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Introduction

Here, we consider the approximation of a function u defined on a set X using samples of the
function at some points xk in X .

We first consider the case where
u : X → V

is a function taking values in some vector space V (e.g. RN or a function space).

Then we consider the approximation of a real-valued bivariate function defined on a product
domain

X = X1 ×X2,

before considering the approximation of a real-valued multivariate function defined on a product
domain

X = X1 × . . .×Xd .
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Low-rank approximation of a vector-valued function

Vector-valued functions

Let X be a random variable with values in a set X and let µ denote the probability law of X .

We here consider a function u : X → V defined on X with values in a Hilbert space V.

We assume that u is in the Hilbert tensor space

L2
µ(X ;V) = V ⊗ L2

µ(X )

equipped with the canonical norm

‖u‖ =
(∫
X
‖u(x)‖2Vdµ(x)

)1/2
= E(‖u(X )‖2V )

1/2.
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Low-rank approximation of a vector-valued function

Best rank-r approximation of vector-valued functions

We consider the problem of best approximation of u by a rank-r function

min
v∈Rr

‖u − v‖ = min
v∈Rr

(∫
X
‖u(x)− v(x)‖2Vdµ(x)

)1/2
,

where

Rr =

{
x 7→

r∑
i=1

viλi (x) : vi ∈ V, λi ∈ L2
µ(X )

}
.
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Low-rank approximation of a vector-valued function

Best rank-r approximation of vector-valued functions

A solution ur of the best rank-r approximation problem is given by the truncated singular value
decomposition of u:

ur (x) =
r∑

i=1

σivi si (x),

where the σi are the dominant singular values of u, the vi ∈ V are the dominant left singular
vectors and the si ∈ L2

µ(X ) are the dominant right singular vectors.

The {(vi , σ2
i )}

r
i=1 are the r dominant eigenpairs of the correlation operator C(u) : V → V

defined by

C(u)v =

∫
X

u(x)(u(x), v)Vdµ(x) = E(u(X )(u(X ), v)V ),

which is a compact and self-adjoint operator.
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Low-rank approximation of a vector-valued function

Relation to principal component analysis

By introducing the subspace-based parametrization of Rr ,

Rr =
{
v ∈ Vr ⊗ L2

µ(X ) : Vr ⊂ V, dim(Vr ) = r
}
,

the best rank-r approximation problem can be equivalently formulated as an optimization
problem over r -dimensional spaces in V:

min
dim(Vr )=r

min
v∈Vr⊗L2

µ(X )
‖u − v‖2 = min

dim(Vr )=r

∫
X
‖u(x)− PVr u(x)‖

2
Vdµ(x),

where PVr is the orthogonal projection from V onto Vr .

A solution to this problem is given by the subspace

Vr = span{v1, . . . , vr}

which is generated by the dominant singular vectors of u, also called principal components of u.

The truncated singular value decomposition u is such that

ur (x) = PVr u(x).
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Low-rank approximation of a vector-valued function

Relation with optimal model order reduction

The best rank-m approximation error

d
(2)
r (u) = min

dim(Vr )=r

(∫
X
‖u(x)− PVr u(x)‖

2
Vdµ(x)

)1/2

measures how well the set
u(X ) = {u(x) : x ∈ X}

can be approximated by a r -dimensional space Vr .

It quantifies the ideal performance of a reduced basis method with respect to the L2-norm.

Anthony Nouy 8 / 23



Low-rank approximation of a vector-valued function

Relation with optimal model order reduction

Since ‖u‖ ≤ supx∈X ‖u(x)‖V , we have

d
(2)
r (u) ≤ min

dim(Vr )=r
sup
x∈X
‖u(x)− PVr u(x)‖V = dr (u(X ))V ,

where

dr (u(X ))V = min
dim(Vr )=r

sup
f∈u(X )

‖f − PVr f ‖V

corresponds to the Kolmogorov r -width of u(X ) in V, which measures how well u(X ) can be
approximated uniformly by a r -dimensional space.

Note that dr (u(X ))V , contrary to d
(2)
r (u), does not take into account the measure µ.
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Low-rank approximation of a vector-valued function

Sample-based estimation of principal components

Let us now assume that we have evaluations u(xk ) ∈ V of the function u for K random samples
xk , 1 ≤ k ≤ K .

By introducing a statistical estimation of the expectation, an estimate of the optimal
r -dimensional space is obtained by solving

min
dim(Vr )=r

1
K

K∑
k=1

‖u(xk )− PVr u(x
k )‖2V . (1)

The set of samples {u(x1), . . . , u(xK )} ∈ VK can be identified with a tensor

u ∈ V ⊗ RK ,

and a solution of (1) is given by the dominant left singular space of u.
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Low-rank approximation of a vector-valued function

Sample-based estimation of principal components

The optimal subspace is the dominant eigenspace of the empirical correlation operator

CK (u) =
1
K

K∑
k=1

u(xk )(u(xk ), v)V .

Remark.

Note that other numerical integration methods using deterministic integration points could be
considered for approximating the integral over X .
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Low-rank approximation of a bivariate function

Bivariate functions

We consider a pair of independent random variables X = (X1,X2) taking values in X = X1 ×X2
and with probability law µ = µ1 ⊗ µ2.

We consider a bivariate function
u : X1 ×X2 → R

and assume that u is in the Hilbert tensor space

L2
µ(X ) = L2

µ1 (X1)⊗ L2
µ2 (X2)

equipped with the canonical norm

‖u‖ =
(∫
X1×X2

u(x1, x2)
2dµ1(x1)dµ2(x2)

)1/2
= E(u(X1,X2)

2)1/2.

A function v with rank r has a representation of the form

v(x1, x2) =
r∑

i=1

v
(1)
i (x1)v

(2)
i (x2).
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Low-rank approximation of a bivariate function

Low-rank approximation of bivariate functions

The problem of best rank-r approximation of the function u is defined by

min
v∈Rr

‖u − v‖2.

A solution ur is given by the truncated singular value decomposition of u

ur (x1, x2) =
r∑

i=1

σiv
(1)
i (x1)v

(2)
i (x2)

where the σi are the r dominant singular values of u, and the v
(1)
i and v

(2)
i are the corresponding

left and right singular vectors.

The dominant left and right singular spaces are respectively defined by

V1
r = span{v (1)

1 , . . . , v
(1)
r } and V2

r = span{v (2)
1 , . . . , v

(2)
r }.
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Low-rank approximation of a bivariate function

Low-rank approximation of bivariate functions

The dominant left singular space V1
r is a solution of the optimization problem over r -dimensional

spaces in L2
µ(X1)

min
dim(V1

r )=r
‖u − (PV1

r
⊗ I )u‖.

Also, the dominant right singular space V2
r is a solution of the optimization problem over

r -dimensional spaces in L2
µ(X2)

min
dim(V2

r )=r
‖u − (I ⊗ PV2

r
)u‖.

Then, given these optimal spaces V1
r and V2

r , a best rank-r approximation is given by

ur = arg min
v∈V1

r ⊗V2
r

‖u − v‖

such that
ur = (PV1

r
⊗ I )u = (I ⊗ PV2

r
)u = (PV1

r
⊗ PV2

r
)u.
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Low-rank approximation of a bivariate function

Sample based estimation of optimal spaces

Given K1 samples {xk2 }
K1
k=1 of X2 and corresponding partial evaluations {u(·, xk2 )}

K1
k=1 of u, an

estimation V1
r of the optimal left space can be obtained by solving

min
dim(V1

r )=r

1
K1

K1∑
k=1

‖u(·, xk2 )− PV1
r
u(·, xk2 )‖2L2

µ1
(X1)

,

whose solution is given by the dominant eigenspace of the empirical correlation operator C1
K1

(u)

defined for v ∈ L2
µ1 (X1) by

C1
K1 (u)v =

1
K1

K1∑
k=1

u(·, xk2 )
∫
X1

u(x1, x
k
2 )v(x1)µ1(dx1).

Similarly, given K2 samples {xk1 }
K2
k=1 of X1 and corresponding partial evaluations {u(xk1 , ·)}

K2
k=1 of

u, we obtain an estimation V2
r of the optimal right space.
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Low-rank approximation of a bivariate function

Projection on reduced spaces

Once subspaces V1
r and V2

r have been obtained, a rank-r approximation can be obtained by
solving approximately the best approximation problem

ur = arg min
v∈V1

r ⊗V2
r

‖u − v‖.

This can be achieved by a least-squares approach using K random samples {xk}Kk=1 of X
(possibly the available samples) or any other approximate projection method.
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Low-rank approximation of a multivariate function in Tucker format
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Low-rank approximation of a multivariate function in Tucker format

Multivariate functions

We consider a set of independent random variables X = (X1, . . . ,Xd ) taking values in
X = X1 × . . .×Xd and with probability law µ = µ1 ⊗ . . .⊗ µd .

We consider a multivariate function

u : X1 × . . .×Xd → R

and assume that u is in the Hilbert tensor space

L2
µ(X ) = L2

µ1 (X1)⊗ . . .⊗ L2
µd

(Xd )

equipped with the canonical norm

‖u‖ =
(∫
X1×...×Xd

u(x1, . . . , xd )
2dµ1(x1) . . . dµd (xd )

)1/2

= E(u(X1, . . . ,Xd )
2)1/2.
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Low-rank approximation of a multivariate function in Tucker format

Best approximation in Tucker format

A best approximation of u with Tucker rank bounded by r = (r1, . . . , rd ) is solution of

min
Tr
‖u − v‖2.

Noting that

Tr =
{
v ∈ V1

r1 ⊗ . . .⊗ V
d
rd

: Vνrν ⊂ L2
µν

(Xν), dim(Vνrν ) = rν , 1 ≤ ν ≤ d
}
,

the best approximation problem can be rewritten as an optimization problem over rν -dimensional
spaces Vνrν :

min
dim(V1

r1
)=r1

. . . min
dim(Vd

rd
)=rd

‖u − (PV1
r1
⊗ . . .⊗ PVd

rd
)u‖2
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Low-rank approximation of a multivariate function in Tucker format

Quasi-best approximation in Tucker format

We consider the d independent optimization problems

min
dim(Vν

rν
)=rν
‖u − (I ⊗ . . .⊗ PVν

rν
⊗ . . .⊗ I )u‖2, 1 ≤ ν ≤ d ,

whose solutions are such that

ur = (PV1
r1
⊗ . . .⊗ PVd

rd
)u ∈ Tr

satisfies the quasi-optimality property

‖u − ur‖ ≤
√
d min

v∈Tr
‖u − v‖.

ur is the truncated higher-order singular value decomposition of u.
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Low-rank approximation of a multivariate function in Tucker format

Estimation of sub-optimal subspaces

For a given ν ∈ D = {1, . . . , d}, the function u(X ) can be seen as a bivariate function
u(Xν ,Xνc ), where Xνc denotes the group of d − 1 variables (Xη)η∈νc .

Then, the optimization problem which defines a quasi-optimal subspace Vνrν can be written

min
dim(Vν

rν
)=rν
‖u − (PVν

rν
⊗ I )u‖2.

This problem can be treated as for the case of bivariate functions.
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Low-rank approximation of a multivariate function in Tucker format

Estimation of quasi-optimal subspaces

Given Kν samples {xkνc }
Kν
k=1 of the group of variables Xνc , an estimation Vνrν of the

quasi-optimal subspace can be obtained by solving

min
dim(Vν

rν
)=rν

1
Kν

Kν∑
k=1

‖u(·, xkνc )− PVν
rν
u(·, xkνc )‖2L2

µν
(Xν ),

whose solution is given by the dominant eigenspace of the empirical correlation operator CνKν
(u)

defined for v ∈ L2
µν

(Xν) by

CνKν
(u)v =

1
Kν

Kν∑
k=1

u(·, xkνc )
∫
Xν

u(xν , x
k
νc )v(xν)µν(dxν).
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Low-rank approximation of a multivariate function in Tucker format

Estimation of quasi-optimal subspaces

In practice, the univariate functions xν 7→ u(xν , xkνc ) can not be computed exactly and needs to
be approximated.
For example, this can be done interpolation on a grid {t iν}

Nν
i=1 in Xν .

The computation of Vνrν therefore requires the evaluation of u at the NνKν points of the
tensorized grid

{(t iν , xkνc ) : 1 ≤ i ≤ Nν , 1 ≤ k ≤ Kν} ⊂ Xν ×Xνc .

Then, the estimation of the quasi-optimal reduced space

V1
r1 ⊗ . . .⊗ V

d
rd

requires
∑d
ν=1 NνKν evaluations of the function, which scales linearly with the dimension d .
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Low-rank approximation of a multivariate function in Tucker format

Estimation of the projection on the reduced tensor product space

Once subspaces Vνrν have been computed, an optimal approximation ur in V1
r1 ⊗ . . .⊗V

d
rd

is then
defined by

ur = arg min
v∈V1

r1
⊗...⊗Vd

rd

‖u − v‖ = (PV1
r1
⊗ . . .⊗ PVd

rd
)u.

Of course, when the dimension d is high, low-dimensional structures of ur have to be exploited.
Sparse or low-rank tensor methods can be applied here.

Note that for each dimension ν, there exists a natural hierarchy of subspaces

Vν1 ⊂ . . . ⊂ Vνrν

given by dominant singular spaces of increasing dimension. This yields a straightforward strategy
for applying working set algorithms for sparse tensor methods, either for computing a sparse
approximation of the tensor ur or a low-rank approximation of ur with sparse parameters.
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