Low-rank and sparse methods for
high-dimensional approximation and model order
reduction

Lecture 8
Sampling methods for low-rank tensor approximation: a
subspace point of view
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Introduction

Here, we consider the approximation of a function u defined on a set X’ using samples of the
function at some points x¥ in X.

We first consider the case where
u:X—=YV

is a function taking values in some vector space V (e.g. RN or a function space).

Then we consider the approximation of a real-valued bivariate function defined on a product

domain
X = X]_ X Xz,

before considering the approximation of a real-valued multivariate function defined on a product

domain
X:X]_X...XXd.
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lued fi

Low-rank approxi ion of a t

Vector-valued functions

Let X be a random variable with values in a set X’ and let i denote the probability law of X.
We here consider a function u: X — V defined on X with values in a Hilbert space V.

We assume that u is in the Hilbert tensor space
2(v. V) —
L (X V)=V L2(X)

equipped with the canonical norm

1/2
lull = ( /. ||u(x)||$;cm<x>) = B([lu(X)|3)"/>.
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Low-rank approxi ion of a t lued fi

Best rank-r approximation of vector-valued functions

We consider the problem of best approximation of u by a rank-r function

1/2
. . 2
g o= vl = min ([ a6 = v Raut))
where

Rr = {xr—) Zv,-)\,-(x) v €V, A€ Li(X)}
i=1
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Low-rank approximation of a £ lued fi

Best rank-r approximation of vector-valued functions

A solution u, of the best rank-r approximation problem is given by the truncated singular value
decomposition of u:

ur(x) = Z a;v;si(x),

where the o; are the dominant singular values of u, the v; € V are the dominant left singular
vectors and the s; € L2 (X) are the dominant right singular vectors.

The {(v;,02)}_, are the r dominant eigenpairs of the correlation operator C(u) : V — V
defined by

Cu)v = /X u(x)(u(x), v)vdu(x) = E(u(X)(u(X), v)v),

which is a compact and self-adjoint operator.
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Low-rank approximation of a £ lued fi

Relation to principal component analysis

By introducing the subspace-based parametrization of R,
Ry ={veV, ®LX): V, CV,dim(V,) =r},

the best rank-r approximation problem can be equivalently formulated as an optimization
problem over r-dimensional spaces in V:

. . 2 . 2
min min u—v| = min u(x) — Py, u(x)||3,dwr(x),
a0y I = i G0 — Py w0

where Py, is the orthogonal projection from V onto V.
A solution to this problem is given by the subspace
Vr =span{vi,..., v}

which is generated by the dominant singular vectors of u, also called principal components of wu.

The truncated singular value decomposition u is such that

ur(x) = Py, u(x).
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Low-rank approxi ion of a t lued fi

Relation with optimal model order reduction

The best rank-m approximation error

o=, min ([ lutx Pv,u(x)uzvdu(x))l/z

dim(V,)=

measures how well the set
u(X) ={u(x): x € X}

can be approximated by a r-dimensional space V,.

It quantifies the ideal performance of a reduced basis method with respect to the L2-norm.
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Low-rank approxi ion of a t lued fi

Relation with optimal model order reduction

Since [[ull < supyc.x [[u(x)]|y, we have

dP )< min sup [|lu(x) — Py, u(x)|ly = dr(u(X))y
dim(V,)=r xcx

where

dr(u(X))y = mi f— Py, f
r(u(X))v dimw!):rfesg(g()ll vofllv

corresponds to the Kolmogorov r-width of u(X) in V, which measures how well u(X) can be

approximated uniformly by a r-dimensional space.

Note that d,(u(X))y, contrary to dr(z)(u), does not take into account the measure .
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Low-rank approxi ion of a

Sample-based estimation of principal components

Let us now assume that we have evaluations u(x¥) € V of the function u for K random samples
xk, 1<k <K.

By introducing a statistical estimation of the expectation, an estimate of the optimal
r-dimensional space is obtained by solving

K
. 1 k ky(2
= —P . 1
B e D) = Py sl &)
The set of samples {u(x!),..., u(x*)} € V¥ can be identified with a tensor

uGV@RK,

and a solution of (1) is given by the dominant left singular space of u.
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Low-rank approxi ion of a t lued fi

Sample-based estimation of principal components

The optimal subspace is the dominant eigenspace of the empirical correlation operator

K

Cuw) = 2 D2 ueh) (), V).

k=1

Note that other numerical integration methods using deterministic integration points could be
considered for approximating the integral over X.
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Low-rank approximation of a bivariate function

Bivariate functions

We consider a pair of independent random variables X = (X1, X2) taking values in X = &1 x X>
and with probability law p = pu1 ® po.

We consider a bivariate function
u: Xl X Xz — R

and assume that u is in the Hilbert tensor space

L2(X) =12, (X1) ® [2,(X2)

Nl

equipped with the canonical norm

1/2
Huu:( [ u(n,xz)zdm(xﬂduz(xz)) = B(u(X0, X2)2) V2.

A function v with rank r has a representation of the form

v(x1, x2) Zv X1)vl.(2)(X2)'
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Low-rank approximation of a bivariate function

Low-rank approximation of bivariate functions

The problem of best rank-r approximation of the function u is defined by

min |ju— v|?.
VER,
A solution uy, is given by the truncated singular value decomposition of u
ur(x1, x2) = Za, Ja)v? (x2)

(1)

where the o; are the r dominant singular values of u, and the v;
left and right singular vectors.

(2

and v;”’ are the corresponding
1

The dominant left and right singular spaces are respectively defined by

V= span{vl(l), . vr(l)} and V2= span{viz)7 ce v,(2)}.
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Low-rank approximation of a bivariate function

Low-rank approximation of bivariate functions

The dominant left singular space V! is a solution of the optimization problem over r-dimensional
spaces in [ (X1)

[ — (P2 ® ).
g, 16 = (Pyz @ Dl

Also, the dominant right singular space V? is a solution of the optimization problem over
r-dimensional spaces in Li(Xz)

min
dim(V2)=r

lu— (1 ® Pyz)ul.
Then, given these optimal spaces V} and V2, a best rank-r approximation is given by

ur = ar, min u—v
r vaV}@V,z H II

such that
ur = (PV} ® I)u = (I ® PVE)” = (PV} X PV?)U.
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Low-rank approximation of a bivariate function

Sample based estimation of optimal spaces

Given K1 samples {x2} 1 of X2 and corresponding partial evaluations {u(-,xé‘)}fll of u, an
estimation V! of the optlmal left space can be obtained by solving

k ky(12
, Xo ) — Pyau(s, x s
a0 Zn 5) = P o) (ag)
whose solution is given by the dominant eigenspace of the empirical correlation operator C,1<1(u)
defined for v € L2 (A1) by

1 &

= g o vod) [ dvCa)m(aa)

k=1

Cig (u)v

Similarly, given K> samples {x{(}kKil of X1 and corresponding partial evaluations {u(x}, )]»,(Ki1 of
u, we obtain an estimation V2 of the optimal right space.
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Low-rank approximation of a bivariate function

Projection on reduced spaces

Once subspaces V} and V? have been obtained, a rank-r approximation can be obtained by
solving approximately the best approximation problem

ur = ar min u—vl|.
r vaV,‘@V,Z I Il

This can be achieved by a least-squares approach using K random samples {xk}kK:1 of X
(possibly the available samples) or any other approximate projection method.
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k 1 ;. £,

pproxi ion of a ivariats ion in Tucker format

Multivariate functions

We consider a set of independent random variables X = (X1, ..., Xy) taking values in
X = X1 X ...X Xy and with probability law p = p1 ® ... ® ug-

We consider a multivariate function
u: X1 X...x Xy >R

and assume that v is in the Hilbert tensor space

L(X)=12(%)®...0 L2 (X)

equipped with the canonical norm

1/2
llull = (/ U(Xla---7Xd)2dN1(X1)---de(Xd)> =E(u(Xa,. .., Xa)?)"/2.
X1 X...xXy
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£

k approxi ion of a Itivariats ion in Tucker format

Best approximation in Tucker format

A best approximation of u with Tucker rank bounded by r = (r1, ..., rg) is solution of
min flu — v
Noting that
T = {vev}1®...®vg VY C L2 (X), dim(VE) = n, 1gugd},
the best approximation problem can be rewritten as an optimization problem over r,-dimensional

spaces Vy :

min min U—(Py1 ®...® Pyg )ull?
dim(Vi)=n  dim(Vd)=ry llu =< Va v,d) [
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k approxi ion of a Itivariate fi ion in Tucker format

Quasi-best approximation in Tucker format

We consider the d independent optimization problems

mn flu—(I®..®Py ®...01Nu|%, 1<v<d,
dim(VY )=r, v

whose solutions are such that
Ur:(PVJ.l ®..‘®PV;1)U€7;
n d
satisfies the quasi-optimality property

llu— ul| < Vd min ||u—v].
veT,

ur is the truncated higher-order singular value decomposition of wu.
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k approxi ion of a Itivariate fi ion in Tucker format

Estimation of sub-optimal subspaces

For a given v € D = {1,...,d}, the function u(X) can be seen as a bivariate function
u(Xy, Xyc), where X,c denotes the group of d — 1 variables (X;)ne.c.

Then, the optimization problem which defines a quasi-optimal subspace V! can be written

i — (Pyr @ Nul?.
dim(gr}:,n):ru la = (Poy, ©1)ul

This problem can be treated as for the case of bivariate functions.
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k imation of a multivariate fi ion in Tucker format

PP!

Estimation of quasi-optimal subspaces

Given K, samples {x K” , of the group of variables X,c, an estimation V' of the

quasi-optimal subspace can be obtained by solving

Kk \[12
mm@yﬁygzgguw,nc Puy uC, x5l ()
whose solution is given by the dominant eigenspace of the empirical correlation operator C,‘;V(u)
defined for v € [3 (X,) by

Ky

Ch, (v = 5 D ulexie) [ ulsxbe vl s (e

Ky k=1 v
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k approxi ion of a Itivariats ion in Tucker format

Estimation of quasi-optimal subspaces

In practice, the univariate functions x,, — u(xy,xﬁc) can not be computed exactly and needs to
be approximated.
For example, this can be done interpolation on a grid {tl’,}l{\l:"1 in X,.

The computation of V}’ therefore requires the evaluation of u at the N, K, points of the

tensorized grid )
{(t,xK) 1< i< N, 1< k< K} C Xy X Xpe.

Then, the estimation of the quasi-optimal reduced space
Va®...oV]

requires 25:1 N, K, evaluations of the function, which scales linearly with the dimension d.
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k approxi ion of a Itivariats ion in Tucker format

Estimation of the projection on the reduced tensor product space

Once subspaces V} have been computed, an optimal approximation u, in V,ll R...® V,‘i is then
defined by

u, = ar, min u— vl = (P R...RQ P u.
=g min L == (P ve )

Of course, when the dimension d is high, low-dimensional structures of u, have to be exploited.
Sparse or low-rank tensor methods can be applied here.

Note that for each dimension v, there exists a natural hierarchy of subspaces
vic...cVy

given by dominant singular spaces of increasing dimension. This yields a straightforward strategy
for applying working set algorithms for sparse tensor methods, either for computing a sparse
approximation of the tensor u, or a low-rank approximation of u, with sparse parameters.
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