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Introduction

In this lecture, we describe the geometric structures of manifolds of tree-based low-rank tensors
and present two important applications:

the optimization in low-rank tensors manifolds,

the dynamical low-rank approximation for dynamical systems in tensor spaces.
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Geometry of tensor manifolds

Geometry of low-rank tensor manifolds

Subsets of tensors with fixed tree-based rank r admits a multilinear parametrization

Mr = {u = F (p1, . . . , pM) : pν ∈ Pν , 1 ≤ ν ≤ M}

where the pν are parameters in some vector spaces Pν , and where F is a multilinear map.

The map F is surjective but usually not injective, which means that a tensor u = F (p1, . . . , pM)
has no unique representation.

Understanding the equivalence between the representations of a tensor is the key for
understanding the geometry of the manifoldMr .
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Geometry of tensor manifolds

Geometry of low-rank tensor manifolds

The characterization of the tangent space ofMr at u, denoted TuMr , is of particular
importance in applications. Due to the multilinearity of F , elements of TuMr , called tangent
vectors, admit a representation of the form

δu = F (δp1, p2, . . . , pM) + . . .+ F (p1, p2, . . . , δpM), δp1 ∈ P1, . . . , δpM ∈ PM .

u δu

TuMr

Mr
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Geometry of tensor manifolds

Geometry of low-rank tensor manifolds

The representation of a tangent vector δu is usually made unique by imposing some conditions
on the parameters δpν , which allows to define a projection operator PTuMr onto the tangent
space TuMr .

u PTuMr (v)

v

TuMr

Mr
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Geometry of tensor manifolds

Manifold of low-rank matrices

LetMr be the set of matrices in Rn×m with a fixed rank r

Mr = {u ∈ Rn×m : rank(u) = r}

A matrix u ∈ Rn×m with rank r can be written as

u = UVT

where U and V belongs to the non compact Stiefel manifold Rn×r
∗ of matrices with full rank.

Also, it can be written as
u = UCVT

where U (resp. V ) belongs to the Stiefel manifold St(n, r) (resp. St(m, r)) of orthogonal
matrices, and where C belongs to the linear group GL(r) of invertible matrices.

This yields two different parametrizations ofMr (among others), each of which inducing
different looks at the geometry ofMr .
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Geometry of tensor manifolds

Manifold of low-rank matrices

In the following, we consider the parametrization

Mr = {u = F (C ,U,V ) : U ∈ St(n, r),V ∈ St(m, r),C ∈ GL(r)}.

where
F : St(r , n)× St(r ,m)× GL(r)→Mr

is a multilinear map defined by
F (C ,U,V ) 7→ UCVT .

The natural extension of this parametrization to higher-order tensors is the Tucker format.

A tensor u = F (C ,U,V ) ∈Mr admits infinitely many equivalent representations of the form

u = F (C ,U,V ) = F (ACB,UA−1,VB−T ) for A,B ∈ GL(r). (1)

The relation (1) defines an equivalence relation between parameters which suggests that the
relevant parameters are not the orthogonal matrices U and V but the subspaces U and V
spanned by their columns.
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Geometry of tensor manifolds

Manifold of low-rank matrices

The tangent space toMr at point u = F (C ,U,V ), denoted by TuMr , is the set of elements δu
of the form

δu = F (δC ,U,V ) + F (C , δU,V ) + F (C ,U, δV )

where δC ∈ Rr×r , δU ∈ Rn×r , δV ∈ Rm×r .

The representation of elements of TuMr can be made unique by imposing δU and δV to be
orthogonal to U and V respectively. This yields the characterization of the tangent space

TuMr =
{
UδCVT + δUCVT + UCδVT :

δC ∈ Rr×r , δU ∈ Rn×r , δV ∈ Rm×r , δUTU = 0, δVTV = 0
}
.

The orthogonal projection operator PTuMr onto TuMr is defined by

PTuMr = PU ⊗ PV + PU⊥ ⊗ PV + PU ⊗ PV⊥
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Geometry of tensor manifolds

Manifold of tensors with fixed tree-based rank

The previous considerations naturally extend to the case of the manifoldMr of tensors in
Rn1 ⊗ . . .⊗ Rnd with Tucker rank (r1, . . . , rd ), which admits the parametrization

Mr =
{
u = F (C ,U1, . . . ,Ud ) : C ∈ Rr1×...×rd

∗ ,Uν ∈ St(rν , nν)
}
,

where Rr1×...×rd
∗ is the set of order-d tensors C such that all matricisationsMν(C) have full

rank rν .

The tangent space toMr at u = F (C ,U1, . . . ,Ud ) is defined by

TuMr = {F (δC ,U1, . . . ,Ud ) + F (C , δU1, . . . ,Ud ) + . . .+ F (C ,U1, . . . , δUd ) :

δC ∈ Rr1×...×rd , δUν ∈ Rnν×rν , δUν
TUν = 0

}
.

and the orthogonal projection onto the tangent space is defined by

PTuMr = PU1 ⊗ . . .⊗ PUd + PU⊥1
⊗ PU2 ⊗ . . .⊗ PUd + PU1 ⊗ . . .⊗ PUd−1 ⊗ PU⊥

d
.

Anthony Nouy 10 / 21



Geometry of tensor manifolds

Manifold of tensors with fixed tree-based rank

The extension to more general subsets of tensorsMr with fixed tree-based tensor formats,
although more subtle, is also possible.

Mr is proved to be a smooth and immersed submanifold of the tensor space, for a finite
dimensional tensor space. This is also true, under some technical assumptions, for
infinite-dimensional tensor Banach spaces.

Note thatMr can in fact be identified with a fiber bundle (which comes from the product
structure of the parameter set). The tangent space can be split into vertical and horizontal
tangent spaces. This structure has interesting consequences in optimization and dynamical
low-rank approximation (not discussed here).
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Optimization in low-rank tensor manifolds

Optimization in low-rank tensor manifolds

Let us consider the optimization problem

min
v∈Mr

J (v)

whereMr is a subset of tensors with fixed tree-based rank, and assume that it admits a solution
u.
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Optimization in low-rank tensor manifolds

Optimization in low-rank tensor manifolds
A necessary (but not sufficient) condition for optimality is

〈∇J (u), δu〉 = 0, ∀δu ∈ TuMr .

This is equivalent to
gradJ (u) = 0,

where gradJ is the Riemannian gradient of J onMr such that

gradJ (v) = PTvMr∇J (v),

where PTvMr is the orthogonal projection onto the tangent space TvMr ofMr at v .

v gradJ (v)

∇J (v)

TvMr

Mr
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Optimization in low-rank tensor manifolds

Gradient algorithms
Gradient algorithms in the Riemannian manifoldMr consist in computing a sequence un inMr

defined by

zn = gradJ (un) = PTunMr∇J (un),

un+1 = Run (un − αnzn),

where Run : TunMr →Mr maps an element of the tangent space TunMr ontoMr .

un zn
un − αnzn

un+1

∇J (un)

TunMr

Mr

It can be seen as a projected gradient algorithm with a nonlinear projection ontoMr :

un+1 = Π(un − αn∇J (un)), Π = Run ◦ PTunMr : V →Mr .
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Optimization in low-rank tensor manifolds

Computing projections

Assume that ∇J (un) has a representation in low-rank format, e.g. when

∇J (un) = Aun − b

where A and b have low-rank representations.

The projection PTunMr onto the tangent space TunMr ofMr also have a low-rank tensor
structure.

Therefore, computing zn = PTunMr∇J (un) requires standard tensor algebra (multiplication of a
low-rank operator by a low-rank vector), and zn has again a low-rank representation.
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Optimization in low-rank tensor manifolds

Retractions

For u ∈Mr and v ∈ TuMr , a retraction Ru maps smoothly u + v to a point Ru(v) inMr , such
that

‖u + v − Ru(v)‖ = o(‖v‖).

For immersed submanifolds, a particular retraction map is the metric projection which associates
to v an element Ru(v) of best approximation of u + v inMr , such that

‖u + v − Ru(v)‖ = min
w∈Mr

‖u + v − w‖.

For the case of matrices (or order-two tensors), the metric projection corresponds to a truncated
singular value decomposition (which is unique if v is sufficiently small).

For higher-order tensors, this best approximation problem can not be solved. A practical choice
consists in taking for Ru(v) the truncated higher-order singular value decomposition of u + v ,
which is such that

‖u + v − Ru(v)‖ ≤ C(d) min
w∈Mr

‖u + v − w‖.
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Optimization in low-rank tensor manifolds

Steepest descent algorithms

A steepest descent algorithm is such that

un+1 = Run (un − αn gradJ (un)),

where αn is the solution of the minimization problem

min
α∈R
J (γ(α)),

with
γ(α) = Run (un − α gradJ (un)).

un

gradJ (un)

γ(α)

Mr
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Dynamical low-rank approximation

Dynamical systems in tensor spaces

Consider a dynamical system

u̇(t) = F (u(t), t),

u(0) = u0,

defined on a tensor Hilbert space V , where

F : V × R+ → V .
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Dynamical low-rank approximation

Dynamical low-rank approximation

Assuming that the solution u(t) at each time admits a good approximation in a certain low-rank
manifoldMr , the problem is then to define a reduced dynamical system inMr which produces a
dynamical low-rank approximation of u(t).
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Dynamical low-rank approximation

Dynamical low-rank approximation

Example 1 (Time-dependent parameter-dependent equation)

∂u

∂t
−∇ · (κ(ξ)∇u) = f (ξ), u ∈ H1(Ω)⊗ L2

µ(Ξ)

where ξ are parameters, possibly random. A dynamical low-rank approximation of u is of the
form

ur (t, x , ξ) =
r∑

i=1

vi (t, x)λi (t, ξ).

Example 2 (Time-dependent PDE defined on a high-dimensional product domain)

∂u

∂t
+

d∑
i=1

∂

∂xi
(aiu)−

1
2

d∑
i,j=1

∂2

∂xixj
(biju) = 0, u ∈ H1(X1)⊗ . . .⊗ H1(Xd ),

A dynamical low-rank approximation of u in tensor-train format is of the form

ur (t, x1, . . . , xd ) =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

v (1)(t, x1, k1)v (2)(t, x2, k1, k2) . . . v (d)(t, xd , kd−1).
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Dynamical low-rank approximation

Dirac-Frenkel variational principle

Assuming that u0 ∈Mr , the Dirac-Frenkel variational principle defines a reduced dynamical
system with a solution t 7→ ur (t) ∈Mr such that ur (0) = u0 and

‖u̇r (t)− F (ur (t), t)‖ = min
v̇∈Tur (t)Mr

‖v̇ − F (ur (t), t)‖,

or equivalently
〈u̇r (t)− F (ur (t), t), v̇〉 = 0 ∀v̇ ∈ Tur (t)Mr ,

which defines u̇r (t) as the projection of the flux on the tangent space toMr at ur (t), i.e.

u̇r (t) = PTur (t)Mr F (ur (t), t).
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