k1,k2

(x2)w
(2)
k2

(x3, . . . , xd ),

where {w (2)
k2
}r2k2=1 is a basis of Umin

{3,...,d}(v), which yields the following representation of v

v(x) =

r1∑
k1=1

r2∑
k2=1

v
(1)
k1

(x1)v
(2)
k1,k2

(x2)w
(2)
k2

(x3, . . . , xd ).

And we proceed inductively...
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α-ranks and related low-rank tensor formats Tensor Train format

Tensor train format

A tensor v in T Tr has a representation

v(x) =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

v (1)(x1, k1)v (2)(k1, x2, k2) . . . v (d)(kd−1, xd ).

v (1) v (2) v (d−1) v (d)

x1 x2 xd−1 xd

k1 k2 kd−1 kd

The storage complexity of an element in T Tr is

storage(T Tr ) =
d∑
ν=1

rν−1rν dim(Vν) = O(dnR2)

with dim(Vν) = O(n), rν = O(R). Here we use the convention r0 = rd = 1.
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α-ranks and related low-rank tensor formats Tensor Train format

Exercise 1

Determine a bound of the TT-rank of

u(x1, . . . , xd ) = u1(x1) + . . .+ ud (xd )

Exercise 2

Determine a bound of the TT-rank of

u(x1, . . . , xd ) = u1(x1) + u1,2(x1, x2) + u2(x2) + u2,3(x2, x3) + . . .+ ud (xd )

as a function of the ranks ri,j of functions ui,j .

Exercise 3

Determine a bound of the TT-rank of

u(x1, . . . , xd ) =
∑
i 6=j

ui,j (xi , xj )

as a function of the ranks ri,j of functions ui,j .
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α-ranks and related low-rank tensor formats Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Tree-based (or hierarchical) Tucker formats are associated with a partition dimension tree T over
D = {1, . . . , d}, with root D and leaves {ν}, 1 ≤ ν ≤ d .

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

The tree-based rank of a tensor v is the tuple rankT (v) = (rankα(v))α∈T .
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α-ranks and related low-rank tensor formats Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Let v be a tensor in T T
r with r = (rα)α∈T . At the first level, v admits the representation

v(x) =

rβ1∑
kβ1=1

. . .

rβs∑
kβs =1

C (D)(kβ1 , . . . , kβs )v (β1)(xβ1 , kβ1 ) . . . v (βs )(xβs , kβs ).

where {β1, . . . , βs} = S(D) are the children of the root node D.

{1, 2, 3, 4, 5, 6}

{1, 2, 3} {4, 5, 6}

C (D)

v (1,2,3)

x{1,2,3}

k1,2,3

v (4,5,6)

x{4,5,6}

k4,5,6
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α-ranks and related low-rank tensor formats Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Then, for an interior node α of the tree, with children S(α) = {β1, . . . , βs}, the tensor vα
admits the representation

vα(xα, kα) =

rβ1∑
kβ1=1

. . .

rβs∑
kβs =1

C (α)(kα, kβ1 , . . . , kβs )v (β1)(xβ1 , kβ1 ) . . . v (βs )(xβs , kβs ).

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}{2, 3}

{4, 5, 6}

{4} {5} {6}

C (D)

C (1,2,3)

v (1)

x1

k1

v (2,3)

x2,3

k2,3

k1,2,3

C (4,5,6)

v (4)

x4

k4

v (5)

x5

k5

v (6)

x6

k6

k4,5,6
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α-ranks and related low-rank tensor formats Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format
Finally, denoting by L(T ) = {{ν} : ν ∈ D} the leaves of the tree, the tensor v admits the
Tucker-like representation

v(x) =
∑

1≤kν≤rν
ν∈{1,...,d}

( ∑
1≤kα≤rα
α∈T\L(T )

∏
µ∈T\L(T )

C (µ)(kµ, (kβ)β∈S(α))
)
v (1)(x1, k1) . . . v (d)(xd , kd )

where we use the convention C
(D)
(kβ )β∈S(D)

= C
(D)
1,(kβ )β∈S(D)

and rD = 1.

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

C (D)

C (1,2,3)

v (1)

x1

k1

C (2,3)

v (2)

x2

k2

v (3)

x3

k3

k2,3

k1,2,3

C (4,5,6)

v (4)

x4

k4

v (5)

x5

k5

v (6)

x6

k6

k4,5,6
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Tensor networks

Tensor networks
Let G = (N , E) be a graph with nodes N and edges E.

Let ND be the subset of d nodes attached to the variables xν , 1 ≤ ν ≤ d .

x1

x2

x3

x4
ND

N \ ND
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Tensor networks

Tensor networks
A tensor v in tensor networks format has a representation of the form

v =
∑

1≤k1≤r1

. . .
∑

1≤k#E≤r#E

∏
ν∈Nd

v (ν)(xν , (ke)e∈Eν )
∏

ν∈N\Nd

C (ν)((ke)e∈Eν )

where Eα are the edges connected to the node α. The tuple r = (re)e∈E is called the
representation rank of the tensor.

v (1)

x1

v (2)

x2

v (3)

x3

v (4)

x4

C (5)

k1,2

k3,4

k2,4

k1,5

k2,5

k1,3

k3,5

Anthony Nouy 27 / 43



Tensor networks

Tensor networks

The subset of tensors associated with a graph G and representation ranks r = (re)e∈E is denoted
T Gr .

Tensor formats related to the notion of T -ranks with T a dimension partition tree, such as the
Tucker format, the Tensor Train format or more general tree-based tensor formats, are particular
cases of tensor formats T Gr where the graph G is a dimension partition tree or a subset of such a
tree. These are called tree tensor networks.

For other types of graphs G, tensor formats T Gr are not related to the notion of α-ranks and do
not benefit from their favorable properties. In particular, it has been proved that the set of
tensors T Gr where G has closed loops is not closed in the Zariski sense.

Canonical format is not a particular case of formats based on tensor networks.
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Parametrization of low-rank tensor formats

Parametrization and storage of low-rank tensor formats

Ultimately, a tensor in a certain low-rank tensor formatMr admits a multilinear parametrization
of the form

v(x1, . . . , xd ) =

r1∑
k1=1

. . .

rL∑
kL=1

d∏
ν=1

p(ν) (xν , (ki )i∈Sν )
M∏

ν=d+1

p(ν) ((ki )i∈Sν )

where the parameter p(ν) is an element of a tensor space P(ν) which depends on a subset of
summation variables (ki )i∈Sν := kSν .

The storage complexity is

storage(Mr ) =
d∑
ν=1

dim(Vν)
∏
i∈Sν

ri +
L∑

ν=d+1

∏
i∈Sν

ri .

If ri = O(R), dim(Vν) = O(n), #Sν = O(s) for ν ≤ d and #Sν = O(s′) for ν > d , then

storage(Mr ) = O(dnRs + (M − d)Rs′ ).

The key to break the curse of dimensionality is to consider low-rank formats with s = O(1) and
s′ = O(1).
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Parametrization of low-rank tensor formats

Parametrization and storage of low-rank tensor formats

Examples

Canonical format: L = 1, M = d , Sν = {1} for all ν.

storage(Rr ) = O(ndR)

Tucker format: L = d , M = d + 1, Sν = {ν} for 1 ≤ ν ≤ d , and Sd+1 = {1, . . . , d}.

storage(Tr ) = O(ndR + Rd )

Tensor train format: L = d − 1, M = d , S1 = {1}, Sd = {d − 1} and Sν = {ν − 1, ν} for
2 ≤ ν ≤ d − 1.

storage(T Tr ) = O(ndR2)

Tree-based tensor format (for a dimension partition tree T ): L = #T − 1, M = #T ,
Sν = {ν} for 1 ≤ ν ≤ d and Sν cointains the sons of the node {ν} for ν > d .

storage(T T
r ) = O(ndR + dRk+1)

where k is the maximal number of sons of the nodes (k = 2 for a binary tree).

Tensor networks: arbitrary L and M and #{ν : i ∈ Sν} = 2 for all 1 ≤ i ≤ L.
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Parametrization of low-rank tensor formats

Parametrization and storage of low-rank tensor formats

For a low-rank tensor formatMr , there exists a multilinear map

Ψ : P(1) × . . .× P(M) → V

which associates to a set of parameters {p(1), . . . , p(M)} the tensor

v = Ψ(p(1), . . . , p(M)).

Approximation in low-rank tensor formats is the first step between linear approximation and
nonlinear approximation.

Sparsity in the parameters p(ν) can be exploited to further reduce the complexity of the
representation.
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Approximation in low-rank tensor formats (a flavor)

Approximation in low-rank tensor formats

Here, we present different problems involving a minimization problem

min
v
J (v)

using low-rank tensor formats.

Then, we will present an overview of possible algorithms for the solution of such optimization
problems.
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Approximation in low-rank tensor formats (a flavor) Different contexts

Different contexts

For the approximation of a given tensor u with respect to a certain norm,

J (v) = ‖u − v‖.

Here, the aim is the compression of u or the extraction of information from u (data
analysis).

For the solution of an equation Au = b, the functional J (v) will measure some distance
between u and the approximation v , e.g.

J (v) = ‖Av − b‖.

The aim is here to obtain an approximation of the solution u with a low computational
complexity.
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Approximation in low-rank tensor formats (a flavor) Different contexts

Different contexts

In tensor completion,
J (v) =

∑
i∈Ω

|u(i)− v(i)|2,

where Ω ⊂ I is a set of known entries of the tensor. The aim is here to recover (or
complete) a tensor from partial information, by exploiting low-rank structures of the tensor.

For inverse problems, where we want identify a tensor u from indirect and partial
observations, the functional J (v) measures some distance between observations y and a
prediction Av , where A is an observation map:

J (v) = d(y ,Av).

Exploiting low-rank structures in u allows to reduce the number of parameters to estimate
and possibly makes the problem well-posed.
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Approximation in low-rank tensor formats (a flavor) Different contexts

Different contexts

For the estimation of the density u of a random variable X from samples {xk}nk=1, the
functional may be the log-likelihood function

J (v) =
n∑

k=1

log(v(xk )).

Here the aim of using low-rank approximations of the density is to make this highly ill-posed
problem a well-posed problem.

For supervised learning, where we want to learn the relation between a random variable Y
and another random variable X , J (v) will be a risk functional of the form

J (v) =
1
n

n∑
k=1

`(yk , v(xk ))

where {(xk , yk )}nk=1 are samples of (X ,Y ) (a training set), and ` is a loss function such
that `(y , v(x)) measures a distance between an observation y and a prediction v(x) given
be the approximation v .

For least-squares approximation of a function u(X ),

J (v) =
1
n

n∑
k=1

(u(xk )− v(xk ))2.

Anthony Nouy 35 / 43



Approximation in low-rank tensor formats (a flavor) Direct optimization in subsets of low-rank tensors

1 Low-rank order-two tensors

2 Canonical format

3 α-ranks and related low-rank tensor formats

4 Tensor networks

5 Parametrization of low-rank tensor formats

6 Approximation in low-rank tensor formats (a flavor)
Different contexts
Direct optimization in subsets of low-rank tensors
Greedy algorithms
Convex relaxation methods

Anthony Nouy 36 / 43



Approximation in low-rank tensor formats (a flavor) Direct optimization in subsets of low-rank tensors

Direct optimization in subsets of low-rank tensors

A first approach consists in solving the optimization problem

min
v∈Mr

J (v)

in a given subset of low-rank tensorsMr .

Using the parametrization of subsets of low-rank tensors

Mr = {v = Ψ(p(1), . . . , p(M)); p(ν) ∈ P(ν), 1 ≤ ν ≤ M},

with Ψ a multilinear map, the problem

min
v∈Mr

J (v)

can be recasted into an optimization problem over the parameters

min
p(1),...,p(M)

J (Ψ(p(1), . . . , p(M))). (1)
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Approximation in low-rank tensor formats (a flavor) Direct optimization in subsets of low-rank tensors

Alternating minimization algorithm

A prominent algorithm for solving (1) is the alternating minimization algorithm (or block
coordinate descent algorithm) which consists in solving successively the minimization problems

min
p(ν)∈P(ν)

J (Ψ(p(1), . . . , p(ν), . . . , p(M))) := min
p(ν)∈P(ν)

Jν(p(ν)) (2)

over the parameter p(ν), the other parameters p(µ), µ 6= ν, being fixed.

When P(ν) is a linear vector space, problem (2) is a linear approximation problem.

If J is a convex (resp. differentiable) functional, then Jν is a convex (resp. differentiable)
functional.
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Approximation in low-rank tensor formats (a flavor) Direct optimization in subsets of low-rank tensors

Exploiting sparsity in the parameters

Sparsity (as well as other properties) of the parameters p(ν) can be exploited at each step of the
algorithm by using one of the standard strategies for sparse approximation, such as greedy
algorithms, working set algorithms or convex relaxation methods.

Convex relaxation methods consists in replacing the initial optimization problem by

min
p(1),...,p(M)

J (Ψ(p(1), . . . , p(M))) +
M∑
ν=1

λνΩν(p(ν)), (3)

where Ων(p(ν)) is a sparsity-inducing penalization term.

Applying an alternating minimization algorithm for solving (3) then yields a succession of
standard optimization problems with sparsity-inducing penalization

min
p(ν)∈P(ν)

Jν(p(ν)) + λνΩν(p(ν)). (4)
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Approximation in low-rank tensor formats (a flavor) Direct optimization in subsets of low-rank tensors

Direct optimization in subsets of low-rank tensors

Other optimization algorithms (e.g. gradient descent, Newton) can be used, possibly exploiting
the geometry of low-rank tensor manifoldsMr (see later...).

Under rather standard assumptions, some results have been obtained for the convergence of
algorithms: local convergence to a global optimizer, or global convergence to stationary points.

Up to now, there is no available algorithm for obtaining a global optimizer of a general (even
convex) functional in a subset of low-rank tensors.
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Approximation in low-rank tensor formats (a flavor) Greedy algorithms

Greedy algorithms

A tensor v ∈ Rr with canonical rank r can be written as a sum of r rank-one tensors

v =
r∑

k=1

αkwk , wk ∈ R1.

Therefore, v can be interpreted as a n-sparse element with respect to dictionary of rank-one
tensors R1, which is such that

span(R1) = V .

Standard greedy algorithms for sparse approximation can be used to construct a sequence of
approximations (vr )r≥1 with increasing canonical rank such that vr ∈ span{w1, . . . ,wr} with wr

the solution of the optimization problem

min
w∈R1

J (vr−1 + w), (5)

which can be solved using algorithms for direct optimization in R1.
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Approximation in low-rank tensor formats (a flavor) Greedy algorithms

Greedy algorithms

The dictionary R1 can be replaced by any subsetMr of low-rank tensors, with fixed rank r .
SinceMr ⊃ R1 for any tensor format, span(Mr ) = V and standard greedy algorithms can be
applied for the construction of a sequence of n-sparse approximations

vn ∈ Σn = {v =
n∑

k=1

αkwk : αk ∈ R,wk ∈Mr}.

Note that greedy algorithms for projection-based model order reduction are also greedy
algorithms for low-rank approximation, but are related to the Tucker format (or subspace-based
format). Greedy algorithms for the approximation of higher-order tensors in Tucker format will
be presented in another lecture.
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Approximation in low-rank tensor formats (a flavor) Convex relaxation methods

Convex relaxation methods

For a given subset of low-rank tensorsMr = {v : rank(v) ≤ r}, the optimization problem

min
v∈Mr

J (v)

can be replaced by the related formulation

min
v
J (v) + λ rank(v).

Increasing λ yields solutions with lower and lower ranks.

Convex relaxation methods then consist in replacing the above problem by

min
v
J (v) + λΩ(v)

where Ω(v) is a convex functional promoting solutions with low rank.
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Approximation in low-rank tensor formats (a flavor) Convex relaxation methods

Convex relaxation methods for low-rank approximation of matrices

The rank of a matrix v is given by the number of non-zero singular values of the matrix.
Denoting by σ(v) the set of singular values, we have

rank(v) = ‖σ(v)‖0.

The functional Ω(v) can here be chosen as the convex relaxation of the function rank(v),

Ω(v) = ‖σ(v)‖1 = ‖v‖∗,

which is known as the nuclear norm of the matrix v .

Extensions to higher order low-rank formats and functional tensors, as well as algorithms for
solving the resulting non-differentiable convex optimization problems, will be presented in
another lecture.
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