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Introduction

In this lecture, we give the interpretation of high dimensional partial differential equations and
parameter-dependent equations as operator equations in tensor spaces, and we present practical
aspects for obtaining a formulation suitable for the application of tensor methods.

Ultimately, tensor-structured equations will be of the form

Au = b, u ∈ RI = RI1×...×Id .
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Tensor product of operators

Tensor product of operators

Let V = V 1 ⊗ . . .⊗ V d and W = W 1 ⊗ . . .⊗W d be two algebraic tensor spaces.

Let L(V ν ,W ν) denote the space of linear operators from V ν to W ν . The elementary tensor
product of operators A(ν) ∈ L(V ν ,W ν), 1 ≤ ν ≤ d , denoted by

A = A(1) ⊗ . . .⊗ A(d),

is defined in a standard way. Then, we can define the algebraic tensor space

L := L(V 1,W 1)⊗ . . .⊗ L(V d ,W d ),

which is the set of finite linear combinations of elementary tensors.
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Tensor product of operators

Tensor product of operators

For the case where
V = W = RI , I = I1 × . . .× Id ,

L(V ν ,W ν) is identified with RIν×Iν and an operator in L is identified with an element of RI×I ,
such that for u ∈ RI , Au ∈ RI is given by

(Au)(i) =
∑
j∈I

A(i , j)u(j).

An elementary tensor A = A(1) ⊗ . . .⊗ A(d) is such that

A(i , j) = A((i1, . . . , id ), (j1, . . . , jd )) = A(1)(i1, j1) . . .A(d)(id , jd ).
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Tensor product of operators Operators in low-rank formats

Operators in low-rank formats

L being a tensor product of vector spaces, the ranks of tensors in L are defined in a usual way, as
well as the corresponding tensor formats.

An operator A in canonical format has a representation

A =
r∑

k=1

A
(1)
k ⊗ . . .⊗ A

(d)
k C(k).

Ultimately, an operator in low-rank format has a representation of the form

A =

r1∑
k1=1

. . .

rL∑
kL=1

A
(1)
kS1
⊗ . . .⊗ A

(d)
kSd

M∏
ν=d+1

C (ν)(kSν ),

where C (ν) is a tensor of order #Sν depending on a subset Sν ⊂ {1, . . . ,M} of summation
indices, and where the A

(ν)
kSν

are operators in L(V ν ,W ν).
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Tensor product of operators Operators in low-rank formats

Operators in Tucker format

An operator A in Tucker format has a representation

A =

r1∑
k1=1

. . .

rd∑
kd=1

A
(1)
k1
⊗ . . .⊗ A

(d)
kd

C(k1, . . . , kd ).

C

A(1)

i1 j1

k1

A(2)

i2 j2

k2

A(d)

id jd

kd
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Tensor product of operators Operators in low-rank formats

Operators in Tensor Train format

An operator A in tensor train format has a representation of the form

A =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

A
(1)
1,k1
⊗ A

(2)
k1,k2

⊗ . . .⊗ A
(d)
kd−1,1

.

A(1) A(2) A(d)

i1 i2 id

j1 j2 jd

k1 k2 kd
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Tensor product of operators Operations between tensors

Operations between tensors

For an operator A and a vector v in a low-rank format, with

A =

r1∑
k1=1

. . .

rL∑
kL=1

(
d⊗
ν=1

A
(ν)
kSν

)
M∏

ν=d+1

C (ν)(kSν ),

v =

r′1∑
k1=1

. . .

r′
L′∑

kL′=1

(
d⊗
ν=1

v
(ν)
kS′ν

)
M′∏

ν=d+1

D(ν)(kS′ν ),

the product Av is a tensor such that

Av =

r1∑
k1=1

. . .

rL∑
kL=1

r′1∑
k′1=1

. . .

r′
L′∑

kL′=1

(
d⊗
ν=1

(
A

(ν)
kSν

v
(ν)
kS′ν

)) M∏
ν=d+1

C (ν)(kSν )
M′∏

ν=d+1

D(ν)(kS′ν )
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Tensor product of operators Operations between tensors

Operations between tensors

For two tensors u and v in a Hilbert tensor space V , with

u =

r1∑
k1=1

. . .

rL∑
kL=1

(
d⊗
ν=1

u
(ν)
kSν

)
M∏

ν=d+1

C (ν)(kSν ),

v =

r′1∑
k1=1

. . .

r′
L′∑

kL′=1

(
d⊗
ν=1

v
(ν)
kS′ν

)
M′∏

ν=d+1

D(ν)(kS′ν ),

the inner product of u and v is such that

(u, v) =

r1∑
k1=1

. . .

rL∑
kL=1

r′1∑
k′1=1

. . .

r′
L′∑

kL′=1

(
d∏
ν=1

(
u

(ν)
kSν

, v
(ν)
kS′ν

)
ν

)
M∏

ν=d+1

C (ν)(kSν )
M′∏

ν=d+1

D(ν)(kS′ν ).
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Tensor product of operators Operations between tensors

Graphical representation of operations for tree-based or tensor
networks formats

Operations between tensors in tree-based tensor formats or more general tensor networks formats
have a simple graphical representation. For example, consider an operator A and a vector v in
tensor train format

A(i , j) =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

A(1)(i1, j1, k1)A(2)(i2, j2, k1, k2) . . .A(d)(id , jd , kd−1)

v(j) =

r′1∑
k1=1

. . .

r′d−1∑
kd−1=1

v (1)(j1, k1)v (2)(j2, k1, k2) . . . v (d)(jd , kd−1).

A(1) A(2) A(d)

i1 i2 id

j1 j2 jd

k1 k2 kd
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Tensor structure of parameter-dependent equations Parameter-dependent equations

Parameter-dependent equations

Let us consider a parameter-dependent operator equation

A(ξ)u(ξ) = b(ξ), (1)

where ξ = (ξ1, . . . , ξs) are parameters or random variables taking values in Ξ,

A(ξ) : V → W

is a parameter-dependent linear operator, and

b(ξ) ∈ W

is a parameter-dependent vector.
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Tensor structure of parameter-dependent equations Parameter-dependent equations

Affine representations

We here assume that A(ξ) and b(ξ) admit so-called affine representations

A(ξ) =
L∑

i=1

λi (ξ)Ai , b(ξ) =
R∑
i=1

ηi (ξ)bi , (2)

with Ai : V → W and bi ∈ W.

Example 1 (Diffusion-reaction equation)

The problem
−λ1(ξ)∆u + λ2(ξ)u = η1(ξ)b1 on D, u = 0 on ∂D,

can be written in the form A(ξ)u(ξ) = b(ξ), where A(ξ) has an affine representation with L = 2,
A1v = −∆v and A2v = v , and where b(ξ) has an affine representation with R = 1.

Remark.

Some problems have operators and right-hand side directly given in the form (2). If this is not
the case (or if R and L are high), a preliminary approximation step is required (e.g. using
interpolation).
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Tensor structure of parameter-dependent equations Parameter-dependent equations

Affine representations

Example 2 (Diffusion equation with random diffusion coefficient)

The problem
−∇ · (k(·, ω)∇u) = b on D, u = 0 on ∂D,

where k(x , ω) is a second random field with a decomposition

k(x , ω) =
L∑

i=1

ki (x)ξi (ω), L ∈ N ∪ {+∞},

can be written in the form A(ξ)u(ξ) = b, where

A(ξ) =
L∑

i=1

Aiξi with Aiv = −∇ · (ki∇v).
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Tensor structure of parameter-dependent equations Parameter-dependent equations

Affine representations

Example 3 (Diffusion equation on a random domain)

Consider the problem

−∆U(x , ξ) = g(x) for x ∈ D(ξ), U(x , ξ) = 0 for x ∈ ∂D(ξ).

Assume that there exists a diffeomorphism φ(·; ξ) : D0 → D(ξ) from a deterministic domain D0
to D(ξ). By using the change of variable

u(x0, ξ) = U(φ(x0, ξ), ξ), x0 ∈ D0,

the problem can be interpreted as a diffusion equation on a deterministic domain but with
random diffusion coefficient and source term:

−∇ · (K(·, ξ)∇u) = g0(·, ξ),

with
K(x0, ξ) = ∇φ(x0, ξ)∇φ(x0, ξ)T | det(∇φ(x0, ξ))|

g0(x0, ξ) = g(φ(x0, ξ))| det(∇φ(x0, ξ))|.

Apart from simple transformations φ (e.g. affine), approximations of K and g0 are required to
obtain affine representations of the operator and right-hand side.
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Tensor structure of parameter-dependent equations Parameter-dependent equations

Parameter-dependent equations

For simplicity, let us assume that V and W are N-dimensional spaces and identify the equation

A(ξ)u(ξ) = b(ξ),

with a linear system of equations
A(ξ)u(ξ) = b(ξ),

with
A(ξ) ∈ RN×N , u(ξ) ∈ RN , b(ξ) ∈ RN .

Example 4 (Diffusion-reaction equation)

In example 1, consider that V =W is an approximation space in H1
0 (D) (e.g. a finite element

space) with basis {ϕi}Ni=1, and let u ∈ V be the standard Galerkin approximation of the solution
of the PDE.

Then u(ξ) are the coefficients of u on the basis of V, and A(ξ) and b(ξ) admit affine
representations

A(ξ) = A1λ1(ξ) + A2λ2(ξ) and b(ξ) = b1η1(ξ),

with
A1(i , j) =

∫
D
∇ϕi · ∇ϕj , A2(i , j) =

∫
D
ϕiϕj , b1(i) =

∫
D
ϕib1.
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Tensor structure of parameter-dependent equations Parameter-dependent equations for a finite training set
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Tensor structure of parameter-dependent equations Parameter-dependent equations for a finite training set

Parameter-dependent equations for a finite training set

We also assume that we are interested in evaluating the solution u(ξ) at a finite set of values
{ξk}k∈K of ξ (a training set) , such that

A(ξk )u(ξk ) = b(ξk ), ∀k ∈ K . (3)

The set of vectors {u(ξk )}k∈K and {b(ξk )}k∈K , as elements of (RN)K , can be identified with
order-two tensors

u ∈ RN ⊗ RK and b ∈ RN ⊗ RK .

The set of matrices {A(ξk )}k∈K , considered as a linear operator from RN ⊗ RK and RN ⊗ RK ,
can be identified with a tensor

A ∈ RN×N ⊗ RK×K .

Finally, the set of equations (3) can be identified with a operator equation

Au = b.
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Tensor structure of parameter-dependent equations Parameter-dependent equations for a finite training set

Parameter-dependent equations for a finite training set

The affine representations of parameter-dependent operator A(ξ) yields a low-rank representation
for the tensor A in the form

A =
L∑

i=1

Ai ⊗ Λi , with Λi = diag(λi ), λi = (λi (ξ
k ))k∈K .

Also, the affine representation of parameter-dependent vector b(ξ) yields a low-rank
representation for the tensor b in the form

b =
R∑
i=1

bi ⊗ ηi , ηi = (ηi (ξ
k ))k∈K .
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Tensor structure of parameter-dependent equations Parameter-dependent equations for a finite training set

Parameter-dependent equations for a tensorized training set

Let us assume that ξ = (ξ1, . . . , ξs) is a vector of parameters taking values in a product set
Ξ = Ξ1 × . . .× Ξs .

Let {ξkνν }kν∈Kν be a grid in Ξν , and let us consider for the training set the tensorized grid

{ξk = (ξk11 , . . . , ξkss )}k∈K , K = K1 × . . .× Kd .

A vector a ∈ RK is then identified with a tensor in RK1 ⊗ . . .⊗ RKs .

Then the tensor u ∈ RN ⊗ RK can be identified with a higher-order tensor

u ∈ RN ⊗ RK1 ⊗ . . .⊗ RKs .
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Tensor structure of parameter-dependent equations Parameter-dependent equations for a finite training set

Parameter-dependent equations for a tensorized training set

Let us assume that A(ξ) and b(ξ) admit affine representations

A(ξ) =
L∑

i=1

Aiλi (ξ) and b(ξ) =
R∑
i=1

biηi (ξ),

with rank-one functions

λi (ξ) = λ
(1)
i (ξ1) . . . λ

(s)
i (ξs) and ηi (ξ) = η

(1)
i (ξ1) . . . η

(s)
i (ξs).

The set of evaluations of a rank one function a(ξ) = a(1)(ξ1) . . . a(s)(ξs) on the tensorized grid is
identified with a rank-one tensor

a = (a(ξk ))k∈K = a(1) ⊗ . . .⊗ a(s), a(ν) = (a(ν)(ξkνν )kν∈Kν ).
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Tensor structure of parameter-dependent equations Parameter-dependent equations for a finite training set

Parameter-dependent equations for a tensorized training set

Then the problem can be interpreted as a tensor-structured equation

Au = b

with u ∈ RN ⊗ RK1 ⊗ . . .⊗ RKd , and where A and b admit low-rank representations (in
canonical format)

b =
L∑

i=1

bi ⊗ η
(1)
i ⊗ . . .⊗ η

(s)
i

and

A =
R∑
i=1

Ai ⊗ Λ
(1)
i ⊗ . . .⊗ Λ

(s)
i , Λ

(ν)
i = diag(λ

(ν)
i ).
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Tensor structure of parameter-dependent equations Galerkin methods

Galerkin methods

Consider the problem of finding u : Ξ→ RN such that

A(ξ)u(ξ) = b(ξ) for all ξ in Ξ,

where Ξ is equipped with a measure Pξ.

We introduce a finite dimensional space S of functions defined on Ξ.

The Galerkin approximation ũ of u in the space RN ⊗ S, also denoted u, is defined by

a(u, v) = `(v), ∀v ∈ RN ⊗ S,

where a is a linear form defined by

a(u, v) =

∫
Ξ
〈A(y)u(y), v(y)〉Pξ(dy)

and ` is a linear form defined by

`(v) =

∫
Ξ
〈b(y), v(y)〉Pξ(dy).
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Tensor structure of parameter-dependent equations Galerkin methods

Galerkin methods

Let {ψk (ξ)}k∈K be a basis of S. The tensor u =
∑

k∈K uk ⊗ ψk in RN ⊗ S can be identified
with a tensor U = (uk )k∈K ∈ RN ⊗ RK .

Finally, the problem defining the Galerkin approximation is identified with a tensor structured
equation on U ∈ RN ⊗ RK ,

AU = b,

where A ∈ RN×N ⊗ RK×K and b ∈ RN ⊗ RK have low-rank representations

A =
R∑
i=1

Ai ⊗ Λi and b =
L∑

i=1

bi ⊗ ηi ,

with Λi ∈ RK×K such that

Λi (k, l) =

∫
Ξ
ψk (y)ψl (y)λi (x)Pξ(dy),

and ηi ∈ RK such that

ηi (k) =

∫
Ξ
ηi (y)ψk (y)Pξ(dy).
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Tensor structure of high-dimensional PDEs

High-dimensional partial differential equations

Let X in Rd be a product domain of Rd , with

X = X1 × . . .×Xd .

Let us consider the problem of finding a multivariate function

u(x1, . . . , xd )

which satisfies suitable boundary conditions on ∂X and a partial differential equation

A(u) = b on X ,

where b is a given multivariate function and A is an operator such that A(u) depends on the
partial derivatives

Dαu =
∂|α|

∂xα11 . . . ∂x
αd
d

u,

where |α| := ‖α‖1 is the length of the multi-index α ∈ Nd .

Example 5 (Laplace operator)

∆u =
∂2

∂x2
1
u + . . .+

∂2

∂x2
d

u = D(2,0...,0)u + . . .+ D(0,...,0,2)u
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Tensor structure of high-dimensional PDEs

High-dimensional partial differential equations

Remark. Non product domains

A partial differential equation A(u) = b defined on domain X which is not a product domain can
be transformed into a partial differential equation on a product domain in two different ways:

by introducing a bijection φ : X̃ → X from a product domain X̃ to X and by using a
change of variable u(x) = ũ(φ(x)). The map φ should be sufficiently smooth (possibly
piecewise smooth).

by embedding the domain X into a fictitious product domain X̃ , and using consistant
reformulations of the problem on the fictitious domain.
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Tensor structure of high-dimensional PDEs Tensor structure of differential operators

Tensor structure of differential operators

Assume that the problem admits a unique solution u in a space V
‖·‖ where V = V 1 ⊗ . . .⊗ V d

is the tensor product of spaces V ν of functions defined on Xν .

For an elementary tensor
v(x) = v (1)(x1) . . . v (d)(xd ),

and for α = (α1, . . . , αd ) ∈ Nd , the differential operator Dα is such that

Dαv(x) = Dα1v (1)(x1) . . .Dαd v (d)(xd ).

Then Dα can be interpreted as an elementary operator on the tensor space V , with

Dα = Dα1 ⊗ . . .⊗ Dαd .
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Tensor structure of high-dimensional PDEs Tensor structure of differential operators

Differential operators in low-rank tensor formats

A linear partial differential operator of the form

A =
∑
α

aαD
α,

where aα ∈ R, can then be identified with an operator on V with admits a representation in
canonical format

A =
∑
α

aαD
α1 ⊗ . . .⊗ Dαd .

Example 6 (Laplace operator)

The Laplace operator is identified with a tensor with canonical rank d

∆ = D2 ⊗ I ⊗ . . .⊗ I + . . .+ I ⊗ . . .⊗ I ⊗ D2,
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Tensor structure of high-dimensional PDEs Tensor structure of differential operators

Differential operators in low-rank tensor formats

Differential operators may have representations with reduced complexity in other tensor formats.

Example 7 (Laplace operator in tensor train format)

The Laplace operator admits a representation in tensor train format with TT-rank (2, . . . , 2)

∆ =
2∑

k1=1

. . .
2∑

kd−1=1

B2,k1 ⊗ Bk1,k2 . . .⊗ Bkd−1,1

where
B1,1 = B2,2 = I , B1,2 = 0, B(2, 1) = D2.

This can be represented in a more convenient block form where each block represents a
collection of operators {Bk1,k2}

∆ =
(
D2 I

)
on
(

I 0
D2 I

)
on . . . on

(
I 0
D2 I

)
on
(

I
D2

)
.

where(
A11 A12
A21 A22

)
on
(
B11 B12
B21 B22

)
=

(
A11 ⊗ B11 + A12 ⊗ B21 A11 ⊗ B12 + A12 ⊗ B22
A21 ⊗ B11 + A22 ⊗ B21 A21 ⊗ B12 + A22 ⊗ B22

)
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Tensor structure of high-dimensional PDEs Tensor structure of differential operators

Differential operators in low-rank tensor formats

Example 8 (Laplace operator in tree-based tensor format)

The Laplace operator admits a representation in Tucker format with rank (2, . . . , 2), such that

∆ =
2∑

k1=1

. . .
2∑

kd=1

Bk1 ⊗ . . .⊗ BkdC(k1, . . . , kd ),

where B1 = I and B2 = D2, and where the tensor C ∈ R2 ⊗ . . .⊗ R2 has a representation in
canonical format

C = e2 ⊗ e1 ⊗ . . .⊗ e1 + . . .+ e1 ⊗ e2 ⊗ . . .⊗ e2, e1 =

(
1
0

)
, e2 =

(
0
1

)
.

The tensor C has a exact representation in tree-based format T T
r with T -rank r = (2, . . . , 2)

whatever the tree T .
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Tensor structure of high-dimensional PDEs Tensor structure of differential operators

Differential operators in low-rank tensor formats

Example 9 (Representation of Laplace-like operators in tensor train format)

An operator A of the form

A = M1 ⊗ R2 ⊗ R3 ⊗ . . .Rd + L1 ⊗M2 ⊗ R3 ⊗ . . .⊗ Rd + . . .

+L1 ⊗ . . .⊗ Ld−2 ⊗Md−1 ⊗ Rd + L1 ⊗ . . .⊗ Ld−1 ⊗Md

admits a representation in tensor train format with TT rank (2, . . . , 2)

A =
(
L1 M1

)
on
(
L2 M2

R2

)
on . . . on

(
Ld−1 Md−1

Rd−1

)
on
(
Md

Rd

)
.
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Tensor structure of high-dimensional PDEs Finite difference schemes on tensorized grids

Finite difference schemes on tensorized grids

Let consider uniform uni-dimensional grids ΓνIν = {x iνν }iν∈Iν in Xν .

Let I = I1 × . . .× Id and let ΓI be the tensorized grid on X defined by

ΓI = Γ1
I1 × . . .× Γd

Id
= {x i = (x i11 , . . . , x

id
1 ) : i ∈ I} .
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Tensor structure of high-dimensional PDEs Finite difference schemes on tensorized grids

Finite difference schemes on tensorized grids

For a function v(xν) on Xν with values v = (v(x iνν ))iν∈Iν on the grid ΓνIν , we define a finite
difference operator

Dk
ν : RIν×Iν

associated with Dk , such that Dkv provides a finite difference approximation of Dkv(xν) on the
grid ΓνIν .

Example 10

For Xν = (0, 1), and a uniform grid Γν = {ih}ni=1 of step size h = (n + 1)−1, a standard
difference operators for D2 (for Dirichlet boundary conditions) is given by

D2
ν = −h−2


2 −1

−1 2
. . .

. . .
. . . −1
−1 2


Then, for α ∈ Nd ,

Dα = Dα11 ⊗ . . .⊗Dαd
d ∈ RI1×I1 ⊗ . . .⊗ RId×Id

is a finite difference operator associated with the differential operator Dα on the tensorized grid
ΓI .
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Tensor structure of high-dimensional PDEs Finite difference schemes on tensorized grids

Finite difference schemes on tensorized grids

A finite difference scheme for the linear partial differential equation

Au = b,

with
A =

∑
α

aαD
α,

yields a tensor structured equation
Au = b,

where the entries of the tensor
u ∈ RI = RI1×...×Id

provide approximations of the values of the solution u(x) on the tensor product grid ΓI , where

b = (b(x i ))i∈I ∈ RI

is the vector of evaluations of the function b(x) on the tensor product grid ΓI , and where A is an
operator with the following representation in canonical format

A =
∑
α

aαDα11 ⊗ . . .⊗Dαd
d .
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Finite difference schemes on tensorized grids

Example 11 (Discrete Laplace operator in low-rank formats)

We consider uniform grids ΓνIν with n points and step size h. The Discrete Laplace operator ∆
admits a representation in canonical format

∆ = B⊗ I⊗ . . .⊗ I + . . .+ I⊗ . . .⊗ I⊗ B,

with B = h−2 diag(−1, 2,−1) for Dirichlet boundary conditions.
It also admits a representation in tensor train format with TT-rank (2, . . . , 2)

∆ =
2∑

k1=1

. . .
2∑

kd−1=1

B2,k1 ⊗ Bk1,k2 . . .⊗ Bkd−1,1

with B1,1 = B2,2 = I, B1,2 = 0, B1,2 = B, or using a block notation,

∆ =
(
B I

)
on
(

I 0
B I

)
on . . . on

(
I 0
B I

)
on
(

I
B

)
.
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Finite difference schemes on tensorized grids

Example 12 (Diffusion reaction equation)

Consider the equation
−∆u + βu = b,

with b(x) = b(1)(x1) . . . b(d)(xd ), and homogeneous Dirichlet boundary conditions.

We consider uniform grids ΓνIν with n points and step size h.

A standard (centered) finite difference scheme yields a system

Au = b

with
b = b(1) ⊗ . . .⊗ b(d),

where b(ν) ∈ Rn is the vector of evaluations of function b(ν) on the grid ΓνIν ,

A = ∆ + βI⊗ . . .⊗ I.
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Some details about the functional framework

Under standard assumptions, the problem is proved to be well-posed, with a solution u is the
Sobolev space

Hk (X )

of functions u with weak partial derivatives Dαu in L2(X ), for |α| ≤ k.

The space Hk (X ), equipped with the norm

‖u‖2Hk
=
∑
|α|≤k

‖Dαu‖2L2 ,

is a Hilbert space which can be identified with the completion of the algebraic tensor space
Hk (X1)⊗ . . .⊗ Hk (Xd ) with respect to the norm ‖u‖Hk

, that means

Hk (X ) = Hk (X1)⊗ . . .⊗ Hk (Xd )
‖·‖

Hk
.
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Some details about the functional framework

The canonical norm on the algebraic tensor product space Hk (X1)⊗ . . .⊗ Hk (Xd ), which is
induced by the norms on the spaces Hk (Xν), corresponds to the Hk

mix norm defined by

‖v‖2
Hk
mix

=
∑

‖α‖∞≤k

‖Dαv‖2L2 ,

and such that for v(x) = v (1)(x1) . . . v (d)(xd ),

‖v‖Hk
mix

=
d∏
ν=1

‖v (ν)‖Hk .

Noting that ‖v‖Hk ≤ ‖v‖Hk
mix
, we have that the tensor space

Hk
mix (X ) = Hk (X1)⊗ . . .⊗ Hk (Xd )

‖·‖
Hk
mix

is such that
Hk
mix (X ) ⊂ Hk (X ),

with strict inclusion. The spaces Hk
mix with mixed Sobolev regularity play an important role in the

analysis of approximation methods in high-dimension (sparse grids, low-rank approximations).
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Galerkin methods

Assume that the problem admits a weak solution u ∈ V, where V is a Hilbert space of functions
in Hk (X ), such that

a(u, v) = `(v) ∀v ∈ V,

where a = V × V → R is a bilinear form and ` = V → R a linear form.

Let V = V 1 ⊗ . . .⊗ V d be an approximation space in V, with V ν ⊂ Hk (Xν).

A standard Galerkin projection method defines an approximation ũ of u in V by

a(ũ, v) = `(v) ∀v ∈ V ,

Letting {φi = ψ
(1)
i1
⊗ . . .⊗ ψ(d)

id
}i∈I be a tensor product basis of V , the Galerkin projection is

defined by the equation
Au = b,

where the tensor u ∈ RI is the set of coefficients of ũ on the tensor product basis, and where
A ∈ RI×I and b ∈ RI are defined by

A(i , j) = a(ψj , ψi ), b(i) = `(ψi ).
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Galerkin methods

The tensor structure of the operator A ∈ RI1×I1 ⊗ . . .RId×Id and of the right-hand side
b ∈ RI1 ⊗ . . .⊗RId can be exhibited by considering the action of a and ` on rank-one functions.

Assuming that

a(u(1) ⊗ . . .⊗ u(d), v (1) ⊗ . . .⊗ v (d)) =
L∑

k=1

a
(1)
k (u(1), v (1)) . . . a

(d)
k (u(d), v (d)),

the operator A has the following representation in canonical format:

A =
L∑

k=1

A(1)
k ⊗ . . .⊗ A(d)

k ,

where A(ν)
k ∈ RIν×Iν is the operator associated with the bilinear form a

(ν)
k , such that

A(ν)
k (iν , jν) = a

(ν)
k (ψ

(ν)
jν
, ψ

(ν)
iν

).
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Galerkin methods

Assuming that

`(v (1) ⊗ . . .⊗ v (d)) =
R∑

k=1

`
(1)
k (v (1)) . . . `

(d)
k (v (d)),

the right-hand side b has the following representation in canonical format:

b =
R∑

k=1

b(1)
k ⊗ . . .⊗ b(d)

k ,

where b(ν)
k ∈ RIν is the vector associated with the linear form `

(ν)
k , such that

b(ν)
k (iν) = `

(ν)
k (ψ

(ν)
iν

).
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Galerkin methods

Example 13 (Diffusion reaction equation)

Consider the equation
−∆u + βu = b on X ,

with b(x) = b(1)(x1) . . . b(d)(xd ), and homogeneous Dirichlet boundary conditions. The problem admits a weak
solution u ∈ V = H1

0 (X ) such that a(u, v) = `(v) ∀v ∈ V, with

a(u, v) =

∫
X

(∇u · ∇v + βuv), `(v) =

∫
X

bv.

We have

a(
⊗
ν

u(ν)
,
⊗
ν

v (ν)) =
d∑

ν=1

∫
Xν

∂xν u(ν)
∂xν v (ν)

∫
×η 6=νXη

u(η)v (η) + β
d∏

ν=1

∫
Xν

u(ν)v (ν)
,

`(
⊗
ν

v (ν)) =
d∏

ν=1

∫
Xν

b(ν)v (ν)
,

which yields

A = B(1) ⊗M(2) ⊗ . . .⊗M(d) + . . . + M(1) ⊗ . . .⊗M(d−1) ⊗ B(d) + βM(1) ⊗ . . .⊗M(d)
,

with Bν (iν , jν ) =
∫
Xν

∂xνψ
(ν)
iν
∂xνψ

(ν)
jν

and M(ν)(iν , jν ) =
∫
Xν

ψ
(ν)
iν
ψ

(ν)
jν

, and

b = b(1) ⊗ . . .⊗ b(d)
,

with b(ν)(iν ) =
∫
Xν

b(ν)ψ
(ν)
iν
.
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