Low-rank and sparse methods for high-dimensional approximation and model order reduction

Lecture 7

Higher-order singular value decompositions and related tensor truncation schemes

Introduction

In this lecture, we consider a tensor u in a tensor product of Hilbert spaces $V=V^{1} \otimes \ldots \otimes V^{d}$ and we assume that u is given as a full tensor or in a certain low-rank format.

We present truncation schemes for finding a low-rank approximation of u with reduced complexity, relying on the standard singular value decomposition of order-two tensors.

Although most of the ideas naturally extend to the case of infinite-dimensional tensors, we consider that the tensor space V in finite dimensional.

Outline

(1) Singular value decomposition of order-two tensors
(2) Truncation schemes for order-two tensors
(3) Truncation schemes for higher-order tensors
(4) Hard and soft singular values thresholding

Outline

(1) Singular value decomposition of order-two tensors
(2) Truncation schemes for order-two tensors
(3) Truncation schemes for higher-order tensors
(4) Hard and soft singular values thresholding

Singular value decomposition of matrices

A matrix $u \in \mathbb{R}^{n \times m}$ admits a singular value decomposition (SVD)

$$
u=\sum_{k=1}^{N} \sigma_{k} v_{k} w_{k}^{T}
$$

where $N=\min \{n, m\}, \sigma_{k} \in \mathbb{R}^{+}$are the singular values, and v_{k} and w_{k} are the associated singular vectors, which are orthonormal vectors. It can be equivalently written

$$
u=V S W^{T}
$$

where $V \in \mathbb{R}^{n \times N}$ and $W=\mathbb{R}^{m \times N}$ are orthogonal matrices, and $S=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{N}\right) \in \mathbb{R}^{N \times N}$ is a diagonal matrix.

The set of singular values of u is denoted $\sigma(u)=\left\{\sigma_{k}(u)\right\}_{k=1}^{N}$.

Singular values of matrices and related matrix norms

The rank of u is the number of non-zero singular values,

$$
\operatorname{rank}(u)=\|\sigma(u)\|_{0}=\#\left\{k: \sigma_{k}(u) \neq 0\right\} .
$$

The canonical norm of u is

$$
\|u\|=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} u_{i, j}^{2}}=\sqrt{\sum_{k=1}^{N} \sigma_{k}^{2}}=\|\sigma(u)\|_{2},
$$

which corresponds to the Frobenius norm.

It is a particular case of Schatten p-norms which are defined for $1 \leq p \leq \infty$ by

$$
\|u\|_{\sigma_{p}}=\|\sigma(u)\|_{p}
$$

Singular value decomposition of order-two tensors

The notion of singular value decomposition can be extended to the case of Hilbert tensor spaces $\overline{V \otimes W^{\|} \cdot \|}$, where V and W are Hilbert spaces (e.g. spaces of functions), even infinite-dimensional, and where $\|\cdot\|$ denote the canonical norm on $V \otimes W$ (the Frobenius norm for u a matrix).

A tensor $u \in \overline{V \otimes W^{\|}}\|\cdot\|$ admits a singular value decomposition

$$
u=\sum_{k=1}^{N} \sigma_{k} v_{k} \otimes w_{k}
$$

with $N=\min \{\operatorname{dim}(V), \operatorname{dim}(W)\} \in \mathbb{N} \cup\{\infty\}$, where v_{k} and w_{k} are orthonormal vectors.
The canonical norm

$$
\|u\|=\|\sigma(u)\|_{2}
$$

is also called the Hilbert-Schmidt norm.

Singular value decomposition of order-two tensors

Example 1 (Proper Orthogonal Decomposition)

For $\Omega \times I$ a space-time domain and V a Hilbert space of functions defined on Ω, a function $u \in L^{2}(I ; V)$ admits a singular value decomposition

$$
u(t)=\sum_{k=1}^{\infty} \sigma_{k} v_{k} w_{k}(t)
$$

which is known as the Proper Orthogonal Decomposition (POD).

Example 2 (Karhunen-Loeve decomposition)

For a probability space (Ω, μ), an element $u \in L_{\mu}^{2}(\Omega ; V)$ is a second-order V-valued random variable. If u is zero-mean, the singular value decomposition of u is known as the Karhunen-Loeve decomposition

$$
u(\omega)=\sum_{k=1}^{\infty} \sigma_{k} v_{k} w_{k}(\omega)
$$

where $w_{k}: \Omega \rightarrow \mathbb{R}$ are uncorrelated (orthogonal) random variables.

Outline

2 Singular value decomposition of order-two tensors
(2) Truncation schemes for order-two tensors
(3) Truncation schemes for higher-order tensors

4 Hard and soft singular values thresholding

Truncated singular value decomposition for order-two tensors

Let u be an order-two tensor in the Hilbert space $V \otimes W$, where V and W are Hilbert spaces, and let $\|\cdot\|$ denote the canonical norm on $V \otimes W$ (the Frobenius norm for u a matrix).

Let consider a tensor u in $V \otimes W$ with singular value decomposition

$$
u=\sum_{k=1}^{N} \sigma_{k} v_{k} \otimes w_{k}
$$

where the singular values $\sigma(u)=\left\{\sigma_{k}\right\}_{k=1}^{N}$ are sorted by decreasing order.
An element of best approximation of u in the set of tensors with rank bounded by r is provided by the truncated singular value decomposition

$$
u_{r}=\sum_{k=1}^{r} \sigma_{k} v_{k} \otimes w_{k}
$$

such that

$$
\left\|u-u_{r}\right\|^{2}=\min _{\operatorname{rank}(v) \leq r}\|u-v\|^{2}=\sum_{k=r+1}^{N} \sigma_{k}^{2}
$$

Truncated singular value decomposition for order-two tensors

An approximation u_{r} with relative precision ϵ, such that

$$
\left\|u-u_{r}\right\| \leq \epsilon\|u\|
$$

can be obtained by choosing a rank r such that

$$
\sum_{k=r+1}^{N} \sigma_{k}^{2} \leq \epsilon \sum_{k=1}^{N} \sigma_{k}^{2}
$$

Remark.

The complexity of computing the singular value decomposition of a tensor u is $O\left(n^{3}\right)$ if $\operatorname{dim}(V)=\operatorname{dim}(W)=O(n)$. If u is given in low-rank format $u=\sum_{k=1}^{R} a_{k} \otimes b_{k}$, with a rank $R<n$, the complexity breaks down to $O\left(R^{3}+2 R n^{2}\right)$.

Truncated singular value decomposition for order-two tensors

The truncated singular value can be interpreted as an orthogonal projection onto linear spaces generated by singular vectors.

Denoting by $V_{r}=\operatorname{span}\left\{v_{k}\right\}_{k=1}^{r}$ and $W_{r}=\operatorname{span}\left\{w_{k}\right\}_{k=1}^{r}$ the dominant singular spaces of u, and by $P_{V_{r}}: V_{r} \rightarrow V$ and $P_{W_{r}}: W \rightarrow W_{r}$ the orthogonal projections onto V_{r} and W_{r} respectively, we have

$$
u_{r}=\left(P_{V_{r}} \otimes P_{W_{r}}\right) u=\left(P_{V_{r}} \otimes I\right) u=\left(I \otimes P_{W_{r}}\right) u
$$

Outline

2 Singular value decomposition of order-two tensors
(2) Truncation schemes for order-two tensors
(3) Truncation schemes for higher-order tensors

4 Hard and soft singular values thresholding

Higher-order tensors as order-two tensors...

For a non-empty subset α in $D=\{1, \ldots, d\}$, a tensor $u \in V^{1} \otimes \ldots \otimes V^{d}$ can be identified with its matricisation

$$
\mathcal{M}_{\alpha}(u) \in V^{\alpha} \otimes V^{\alpha^{c}}
$$

an order-two tensor which admits a singular value decomposition

$$
\mathcal{M}_{\alpha}(u)=\sum_{k \geq 1} \sigma_{k}^{\alpha} v_{k}^{\alpha} \otimes w_{k}^{\alpha^{c}}
$$

The set $\sigma^{\alpha}(u):=\left\{\sigma_{k}^{\alpha}\right\}_{k \geq 1}$ is called the set of α-singular values of u. The α-rank of u is the number of non-zero α-singular values

$$
\operatorname{rank}_{\alpha}(u)=\left\|\sigma^{\alpha}(u)\right\|_{0}
$$

Higher-order tensors as order-two tensors...

By sorting the α-singular values by decreasing order, an approximation u_{r} with α-rank r can be obtained by retaining the r largest singular values, i.e.

$$
u_{r} \text { such that } \mathcal{M}_{\alpha}\left(u_{r}\right)=\sum_{k=1}^{r} \sigma_{k}^{\alpha} v_{k}^{\alpha} \otimes w_{k}^{\alpha^{c}},
$$

which satisfies

$$
\left\|u-u_{r}\right\|^{2}=\min _{\operatorname{rank}_{\alpha}(v) \leq r}\|u-v\|^{2}=\sum_{k>r}\left(\sigma_{k}^{\alpha}\right)^{2} .
$$

There are 2^{d-1} different binary partitions $\alpha \cup \alpha^{c}$ of D, to each of which corresponds a singular value decomposition and a way to truncate a higher-order tensor !

Truncation scheme for the approximation in Tucker format

For each $\nu \in\{1, \ldots, d\}$, we consider the singular value decomposition of the matricisation $\mathcal{M}_{\nu}(u)$ of a tensor u

$$
\mathcal{M}_{\nu}(u)=\sum_{k \geq 1} \sigma_{k}^{\nu} v_{k}^{\nu} \otimes w_{k}^{\nu}
$$

Let $U_{r_{\nu}}^{\nu}=\operatorname{span}\left\{v_{k}^{\nu}\right\}_{k=1}^{r_{\nu}^{\nu}}$ be the subspace of V^{ν} generated by the r_{ν} dominant left singular vectors of $\mathcal{M}_{\nu}(u)$, and by $P_{U_{r_{\nu}}}$ the orthogonal projection from V^{ν} to $U_{r_{\nu}}^{\nu}$.

The tensor

$$
u_{r}=\left(P_{U_{r_{1}}^{1}} \otimes \ldots \otimes P_{U_{r_{d}}^{d}}\right) u
$$

is a projection of u onto the reduced tensor space

$$
U_{r_{1}}^{1} \otimes \ldots \otimes U_{r_{d}}^{d}
$$

and therefore, u_{r} is an element of the subset \mathcal{T}_{r} of tensors with Tucker rank bounded by $r=\left(r_{1}, \ldots, r_{d}\right)$,

$$
\mathcal{T}_{r}=\left\{v \in U^{1} \otimes \ldots \otimes U^{d}: U^{\nu} \subset V^{\nu}, \operatorname{dim}\left(U^{\nu}\right)=r_{\nu}, 1 \leq \nu \leq d\right\} .
$$

The sequence of approximations u_{r} is called a higher-order singular value decomposition (for Tucker format).

Higher-order singular value decomposition for Tucker format

The operator

$$
\mathcal{P}_{r_{\nu}}^{\nu}=\mathcal{M}_{\nu}^{-1} P_{U_{r_{\nu}}^{\nu}} \mathcal{M}_{\nu}=I \otimes \ldots \otimes P_{U_{r_{\nu}}^{\nu}}
$$

is the orthogonal projection from V onto

$$
V^{1} \otimes \ldots \otimes U_{r_{\nu}}^{\nu} \otimes \ldots \otimes V^{d}
$$

which is such that

$$
\left\|u-\mathcal{P}_{r_{\nu}}^{\nu} u\right\|=\min _{\operatorname{rank}_{\nu}(v) \leq r_{\nu}}\|u-v\|=\sum_{k \geq r_{\nu}+1}\left(\sigma_{k}^{\nu}\right)^{2} .
$$

The approximation u_{r} can then be written

$$
u_{r}=\mathcal{P}_{r_{1}}^{1} \ldots \mathcal{P}_{r_{d}}^{d} u
$$

and satisfies

$$
\left\|u-u_{r}\right\|^{2}=\sum_{\nu=1}^{d}\left\|u-\mathcal{P}_{r_{\nu}}^{\nu} u\right\|^{2}=\sum_{\nu=1}^{d} \min _{\operatorname{rank}_{\nu}(v) \leq r_{\nu}}\|u-v\|^{2},
$$

from which we deduce the quasi-optimality property

$$
\left\|u-u_{r}\right\| \leq \sqrt{d} \min _{v \in \mathcal{T}_{r}}\|u-v\| .
$$

Truncation scheme for the approximation in Tucker format

Also, from

$$
\left\|u-u_{r}\right\|^{2}=\sum_{\nu=1}^{d}\left\|u-\mathcal{P}_{r_{\nu}}^{\nu} u\right\|^{2}=\sum_{\nu=1}^{d} \sum_{k_{\nu}>r_{\nu}}\left(\sigma_{k_{\nu}}^{\nu}\right)^{2}
$$

we deduce that if we select the ranks $\left(r_{1}, \ldots, r_{d}\right)$ such that for each ν

$$
\sum_{k_{\nu}>r_{\nu}}\left(\sigma_{k_{\nu}}^{\nu}\right)^{2} \leq \frac{\epsilon^{2}}{d} \sum_{k_{\nu} \geq 1}\left(\sigma_{k_{\nu}}^{\nu}\right)^{2}=\frac{\epsilon^{2}}{d}\|u\|^{2},
$$

then the truncated singular value decomposition $\mathcal{P}_{r_{\nu}}^{\nu} u$ has a relative precision ϵ / \sqrt{d} and we finally obtain an approximation u_{r} with relative precision ϵ,

$$
\left\|u-u_{r}\right\| \leq \epsilon\|u\| .
$$

Note that the definition of u_{r} is independent on the order of the projections $\mathcal{P}_{r_{\nu}}^{\nu}$.

Truncation scheme for tree-based tensor formats

For tree-based (hierarchical) low-rank tensor formats

$$
\mathcal{T}_{r}^{T}=\left\{v: \operatorname{rank}_{\alpha}(v) \leq r_{\alpha}, \alpha \in T\right\},
$$

where T is a dimension partition tree over $D=\{1, \ldots, d\}$, a higher order singular value decomposition (also called hierarchical singular value decomposition) can also be defined from singular value decompositions of matricisations $\mathcal{M}_{\alpha}(u)$ of a tensor u.

Truncation scheme for tree-based tensor formats

Letting $U_{r_{\alpha}}^{\alpha}$ be the subspace generated by the r_{α} dominant left singular vectors of $\mathcal{M}_{\alpha}(u)$, and letting $P_{U_{r \alpha}^{\alpha}}^{\alpha}$ be the orthogonal projector from V^{α} to $U_{r_{\alpha}}^{\alpha}$, we define the orthogonal projection

$$
\mathcal{P}_{r_{\alpha}}^{\alpha}=\mathcal{M}_{\alpha}^{-1} P_{U_{r_{\alpha}}^{\alpha}} \mathcal{M}_{\alpha} .
$$

Then, an approximation with tree-based rank $r=\left(r_{\alpha}\right)_{\alpha \in T}$ can be defined by

$$
u_{r}=\mathcal{P}_{r}^{T,(L)} \mathcal{P}_{r}^{T,(L-1)} \ldots \mathcal{P}_{r}^{T,(1)} u \quad \text { with } \quad \mathcal{P}^{T,(\ell)}=\prod_{\substack{\alpha \in T \\ \operatorname{level}(\alpha)=\ell}} \mathcal{P}_{r_{\alpha}}^{\alpha}
$$

where we apply to u a sequence of projections ordered by increasing level in the tree (from the root to the leaves). Here $L=\max _{\alpha \in T} \operatorname{level}(\alpha)$.

Truncation scheme for tree-based tensor formats

Remark.

The definition of the projection $\mathcal{P}^{T,(\ell)}$ is independent of the ordering of the projections $\mathcal{P}_{r_{\alpha}}^{\alpha}$ of the same level ℓ. Subsets $\alpha \in T$ with level ℓ form a partition of D, and $\mathcal{P}^{T,(\ell)}=$

$$
\bigotimes_{\substack{\alpha \in T \\ \operatorname{level}(\alpha)=\ell}} P_{U_{r_{\alpha}}^{\alpha}}^{\alpha}
$$

is the orthogonal projection from V onto

$$
\bigotimes_{\substack{\alpha \in T \\ \text { level }(\alpha)=\ell}} U_{r_{\alpha}}^{\alpha}
$$

Truncation scheme for tree-based tensor formats

The obtained approximation u_{r} is such that

$$
\left\|u-u_{r}\right\|^{2}=\sum_{\alpha \in T \backslash D} \min _{\operatorname{rank}_{\alpha}(v) \leq r_{\alpha}}\|u-v\|^{2}=\sum_{\alpha \in T \backslash D} \sum_{k_{\alpha}>r_{\alpha}}\left(\sigma_{k_{\alpha}}^{\alpha}\right)^{2},
$$

from which we deduce that u_{r} is a quasi-optimal approximation of u in $\mathcal{T}_{r}{ }^{T}$ such that

$$
\left\|u-u_{r}\right\| \leq C(T) \min _{v \in \mathcal{T}_{r}^{T}}\|u-v\|
$$

where $C(T)=\sqrt{\# T-1}$ is the square root of the number of projections applied to the tensor. The number of nodes of a dimension partition tree T being bounded by $2 d-1$,

$$
C(T) \leq \sqrt{2 d-2}
$$

Also, if we select the ranks $\left(r_{\alpha}\right)_{\alpha \in T \backslash D}$ such that for all α

$$
\sum_{k_{\alpha}>r_{\alpha}}\left(\sigma_{k_{\alpha}}^{\alpha}\right)^{2} \leq \frac{\epsilon^{2}}{C(T)^{2}} \sum_{k_{\alpha} \geq 1}\left(\sigma_{k_{\alpha}}^{\alpha}\right)^{2}=\frac{\epsilon^{2}}{C(T)^{2}}\|u\|^{2}
$$

we finally obtain an approximation u_{r} with relative precision ϵ,

$$
\left\|u-u_{r}\right\| \leq \epsilon\|u\| .
$$

Truncation scheme for TT format

The procedure for general tree-based formats also applies to the particular case of the TT-format $\mathcal{T} \mathcal{T}_{r}$, which corresponds to $\mathcal{T}_{r}{ }^{T}$ for

$$
T=\{\{\nu+1, \ldots, d\}: 1 \leq \nu \leq d-1\},
$$

which is a subset of a linearly structured tree.

Here, since \#T=d-1, the resulting approximation satisfies the quasi-optimality property with

$$
C(T)=\sqrt{d-1}
$$

Sequential higher-order singular value decomposition

For T (a subset of) a dimension partition tree, a sequential higher-order singular value decomposition can be defined recursively [Hackbusch 2012, section 11.4.2.3].

Letting $T \backslash D=\left\{\alpha_{1}, \ldots, \alpha_{M}\right\}$ with level $\left(\alpha_{k+1}\right) \leq$ level $\left(\alpha_{k}\right)$, we start from $u^{(0)}=u$ and we define a sequence of approximations $u^{(k)}$

$$
u^{(k)}=\mathcal{P}_{r_{\alpha_{k}}}^{\alpha_{k}} u^{(k-1)}
$$

for $1 \leq k \leq M$, where $\mathcal{P}_{r_{\alpha_{k}}}^{\alpha_{k}}$ is the projection associated with the dominant α-singular vectors of $u^{(k-1)}$ (and not $\left.u\right)$.

Finally, we obtain an approximation $u_{r}:=u^{(M)}$ in \mathcal{T}_{r}^{T} which satisfies the quasi-optimality property

$$
\left\|u-u_{r}\right\| \leq C(T) \min _{v \in \mathcal{T}_{r}^{T}}\|u-v\| .
$$

where $C(T)=\sqrt{\# T-1}$ is the square root of the number of projections applied.

For another version of a sequential higher-order singular value decomposition, see [Hackbusch 2012, section 11.4.2.2].

Hard and soft singular values thresholding

Outline

(2) Singular value decomposition of order-two tensors
(2) Truncation schemes for order-two tensors
(3) Truncation schemes for higher-order tensors

4 Hard and soft singular values thresholding

Hard thresholding of singular values

The hard singular value thresholding operator $\mathcal{H} \mathcal{T}_{\tau}$ is defined for an order-two tensor u with singular value decomposition $\sum_{k=1}^{N} \sigma_{k} v_{k} \otimes w_{k}$ by

$$
\mathcal{H} \mathcal{T}_{\tau}(u)=\sum_{k=1}^{N} H T_{\tau}\left(\sigma_{k}\right) v_{k} \otimes w_{k}
$$

where $H T_{\tau}(t)=t 1_{|t|>\tau}$ is the hard thresholding function such that

$$
H T_{\tau}\left(\sigma_{k}\right)=\left\{\begin{array}{ll}
\sigma_{k} & \text { if } \sigma_{k}>\tau \\
0 & \text { if } \sigma_{k} \leq \tau
\end{array} .\right.
$$

The error after hard thresholding is

$$
\left\|u-\mathcal{H} \mathcal{T}_{\tau}(u)\right\|^{2}=\sum_{k=1}^{N} \sigma_{k}^{2} 1_{\sigma_{k} \leq \tau}
$$

$\mathcal{H} \mathcal{T}_{\tau}(u)$ is a solution of the problem

$$
\min _{v}\|u-v\|^{2}+\tau^{2} \operatorname{rank}(v)
$$

where $\operatorname{rank}(v)=\|\sigma(v)\|_{0}$.

Soft thresholding of singular values

The soft singular value thresholding operator $\mathcal{S} \mathcal{T}_{\tau}$ is defined for a tensor u with singular value decomposition $\sum_{k=1}^{N} \sigma_{k} v_{k} \otimes w_{k}$ by

$$
\mathcal{S} \mathcal{T}_{\tau}(u)=\sum_{k=1}^{N} S T_{\tau}\left(\sigma_{k}\right) v_{k} \otimes w_{k},
$$

where $S T_{\tau}(t)=(|t|-\tau)_{+} \operatorname{sign}(t)$ is the soft thresholding function, such that

$$
S T_{\tau}\left(\sigma_{k}\right)=\left(\sigma_{k}-\tau\right)_{+}= \begin{cases}\sigma_{k}-\tau & \text { if } \sigma_{k} \geq \tau \\ 0 & \text { if } \sigma_{k}<\tau\end{cases}
$$

The error after soft thresholding is

$$
\left\|u-\mathcal{S} \mathcal{T}_{\tau}(u)\right\|^{2}=\sum_{k=1}^{N}\left(\sigma_{k}-\left(\sigma_{k}-\tau\right)_{+}\right)^{2}=\sum_{\sigma_{k} \leq \tau} \sigma_{k}^{2}+\sum_{\sigma_{k}>\tau} \tau^{2} .
$$

Soft thresholding of singular values

$\mathcal{S} \mathcal{T}_{\tau}(u)$ is a solution of the problem

$$
\min _{v} \frac{1}{2}\|u-v\|^{2}+\tau\|\sigma(v)\|_{1}
$$

where $\|\sigma(v)\|_{1}$ is the nuclear norm of v, which is the convex regularization of the functional $v \mapsto \operatorname{rank}(v)$.

In convex analysis, $\mathcal{S} \mathcal{T}_{\tau}$ is known as the proximal operator of the convex function $v \mapsto \tau\|\sigma(v)\|_{1}$.

The operator $\mathcal{S} \mathcal{T}_{\tau}$ is non-expansive, that means for all u, v,

$$
\left\|\mathcal{S} \mathcal{T}_{\tau}(u)-\mathcal{S} \mathcal{T}_{\tau}(v)\right\| \leq\|u-v\|
$$

which is an important property for the analysis of algorithms with tensor truncations.

Hard and soft singular values thresholding for higher order tensors

For a higher order tensor u, we can naturally define hard and soft singular values thresholding operators $\mathcal{H} \mathcal{S}_{\tau}^{\alpha}$ and $\mathcal{S}_{\tau}^{\alpha}$ associated with the singular value decomposition of the matricisation $\mathcal{M}_{\alpha}(u)$ of u.

These operators are such that

$$
\mathcal{H} \mathcal{S}_{\tau}^{\alpha}(u)=\arg \min _{v}\|u-v\|^{2}+\tau^{2} \operatorname{rank}_{\alpha}(v),
$$

and

$$
\mathcal{S} \mathcal{T}_{\tau}^{\alpha}(u)=\arg \min _{v} \frac{1}{2}\|u-v\|^{2}+\tau\left\|\sigma^{\alpha}(u)\right\|_{1} .
$$

Hard and soft singular values thresholding for higher order tensors

For a tree-based format associated with a dimension partition tree T (or a subset T of a dimension partition tree), hard and soft thresholding operators $\mathcal{H}_{\tau}^{\top}$ and $\mathcal{S}_{\tau}^{\top}$ can be defined as compositions of hard and soft thresholding operators,

$$
\mathcal{H} \mathcal{T}_{\tau}^{T}=\mathcal{H} \mathcal{T}_{\tau}^{\alpha_{M}} \circ \ldots \circ \mathcal{H} \mathcal{T}_{\tau}^{\alpha_{1}}
$$

and

$$
\mathcal{S} \mathcal{T}_{\tau}^{T}=\mathcal{S} \mathcal{T}_{\tau}^{\alpha_{M}} \circ \ldots \circ \mathcal{S} \mathcal{T}_{\tau}^{\alpha_{1}}
$$

where the set of nodes $\left\{\alpha_{1}, \ldots, \alpha_{M}\right\}=T \backslash D$ is sorted according to

$$
\operatorname{level}\left(\alpha_{k+1}\right) \geq \operatorname{level}\left(\alpha_{k}\right)
$$

The soft-thresholding operator $\mathcal{S T}_{\tau}^{\top}$ is non-expansive, i.e.

$$
\left\|\mathcal{S} \mathcal{T}_{\tau}^{T}(u)-\mathcal{S} \mathcal{T}_{\tau}^{T}(v)\right\| \leq\|u-v\|
$$

for all tensors u, v.

