Low-rank and sparse methods for
high-dimensional approximation and model order
reduction

Lecture 7
Higher-order singular value decompositions and related
tensor truncation schemes
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Introduction

In this lecture, we consider a tensor u in a tensor product of Hilbert spaces V = V1 ®...® V9
and we assume that v is given as a full tensor or in a certain low-rank format.

We present truncation schemes for finding a low-rank approximation of u with reduced
complexity, relying on the standard singular value decomposition of order-two tensors.

Although most of the ideas naturally extend to the case of infinite-dimensional tensors, we
consider that the tensor space V in finite dimensional.
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value d ition of order-tv

Singular value decomposition of matrices

A matrix u € R"™™ admits a singular value decomposition (SVD)

N

T

u= E TkVKkWy
k=1

where N = min{n, m}, ox € RT are the singular values, and v, and wy are the associated
singular vectors, which are orthonormal vectors. It can be equivalently written

u=VvswT

where V € R"™N and W = R™*N are orthogonal matrices, and S = diag(o1,...,oy) € RVXN
is a diagonal matrix.

The set of singular values of u is denoted o(u) = {oy(u)}_;.
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value d ition of order-tv

Singular values of matrices and related matrix norms

The rank of u is the number of non-zero singular values,
rank(u) = [lo(u)llo = #{k : ox(u) # 0}.

The canonical norm of u is

of = llo(u)ll2,

which corresponds to the Frobenius norm.

It is a particular case of Schatten p-norms which are defined for 1 < p < co by

lullo, = llo()llp-
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value d ition of order-tv

Singular value decomposition of order-two tensors

The notion of singular value decomposition can be extended to the case of Hilbert tensor spaces

V® WH‘H, where V and W are Hilbert spaces (e.g. spaces of functions), even
infinite-dimensional, and where || - || denote the canonical norm on V ® W (the Frobenius norm
for u a matrix).

Atensoru € V® WIHI admits a singular value decomposition

N

u= E OkVk @ W,
k=1

with N = min{dim(V), dim(W)} € NU {oco}, where v, and wj are orthonormal vectors.
The canonical norm

lull = llo(u)ll2

is also called the Hilbert-Schmidt norm.
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value d ition of order-tv

Singular value decomposition of order-two tensors

Example 1 (Proper Orthogonal Decomposition)

For Q x | a space-time domain and V a Hilbert space of functions defined on , a function
u € L2(I; V) admits a singular value decomposition

u(t) = i ok vikwg(t)
k=1

which is known as the Proper Orthogonal Decomposition (POD).

| A

Example 2 (Karhunen-Loeve decomposition)

For a probability space (2, i), an element u € Li(Q; V) is a second-order V-valued random
variable. If u is zero-mean, the singular value decomposition of u is known as the
Karhunen-Loeve decomposition

u(w) =Y opviwi(w)
k=1

where wy : Q — R are uncorrelated (orthogonal) random variables.

A\
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Truncation schemes for order-two tensors

Truncated singular value decomposition for order-two tensors

Let u be an order-two tensor in the Hilbert space V ® W, where V and W are Hilbert spaces,
and let || - || denote the canonical norm on V ® W (the Frobenius norm for u a matrix).

Let consider a tensor v in V ® W with singular value decomposition

N
u= Z OkVk & Wi,
k=1
where the singular values o(u) = {ox}}_, are sorted by decreasing order.

An element of best approximation of u in the set of tensors with rank bounded by r is provided
by the truncated singular value decomposition

.
ur = Zokvk & Wy,
k=1
such that

N
2 H 2 2
u—u = min u—v = .
lu=wl® = min_u=viP= 3 o?
k=r+1
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Tr i | for order-two tensors

Truncated singular value decomposition for order-two tensors

An approximation u, with relative precision ¢, such that
llu = wurll < ellull,

can be obtained by choosing a rank r such that

The complexity of computing the singular value decomposition of a tensor u is O(n%) if
dim(V) = dim(W) = O(n). If u is given in low-rank format u = Zle ak ® by, with a rank
R < n, the complexity breaks down to O(R3 + 2Rn?).
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Truncation schemes for order-two tensors

Truncated singular value decomposition for order-two tensors

The truncated singular value can be interpreted as an orthogonal projection onto linear spaces
generated by singular vectors.

Denoting by V; = span{v,};_; and W, = span{wy}}_; the dominant singular spaces of u, and
by Py, : V, = V and Py, : W — W, the orthogonal projections onto V, and W, respectively,
we have

ur = (PV, 9] PWr)u = (PV, [ I)Ll = (I & PW,)U.

Anthony Nouy 10/26



© Singular value decomposition of order-two tensors
© Truncation schemes for order-two tensors
© Truncation schemes for higher-order tensors

Q Hard and soft singular values thresholding

Anthony Nouy

11/26



Truncation schemes for higher-order tensors Higher-order tensors as order-two tensors

Higher-order tensors as order-two tensors...

For a non-empty subset o in D = {1,...,d},atensor u€ V1 ®...® V9 can be identified with
its matricisation .
Ma(u) € VERQ VY,

an order-two tensor which admits a singular value decomposition

Ma(u) =" ofvi @ we".

k>1

The set 0%(u) := {0} }k>1 is called the set of a-singular values of u. The a-rank of u is the
number of non-zero a-singular values

ranka (1) = o (1)llo-
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Truncation schemes for higher-order tensors Higher-order as ord

Higher-order tensors as order-two tensors...

By sorting the a-singular values by decreasing order, an approximation u, with a-rank r can be
obtained by retaining the r largest singular values, i.e.

.

c

ur such that Mqa(ur) = Zo,‘("vﬁ‘ ® wi',
k=1

which satisfies
2 . 2 a2
u—ur[=  min u—v|= o))",
= =i 7 = 3 (o)

There are 291 different binary partitions a U a€ of D, to each of which corresponds a singular
value decomposition and a way to truncate a higher-order tensor !
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d for Tucker format

Truncation schemes for higher-order tensors High der singular value

Truncation scheme for the approximation in Tucker format

For each v € {1,...,d}, we consider the singular value decomposition of the matricisation
My (u) of a tensor u

My (u) = ZO’ZV;: ® wy.

k>1

Let U/ = span{v/ 2":1 be the subspace of V¥ generated by the r, dominant left singular
vectors of M, (u), and by Py, the orthogonal projection from V¥ to Uy .

The tensor
Ur:(Pul1 ®...®Pya)u
r- fd

is a projection of u onto the reduced tensor space
1 d
U,®...0 U

and therefore, u, is an element of the subset 7, of tensors with Tucker rank bounded by
r=(n,...,rq),

T,={velU'®...UY: U" C VY dim(U")=r,,1<v<d}

The sequence of approximations u, is called a higher-order singular value decomposition (for
Tucker format).
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Truncation schemes for higher-order tensors High der singular value d ition for Tucker format

Higher-order singular value decomposition for Tucker format

The operator
Pl =MJPyy My =10...0Py ®...01

is the orthogonal projection from V onto
Vie..eU, ®...0 VI,
which is such that
. 2
llu—PF ull = min Ju—v| = Z (k).
rank, (v)<r, kSTl
The approximation u, can then be written

1 d
ur ="Pp, ... P u,

and satisfies
d

d
2 2 : 2
lu—url® = llu=Prul?=3" min_[lu—v|?
by o1 rank, (v)<r,

from which we deduce the quasi-optimality property

lu— urll < Vd min |lu— v].
veT,
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Truncation schemes for higher-order tensors High der singular value d ition for Tucker format

Truncation scheme for the approximation in Tucker format

Also, from
d
2 2 2
llu—ul =" llu—P} ull Z > (%)
v=1 v=1ky,>r,
we deduce that if we select the ranks (r1,..., ry) such that for each v
2 € 2
Z (Uk,, =g Z( ku) *”“H )
ky >ry ky >1

then the truncated singular value decomposition P} u has a relative precision e/V/d and we
finally obtain an approximation u, with relative precision e,

llu— urll < ejull.

Note that the definition of v, is independent on the order of the projections Py .
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d ition for tree-based formats

Truncation schemes for higher-order tensors High der singular value

Truncation scheme for tree-based tensor formats

For tree-based (hierarchical) low-rank tensor formats
T,7 = {v:ranka(v) < ro,a € T},

where T is a dimension partition tree over D = {1,...,d}, a higher order singular value
decomposition (also called hierarchical singular value decomposition) can also be defined from
singular value decompositions of matricisations M (u) of a tensor u.
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d for tree-based formats

Truncation schemes for higher-order tensors Higher-order singular value

Truncation scheme for tree-based tensor formats

Letting Uy be the subspace generated by the ro, dominant left singular vectors of Mg (u), and
letting Pye be the orthogonal projector from V< to U , we define the orthogonal projection

73(,1

fo

- M;lpurn Ma.
Then, an approximation with tree-based rank r = (ra)qe7 can be defined by

u =P WpEY PPy wih PTO = T P2

o
acT
level(a)=¢

where we apply to u a sequence of projections ordered by increasing level in the tree (from the
root to the leaves). Here L = max,c7 level().

level 0
level 1
level 2

level 3

Anthony Nouy 17 /26



d ition for tree-based formats
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Truncation scheme for tree-based tensor formats

Remark.
The definition of the projection P7(9) is independent of the ordering of the projections Pg of
the same level ¢. Subsets o € T with level ¢ form a partition of D, and PO = ® Pye

a€T
level(a)=¢

is the orthogonal projection from V onto ® WE <
aEcT
level(a)=¢
o
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Truncation scheme for tree-based tensor formats

The obtained approximation u, is such that

2 H 2 a 2
u—u = n u—v = ag
lo—wl?= 32 min_ u-viP= 33 (R

aeT\D Q€T\D ka >ra

from which we deduce that u, is a quasi-optimal approximation of u in 7,7 such that
o — ur| < C(T) min_[|u—v],
veT,T

where C(T) = +/#T — 1 is the square root of the number of projections applied to the tensor.
The number of nodes of a dimension partition tree T being bounded by 2d — 1,

C(T)<V2d-2.
Also, if we select the ranks (ra).c7\p such that for all o
> (R < % > (o) = %nuuz,
ka>ro, ke >1
we finally obtain an approximation u, with relative precision e,

llu— urll < ejull.
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d

Truncation schemes for higher-order tensors High der singular value for tree-based formats

Truncation scheme for TT format

The procedure for general tree-based formats also applies to the particular case of the TT-format
TTr, which corresponds to ’T,T for

T={{v+1,...,d}:1<v<d-1},

which is a subset of a linearly structured tree.

(1,....d}
(2,...,d} @ccT
0 o {d-2...d)
o) {(d—1,d}
{d -2}
{d-1} {d}

Here, since # T = d — 1, the resulting approximation satisfies the quasi-optimality property with

C(T)y=+vd—1.
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Truncation schemes for higher-order tensors formats

Sequential higher-order singular value decomposition

For T (a subset of) a dimension partition tree, a sequential higher-order singular value
decomposition can be defined recursively [Hackbusch 2012, section 11.4.2.3].
0)

Letting T\ D = {aa,...,am} with level(axy1) < level(ay), we start from u(® = 4 and we

define a sequence of approximations u

46 = pok (k1)

=Prt
for 1 < k < M, where ’Pf;"k is the projection associated with the dominant a-singular vectors of

u*=1) (and not u).

Finally, we obtain an approximation u, := u(M) in 7,7 which satisfies the quasi-optimality
property
lu—urll < C(T) min |lu—v].
VG'T,T

where C(T) = +/#T — 1 is the square root of the number of projections applied.

For another version of a sequential higher-order singular value decomposition, see [Hackbusch
2012, section 11.4.2.2].

Anthony Nouy 21/26



© Singular value decomposition of order-two tensors
© Truncation schemes for order-two tensors
© Truncation schemes for higher-order tensors

© Hard and soft singular values thresholding

Anthony Nouy

22/26



Hard and soft singular values thresholdi

Hard thresholding of singular values

The hard singular value thresholding operator H7+ is defined for an order-two tensor u with
singular value decomposition 22’11 oxVvk @ wy by

N

HT(u) =Y HT (00) vie ® Wi,
k=1

where HT(t) = t1};>, is the hard thresholding function such that

o for>T1
0 ifor<rt’

HTT(Uk) = {

The error after hard thresholding is
N
llu=HT () =D 0f 1oy <r-

HT+(u) is a solution of the problem

min |lu — v||? + 72 rank(v)
v

where rank(v) = [|o(v)]|o.
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Hard and soft singular values thresholdi

Soft thresholding of singular values

The soft singular value thresholding operator S7+ is defined for a tensor u with singular value
decomposition ELV:1 oKxVk @ wyi by

N
STo(u) = ST (o) vk ® wi,
k=1

where ST (t) = (|t| — 7)+ sign(t) is the soft thresholding function, such that

or—1 ifox>T1
0 if o <71’

STr(ok) = (ok —T)+ = {

The error after soft thresholding is

lu— ST+ (v)|? = Z(ak (k=742 =D al+ Y 72

o <T o>T
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Hard and soft singular values thresholdi

Soft thresholding of singular values

ST+(u) is a solution of the problem
.1 2
min ~{ju — v[|* + 7]lo(vV)]l1
v 2

where ||o(v)]|1 is the nuclear norm of v, which is the convex regularization of the functional
v — rank(v).

In convex analysis, S7- is known as the proximal operator of the convex function v — 7||o(v)||1.

The operator ST is non-expansive, that means for all u, v,
8T+ (u) = ST (VI < [lu = vI],

which is an important property for the analysis of algorithms with tensor truncations.
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Hard and soft singular values

Hard and soft singular values thresholding for higher order tensors

For a higher order tensor u, we can naturally define hard and soft singular values thresholding
operators HS® and ST* associated with the singular value decomposition of the matricisation

M (u) of u.
These operators are such that

HSE (u) = arg min ||u — v||? + 72 ranka (v),
v

and 1
ST (u) = argmin —flu — vIPP + 7llo® (w1
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Hard and soft singular values

Hard and soft singular values thresholding for higher order tensors

For a tree-based format associated with a dimension partition tree T (or a subset T of a
dimension partition tree), hard and soft thresholding operators H7,” and ST, can be defined as
compositions of hard and soft thresholding operators,

HTT = HT M oL o HT

and
ST =8TMo... 0 ST

where the set of nodes {a1,...,apm} = T\ D is sorted according to
level(ayy1) > level(ay).
The soft-thresholding operator ST,/ is non-expansive, i.e.
IST (u) = ST (V) < fJu — vl

for all tensors u, v.
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