Low-rank and sparse methods for high-dimensional approximation and model order reduction

Lecture 5

Tensor structure of high-dimensional equations

Introduction

In this lecture, we give the interpretation of high dimensional partial differential equations and parameter-dependent equations as operator equations in tensor spaces, and we present practical aspects for obtaining a formulation suitable for the application of tensor methods.

Ultimately, tensor-structured equations will be of the form

$$
\mathbf{A} \mathbf{u}=\mathbf{b}, \quad \mathbf{u} \in \mathbb{R}^{\prime}=\mathbb{R}^{/ \mathbf{1} \times \ldots \times I_{d}}
$$

Outline

(1) Tensor product of operators
(2) Tensor structure of parameter-dependent equations
(3) Tensor structure of high-dimensional PDEs

Outline

(1) Tensor product of operators
2) Tensor structure of parameter-dependent equations
(3) Tensor structure of high-dimensional PDEs

Tensor product of operators

Let $V=V^{1} \otimes \ldots \otimes V^{d}$ and $W=W^{1} \otimes \ldots \otimes W^{d}$ be two algebraic tensor spaces.
Let $L\left(V^{\nu}, W^{\nu}\right)$ denote the space of linear operators from V^{ν} to W^{ν}. The elementary tensor product of operators $A^{(\nu)} \in L\left(V^{\nu}, W^{\nu}\right), 1 \leq \nu \leq d$, denoted by

$$
A=A^{(1)} \otimes \ldots \otimes A^{(d)}
$$

is defined in a standard way. Then, we can define the algebraic tensor space

$$
L:=L\left(V^{1}, W^{1}\right) \otimes \ldots \otimes L\left(V^{d}, W^{d}\right)
$$

which is the set of finite linear combinations of elementary tensors.

Tensor product of operators

For the case where

$$
V=W=\mathbb{R}^{\prime}, \quad I=I_{1} \times \ldots \times I_{d}
$$

$L\left(V^{\nu}, W^{\nu}\right)$ is identified with $\mathbb{R}^{I_{\nu} \times I_{\nu}}$ and an operator in L is identified with an element of $\mathbb{R}^{I \times I}$, such that for $u \in \mathbb{R}^{\prime}, A u \in \mathbb{R}^{\prime}$ is given by

$$
(A u)(i)=\sum_{j \in I} A(i, j) u(j)
$$

An elementary tensor $A=A^{(1)} \otimes \ldots \otimes A^{(d)}$ is such that

$$
A(i, j)=A\left(\left(i_{1}, \ldots, i_{d}\right),\left(j_{1}, \ldots, j_{d}\right)\right)=A^{(1)}\left(i_{1}, j_{1}\right) \ldots A^{(d)}\left(i_{d}, j_{d}\right)
$$

Operators in low-rank formats

L being a tensor product of vector spaces, the ranks of tensors in L are defined in a usual way, as well as the corresponding tensor formats.

An operator A in canonical format has a representation

$$
A=\sum_{k=1}^{r} A_{k}^{(1)} \otimes \ldots \otimes A_{k}^{(d)} C(k) .
$$

Ultimately, an operator in low-rank format has a representation of the form

$$
A=\sum_{k_{1}=1}^{r_{1}} \ldots \sum_{k_{L}=1}^{r_{L}} A_{k_{S_{1}}}^{(1)} \otimes \ldots \otimes A_{k_{S_{d}}}^{(d)} \prod_{\nu=d+1}^{M} C^{(\nu)}\left(k_{S_{\nu}}\right)
$$

where $C^{(\nu)}$ is a tensor of order $\# S_{\nu}$ depending on a subset $S_{\nu} \subset\{1, \ldots, M\}$ of summation indices, and where the $A_{k s_{\nu}}^{(\nu)}$ are operators in $L\left(V^{\nu}, W^{\nu}\right)$.

Operators in Tucker format

An operator A in Tucker format has a representation

$$
A=\sum_{k_{1}=1}^{r_{1}} \ldots \sum_{k_{d}=1}^{r_{d}} A_{k_{1}}^{(1)} \otimes \ldots \otimes A_{k_{d}}^{(d)} C\left(k_{1}, \ldots, k_{d}\right) .
$$

Operators in Tensor Train format

An operator A in tensor train format has a representation of the form

$$
A=\sum_{k_{1}=1}^{r_{1}} \ldots \sum_{k_{d-1}=1}^{r_{d-1}} A_{1, k_{1}}^{(1)} \otimes A_{k_{1}, k_{2}}^{(2)} \otimes \ldots \otimes A_{k_{d-1}, 1}^{(d)}
$$

Operations between tensors

For an operator A and a vector v in a low-rank format, with

$$
\begin{aligned}
& A=\sum_{k_{1}=1}^{r_{1}} \ldots \sum_{k_{L}=1}^{r_{L}}\left(\bigotimes_{\nu=1}^{d} A_{k_{\nu}}^{(\nu)}\right) \prod_{\nu=d+1}^{M} C^{(\nu)}\left(k_{S_{\nu}}\right), \\
& v=\sum_{k_{1}=1}^{r_{1}^{\prime}} \ldots \sum_{k_{L^{\prime}}=1}^{r_{L^{\prime}}^{\prime}}\left(\bigotimes_{\nu=1}^{d} v_{k_{S_{\nu}^{\prime}}^{\prime}}^{(\nu)}\right) \prod_{\nu=d+1}^{M^{\prime}} D^{(\nu)}\left(k_{S_{\nu}^{\prime}}\right),
\end{aligned}
$$

the product $A v$ is a tensor such that

$$
A v=\sum_{k_{1}=1}^{r_{1}} \ldots \sum_{k_{L}=1}^{r_{L}} \sum_{k_{\mathbf{1}}^{\prime}=1}^{r_{\mathbf{1}}^{\prime}} \ldots \sum_{k_{L^{\prime}}=1}^{r_{L^{\prime}}^{\prime}}\left(\bigotimes_{\nu=1}^{d}\left(A_{k_{S_{\nu}}}^{(\nu)} v_{k_{S_{\nu}^{\prime}}}^{(\nu)}\right)\right) \prod_{\nu=d+1}^{M} C^{(\nu)}\left(k_{S_{\nu}}\right) \prod_{\nu=d+1}^{M^{\prime}} D^{(\nu)}\left(k_{S_{\nu}^{\prime}}\right)
$$

Operations between tensors

For two tensors u and v in a Hilbert tensor space V, with

$$
\begin{aligned}
& u=\sum_{k_{\mathbf{1}}=1}^{r_{1}} \cdots \sum_{k_{L}=1}^{r_{L}}\left(\bigotimes_{\nu=1}^{d} u_{k_{S_{\nu}}}^{(\nu)}\right) \prod_{\nu=d+1}^{M} C^{(\nu)}\left(k_{S_{\nu}}\right), \\
& v=\sum_{k_{\mathbf{1}}=1}^{r_{\mathbf{1}}^{\prime}} \cdots \sum_{k_{L^{\prime}}=1}^{r_{L^{\prime}}^{\prime}}\left(\bigotimes_{\nu=1}^{d} v_{k_{S_{\nu}^{\prime}}}^{(\nu)}\right) \prod_{\nu=d+1}^{M^{\prime}} D^{(\nu)}\left(k_{S_{\nu}^{\prime}}\right),
\end{aligned}
$$

the inner product of u and v is such that

$$
(u, v)=\sum_{k_{1}=1}^{r_{1}} \ldots \sum_{k_{L}=1}^{r_{L}} \sum_{k_{\mathbf{1}}^{\prime}=1}^{r_{\mathbf{1}}^{\prime}} \ldots \sum_{k_{L^{\prime}}=1}^{r_{L^{\prime}}^{\prime}}\left(\prod_{\nu=1}^{d}\left(u_{k_{\nu}}^{(\nu)}, v_{k_{S_{\nu}^{\prime}}}^{(\nu)}\right)_{\nu}\right) \prod_{\nu=d+1}^{M} C^{(\nu)}\left(k_{S_{\nu}}\right) \prod_{\nu=d+1}^{M^{\prime}} D^{(\nu)}\left(k_{S_{\nu}^{\prime}}\right)
$$

Graphical representation of operations for tree-based or tensor networks formats

Operations between tensors in tree-based tensor formats or more general tensor networks formats have a simple graphical representation. For example, consider an operator A and a vector v in tensor train format

$$
\begin{gathered}
A(i, j)=\sum_{k_{1}=1}^{r_{1}} \ldots \sum_{k_{d-1}=1}^{r_{d-1}} A^{(1)}\left(i_{1}, j_{1}, k_{1}\right) A^{(2)}\left(i_{2}, j_{2}, k_{1}, k_{2}\right) \ldots A^{(d)}\left(i_{d}, j_{d}, k_{d-1}\right) \\
v(j)=\sum_{k_{1}=1}^{r_{1}^{\prime}} \ldots \sum_{k_{d-1}=1}^{r_{d-1}^{\prime}} v^{(1)}\left(j_{1}, k_{1}\right) v^{(2)}\left(j_{2}, k_{1}, k_{2}\right) \ldots v^{(d)}\left(j_{d}, k_{d-1}\right) . \\
\underbrace{A_{1}^{(1)}}_{i_{1}} \underbrace{A_{1}}_{i_{1}^{(2)}} k_{2}^{k_{1}} \cdots k_{i_{d}}^{k_{d}^{(d)}}
\end{gathered}
$$

(1) Tensor product of operators

(2) Tensor structure of parameter-dependent equations

- Parameter-dependent equations
- Parameter-dependent equations for a finite training set
- Galerkin methods
(3) Tensor structure of high-dimensional PDEs

Parameter-dependent equations

Let us consider a parameter-dependent operator equation

$$
\begin{equation*}
A(\xi) u(\xi)=b(\xi) \tag{1}
\end{equation*}
$$

where $\xi=\left(\xi_{1}, \ldots, \xi_{s}\right)$ are parameters or random variables taking values in $\overline{\text {, }}$

$$
A(\xi): \mathcal{V} \rightarrow \mathcal{W}
$$

is a parameter-dependent linear operator, and

$$
b(\xi) \in \mathcal{W}
$$

is a parameter-dependent vector.

Affine representations

We here assume that $A(\xi)$ and $b(\xi)$ admit so-called affine representations

$$
\begin{equation*}
A(\xi)=\sum_{i=1}^{L} \lambda_{i}(\xi) A_{i}, \quad b(\xi)=\sum_{i=1}^{R} \eta_{i}(\xi) b_{i} \tag{2}
\end{equation*}
$$

with $A_{i}: \mathcal{V} \rightarrow \mathcal{W}$ and $b_{i} \in \mathcal{W}$.

Example 1 (Diffusion-reaction equation)

The problem

$$
-\lambda_{1}(\xi) \Delta u+\lambda_{2}(\xi) u=\eta_{1}(\xi) b_{1} \quad \text { on } D, \quad u=0 \quad \text { on } \partial D
$$

can be written in the form $A(\xi) u(\xi)=b(\xi)$, where $A(\xi)$ has an affine representation with $L=2$, $A_{1} v=-\Delta v$ and $A_{2} v=v$, and where $b(\xi)$ has an affine representation with $R=1$.

Remark.

Some problems have operators and right-hand side directly given in the form (2). If this is not the case (or if R and L are high), a preliminary approximation step is required (e.g. using interpolation).

Affine representations

Example 2 (Diffusion equation with random diffusion coefficient)

The problem

$$
-\nabla \cdot(k(\cdot, \omega) \nabla u)=b \quad \text { on } \quad D, \quad u=0 \quad \text { on } \quad \partial D
$$

where $k(x, \omega)$ is a second random field with a decomposition

$$
k(x, \omega)=\sum_{i=1}^{L} k_{i}(x) \xi_{i}(\omega), \quad L \in \mathbb{N} \cup\{+\infty\}
$$

can be written in the form $A(\xi) u(\xi)=b$, where

$$
A(\xi)=\sum_{i=1}^{L} A_{i} \xi_{i} \quad \text { with } \quad A_{i} v=-\nabla \cdot\left(k_{i} \nabla v\right)
$$

Affine representations

Example 3 (Diffusion equation on a random domain)

Consider the problem

$$
-\Delta U(x, \xi)=g(x) \quad \text { for } \quad x \in D(\xi), \quad U(x, \xi)=0 \quad \text { for } \quad x \in \partial D(\xi)
$$

Assume that there exists a diffeomorphism $\phi(\cdot ; \xi): D_{0} \rightarrow D(\xi)$ from a deterministic domain D_{0} to $D(\xi)$. By using the change of variable

$$
u\left(x_{0}, \xi\right)=U\left(\phi\left(x_{0}, \xi\right), \xi\right), x_{0} \in D_{0}
$$

the problem can be interpreted as a diffusion equation on a deterministic domain but with random diffusion coefficient and source term:

$$
-\nabla \cdot(K(\cdot, \xi) \nabla u)=g_{0}(\cdot, \xi)
$$

with

$$
\begin{gathered}
K\left(x_{0}, \xi\right)=\nabla \phi\left(x_{0}, \xi\right) \nabla \phi\left(x_{0}, \xi\right)^{T}\left|\operatorname{det}\left(\nabla \phi\left(x_{0}, \xi\right)\right)\right| \\
g_{0}\left(x_{0}, \xi\right)=g\left(\phi\left(x_{0}, \xi\right)\right)\left|\operatorname{det}\left(\nabla \phi\left(x_{0}, \xi\right)\right)\right| .
\end{gathered}
$$

Apart from simple transformations ϕ (e.g. affine), approximations of K and g_{0} are required to obtain affine representations of the operator and right-hand side.

Parameter-dependent equations

For simplicity, let us assume that \mathcal{V} and \mathcal{W} are N-dimensional spaces and identify the equation

$$
A(\xi) u(\xi)=b(\xi)
$$

with a linear system of equations

$$
\mathbf{A}(\xi) \mathbf{u}(\xi)=\mathbf{b}(\xi)
$$

with

$$
\mathbf{A}(\xi) \in \mathbb{R}^{N \times N}, \quad \mathbf{u}(\xi) \in \mathbb{R}^{N}, \quad \mathbf{b}(\xi) \in \mathbb{R}^{N}
$$

Example 4 (Diffusion-reaction equation)

In example 1, consider that $\mathcal{V}=\mathcal{W}$ is an approximation space in $H_{0}^{1}(D)$ (e.g. a finite element space) with basis $\left\{\varphi_{i}\right\}_{i=1}^{N}$, and let $u \in \mathcal{V}$ be the standard Galerkin approximation of the solution of the PDE.

Then $\mathbf{u}(\xi)$ are the coefficients of u on the basis of \mathcal{V}, and $\mathbf{A}(\xi)$ and $\mathbf{b}(\xi)$ admit affine representations

$$
\mathbf{A}(\xi)=\mathbf{A}_{\mathbf{1}} \lambda_{\mathbf{1}}(\xi)+\mathbf{A}_{\mathbf{2}} \lambda_{\mathbf{2}}(\xi) \quad \text { and } \quad \mathbf{b}(\xi)=\mathbf{b}_{\mathbf{1}} \eta_{1}(\xi)
$$

with

$$
\mathbf{A}_{1}(i, j)=\int_{D} \nabla \varphi_{i} \cdot \nabla \varphi_{j}, \quad \mathbf{A}_{2}(i, j)=\int_{D} \varphi_{i} \varphi_{j}, \quad \mathbf{b}_{1}(i)=\int_{D} \varphi_{i} b_{1} .
$$

(1) Tensor product of operators
(2) Tensor structure of parameter-dependent equations

- Parameter-dependent equations
- Parameter-dependent equations for a finite training set
- Galerkin methods
(3) Tensor structure of high-dimensional PDEs

Parameter-dependent equations for a finite training set

We also assume that we are interested in evaluating the solution $\mathbf{u}(\xi)$ at a finite set of values $\left\{\xi^{k}\right\}_{k \in K}$ of ξ (a training set), such that

$$
\begin{equation*}
\mathbf{A}\left(\xi^{k}\right) \mathbf{u}\left(\xi^{k}\right)=\mathbf{b}\left(\xi^{k}\right), \quad \forall k \in K \tag{3}
\end{equation*}
$$

The set of vectors $\left\{\mathbf{u}\left(\xi^{k}\right)\right\}_{k \in K}$ and $\left\{\mathbf{b}\left(\xi^{k}\right)\right\}_{k \in K}$, as elements of $\left(\mathbb{R}^{N}\right)^{K}$, can be identified with order-two tensors

$$
\mathbf{u} \in \mathbb{R}^{N} \otimes \mathbb{R}^{K} \quad \text { and } \quad \mathbf{b} \in \mathbb{R}^{N} \otimes \mathbb{R}^{K} .
$$

The set of matrices $\left\{\mathbf{A}\left(\xi^{k}\right)\right\}_{k \in K}$, considered as a linear operator from $\mathbb{R}^{N} \otimes \mathbb{R}^{K}$ and $\mathbb{R}^{N} \otimes \mathbb{R}^{K}$, can be identified with a tensor

$$
\mathbf{A} \in \mathbb{R}^{N \times N} \otimes \mathbb{R}^{K \times K}
$$

Finally, the set of equations (3) can be identified with a operator equation

$$
\mathbf{A} \mathbf{u}=\mathbf{b}
$$

Parameter-dependent equations for a finite training set

The affine representations of parameter-dependent operator $A(\xi)$ yields a low-rank representation for the tensor \mathbf{A} in the form

$$
\mathbf{A}=\sum_{i=1}^{L} \mathbf{A}_{i} \otimes \boldsymbol{\Lambda}_{i}, \quad \text { with } \boldsymbol{\Lambda}_{i}=\operatorname{diag}\left(\boldsymbol{\lambda}_{i}\right), \quad \boldsymbol{\lambda}_{i}=\left(\lambda_{i}\left(\xi^{k}\right)\right)_{k \in K}
$$

Also, the affine representation of parameter-dependent vector $b(\xi)$ yields a low-rank representation for the tensor \mathbf{b} in the form

$$
\mathbf{b}=\sum_{i=1}^{R} \mathbf{b}_{i} \otimes \boldsymbol{\eta}_{i}, \quad \boldsymbol{\eta}_{i}=\left(\eta_{i}\left(\xi^{k}\right)\right)_{k \in K} .
$$

Parameter-dependent equations for a tensorized training set

Let us assume that $\xi=\left(\xi_{1}, \ldots, \xi_{s}\right)$ is a vector of parameters taking values in a product set三 $=\bar{E}_{1} \times \ldots \times \bar{\Xi}_{s}$.

Let $\left\{\xi_{\nu}^{k_{\nu}}\right\}_{k_{\nu} \in K_{\nu}}$ be a grid in Ξ_{ν}, and let us consider for the training set the tensorized grid

$$
\left\{\xi^{k}=\left(\xi_{1}^{k_{1}}, \ldots, \xi_{s}^{k_{s}}\right)\right\}_{k \in K}, \quad K=K_{1} \times \ldots \times K_{d}
$$

A vector $\mathbf{a} \in \mathbb{R}^{K}$ is then identified with a tensor in $\mathbb{R}^{K_{\mathbf{1}}} \otimes \ldots \otimes \mathbb{R}^{K_{s}}$.
Then the tensor $\mathbf{u} \in \mathbb{R}^{N} \otimes \mathbb{R}^{K}$ can be identified with a higher-order tensor

$$
\mathbf{u} \in \mathbb{R}^{N} \otimes \mathbb{R}^{K_{\mathbf{1}}} \otimes \ldots \otimes \mathbb{R}^{K_{s}}
$$

Parameter-dependent equations for a tensorized training set

Let us assume that $\mathbf{A}(\xi)$ and $\mathbf{b}(\xi)$ admit affine representations

$$
\mathbf{A}(\xi)=\sum_{i=1}^{L} \mathbf{A}_{i} \lambda_{i}(\xi) \quad \text { and } \quad \mathbf{b}(\xi)=\sum_{i=1}^{R} \mathbf{b}_{i} \eta_{i}(\xi)
$$

with rank-one functions

$$
\lambda_{i}(\xi)=\lambda_{i}^{(1)}\left(\xi_{1}\right) \ldots \lambda_{i}^{(s)}\left(\xi_{s}\right) \quad \text { and } \quad \eta_{i}(\xi)=\eta_{i}^{(1)}\left(\xi_{1}\right) \ldots \eta_{i}^{(s)}\left(\xi_{s}\right)
$$

The set of evaluations of a rank one function $a(\xi)=a^{(1)}\left(\xi_{1}\right) \ldots a^{(s)}\left(\xi_{s}\right)$ on the tensorized grid is identified with a rank-one tensor

$$
\mathbf{a}=\left(a\left(\xi^{k}\right)\right)_{k \in K}=\mathbf{a}^{(1)} \otimes \ldots \otimes \mathbf{a}^{(s)}, \quad \mathbf{a}^{(\nu)}=\left(a^{(\nu)}\left(\xi_{\nu}^{k_{\nu}}\right)_{k_{\nu} \in K_{\nu}}\right)
$$

Parameter-dependent equations for a tensorized training set

Then the problem can be interpreted as a tensor-structured equation

$$
\mathbf{A} \mathbf{u}=\mathbf{b}
$$

with $\mathbf{u} \in \mathbb{R}^{N} \otimes \mathbb{R}^{K_{\mathbf{1}}} \otimes \ldots \otimes \mathbb{R}^{K_{d}}$, and where \mathbf{A} and \mathbf{b} admit low-rank representations (in canonical format)

$$
\mathbf{b}=\sum_{i=1}^{L} \mathbf{b}_{i} \otimes \boldsymbol{\eta}_{i}^{(1)} \otimes \ldots \otimes \boldsymbol{\eta}_{i}^{(s)}
$$

and

$$
\mathbf{A}=\sum_{i=1}^{R} \mathbf{A}_{i} \otimes \boldsymbol{\Lambda}_{i}^{(1)} \otimes \ldots \otimes \boldsymbol{\Lambda}_{i}^{(s)}, \quad \boldsymbol{\Lambda}_{i}^{(\nu)}=\operatorname{diag}\left(\boldsymbol{\lambda}_{i}^{(\nu)}\right)
$$

(1) Tensor product of operators

2 Tensor structure of parameter-dependent equations

- Parameter-dependent equations
- Parameter-dependent equations for a finite training set
- Galerkin methods
(3) Tensor structure of high-dimensional PDEs

Galerkin methods

Consider the problem of finding $\mathbf{u}: \equiv \rightarrow \mathbb{R}^{N}$ such that

$$
\mathbf{A}(\xi) \mathbf{u}(\xi)=\mathbf{b}(\xi) \quad \text { for all } \xi \text { in } \bar{\equiv}
$$

where \equiv is equipped with a measure P_{ξ}.
We introduce a finite dimensional space \mathcal{S} of functions defined on $\overline{\text { E. }}$
The Galerkin approximation $\tilde{\mathbf{u}}$ of \mathbf{u} in the space $\mathbb{R}^{N} \otimes \mathcal{S}$, also denoted \mathbf{u}, is defined by

$$
\mathbf{a}(\mathbf{u}, \mathbf{v})=\ell(\mathbf{v}), \quad \forall \mathbf{v} \in \mathbb{R}^{N} \otimes \mathcal{S}
$$

where \mathbf{a} is a linear form defined by

$$
\mathbf{a}(\mathbf{u}, \mathbf{v})=\int_{\equiv}\langle\mathbf{A}(y) \mathbf{u}(y), \mathbf{v}(y)\rangle P_{\xi}(d y)
$$

and ℓ is a linear form defined by

$$
\ell(\mathbf{v})=\int_{\equiv}\langle\mathbf{b}(y), \mathbf{v}(y)\rangle P_{\xi}(d y) .
$$

Galerkin methods

Let $\left\{\psi_{k}(\xi)\right\}_{k \in K}$ be a basis of \mathcal{S}. The tensor $\mathbf{u}=\sum_{k \in K} \mathbf{u}_{k} \otimes \psi_{k}$ in $\mathbb{R}^{N} \otimes \mathcal{S}$ can be identified with a tensor $\mathbf{U}=\left(\mathbf{u}_{k}\right)_{k \in K} \in \mathbb{R}^{N} \otimes \mathbb{R}^{K}$.

Finally, the problem defining the Galerkin approximation is identified with a tensor structured equation on $\mathbf{U} \in \mathbb{R}^{N} \otimes \mathbb{R}^{K}$,

$$
\mathbf{A} \mathbf{U}=\mathbf{b},
$$

where $\mathbf{A} \in \mathbb{R}^{N \times N} \otimes \mathbb{R}^{K \times K}$ and $\mathbf{b} \in \mathbb{R}^{N} \otimes \mathbb{R}^{K}$ have low-rank representations

$$
\mathbf{A}=\sum_{i=1}^{R} \mathbf{A}_{i} \otimes \boldsymbol{\Lambda}_{i} \quad \text { and } \quad \mathbf{b}=\sum_{i=1}^{L} \mathbf{b}_{i} \otimes \boldsymbol{\eta}_{i}
$$

with $\boldsymbol{\Lambda}_{i} \in \mathbb{R}^{K \times K}$ such that

$$
\boldsymbol{\Lambda}_{i}(k, l)=\int_{\equiv} \psi_{k}(y) \psi_{l}(y) \lambda_{i}(x) P_{\xi}(d y)
$$

and $\boldsymbol{\eta}_{i} \in \mathbb{R}^{K}$ such that

$$
\boldsymbol{\eta}_{i}(k)=\int_{\equiv} \eta_{i}(y) \psi_{k}(y) P_{\xi}(d y)
$$

Outline

(1) Tensor product of operators
2) Tensor structure of parameter-dependent equations
(3) Tensor structure of high-dimensional PDEs

High-dimensional partial differential equations

Let \mathcal{X} in \mathbb{R}^{d} be a product domain of \mathbb{R}^{d}, with

$$
\mathcal{X}=\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}
$$

Let us consider the problem of finding a multivariate function

$$
u\left(x_{1}, \ldots, x_{d}\right)
$$

which satisfies suitable boundary conditions on $\partial \mathcal{X}$ and a partial differential equation

$$
A(u)=b \quad \text { on } \quad \mathcal{X},
$$

where b is a given multivariate function and A is an operator such that $A(u)$ depends on the partial derivatives

$$
D^{\alpha} u=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{d}^{\alpha_{d}}} u
$$

where $|\alpha|:=\|\alpha\|_{1}$ is the length of the multi-index $\alpha \in \mathbb{N}^{d}$.

Example 5 (Laplace operator)

$$
\Delta u=\frac{\partial^{2}}{\partial x_{1}^{2}} u+\ldots+\frac{\partial^{2}}{\partial x_{d}^{2}} u=D^{(2,0 \ldots, 0)} u+\ldots+D^{(0, \ldots, 0,2)} u
$$

High-dimensional partial differential equations

Remark. Non product domains

A partial differential equation $A(u)=b$ defined on domain \mathcal{X} which is not a product domain can be transformed into a partial differential equation on a product domain in two different ways:

- by introducing a bijection $\phi: \tilde{\mathcal{X}} \rightarrow \mathcal{X}$ from a product domain $\tilde{\mathcal{X}}$ to \mathcal{X} and by using a change of variable $u(x)=\tilde{u}(\phi(x))$. The map ϕ should be sufficiently smooth (possibly piecewise smooth).
- by embedding the domain \mathcal{X} into a fictitious product domain $\tilde{\mathcal{X}}$, and using consistant reformulations of the problem on the fictitious domain.

(1) Tensor product of operators

2 Tensor structure of parameter-dependent equations
(3) Tensor structure of high-dimensional PDEs

- Tensor structure of differential operators
- Finite difference schemes on tensorized grids
- Functional framework and Galerkin methods
(1) Tensor product of operators

2 Tensor structure of parameter-dependent equations
(3) Tensor structure of high-dimensional PDEs

- Tensor structure of differential operators
- Finite difference schemes on tensorized grids
- Functional framework and Galerkin methods

Tensor structure of differential operators

Assume that the problem admits a unique solution u in a space $\bar{V}^{\|\cdot\|}$ where $V=V^{1} \otimes \ldots \otimes V^{d}$ is the tensor product of spaces V^{ν} of functions defined on \mathcal{X}_{ν}.

For an elementary tensor

$$
v(x)=v^{(1)}\left(x_{1}\right) \ldots v^{(d)}\left(x_{d}\right)
$$

and for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d}$, the differential operator D^{α} is such that

$$
D^{\alpha} v(x)=D^{\alpha_{1}} v^{(1)}\left(x_{1}\right) \ldots D^{\alpha_{d}} v^{(d)}\left(x_{d}\right)
$$

Then D^{α} can be interpreted as an elementary operator on the tensor space V, with

$$
D^{\alpha}=D^{\alpha_{1}} \otimes \ldots \otimes D^{\alpha_{d}} .
$$

Differential operators in low-rank tensor formats

A linear partial differential operator of the form

$$
A=\sum_{\alpha} a_{\alpha} D^{\alpha}
$$

where $a_{\alpha} \in \mathbb{R}$, can then be identified with an operator on V with admits a representation in canonical format

$$
A=\sum_{\alpha} a_{\alpha} D^{\alpha_{1}} \otimes \ldots \otimes D^{\alpha_{d}}
$$

Example 6 (Laplace operator)

The Laplace operator is identified with a tensor with canonical rank d

$$
\Delta=D^{2} \otimes I \otimes \ldots \otimes I+\ldots+I \otimes \ldots \otimes I \otimes D^{2}
$$

Differential operators in low-rank tensor formats

Differential operators may have representations with reduced complexity in other tensor formats.
Example 7 (Laplace operator in tensor train format)
The Laplace operator admits a representation in tensor train format with TT-rank $(2, \ldots, 2)$

$$
\Delta=\sum_{k_{1}=1}^{2} \ldots \sum_{k_{d-1}=1}^{2} B_{2, k_{1}} \otimes B_{k_{1}, k_{\mathbf{2}}} \ldots \otimes B_{k_{d-\mathbf{1}}, 1}
$$

where

$$
B_{1,1}=B_{2,2}=I, \quad B_{1,2}=0, \quad B(2,1)=D^{2} .
$$

This can be represented in a more convenient block form where each block represents a collection of operators $\left\{B_{k_{1}, k_{\mathbf{2}}}\right\}$

$$
\Delta=\left(\begin{array}{ll}
D^{2} & I
\end{array}\right) \bowtie\left(\begin{array}{cc}
1 & 0 \\
D^{2} & I
\end{array}\right) \bowtie \ldots \bowtie\left(\begin{array}{cc}
I & 0 \\
D^{2} & I
\end{array}\right) \bowtie\binom{I}{D^{2}} .
$$

where

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \bowtie\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} \otimes B_{11}+A_{12} \otimes B_{21} & A_{11} \otimes B_{12}+A_{12} \otimes B_{22} \\
A_{21} \otimes B_{11}+A_{22} \otimes B_{21} & A_{21} \otimes B_{12}+A_{22} \otimes B_{22}
\end{array}\right)
$$

Differential operators in low-rank tensor formats

Example 8 (Laplace operator in tree-based tensor format)

The Laplace operator admits a representation in Tucker format with rank ($2, \ldots, 2$), such that

$$
\Delta=\sum_{k_{1}=1}^{2} \ldots \sum_{k_{d}=1}^{2} B_{k_{1}} \otimes \ldots \otimes B_{k_{d}} C\left(k_{1}, \ldots, k_{d}\right)
$$

where $B_{1}=I$ and $B_{2}=D^{2}$, and where the tensor $C \in \mathbb{R}^{2} \otimes \ldots \otimes \mathbb{R}^{2}$ has a representation in canonical format

$$
C=e_{2} \otimes e_{1} \otimes \ldots \otimes e_{1}+\ldots+e_{1} \otimes e_{2} \otimes \ldots \otimes e_{2}, \quad e_{1}=\binom{1}{0}, \quad e_{2}=\binom{0}{1} .
$$

The tensor C has a exact representation in tree-based format \mathcal{T}_{r}^{T} with T-rank $r=(2, \ldots, 2)$ whatever the tree T.

Differential operators in low-rank tensor formats

Example 9 (Representation of Laplace-like operators in tensor train format)

An operator A of the form

$$
\begin{aligned}
A= & M_{1} \otimes R_{2} \otimes R_{3} \otimes \ldots R_{d}+L_{1} \otimes M_{2} \otimes R_{3} \otimes \ldots \otimes R_{d}+\ldots \\
& +L_{1} \otimes \ldots \otimes L_{d-2} \otimes M_{d-1} \otimes R_{d}+L_{1} \otimes \ldots \otimes L_{d-1} \otimes M_{d}
\end{aligned}
$$

admits a representation in tensor train format with $T T$ rank $(2, \ldots, 2)$

$$
A=\left(\begin{array}{ll}
L_{1} & M_{1}
\end{array}\right) \bowtie\left(\begin{array}{cc}
L_{2} & M_{2} \\
& R_{2}
\end{array}\right) \bowtie \ldots \bowtie\left(\begin{array}{cc}
L_{d-1} & M_{d-1} \\
& R_{d-1}
\end{array}\right) \bowtie\binom{M_{d}}{R_{d}} .
$$

(1) Tensor product of operators

2 Tensor structure of parameter-dependent equations
(3) Tensor structure of high-dimensional PDEs

- Tensor structure of differential operators
- Finite difference schemes on tensorized grids
- Functional framework and Galerkin methods

Let consider uniform uni-dimensional grids $\Gamma_{I_{\nu}}^{\nu}=\left\{x_{\nu}^{i_{\nu}}\right\}_{i_{\nu} \in I_{\nu}}$ in \mathcal{X}_{ν}.
Let $I=I_{1} \times \ldots \times I_{d}$ and let Γ_{I} be the tensorized grid on \mathcal{X} defined by

$$
\Gamma_{I}=\Gamma_{l_{1}}^{1} \times \ldots \times \Gamma_{I_{d}}^{d}=\left\{x^{i}=\left(x_{1}^{i_{1}}, \ldots, x_{1}^{i_{d}}\right): i \in I\right\} .
$$

Finite difference schemes on tensorized grids

For a function $v\left(x_{\nu}\right)$ on \mathcal{X}_{ν} with values $\mathbf{v}=\left(v\left(x_{\nu}^{i_{\nu}}\right)\right)_{i_{\nu} \in I_{\nu}}$ on the grid $\Gamma_{I_{\nu}}^{\nu}$, we define a finite difference operator

$$
\mathbf{D}_{\nu}^{k}: \mathbb{R}^{I_{\nu} \times I_{\nu}}
$$

associated with D^{k}, such that $\mathbf{D}^{k} \mathbf{v}$ provides a finite difference approximation of $D^{k} v\left(x_{\nu}\right)$ on the grid $\Gamma_{I_{\nu}}^{\nu}$.

Example 10

For $\mathcal{X}_{\nu}=(0,1)$, and a uniform grid $\Gamma_{\nu}=\{i h\}_{i=1}^{n}$ of step size $h=(n+1)^{-1}$, a standard difference operators for D^{2} (for Dirichlet boundary conditions) is given by

$$
\mathbf{D}_{\nu}^{2}=-h^{-2}\left(\begin{array}{cccc}
2 & -1 & & \\
-1 & 2 & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right)
$$

Then, for $\alpha \in \mathbb{N}^{d}$,

$$
\mathbf{D}^{\alpha}=\mathbf{D}_{1}^{\alpha_{1}} \otimes \ldots \otimes \mathbf{D}_{d}^{\alpha_{d}} \in \mathbb{R}^{\boldsymbol{I}_{1} \times l_{\mathbf{1}}} \otimes \ldots \otimes \mathbb{R}^{l_{d} \times I_{d}}
$$

is a finite difference operator associated with the differential operator D^{α} on the tensorized grid Γ_{1}.

Finite difference schemes on tensorized grids

A finite difference scheme for the linear partial differential equation

$$
A u=b
$$

with

$$
A=\sum_{\alpha} a_{\alpha} D^{\alpha}
$$

yields a tensor structured equation

$$
\mathbf{A} \mathbf{u}=\mathbf{b},
$$

where the entries of the tensor

$$
\mathbf{u} \in \mathbb{R}^{\prime}=\mathbb{R}^{I_{1} \times \ldots \times I_{d}}
$$

provide approximations of the values of the solution $u(x)$ on the tensor product grid Γ_{l}, where

$$
\mathbf{b}=\left(b\left(x^{i}\right)\right)_{i \in I} \in \mathbb{R}^{\prime}
$$

is the vector of evaluations of the function $b(x)$ on the tensor product grid Γ_{l}, and where \mathbf{A} is an operator with the following representation in canonical format

$$
\mathbf{A}=\sum_{\alpha} a_{\alpha} \mathbf{D}_{1}^{\alpha_{1}} \otimes \ldots \otimes \mathbf{D}_{d}^{\alpha_{d}}
$$

Example 11 (Discrete Laplace operator in low-rank formats)

We consider uniform grids $\Gamma_{I_{\nu}}^{\nu}$ with n points and step size h. The Discrete Laplace operator $\boldsymbol{\Delta}$ admits a representation in canonical format

$$
\boldsymbol{\Delta}=\mathbf{B} \otimes \mathbf{I} \otimes \ldots \otimes \mathbf{I}+\ldots+\mathbf{I} \otimes \ldots \otimes \mathbf{I} \otimes \mathbf{B}
$$

with $\mathbf{B}=h^{-2} \operatorname{diag}(-1,2,-1)$ for Dirichlet boundary conditions.
It also admits a representation in tensor train format with TT-rank $(2, \ldots, 2)$

$$
\boldsymbol{\Delta}=\sum_{k_{\mathbf{1}}=1}^{2} \ldots \sum_{k_{d-1}=1}^{2} \mathbf{B}_{2, k_{\mathbf{1}}} \otimes \mathbf{B}_{k_{\mathbf{1}}, k_{\mathbf{2}}} \ldots \otimes \mathbf{B}_{k_{d-1}, 1}
$$

with $\mathbf{B}_{1,1}=\mathbf{B}_{2,2}=\mathbf{I}, \quad \mathbf{B}_{1,2}=0, \quad \mathbf{B}_{1,2}=\mathbf{B}$, or using a block notation,

$$
\Delta=\left(\begin{array}{ll}
\mathbf{B} & \mathbf{I}
\end{array}\right) \bowtie\left(\begin{array}{ll}
\mathbf{I} & \mathbf{0} \\
\mathbf{B} & \mathbf{I}
\end{array}\right) \bowtie \ldots \bowtie\left(\begin{array}{ll}
\mathbf{I} & \mathbf{0} \\
\mathbf{B} & \mathbf{I}
\end{array}\right) \bowtie\binom{\mathbf{I}}{\mathbf{B}} .
$$

Example 12 (Diffusion reaction equation)

Consider the equation

$$
-\Delta u+\beta u=b
$$

with $b(x)=b^{(1)}\left(x_{1}\right) \ldots b^{(d)}\left(x_{d}\right)$, and homogeneous Dirichlet boundary conditions.

We consider uniform grids $\Gamma_{I_{\nu}}^{\nu}$ with n points and step size h.
A standard (centered) finite difference scheme yields a system

$$
\mathbf{A} \mathbf{u}=\mathbf{b}
$$

with

$$
\mathbf{b}=\mathbf{b}^{(1)} \otimes \ldots \otimes \mathbf{b}^{(d)}
$$

where $\mathbf{b}^{(\nu)} \in \mathbb{R}^{n}$ is the vector of evaluations of function $b^{(\nu)}$ on the grid $\Gamma_{I_{\nu}}^{\nu}$,

$$
\mathbf{A}=\mathbf{\Delta}+\beta \mathbf{I} \otimes \ldots \otimes \mathbf{I} .
$$

(1) Tensor product of operators

2 Tensor structure of parameter-dependent equations
(3) Tensor structure of high-dimensional PDEs

- Tensor structure of differential operators
- Finite difference schemes on tensorized grids
- Functional framework and Galerkin methods

Some details about the functional framework

Under standard assumptions, the problem is proved to be well-posed, with a solution u is the Sobolev space

$$
H^{k}(\mathcal{X})
$$

of functions u with weak partial derivatives $D^{\alpha} u$ in $L^{2}(\mathcal{X})$, for $|\alpha| \leq k$.
The space $H^{k}(\mathcal{X})$, equipped with the norm

$$
\|u\|_{H_{k}}^{2}=\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{2}}^{2},
$$

is a Hilbert space which can be identified with the completion of the algebraic tensor space $H^{k}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes H^{k}\left(\mathcal{X}_{d}\right)$ with respect to the norm $\|u\|_{H_{k}}$, that means

$$
H^{k}(\mathcal{X})={\overline{H^{k}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes H^{k}\left(\mathcal{X}_{d}\right)}}_{\|\cdot\|_{H^{k}}}
$$

Some details about the functional framework

The canonical norm on the algebraic tensor product space $H^{k}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes H^{k}\left(\mathcal{X}_{d}\right)$, which is induced by the norms on the spaces $H^{k}\left(\mathcal{X}_{\nu}\right)$, corresponds to the $H_{m i x}^{k}$ norm defined by

$$
\|v\|_{H_{m i x}^{k}}^{2}=\sum_{\|\alpha\|_{\infty} \leq k}\left\|D^{\alpha} v\right\|_{L^{2}}^{2}
$$

and such that for $v(x)=v^{(1)}\left(x_{1}\right) \ldots v^{(d)}\left(x_{d}\right)$,

$$
\|v\|_{H_{m i x}^{k}}=\prod_{\nu=1}^{d}\left\|v^{(\nu)}\right\|_{H^{k}}
$$

Noting that $\|v\|_{H^{k}} \leq\|v\|_{H_{\text {mix }}^{k}}$, we have that the tensor space

$$
H_{m i x}^{k}(\mathcal{X})=\overline{H^{k}\left(\mathcal{X}_{1}\right) \otimes \ldots \otimes H^{k}\left(\mathcal{X}_{d}\right)}\|\cdot\|_{H_{m i x}^{k}}
$$

is such that

$$
H_{m i x}^{k}(\mathcal{X}) \subset H^{k}(\mathcal{X})
$$

with strict inclusion. The spaces $H_{m i x}^{k}$ with mixed Sobolev regularity play an important role in the analysis of approximation methods in high-dimension (sparse grids, low-rank approximations).

Galerkin methods

Assume that the problem admits a weak solution $u \in \mathcal{V}$, where \mathcal{V} is a Hilbert space of functions in $H^{k}(\mathcal{X})$, such that

$$
a(u, v)=\ell(v) \quad \forall v \in \mathcal{V}
$$

where $a=\mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ is a bilinear form and $\ell=\mathcal{V} \rightarrow \mathbb{R}$ a linear form.
Let $V=V^{1} \otimes \ldots \otimes V^{d}$ be an approximation space in \mathcal{V}, with $V^{\nu} \subset H^{k}\left(\mathcal{X}_{\nu}\right)$.
A standard Galerkin projection method defines an approximation \tilde{u} of u in V by

$$
a(\tilde{u}, v)=\ell(v) \quad \forall v \in V
$$

Letting $\left\{\phi_{i}=\psi_{i_{1}}^{(1)} \otimes \ldots \otimes \psi_{i_{d}}^{(d)}\right\}_{i \in I}$ be a tensor product basis of V, the Galerkin projection is defined by the equation

$$
\mathbf{A} \mathbf{u}=\mathbf{b}
$$

where the tensor $\mathbf{u} \in \mathbb{R}^{I}$ is the set of coefficients of \tilde{u} on the tensor product basis, and where $\mathbf{A} \in \mathbb{R}^{I \times I}$ and $\mathbf{b} \in \mathbb{R}^{I}$ are defined by

$$
\mathbf{A}(i, j)=a\left(\psi_{j}, \psi_{i}\right), \quad \mathbf{b}(i)=\ell\left(\psi_{i}\right)
$$

Galerkin methods

The tensor structure of the operator $\mathbf{A} \in \mathbb{R}^{I_{\mathbf{1}} \times I_{\mathbf{1}}} \otimes \ldots \mathbb{R}^{I_{d} \times I_{d}}$ and of the right-hand side $\mathbf{b} \in \mathbb{R}^{l_{1}} \otimes \ldots \otimes \mathbb{R}^{l_{d}}$ can be exhibited by considering the action of a and ℓ on rank-one functions.

Assuming that

$$
a\left(u^{(1)} \otimes \ldots \otimes u^{(d)}, v^{(1)} \otimes \ldots \otimes v^{(d)}\right)=\sum_{k=1}^{L} a_{k}^{(1)}\left(u^{(1)}, v^{(1)}\right) \ldots a_{k}^{(d)}\left(u^{(d)}, v^{(d)}\right)
$$

the operator \mathbf{A} has the following representation in canonical format:

$$
\mathbf{A}=\sum_{k=1}^{L} \mathbf{A}_{k}^{(1)} \otimes \ldots \otimes \mathbf{A}_{k}^{(d)},
$$

where $\mathbf{A}_{k}^{(\nu)} \in \mathbb{R}^{I_{\nu} \times I_{\nu}}$ is the operator associated with the bilinear form $a_{k}^{(\nu)}$, such that

$$
\mathbf{A}_{k}^{(\nu)}\left(i_{\nu}, j_{\nu}\right)=a_{k}^{(\nu)}\left(\psi_{j_{\nu}}^{(\nu)}, \psi_{i_{\nu}}^{(\nu)}\right)
$$

Galerkin methods

Assuming that

$$
\ell\left(v^{(1)} \otimes \ldots \otimes v^{(d)}\right)=\sum_{k=1}^{R} \ell_{k}^{(1)}\left(v^{(1)}\right) \ldots \ell_{k}^{(d)}\left(v^{(d)}\right)
$$

the right-hand side \mathbf{b} has the following representation in canonical format:

$$
\mathbf{b}=\sum_{k=1}^{R} \mathbf{b}_{k}^{(1)} \otimes \ldots \otimes \mathbf{b}_{k}^{(d)},
$$

where $\mathbf{b}_{k}^{(\nu)} \in \mathbb{R}^{I_{\nu}}$ is the vector associated with the linear form $\ell_{k}^{(\nu)}$, such that

$$
\mathbf{b}_{k}^{(\nu)}\left(i_{\nu}\right)=\ell_{k}^{(\nu)}\left(\psi_{i_{\nu}}^{(\nu)}\right)
$$

Tensor structure of high-dimensional PDEs

Galerkin methods

Example 13 (Diffusion reaction equation)

Consider the equation

$$
-\Delta u+\beta u=b \quad \text { on } \mathcal{X}
$$

with $b(x)=b^{(\mathbf{1})}\left(x_{1}\right) \ldots b^{(d)}\left(x_{d}\right)$, and homogeneous Dirichlet boundary conditions. The problem admits a weak solution $u \in \mathcal{V}=H_{0}^{1}(\mathcal{X})$ such that $a(u, v)=\ell(v) \forall v \in \mathcal{V}$, with

$$
a(u, v)=\int_{\mathcal{X}}(\nabla u \cdot \nabla v+\beta u v), \quad \ell(v)=\int_{\mathcal{X}} b v .
$$

We have

$$
\begin{aligned}
& a\left(\bigotimes_{\nu} u^{(\nu)}, \bigotimes_{\nu} v^{(\nu)}\right)=\sum_{\nu=\mathbf{1}}^{d} \int_{\mathcal{X}_{\nu}} \partial_{x_{\nu}} u^{(\nu)} \partial_{x_{\nu}} v^{(\nu)} \int_{\times_{\eta \neq \nu} \mathcal{X}_{\eta}} u^{(\eta)} v^{(\eta)}+\beta \prod_{\nu=\mathbf{1}}^{d} \int_{\mathcal{X}_{\nu}} u^{(\nu)} v^{(\nu)}, \\
& \ell\left(\bigotimes_{\nu} v^{(\nu)}\right)=\prod_{\nu=\mathbf{1}}^{d} \int_{\mathcal{X}_{\nu}} b^{(\nu)} v^{(\nu)},
\end{aligned}
$$

which yields

$$
\mathbf{A}=\mathbf{B}^{(\mathbf{1})} \otimes \mathbf{M}^{(\mathbf{2})} \otimes \ldots \otimes \mathbf{M}^{(d)}+\ldots+\mathbf{M}^{(\mathbf{1})} \otimes \ldots \otimes \mathbf{M}^{(d-\mathbf{1})} \otimes \mathbf{B}^{(d)}+\beta \mathbf{M}^{(\mathbf{1})} \otimes \ldots \otimes \mathbf{M}^{(d)}
$$

with $\mathbf{B}^{\nu}\left(i_{\nu}, j_{\nu}\right)=\int_{\mathcal{X}_{\nu}} \partial_{x_{\nu}} \psi_{i_{\nu}}^{(\nu)} \partial_{x_{\nu}} \psi_{j_{\nu}}^{(\nu)}$ and $\mathbf{M}^{(\nu)}\left(i_{\nu}, j_{\nu}\right)=\int_{\mathcal{X}_{\nu}} \psi_{i_{\nu}}^{(\nu)} \psi_{j_{\nu}}^{(\nu)}$, and

$$
\mathbf{b}=\mathbf{b}^{(\mathbf{1})} \otimes \ldots \otimes \mathbf{b}^{(d)}
$$

with $\mathbf{b}^{(\nu)}\left(i_{\nu}\right)=\int_{\mathcal{X}_{\nu}} b^{(\nu)} \psi_{i_{\nu}}^{(\nu)}$.

