
ETICS research school
3-7 oct. 2022

High-Dimensional Approximation

Part 2: High-dimensional approximation tools

Anthony Nouy

Centrale Nantes, Nantes Université, Laboratoire de Mathématiques Jean Leray

1 / 86

Approximation tools for high-dimensional approximation

We here present classical approximation tools (model classes) for the approximation of
multivariate functions

u(x1, . . . , xd)

2 / 86

Outline

1 Overview of classical approximation tools

2 Approximation theory of (deep) neural networks

3 Approximation theory of tree tensor networks

3 / 86

Expansions on tensor product bases

Polynomial models ∑
α∈Λ

aαx
α, xα = xα1

1 . . . xαd
d

where Λ ⊂ Nd is a set of multi-indices, either fixed (linear approximation) or free
(nonlinear approximation).

More general expansions on tensorized bases∑
α∈Λ

aαψα(x), ψα(x) = ψα1(x1) . . . ψαd (xd),

e.g. tensor product splines, wavelets...

4 / 86

Expansions on tensor product bases

Polynomial models ∑
α∈Λ

aαx
α, xα = xα1

1 . . . xαd
d

where Λ ⊂ Nd is a set of multi-indices, either fixed (linear approximation) or free
(nonlinear approximation).

More general expansions on tensorized bases∑
α∈Λ

aαψα(x), ψα(x) = ψα1(x1) . . . ψαd (xd),

e.g. tensor product splines, wavelets...

4 / 86

Additive and multiplicative models

Additive models
u1(x1) + . . .+ ud(xd)

or more generally ∑
α⊂Λ

uα(xα)

where Λ ⊂ 2{1,...,d} is either fixed (linear approximation) or a free parameter
(nonlinear approximation).

Multiplicative models
u1(x1) . . . ud(xd)

or more generally ∏
α∈Λ

uα(xα)

where Λ ⊂ 2{1,...,d} is either a fixed or a free parameter.

5 / 86

Additive and multiplicative models

Additive models
u1(x1) + . . .+ ud(xd)

or more generally ∑
α⊂Λ

uα(xα)

where Λ ⊂ 2{1,...,d} is either fixed (linear approximation) or a free parameter
(nonlinear approximation).

Multiplicative models
u1(x1) . . . ud(xd)

or more generally ∏
α∈Λ

uα(xα)

where Λ ⊂ 2{1,...,d} is either a fixed or a free parameter.

5 / 86

Separation of variables and tensor networks

Sum of multiplicative models (canonical tensor format)

r∑
k=1

v (1)(x1, k) . . . v (d)(xd , k)

that is a r -term approximation from the dictionary of separated functions.

Tensor train (Matrix Product State)

v(x) =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

v (1)(x1, k1)v (2)(k1, x2, k2) . . . v (d)(kd−1, xd).

v (1) v (2) v (d−1) v (d)

x1 x2 xd−1 xd

k1 k2 kd−1 kd

It is a particular case of tensor networks.

6 / 86

Separation of variables and tensor networks

Sum of multiplicative models (canonical tensor format)

r∑
k=1

v (1)(x1, k) . . . v (d)(xd , k)

that is a r -term approximation from the dictionary of separated functions.

Tensor train (Matrix Product State)

v(x) =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

v (1)(x1, k1)v (2)(k1, x2, k2) . . . v (d)(kd−1, xd).

v (1) v (2) v (d−1) v (d)

x1 x2 xd−1 xd

k1 k2 kd−1 kd

It is a particular case of tensor networks.

6 / 86

Separation of variables and tensor networks

Tensor networks associated with general graphs

v (1)

x1

v (2)

x2

v (3)

x3

v (4)

x4

v (5)

k1,2

k3,4

k2,4

k1,5

k2,5

k1,3

k3,5

7 / 86

Composition of functions

f (g(x))

with g : Rd → Rm and f : Rm → R.

g can be seen as a map that extracts m features g(x) (new variables) from an input x ,
that can be fixed (application-dependent) or free.

For linear maps g(x) = Ax , this corresponds to ridge approximation

f (Ax), A ∈ Rm×d

Different regimes

small m, g performs a dimension reduction and f is a low-dimensional function.

large m, g extracts many features and f is expected to be simple, e.g. linear or
additive.

8 / 86

Composition of functions

f (g(x))

with g : Rd → Rm and f : Rm → R.

g can be seen as a map that extracts m features g(x) (new variables) from an input x ,
that can be fixed (application-dependent) or free.

For linear maps g(x) = Ax , this corresponds to ridge approximation

f (Ax), A ∈ Rm×d

Different regimes

small m, g performs a dimension reduction and f is a low-dimensional function.

large m, g extracts many features and f is expected to be simple, e.g. linear or
additive.

8 / 86

Neural networks

A shallow neural network (with one hidden layer of width m) is a ridge function

aTσ(Ax + b) =
m∑
i=1

aiσ(
d∑

j=1

Aijxj + bi)

where σ is a given function (activation function).

x1 x2 x3 x4

9 / 86

Neural networks

Classical piecewise polynomial activation functions

ReLU function σ(t) = 〈t〉+ = max{0, t}
RePU(p) function σ(t) = 〈t〉p+ = max{0, t}p

ReLU and RePU networks produce a piecewise polynomial approximation (spline) on a
free partition of Rd determined by m hyperplanes

Hi = {x : wi
T x + bi = 0}, wi = (Aij)

d
j=1 ∈ Rd

10 / 86

Deep neural networks

TL ◦ σ ◦ TL−1 ◦ . . . ◦ T1 ◦ σ ◦ T0(x)

with T` : Rm` → Rm`+1 an affine linear map

T`(x) = A`x + b`

and (m1, . . . ,mL) ∈ NL with m0 = d , mL+1 = 1.

For ReLU or RePU(p) activation function σ, the approximation is a piecewise polynomial
on a free partition with a number of domains growing exponentially with depth L.

11 / 86

Outline

1 Overview of classical approximation tools

2 Approximation theory of (deep) neural networks

3 Approximation theory of tree tensor networks

12 / 86

Approximation tools based on neural networks

Different approximation tools (Xn)n≥1 can be defined depending on which parameters are
free (possible architectures) and how complexity is measured.

Letting ΦL,m be the class of neural networks with depth L and widths m = (m1, . . . ,mL),
we define

Xn = {v ∈ ΦL,m : L ∈ L,m ∈ML, compl(v) ≤ n}

where compl is a complexity measure, L ⊂ N is the set of possible depths andML ⊂ NL

the set of possible widths.

Two typical classes of architectures

Fixed depth L and free width:

L = {L}, ML = {(W , . . . ,W) : W ∈ N}

Free depth and fixed width W :

L = N, ML = {(W , . . . ,W)}

13 / 86

Approximation tools based on neural networks

For a function v in the class ΦL,m of neural networks with depth L and widths
m = (m1, . . . ,mL), different measures of complexity:

number of parameters (fully connected networks)

complF (v) =
L∑
`=0

m`m`+1 + m`+1 ∼W 2L for m` ∼W

number of non-zero parameters (sparsely connected networks)

complS(v) =
L∑
`=0

‖A`‖0 + ‖b`‖0

Figure: Fully connected network (left) and Sparsely connected network (right).

Structured sparsity can be imposed (convolutional NN, recurrent NN...) or sparsity
pattern can be considered as a free parameter (a challenge on the algorithmic side).

14 / 86

Deep neural networks approximation theory

Many recent results on the expressivity of deep neural networks for various model classes.

Approximation classes of deep neural networks (free depth and fixed width) are larger
than those of shallow networks (fixed depth and free width) [DeVore et al 2020].

Deep neural networks are (almost) as expressive as many classical approximation
tools (polynomials, splines, B-splines...).

They achieve (near to) optimal performance for functions from classical smoothness
classes (isotropic or anisotropic Sobolev, Besov, analytic functions...).

For functions u in W s,∞((0, 1)d), ReLU networks achieve

en(u)L∞ . n−d/s

with continuous parameter selection.

Approximation classes of deep ReLU networks are not embedded in standard
smoothness classes [Gribonval et al 2021]

They approximate efficiently functions beyond smoothness classes (discontinuous
functions, fractals, refinable functions...)

15 / 86

Deep neural networks approximation theory

Many recent results on the expressivity of deep neural networks for various model classes.

Approximation classes of deep neural networks (free depth and fixed width) are larger
than those of shallow networks (fixed depth and free width) [DeVore et al 2020].

Deep neural networks are (almost) as expressive as many classical approximation
tools (polynomials, splines, B-splines...).

They achieve (near to) optimal performance for functions from classical smoothness
classes (isotropic or anisotropic Sobolev, Besov, analytic functions...).

For functions u in W s,∞((0, 1)d), ReLU networks achieve

en(u)L∞ . n−d/s

with continuous parameter selection.

Approximation classes of deep ReLU networks are not embedded in standard
smoothness classes [Gribonval et al 2021]

They approximate efficiently functions beyond smoothness classes (discontinuous
functions, fractals, refinable functions...)

15 / 86

Deep neural networks approximation theory

Many recent results on the expressivity of deep neural networks for various model classes.

Approximation classes of deep neural networks (free depth and fixed width) are larger
than those of shallow networks (fixed depth and free width) [DeVore et al 2020].

Deep neural networks are (almost) as expressive as many classical approximation
tools (polynomials, splines, B-splines...).

They achieve (near to) optimal performance for functions from classical smoothness
classes (isotropic or anisotropic Sobolev, Besov, analytic functions...).

For functions u in W s,∞((0, 1)d), ReLU networks achieve

en(u)L∞ . n−d/s

with continuous parameter selection.

Approximation classes of deep ReLU networks are not embedded in standard
smoothness classes [Gribonval et al 2021]

They approximate efficiently functions beyond smoothness classes (discontinuous
functions, fractals, refinable functions...)

15 / 86

Deep neural networks approximation theory

Many recent results on the expressivity of deep neural networks for various model classes.

Approximation classes of deep neural networks (free depth and fixed width) are larger
than those of shallow networks (fixed depth and free width) [DeVore et al 2020].

Deep neural networks are (almost) as expressive as many classical approximation
tools (polynomials, splines, B-splines...).

They achieve (near to) optimal performance for functions from classical smoothness
classes (isotropic or anisotropic Sobolev, Besov, analytic functions...).

For functions u in W s,∞((0, 1)d), ReLU networks achieve

en(u)L∞ . n−d/s

with continuous parameter selection.

Approximation classes of deep ReLU networks are not embedded in standard
smoothness classes [Gribonval et al 2021]

They approximate efficiently functions beyond smoothness classes (discontinuous
functions, fractals, refinable functions...)

15 / 86

Deep neural networks approximation theory

Many recent results on the expressivity of deep neural networks for various model classes.

Approximation classes of deep neural networks (free depth and fixed width) are larger
than those of shallow networks (fixed depth and free width) [DeVore et al 2020].

Deep neural networks are (almost) as expressive as many classical approximation
tools (polynomials, splines, B-splines...).

They achieve (near to) optimal performance for functions from classical smoothness
classes (isotropic or anisotropic Sobolev, Besov, analytic functions...).

For functions u in W s,∞((0, 1)d), ReLU networks achieve

en(u)L∞ . n−d/s

with continuous parameter selection.

Approximation classes of deep ReLU networks are not embedded in standard
smoothness classes [Gribonval et al 2021]

They approximate efficiently functions beyond smoothness classes (discontinuous
functions, fractals, refinable functions...)

15 / 86

Deep neural networks approximation theory

A few surprises

For functions u in the unit ball K of W s,∞((0, 1)d), ReLU networks with free depth
can achieve

en(u)L∞ . n−p for arbitrary p ≤ 2s/d .

However, since the manifold width δn(K)L∞ & n−s/d , a rate p > s/d can be
achieved only with discontinuous parameter selection. Also, it requires an encoding
of parameters with more than O(log2(ε−1)) bits to achieve accuracy ε.

Approximation classes of deep networks contain functions that could in principle be
approximated without the curse of dimensionality but require in practice an
exponential quantity of information. That is the theory to practice gap [Grohs and
Voigtlaender 2021].

Open problems

Characterize the functions that can be approximated stably with deep networks.

Characterize functions that can be estimated with partial information and near
optimal performance.

Provide algorithms that achieve near to optimal performance.

16 / 86

Deep neural networks approximation theory

A few surprises

For functions u in the unit ball K of W s,∞((0, 1)d), ReLU networks with free depth
can achieve

en(u)L∞ . n−p for arbitrary p ≤ 2s/d .

However, since the manifold width δn(K)L∞ & n−s/d , a rate p > s/d can be
achieved only with discontinuous parameter selection. Also, it requires an encoding
of parameters with more than O(log2(ε−1)) bits to achieve accuracy ε.

Approximation classes of deep networks contain functions that could in principle be
approximated without the curse of dimensionality but require in practice an
exponential quantity of information. That is the theory to practice gap [Grohs and
Voigtlaender 2021].

Open problems

Characterize the functions that can be approximated stably with deep networks.

Characterize functions that can be estimated with partial information and near
optimal performance.

Provide algorithms that achieve near to optimal performance.

16 / 86

Deep neural networks approximation theory

A few surprises

For functions u in the unit ball K of W s,∞((0, 1)d), ReLU networks with free depth
can achieve

en(u)L∞ . n−p for arbitrary p ≤ 2s/d .

However, since the manifold width δn(K)L∞ & n−s/d , a rate p > s/d can be
achieved only with discontinuous parameter selection. Also, it requires an encoding
of parameters with more than O(log2(ε−1)) bits to achieve accuracy ε.

Approximation classes of deep networks contain functions that could in principle be
approximated without the curse of dimensionality but require in practice an
exponential quantity of information. That is the theory to practice gap [Grohs and
Voigtlaender 2021].

Open problems

Characterize the functions that can be approximated stably with deep networks.

Characterize functions that can be estimated with partial information and near
optimal performance.

Provide algorithms that achieve near to optimal performance.

16 / 86

Outline

1 Overview of classical approximation tools

2 Approximation theory of (deep) neural networks

3 Approximation theory of tree tensor networks
Introduction to tree tensor networks
Approximation tools based on tree tensor networks
Universality, Proximinality and Expressivity
Choice of tensor format
Approximation classes of tree tensor networks
Overview of results and open questions

17 / 86

Tensor networks

Tensor networks are prominent tools for the representation or approximation of
multivariate functions or multidimensional arrays.

A long history in quantum physics. A zoo of tools exploiting separation of variables
(MPS, PEPS, MERA...)

Tree tensor networks (Hierarchical Tucker tensors) appeared independently in
numerical analysis and numerical linear algebra, as an extension of low-rank
decompositions to high-order tensors [Hackbusch and Kuhn, Grasedyck, Oseledets
and Tyrtyshnikov].

Growing use in statistics, data science and probabilistic modelling.

18 / 86

Tensor product of functions

Let Vν ⊂ RXν be a space of functions defined on Xν .

Xν can be (a subset of) N, R, C, or a set of vectors, sequences, graphs, images...

The tensor product of functions v (ν) ∈ Vν , denoted

v = v (1) ⊗ . . .⊗ v (d),

is a multivariate function defined on X = X1 × . . .×Xd and such that

v(x1, . . . , xd) = v (1)(x1) . . . v (d)(xd)

19 / 86

Tensor product of functions

The algebraic tensor product of spaces Vν is defined as

V1 ⊗ . . .⊗ Vd = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ Vν , 1 ≤ ν ≤ d}

which is the space of multivariate functions v which can be written as a finite linear
combination of elementary (separated functions), i.e.

v(x1, . . . , xd) =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd).

20 / 86

Rank of multivariate functions and canonical format

The canonical rank of a multivariate function f (x1, . . . , xd) is the minimal integer such
that f has a representation

f (x) =
r∑

k=1

v1
k (x1) . . . vd

k (xd)

Given a finite-dimensional tensor space V = V1 ⊗ . . .⊗ Vd of multivariate functions we
define a canonical tensor format in V as a set of functions

Rr (V) = {f ∈ V : rank(f) ≤ r}

From the practical point of view, it is not a nice format. In particular, Rr (V) is not
closed for d ≥ 3 and r ≥ 2.

For any continuous parametrization Rr (V) = {v = R(p) : p ∈ P}, and for any tensor of
v ∈ Rr (V) \ Rr (V) of border rank r , the quantity

δ(v , ε) = inf{‖p‖ : ‖v − R(p)‖ < ε}

diverges as ε→ 0 [Hackbusch 2021].

21 / 86

Rank of multivariate functions and canonical format

The canonical rank of a multivariate function f (x1, . . . , xd) is the minimal integer such
that f has a representation

f (x) =
r∑

k=1

v1
k (x1) . . . vd

k (xd)

Given a finite-dimensional tensor space V = V1 ⊗ . . .⊗ Vd of multivariate functions we
define a canonical tensor format in V as a set of functions

Rr (V) = {f ∈ V : rank(f) ≤ r}

From the practical point of view, it is not a nice format. In particular, Rr (V) is not
closed for d ≥ 3 and r ≥ 2.

For any continuous parametrization Rr (V) = {v = R(p) : p ∈ P}, and for any tensor of
v ∈ Rr (V) \ Rr (V) of border rank r , the quantity

δ(v , ε) = inf{‖p‖ : ‖v − R(p)‖ < ε}

diverges as ε→ 0 [Hackbusch 2021].

21 / 86

α-ranks of multivariate functions

A multivariate function f (x1, . . . , xd), for any set α ⊂ {1, . . . , d}, can be identified with a
bivariate function f (xα, xαc) of two complementary subsets of variables.

The rank of the bivariate function f (xα, xαc) is the α-rank of f , denoted rankα(f).

A function with α-rank bounded by rα admits a representation

f (x) =

rα∑
k=1

vαk (xα)vα
c

k (xαc)

or using tensor diagram notations

f (x) =
vα vα

c

xα xαc

k

where a connection between two tensors represents a contraction along one mode of each
tensor.

22 / 86

α-rank

Example

u(x) = u1(x1) . . . ud(xd) can be written u(x) = uα(xα)uα
c

(xαc), with
uα(xα) =

∏
ν∈α uν(xν). Therefore, for any α, rankα(u) = 1.

u(x) =
∑r

k=1 u
1
k (x1) . . . ud

k (xd) can be written
∑r

k=1 u
α
k (xα)uα

c

k (xαc) with
uαk (xα) =

∏
ν∈α uνk (xν). Therefore, for any α, rankα(u) ≤ r , with equality if the

functions {uαk (xα)} and the functions {uα
c

k (xαc)} are linearity independent.

We deduce the following relation between α-ranks and canonical rank:

rankα(u) ≤ rank(u), for any α.

u(x) = u1(x1) + . . .+ ud(xd) can be written u(x) = uα(xα) + uα
c

(xαc), with
uα(xα) =

∑
ν∈α uν(xν). Therefore, rankα(u) ≤ 2.

23 / 86

Low-rank tensor format

Given

a finite-dimensional tensor space V = V1 ⊗ . . .⊗ Vd of multivariate functions

a collection T of subsets in {1, . . . , d},
a tuple of ranks r = (rα)α∈T ,

we define a low-rank tensor format in V as a set of functions

T T
r (V) = {f ∈ V : rankα(f) ≤ rα, α ∈ T}

with representation

f (x) =
∑
i1∈I1

. . .
∑
id∈Id

C(i1, . . . , id)φ1(x1)i1 . . . φ
d(xd)id =

C

φ1

x1

φ2

x2

... φd

xd

where φν is a feature map associated with V ν and C ∈ RI1×...×Id is a rank-structured
algebraic tensor.

24 / 86

Low-rank tensor format

Given

a finite-dimensional tensor space V = V1 ⊗ . . .⊗ Vd of multivariate functions

a collection T of subsets in {1, . . . , d},
a tuple of ranks r = (rα)α∈T ,

we define a low-rank tensor format in V as a set of functions

T T
r (V) = {f ∈ V : rankα(f) ≤ rα, α ∈ T}

with representation

f (x) =
∑
i1∈I1

. . .
∑
id∈Id

C(i1, . . . , id)φ1(x1)i1 . . . φ
d(xd)id =

C

φ1

x1

φ2

x2

... φd

xd

where φν is a feature map associated with V ν and C ∈ RI1×...×Id is a rank-structured
algebraic tensor.

24 / 86

Tensor train format

With
T = {{1}, {1, 2}, ..., {1, . . . , d}},

T T
r (V) coincides with the tensor train format.

A function f in T T
r (V) has coefficients

C(i1, . . . , id) =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

C 1(i1, k1)C 2(k1, i2, k2) . . .C d(kd−1, id).

=
C 1 C 2 C d−1 C d

i1 i2 id−1 id

k1 k2 kd−2 kd−1

25 / 86

Hierarchical Tucker format (Tree tensor networks)

If T is a dimension partition tree, T T
r (V) is a tree-based (or hierarchical) tensor format

and a function in T T
r (V) admits a multilinear parametrization with a collection of

parameters {Cα : α ∈ T} forming a tree tensor network.

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Dimension tree T

C 1,...,5

C 1,2,3

C 1

φ1

x1

C 2,3

C 2

φ2

x2

C 3

φ3

x3

C 4,5

C 4

φ4

x4

C 5

φ5

x5

Tree tensor network

26 / 86

Tree tensor networks as a compositional function network

By identifying a tensor C (α) ∈ Rn1×...×ns×rα with a Rrα -valued multilinear function

f (α) : Rn1 × . . .× Rns → Rrα ,

a function v in T T
r (V) admits a representation as a tree-structured composition of

multilinear functions {f (α)}α∈T , e.g.

v(x) = f D(f 1,2,3(f 1(φ1(x1)), f 2,3(f 2(φ2(x2)), f 3(φ3(x3))), f 4,5(f 4(φ4(x4)), f 5(φ5(x5))))

f 1,2,3,4,5

f 1,2,3

f 1 f 2,3

f 2 f 3

f 4,5

f 4 f 5

27 / 86

Tree tensor networks as a compositional function network

A multilinear map f α can also be written

f α(z1, . . . , zs) = Aασ(z1, . . . , zd), zk ∈ Rnk ,

with a matrix
Aα ∈ Rrα×N , N = n1 . . . ns

and a fixed multilinear function

σ(z1, . . . , zs) = vec(z1 ⊗ . . .⊗ zs) ∈ RN

28 / 86

Tree tensor networks as feed-forward neural networks

It corresponds to a sum-product feed forward neural network with a sparse architecture
(given by T), a number of hidden layers equal to depth(T) + 1 (including a featuring
layer), and width at level ` related to the α-ranks of the nodes α of level `.

C 1,...,8

C 1,...,4 C 5,...,8

C 1,2,3

C 4

C 5,6,7

C 8C 1

C 2,3 C 5,6

C 7C 2 C 3 C 5 C 6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8

Figure: Tree tensor network and corresponding feed-forward sum-product neural network with 10
features per variable xν (right)

29 / 86

Outline

1 Overview of classical approximation tools

2 Approximation theory of (deep) neural networks

3 Approximation theory of tree tensor networks
Introduction to tree tensor networks
Approximation tools based on tree tensor networks
Universality, Proximinality and Expressivity
Choice of tensor format
Approximation classes of tree tensor networks
Overview of results and open questions

30 / 86

Approximation tools based on tree tensor networks

For the approximation of a function, a first approach is to introduce subspaces V ν
Nν of

finite dimension (e.g. polynomials, splines, wavelets, RKHS...) and consider tree tensor
networks f ∈ T T

r (VN) where

VN = V 1
N1 ⊗ . . .⊗ V d

Nd
,

with variable N and r .

Spaces V ν
Nν have to be well chosen, e.g. polynomials for analytic functions, splines with a

degree adapted to the regularity of the function...

31 / 86

Approximation tools based on tree tensor networks

An approximation tool Φ = (Φn)n∈N is then defined by

Φn = {f ∈ T T
r (VN) : N ∈ Nd , r ∈ NT , compl(f) ≤ n}.

The dimensions N and the ranks r are free parameters, and compl(·) is some complexity
measure.

An alternative approach is to rely on tensorization of functions (specific featuring step).

32 / 86

Approximation tools based on tree tensor networks

An approximation tool Φ = (Φn)n∈N is then defined by

Φn = {f ∈ T T
r (VN) : N ∈ Nd , r ∈ NT , compl(f) ≤ n}.

The dimensions N and the ranks r are free parameters, and compl(·) is some complexity
measure.

An alternative approach is to rely on tensorization of functions (specific featuring step).

32 / 86

Tensorization of univariate functions

Consider a function f ∈ R[0,1) defined on the interval [0, 1).

For b, L ∈ N, we subdivide uniformly the interval [0, 1) into bL intervals. Any
x ∈ [0, 1) can be written

x = b−L(i + y), i ∈ {0, . . . , bL − 1}, y ∈ [0, 1).

0 1
•
x0 1 2 3

b−Ly

The integer i admits a representation in base b

i =
L∑

k=1

ikb
L−k = [i1 . . . iL]b, ik ∈ {0, . . . , b − 1}

0 100 01 10 11

f is thus identified with a multivariate function (tensor of order L + 1)

f ∈ (Rb)⊗L ⊗ R[0,1) such that f (x) = f (i1, . . . , iL, y)

33 / 86

Tensorization of univariate functions

Consider a function f ∈ R[0,1) defined on the interval [0, 1).

For b, L ∈ N, we subdivide uniformly the interval [0, 1) into bL intervals. Any
x ∈ [0, 1) can be written

x = b−L(i + y), i ∈ {0, . . . , bL − 1}, y ∈ [0, 1).

0 1
•
x0 1 2 3

b−Ly

The integer i admits a representation in base b

i =
L∑

k=1

ikb
L−k = [i1 . . . iL]b, ik ∈ {0, . . . , b − 1}

0 100 01 10 11

f is thus identified with a multivariate function (tensor of order L + 1)

f ∈ (Rb)⊗L ⊗ R[0,1) such that f (x) = f (i1, . . . , iL, y)

33 / 86

Tensorization of univariate functions

Consider a function f ∈ R[0,1) defined on the interval [0, 1).

For b, L ∈ N, we subdivide uniformly the interval [0, 1) into bL intervals. Any
x ∈ [0, 1) can be written

x = b−L(i + y), i ∈ {0, . . . , bL − 1}, y ∈ [0, 1).

0 1
•
x0 1 2 3

b−Ly

The integer i admits a representation in base b

i =
L∑

k=1

ikb
L−k = [i1 . . . iL]b, ik ∈ {0, . . . , b − 1}

0 100 01 10 11

f is thus identified with a multivariate function (tensor of order L + 1)

f ∈ (Rb)⊗L ⊗ R[0,1) such that f (x) = f (i1, . . . , iL, y)

33 / 86

Tensorization of univariate functions

Digit ik(x) can be seen as a particular feature extracted from x .

(a) i3(x) (b) i1(x)i3(x)i7(x)

(c) i2(x)sin(πy) (L = 4) (d) i3(x)y2 (L = 5)
34 / 86

Tensorization of multivariate functions

A function f (x1, . . . , xd) defined on [0, 1)d can be similarly identified with a tensor of
order (L + 1)d

f ∈ (Rb)⊗Ld ⊗ (R[0,1))⊗d

such that

f (x1, . . . , xd) = f (i11 , . . . , i
L
1 , y1, . . . , i

1
d , . . . , i

L
d , yd)

where xν = b−L(
L∑

k=1

ikνb
L−k + yν) = [0.i1ν . . . i

L
ν]b + b−Lyν

Digits (i11 , . . . , i
L
1 , . . . , i

1
d , . . . , i

L
d) encode a uniform partition of [0, 1)d into bdL elements.

0000

0001

0100

0101

0010

0011

0110

0111

1000

1001

1100

1101

1010

1011

1110

1111

Figure: d=2, b=2, L=2
35 / 86

Tensorization of multivariate functions

Using a different (resolution-wise) ordering of variables, the function can be identified
with another tensor

f (x1, . . . , xd) = f (i11 , . . . , i
1
d , . . . , i

L
1 , . . . , i

L
d , y1, . . . , yd)

It corresponds to another encoding of the partition of [0, 1)d into bdL elements.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Figure: d=2, b=2, L=2

36 / 86

Tensorization of multivariate functions

This particular re-parametrization is related to Morton space filling curve (or Z-order),
which consists in mapping a point

([0.i11 . . . i
L
1 . . .]2, . . . , [0.i

1
d . . . i

L
d . . .]2) ∈ [0, 1]d

to a real number
[0.i11 . . . i

1
d . . . i

L
1 . . . i

L
d . . .]2 ∈ [0, 1]

0
0

1

1

Φ−→

0

1

Figure: b = 2 and L = 3

37 / 86

Tensorization of multivariate functions

Digit i`ν(x) can be seen as a particular feature extracted from x .

(a) i21 (x) (b) i12 (x)

(c) i21 (x)i13 (x) (d) i11 (x)i21 (x)i13 (x)

38 / 86

Tensorization of multivariate functions

The map Tb,L which associates to a function f its tensorization f is a linear isometry
from Lp([0, 1)d) to Lp({0, . . . , b − 1}Ld × [0, 1)d) for any 0 < p ≤ ∞.

39 / 86

Approximation tools based on tree tensor networks

We consider functions whose tensorization at resolution L are in the tensor space

V L = (Rb)⊗Ld ⊗ S⊗d

with S ⊂ R[0,1) some subspace of univariate functions, invariant through b-adic dilation.

If S = Pm, VL = T−1
b,L (V L) is identified with the space of multivariate splines of degree m

over a uniform partition with bdL elements, i.e.

VL = V 1
N1 ⊗ . . .⊗ V d

Nd

with N1 = ... = Nd = bL and V ν
Nν a space of univariate splines of degree m over a

uniform partition with Nν = bL intervals.

40 / 86

Approximation tools based on tree tensor networks

We consider functions whose tensorization at resolution L are in the tensor space

V L = (Rb)⊗Ld ⊗ S⊗d

with S ⊂ R[0,1) some subspace of univariate functions, invariant through b-adic dilation.

If S = Pm, VL = T−1
b,L (V L) is identified with the space of multivariate splines of degree m

over a uniform partition with bdL elements, i.e.

VL = V 1
N1 ⊗ . . .⊗ V d

Nd

with N1 = ... = Nd = bL and V ν
Nν a space of univariate splines of degree m over a

uniform partition with Nν = bL intervals.

40 / 86

Approximation tools based on tree tensor networks

Then as an approximation tool, we consider functions f whose tensorization is a tensor
network in T TL

r (V L), with TL a dimension tree over {1, . . . , Ld + d}.

Using the tensor train format, the corresponding function f (x1, . . . , xd) has the
representation

f (x1, . . . , xd) =

C 1 C 2 C Ld C Ld+1 C Ld+d

i11 i12 iLd φS φS

y1 yd

with φS the feature map associated with S . This is closely related to the quantized
tensor train (QTT) format [Kazeev, Khoromskij, Oseledets, Schwab, ...]

Later on, we consider S = Pm and φS(y) = (1, y , ..., ym+1) or any other polynomial basis.

41 / 86

Approximation tools based on tree tensor networks

An approximation tool Φ = (Φn)n∈N is then defined by

Φn = {f ∈ ΦL,TL,r : L ∈ N0, r ∈ NTL , compl(f) ≤ n}

with ΦL,TL,r the functions whose tensorization at resolution L is in T TL
r (V L).

The resolution L and ranks r are free parameters, and compl(·) is some complexity
measure.

42 / 86

Complexity measures and corresponding approximation tools

The complexity compl(f) of f is defined as the complexity of the associated tensor
network {Cα}α∈T .

Number of parameters (full tensor network)

complF (f) =
∑
α

number_of_entries(Cα)

Number of non-zero parameters (sparse tensor network)

complS(f) =
∑
α

‖Cα‖0

Complexity measures complF and complS yield two different approximation tools

ΦFn and ΦSn

such that
ΦFn ⊂ ΦSn ⊂ ΦFa+bn2

43 / 86

Complexity measures and corresponding approximation tools

The complexity compl(f) of f is defined as the complexity of the associated tensor
network {Cα}α∈T .

Number of parameters (full tensor network)

complF (f) =
∑
α

number_of_entries(Cα)

Number of non-zero parameters (sparse tensor network)

complS(f) =
∑
α

‖Cα‖0

Complexity measures complF and complS yield two different approximation tools

ΦFn and ΦSn

such that
ΦFn ⊂ ΦSn ⊂ ΦFa+bn2

43 / 86

Approximation theory of tree tensor networks

Given a function f from a Banach space X , the best approximation error of f by an
element of Φn is

E(f ,Φn)X := inf
g∈Φn

‖f − g‖X

Fundamental questions are:

does E(f ,Φn)X converge to 0 for any f ?
(universality)

does a best approximation exist ?
(proximinality)

how fast does it converge for functions from classical function classes ?
(expressivity)

what are the functions for which E(f ,Φn)X converges with some given rate ?
(characterization of approximation classes)

44 / 86

Outline

1 Overview of classical approximation tools

2 Approximation theory of (deep) neural networks

3 Approximation theory of tree tensor networks
Introduction to tree tensor networks
Approximation tools based on tree tensor networks
Universality, Proximinality and Expressivity
Choice of tensor format
Approximation classes of tree tensor networks
Overview of results and open questions

45 / 86

Universality

First note that for any algebraic feature tensor space V , and any tree T ,⋃
r

T T
r (V) = V .

so the question of universality of tree tensor networks boils down to conditions on the
tensor feature spaces.

Consider the first family of approximation tools with variable feature spaces VN ,
N ∈ Nd .

If
⋃

N VN is dense in X , then the tools are universal for functions in X .

In particular, this is true for X = Lp((0, 1)d), p <∞, and for polynomial or splines
spaces VN .

Consider the second family of approximation tools using tensorization.

If
⋃

L VL is dense in X , then the tools are universal for functions in X .

In particular, this is true for X = Lp((0, 1)d), p <∞, assuming that S contains the
function one.

46 / 86

Universality

First note that for any algebraic feature tensor space V , and any tree T ,⋃
r

T T
r (V) = V .

so the question of universality of tree tensor networks boils down to conditions on the
tensor feature spaces.

Consider the first family of approximation tools with variable feature spaces VN ,
N ∈ Nd .

If
⋃

N VN is dense in X , then the tools are universal for functions in X .

In particular, this is true for X = Lp((0, 1)d), p <∞, and for polynomial or splines
spaces VN .

Consider the second family of approximation tools using tensorization.

If
⋃

L VL is dense in X , then the tools are universal for functions in X .

In particular, this is true for X = Lp((0, 1)d), p <∞, assuming that S contains the
function one.

46 / 86

Universality

First note that for any algebraic feature tensor space V , and any tree T ,⋃
r

T T
r (V) = V .

so the question of universality of tree tensor networks boils down to conditions on the
tensor feature spaces.

Consider the first family of approximation tools with variable feature spaces VN ,
N ∈ Nd .

If
⋃

N VN is dense in X , then the tools are universal for functions in X .

In particular, this is true for X = Lp((0, 1)d), p <∞, and for polynomial or splines
spaces VN .

Consider the second family of approximation tools using tensorization.

If
⋃

L VL is dense in X , then the tools are universal for functions in X .

In particular, this is true for X = Lp((0, 1)d), p <∞, assuming that S contains the
function one.

46 / 86

Proximinality

For any tree T , any T -rank r , and any finite dimensional tensor space V of X , T T
r (V) is

a closed set in V .

ΦFn (full tensor networks) is a finite union of such sets, all contained in a single finite
dimensional space V ∗. Then ΦFn is a closed set of a finite dimensional space V ∗ and is
therefore proximinal in X .

However, ΦFn (sparse tensor networks) is not closed.

47 / 86

Expressivity

Different ways to analyse the expressivity of tree tensor networks

Exploit known results on other approximation tools and estimate the complexity to
encode these tools using tree tensor networks.

Directly encode a function using tree tensor networks (with controlled errors)

Analyse the convergence of bilinear approximations

u(xα, xαc) ≈
rα∑
k=1

uαk (xα)uα
c

k (xαc)

or the approximability of partial evaluations u(·, xαc) by linear approximation spaces
of dimension rα.

48 / 86

Encoding polynomials and splines

Polynomials
The tensorization of a polynomial of degree p has all ranks bounded by p + 1.

Trigonometric polynomials
The tensorization of the function cos(ωx + ϕ) has all ranks equal to 2.

Then the tensorization of a trigonometric polynomial of degree p has all ranks bounded
by 2p + 1.

Free knot splines
A spline ϕ of degree p over N b-adic intervals forming a partition of [0, 1) is such that

rank{1,...,ν}(ϕ) ≤

{
p + N, 1 ≤ ν < `.

p + 1, ` ≤ ν ≤ L.

where b−` is the minimal length of intervals.

49 / 86

Encoding polynomials and splines

Ranks of interpolants
For a function f and its interpolation fL onto VL, the space of piecewise polynomials of
degree m on a uniform partition of bL intervals, it holds

rankα(f L) ≤ rankα(f)

0 1

f (x)

f3(x)

f4(x)

50 / 86

Encoding multi-resolution analysis

For a function ψ : R→ R supported on [0, 1], we define its level ` b-adic dilation, shifted
by j = 0, . . . , bL − 1,

ψ`,j(x) = ψ(b`x − j)

Its tensorization at level ` is an elementary (rank-one) tensor

Tb,`ψ`,j = ej1 ⊗ . . . ej` ⊗ ψ

with j = [j1, . . . , j`]b and ek the canonical basis vectors in Rb.

Its tensorization at level L ≥ l is

Tb,Lψ`,j = ej1 ⊗ . . . ej` ⊗ (Tb,L−`ψ)

The (approximate) encoding of ψ`,j boils down to the (approximate) encoding of the
mother function ψ with tensor networks.

In particular, if ψ is a (piecewise) polynomial, ψ`,j is encoded at precision ε using
tensorization at level L = `+ O(log(ε−1)).

This yields a very efficient encoding of piecewise polynomial MRAs (B-spline wavelets).

51 / 86

Encoding multi-resolution analysis

For a function ψ : R→ R supported on [0, 1], we define its level ` b-adic dilation, shifted
by j = 0, . . . , bL − 1,

ψ`,j(x) = ψ(b`x − j)

Its tensorization at level ` is an elementary (rank-one) tensor

Tb,`ψ`,j = ej1 ⊗ . . . ej` ⊗ ψ

with j = [j1, . . . , j`]b and ek the canonical basis vectors in Rb.

Its tensorization at level L ≥ l is

Tb,Lψ`,j = ej1 ⊗ . . . ej` ⊗ (Tb,L−`ψ)

The (approximate) encoding of ψ`,j boils down to the (approximate) encoding of the
mother function ψ with tensor networks.

In particular, if ψ is a (piecewise) polynomial, ψ`,j is encoded at precision ε using
tensorization at level L = `+ O(log(ε−1)).

This yields a very efficient encoding of piecewise polynomial MRAs (B-spline wavelets).

51 / 86

Approximation of functions from Besov spaces Bαq (L
p)

From results on spline approximation and their encoding with tensor networks, we obtain

Theorem
Let f ∈ Bαq (Lp) with α > 0 and 0 < p, q ≤ ∞. Then

E(f ,ΦFn)Lp ≤ Cn−α/d |f |Bα∞(Lp)

Tensor networks achieve optimal rates for any Besov regularity order (measured in
Lp norm).

They perform as well as optimal linear approximation tools (e.g. splines), without
requiring to adapt the tool to the regularity order α.

The depth (resolution L) of the network is crucial to capture extra regularity
(α > m + 1).

52 / 86

Approximation of functions from Besov spaces Bαq (L
τ)

Now consider the harder problem of approximating functions from Besov spaces Bαq (Lτ)
where regularity is measured in a Lτ -norm weaker than Lp-norm.

From results on best n-term approximation using dilated splines, we obtain

Theorem
Let f ∈ Bαq (Lτ) with α > 0, 0 < q ≤ τ < p <∞, 1 ≤ p <∞ and

α

d
>

1
τ
− 1

p
.

Then
E(f ,ΦSn)Lp ≤ Cn−α̃/d |f |Bαq (Lτ), E(f ,ΦFn)Lp ≤ Cn−α̃/(2d)|f |Bαq (Lτ),

for arbitrary α̃ < α.

Sparse tensor networks achieve arbitrarily close to optimal rates in O(n−α/d) for
functions with any Besov smoothness α (measured in Lτ norm), without the need to
adapt the tool to the regularity order α.

Here depth and sparsity are crucial for obtaining near to optimal performance.

Full tensor networks have slightly lower performance in O(n−α/(2d)).

53 / 86

Approximation of functions from Besov spaces Bαq (L
τ)

Now consider the harder problem of approximating functions from Besov spaces Bαq (Lτ)
where regularity is measured in a Lτ -norm weaker than Lp-norm.

From results on best n-term approximation using dilated splines, we obtain

Theorem
Let f ∈ Bαq (Lτ) with α > 0, 0 < q ≤ τ < p <∞, 1 ≤ p <∞ and

α

d
>

1
τ
− 1

p
.

Then
E(f ,ΦSn)Lp ≤ Cn−α̃/d |f |Bαq (Lτ), E(f ,ΦFn)Lp ≤ Cn−α̃/(2d)|f |Bαq (Lτ),

for arbitrary α̃ < α.

Sparse tensor networks achieve arbitrarily close to optimal rates in O(n−α/d) for
functions with any Besov smoothness α (measured in Lτ norm), without the need to
adapt the tool to the regularity order α.

Here depth and sparsity are crucial for obtaining near to optimal performance.

Full tensor networks have slightly lower performance in O(n−α/(2d)).

53 / 86

High-dimensional approximation

For Besov spaces Bαq (Lp), tensor networks achieve (near to) optimal rate in
O(n−α/d) which deteriorates with d , that is the curse of dimensionality.

For Besov spaces with mixed smoothness MBαq (Lp) , sparse tensor networks achieve
near to optimal performance in O(n−α log(n)d). But still the curse of dimensionality.

For Besov spaces with anisotropic smoothness ABα
q (Lp), sparse tensor networks also

achieve near to optimal rates in O(n−s(α)/d) with

s(α)/d = (α−1
1 + . . .+ α−1

d)−1

the aggregated smoothness. Curse of dimensionality can be circumvented with
sufficient anisotropy.

Curse of dimensionality can be circumvented for non usual function classes such as
compositions of smooth functions

54 / 86

High-dimensional approximation

For Besov spaces Bαq (Lp), tensor networks achieve (near to) optimal rate in
O(n−α/d) which deteriorates with d , that is the curse of dimensionality.

For Besov spaces with mixed smoothness MBαq (Lp) , sparse tensor networks achieve
near to optimal performance in O(n−α log(n)d). But still the curse of dimensionality.

For Besov spaces with anisotropic smoothness ABα
q (Lp), sparse tensor networks also

achieve near to optimal rates in O(n−s(α)/d) with

s(α)/d = (α−1
1 + . . .+ α−1

d)−1

the aggregated smoothness. Curse of dimensionality can be circumvented with
sufficient anisotropy.

Curse of dimensionality can be circumvented for non usual function classes such as
compositions of smooth functions

54 / 86

High-dimensional approximation

For Besov spaces Bαq (Lp), tensor networks achieve (near to) optimal rate in
O(n−α/d) which deteriorates with d , that is the curse of dimensionality.

For Besov spaces with mixed smoothness MBαq (Lp) , sparse tensor networks achieve
near to optimal performance in O(n−α log(n)d). But still the curse of dimensionality.

For Besov spaces with anisotropic smoothness ABα
q (Lp), sparse tensor networks also

achieve near to optimal rates in O(n−s(α)/d) with

s(α)/d = (α−1
1 + . . .+ α−1

d)−1

the aggregated smoothness. Curse of dimensionality can be circumvented with
sufficient anisotropy.

Curse of dimensionality can be circumvented for non usual function classes such as
compositions of smooth functions

54 / 86

High-dimensional approximation

For Besov spaces Bαq (Lp), tensor networks achieve (near to) optimal rate in
O(n−α/d) which deteriorates with d , that is the curse of dimensionality.

For Besov spaces with mixed smoothness MBαq (Lp) , sparse tensor networks achieve
near to optimal performance in O(n−α log(n)d). But still the curse of dimensionality.

For Besov spaces with anisotropic smoothness ABα
q (Lp), sparse tensor networks also

achieve near to optimal rates in O(n−s(α)/d) with

s(α)/d = (α−1
1 + . . .+ α−1

d)−1

the aggregated smoothness. Curse of dimensionality can be circumvented with
sufficient anisotropy.

Curse of dimensionality can be circumvented for non usual function classes such as
compositions of smooth functions

54 / 86

Compositional functions

Consider a tree-structured composition of smooth functions {fα : α ∈ T}, see [Mhaskar,
Liao, Poggio 2016] for deep neural networks, and [Bachmayr Nouy and Schneider 2021]
for tree tensor networks.

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Assuming that the functions fα ∈W k,∞ with ‖fα‖L∞ ≤ 1 and ‖fα‖W 1,∞ ≤ B, the
complexity to achieve an accuracy ε

n(ε) . ε−3/k(L + 1)3B3Ld1+3/2k

with L = log2(d) for a balanced tree and L + 1 = d for a linear tree.
Bad influence of the depth through the norm B of functions fα (roughness).
For a balanced tree, complexity scales polynomially in d : no curse of dimensionality !
For B ≤ 1, the complexity only scales polynomially in d whatever the tree: no curse
of dimensionality !

55 / 86

Compositional functions

Consider a tree-structured composition of smooth functions {fα : α ∈ T}, see [Mhaskar,
Liao, Poggio 2016] for deep neural networks, and [Bachmayr Nouy and Schneider 2021]
for tree tensor networks.

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Assuming that the functions fα ∈W k,∞ with ‖fα‖L∞ ≤ 1 and ‖fα‖W 1,∞ ≤ B, the
complexity to achieve an accuracy ε

n(ε) . ε−3/k(L + 1)3B3Ld1+3/2k

with L = log2(d) for a balanced tree and L + 1 = d for a linear tree.

Bad influence of the depth through the norm B of functions fα (roughness).
For a balanced tree, complexity scales polynomially in d : no curse of dimensionality !
For B ≤ 1, the complexity only scales polynomially in d whatever the tree: no curse
of dimensionality !

55 / 86

Compositional functions

Consider a tree-structured composition of smooth functions {fα : α ∈ T}, see [Mhaskar,
Liao, Poggio 2016] for deep neural networks, and [Bachmayr Nouy and Schneider 2021]
for tree tensor networks.

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Assuming that the functions fα ∈W k,∞ with ‖fα‖L∞ ≤ 1 and ‖fα‖W 1,∞ ≤ B, the
complexity to achieve an accuracy ε

n(ε) . ε−3/k(L + 1)3B3Ld1+3/2k

with L = log2(d) for a balanced tree and L + 1 = d for a linear tree.
Bad influence of the depth through the norm B of functions fα (roughness).

For a balanced tree, complexity scales polynomially in d : no curse of dimensionality !
For B ≤ 1, the complexity only scales polynomially in d whatever the tree: no curse
of dimensionality !

55 / 86

Compositional functions

Consider a tree-structured composition of smooth functions {fα : α ∈ T}, see [Mhaskar,
Liao, Poggio 2016] for deep neural networks, and [Bachmayr Nouy and Schneider 2021]
for tree tensor networks.

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Assuming that the functions fα ∈W k,∞ with ‖fα‖L∞ ≤ 1 and ‖fα‖W 1,∞ ≤ B, the
complexity to achieve an accuracy ε

n(ε) . ε−3/k(L + 1)3B3Ld1+3/2k

with L = log2(d) for a balanced tree and L + 1 = d for a linear tree.
Bad influence of the depth through the norm B of functions fα (roughness).
For a balanced tree, complexity scales polynomially in d : no curse of dimensionality !

For B ≤ 1, the complexity only scales polynomially in d whatever the tree: no curse
of dimensionality !

55 / 86

Compositional functions

Consider a tree-structured composition of smooth functions {fα : α ∈ T}, see [Mhaskar,
Liao, Poggio 2016] for deep neural networks, and [Bachmayr Nouy and Schneider 2021]
for tree tensor networks.

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Assuming that the functions fα ∈W k,∞ with ‖fα‖L∞ ≤ 1 and ‖fα‖W 1,∞ ≤ B, the
complexity to achieve an accuracy ε

n(ε) . ε−3/k(L + 1)3B3Ld1+3/2k

with L = log2(d) for a balanced tree and L + 1 = d for a linear tree.
Bad influence of the depth through the norm B of functions fα (roughness).
For a balanced tree, complexity scales polynomially in d : no curse of dimensionality !
For B ≤ 1, the complexity only scales polynomially in d whatever the tree: no curse
of dimensionality !

55 / 86

More regularity, analytic functions

For function f : [0, 1] with analytic extension on an open complex domain

Dρ = {z ∈ C : dist(z , [0, 1]) <
ρ− 1
2
}, ρ > 1,

we obtain an exponential convergence

E(f ,ΦFn)L∞ ≤ Cγ−n1/3 ,

with γ = min{ρ, b(m+1)/b}.

The proof relies on the approximation of analytic functions with polynomials and the
encoding of polynomials with tree tensor networks: a chebychev polynomial p of deree m̄
is such that

‖f − p‖L∞ ≤
2

ρ− 1
‖f ‖L∞(Dρ)ρ

−m̄

A polynomial of degree m̄ can be approximated by ϕ in ΦL,r,m with an error in
O(b−L(m+1)), so that

‖f − ϕ‖L∞ . ρ−m̄ + b−L(m+1)

We obtain the result by choosing m̄ ∼ n1/3 and L ∼ b−1n1/3, so that complF (ϕ) ≤ n.

56 / 86

More regularity, analytic functions

For function f : [0, 1] with analytic extension on an open complex domain

Dρ = {z ∈ C : dist(z , [0, 1]) <
ρ− 1
2
}, ρ > 1,

we obtain an exponential convergence

E(f ,ΦFn)L∞ ≤ Cγ−n1/3 ,

with γ = min{ρ, b(m+1)/b}.

The proof relies on the approximation of analytic functions with polynomials and the
encoding of polynomials with tree tensor networks: a chebychev polynomial p of deree m̄
is such that

‖f − p‖L∞ ≤
2

ρ− 1
‖f ‖L∞(Dρ)ρ

−m̄

A polynomial of degree m̄ can be approximated by ϕ in ΦL,r,m with an error in
O(b−L(m+1)), so that

‖f − ϕ‖L∞ . ρ−m̄ + b−L(m+1)

We obtain the result by choosing m̄ ∼ n1/3 and L ∼ b−1n1/3, so that complF (ϕ) ≤ n.

56 / 86

Analytic functions with singularities

Consider the approximation of u(x) = xα, 0 < α ≤ 1, in L∞.

Piecewise constant linear approximation.

u ∈ Bα∞(L∞), u /∈ Bβ∞(L∞) for β > α,

and a piecewise constant approximation on a uniform mesh with n elements gives a
convergence in O(n−α) in L∞,

Piecewise constant nonlinear approximation.

u ∈ BV ⊂ B1
∞(L1),

and a piecewise constant approximation on an optimal mesh with n elements gives a
convergence in O(n−1) in L∞,

Piecewise constant approximation and tensor networks.
A piecewise constant approximation on a uniform mesh with 2L elements exploiting
low-rank structures gives an exponential convergence

E(f ,ΦFn) ≤ Cβ−nγ

Achieves almost the performance of h-p methods [Kazeev and Schwab].

57 / 86

Analytic functions with singularities

Consider the approximation of u(x) = xα, 0 < α ≤ 1, in L∞.

Piecewise constant linear approximation.

u ∈ Bα∞(L∞), u /∈ Bβ∞(L∞) for β > α,

and a piecewise constant approximation on a uniform mesh with n elements gives a
convergence in O(n−α) in L∞,

Piecewise constant nonlinear approximation.

u ∈ BV ⊂ B1
∞(L1),

and a piecewise constant approximation on an optimal mesh with n elements gives a
convergence in O(n−1) in L∞,

Piecewise constant approximation and tensor networks.
A piecewise constant approximation on a uniform mesh with 2L elements exploiting
low-rank structures gives an exponential convergence

E(f ,ΦFn) ≤ Cβ−nγ

Achieves almost the performance of h-p methods [Kazeev and Schwab].

57 / 86

Analytic functions with singularities

Consider the approximation of u(x) = xα, 0 < α ≤ 1, in L∞.

Piecewise constant linear approximation.

u ∈ Bα∞(L∞), u /∈ Bβ∞(L∞) for β > α,

and a piecewise constant approximation on a uniform mesh with n elements gives a
convergence in O(n−α) in L∞,

Piecewise constant nonlinear approximation.

u ∈ BV ⊂ B1
∞(L1),

and a piecewise constant approximation on an optimal mesh with n elements gives a
convergence in O(n−1) in L∞,

Piecewise constant approximation and tensor networks.
A piecewise constant approximation on a uniform mesh with 2L elements exploiting
low-rank structures gives an exponential convergence

E(f ,ΦFn) ≤ Cβ−nγ

Achieves almost the performance of h-p methods [Kazeev and Schwab].

57 / 86

Beyond smoothness

Consider the Weierstrass function, continuous but nowhere differentiable

f (x) =
∞∑
k=0

a−αk cos(akπx), a > 0, 0 < α ≤ 1,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure: Weierstrass function for α = 1/2 , a = 2

We have an exponential convergence in L∞-norm

E(f ,ΦFn)L∞ . β−n1/3

An error ε is achieved with resolution L ∼ log(ε−1), ranks ∼ log(ε−1) and complexity
n ∼ log(ε−1)3

58 / 86

Discontinuous functions: the power of tensorization

Consider the problem of approximating the bivariate function on (−1, 1)2

u(x , t) =

{
1 if x + t < 0
0 if x + t ≥ 0

−1
−0.5 0

0.5 1−1

0

1
0

0.5

1

The manifold K = {u(·, t) : t ∈ (−1, 1)} contains the indicator functions 1[−1,xi](x),
xi = −1 + 2i/m. Therefore the balanced convex hull of K contains the orthogonal
system S = {ψi (x) = 1

21(xi ,xi+1](x) : 1 ≤ i ≤ m} with ‖ψi‖L2 = (2m)−1/2 and by taking
m = 2n, we deduce

dn(K)L2 ≥ 1/(2
√
2)n−1/2,

so that the best rank-n approximation

un(x , t) =
n∑

i=1

vi (x)wi (t)

does not converge better than ‖u − un‖L2 & n−1/2.
59 / 86

Discontinuous functions: the power of tensorization

A piecewise constant interpolant uL on a uniform grid with mesh size 2−L is such that

‖u − uL‖L2 ≤ meas({(x , t) : u 6= uL})1/2 ≤ 21/22−L/2

Using a tensorization ũL(i x1 , ..., i
x
L , i

t
1, ..., i

t
L), we have

rank{1,...,L}(ũ
L) = rank uL ∼ 2L

that means an encoding complexity in tensor train format compl(ũL) & 22L, which yields
an approximation error & n−1/4.

However, the tensorization uL(i x1 , i
t
1, ..., i

x
L , i

t
L) of uL(x , t) satisfies

rank{1,...,ν}(u
L) ≤ 3

for all ν. Therefore, using tensor train format, compl(uL) ≤ 36L and

E(u,ΦFn)L2 ≤ 21/22−n/72.

60 / 86

Outline

1 Overview of classical approximation tools

2 Approximation theory of (deep) neural networks

3 Approximation theory of tree tensor networks
Introduction to tree tensor networks
Approximation tools based on tree tensor networks
Universality, Proximinality and Expressivity
Choice of tensor format
Approximation classes of tree tensor networks
Overview of results and open questions

61 / 86

Canonical versus tree-based format

Consider a finite dimensional tensor space V = V 1 ⊗ . . .⊗ V d with dim(Vν) = RN ,
which is identified with RN×...×N . Denote by Rr = {v : rank(v) ≤ r} and
T T
r = {v : rankα(v) ≤ r , α ∈ T}.

From canonical format to tree-based format.
For any v in V and any α ⊂ D, the α-rank is bounded by the canonical rank:

rankα(v) ≤ rank(v).

Therefore, for any tree T ,
Rr ⊂ T T

r ,

so that an element in Rr with storage complexity O(dNr) admits a representation in
T T
r with a storage complexity O(dNr + dr s+1) where s is the arity of the tree T .

From tree-based format to canonical format. For a balanced or linear binary tree,
the subset

S = {v ∈ T T
r : rank(v) < qd/2}, q = min{N, r},

is of Lebesgue measure 0.

Then a typical element v ∈ T T
r with storage complexity of order dNr + dr3 admits a

representation in canonical format with a storage complexity of order dNqd/2.

62 / 86

Canonical versus tree-based format

Consider a finite dimensional tensor space V = V 1 ⊗ . . .⊗ V d with dim(Vν) = RN ,
which is identified with RN×...×N . Denote by Rr = {v : rank(v) ≤ r} and
T T
r = {v : rankα(v) ≤ r , α ∈ T}.

From canonical format to tree-based format.
For any v in V and any α ⊂ D, the α-rank is bounded by the canonical rank:

rankα(v) ≤ rank(v).

Therefore, for any tree T ,
Rr ⊂ T T

r ,

so that an element in Rr with storage complexity O(dNr) admits a representation in
T T
r with a storage complexity O(dNr + dr s+1) where s is the arity of the tree T .

From tree-based format to canonical format. For a balanced or linear binary tree,
the subset

S = {v ∈ T T
r : rank(v) < qd/2}, q = min{N, r},

is of Lebesgue measure 0.

Then a typical element v ∈ T T
r with storage complexity of order dNr + dr3 admits a

representation in canonical format with a storage complexity of order dNqd/2.

62 / 86

Influence of the tree

For some functions, the choice of tree is not crucial. For example, an additive
function

u1(x1) + . . .+ ud(xd)

has α-ranks equal to 2 whatever α ⊂ D.

But usually, different trees lead to different complexities of representations.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

TB (Balanced tree)
{1} {2}

{3}

{4}

T L (Linear tree)

• If rankTL(u) ≤ r then rankTB (u) ≤ r2

• If rankTB (u) ≤ r then rankTL(u) ≤ r log2(d)/2

63 / 86

Influence of the tree

For some functions, the choice of tree is not crucial. For example, an additive
function

u1(x1) + . . .+ ud(xd)

has α-ranks equal to 2 whatever α ⊂ D.

But usually, different trees lead to different complexities of representations.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

TB (Balanced tree)
{1} {2}

{3}

{4}

T L (Linear tree)

• If rankTL(u) ≤ r then rankTB (u) ≤ r2

• If rankTB (u) ≤ r then rankTL(u) ≤ r log2(d)/2

63 / 86

Influence of the tree

Given a tree T and a permutation σ of D = {1, . . . , d}, we define a tree Tσ

Tσ = {σ(α) : α ∈ T}

having the same structure as T but different nodes.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

T

{1, 2, 3, 4}

{1, 3}

{3} {1}

{2, 4}

{2} {4}

Tσ with σ = (3, 1, 2, 4)

If rankT (u) ≤ r then rankTσ (u) typically depends on d .

64 / 86

Influence of the tree

Consider the Henon-Heiles potential

u(x) =
1
2

d∑
i=1

x2
i + 0.2

d−1∑
i=1

(xix
2
i+1 − x3

i) +
0.22

16

d−1∑
i=1

(x2
i + x2

i+1)2

Using a linear tree T = {{1}, {2}, . . . , {d}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1},D},

rankT (u) ≤ 4, storage(u) = O(d)

but for the permutation

σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) (?)

and the corresponding linear tree Tσ,

rankTσ (u) ≤ 2d + 1, storage(u) = O(d3).

For a typical tensor in T T
r with T a binary tree, its representation in tree based

format with tree Tσ, with σ as in (?), has a complexity scaling exponentially with d .
As an example, consider the function u(x , t) = 1x+t<0identified (through
tensorization) with tensors u(i x1 , . . . , i

x
L , y

x , i t1, . . . , i
t
L, y

t) and
u(i x1 , i

y
1 , . . . , i

x
L , i

y
L , y

x , y t). Huge impact of the ordering !

65 / 86

Influence of the tree

Consider the Henon-Heiles potential

u(x) =
1
2

d∑
i=1

x2
i + 0.2

d−1∑
i=1

(xix
2
i+1 − x3

i) +
0.22

16

d−1∑
i=1

(x2
i + x2

i+1)2

Using a linear tree T = {{1}, {2}, . . . , {d}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1},D},

rankT (u) ≤ 4, storage(u) = O(d)

but for the permutation

σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) (?)

and the corresponding linear tree Tσ,

rankTσ (u) ≤ 2d + 1, storage(u) = O(d3).

For a typical tensor in T T
r with T a binary tree, its representation in tree based

format with tree Tσ, with σ as in (?), has a complexity scaling exponentially with d .

As an example, consider the function u(x , t) = 1x+t<0identified (through
tensorization) with tensors u(i x1 , . . . , i

x
L , y

x , i t1, . . . , i
t
L, y

t) and
u(i x1 , i

y
1 , . . . , i

x
L , i

y
L , y

x , y t). Huge impact of the ordering !

65 / 86

Influence of the tree

Consider the Henon-Heiles potential

u(x) =
1
2

d∑
i=1

x2
i + 0.2

d−1∑
i=1

(xix
2
i+1 − x3

i) +
0.22

16

d−1∑
i=1

(x2
i + x2

i+1)2

Using a linear tree T = {{1}, {2}, . . . , {d}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1},D},

rankT (u) ≤ 4, storage(u) = O(d)

but for the permutation

σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) (?)

and the corresponding linear tree Tσ,

rankTσ (u) ≤ 2d + 1, storage(u) = O(d3).

For a typical tensor in T T
r with T a binary tree, its representation in tree based

format with tree Tσ, with σ as in (?), has a complexity scaling exponentially with d .
As an example, consider the function u(x , t) = 1x+t<0identified (through
tensorization) with tensors u(i x1 , . . . , i

x
L , y

x , i t1, . . . , i
t
L, y

t) and
u(i x1 , i

y
1 , . . . , i

x
L , i

y
L , y

x , y t). Huge impact of the ordering !

65 / 86

Influence of the tree

Consider the probability distribution f (x) = P(X = x) of a Markov chain
X = (X1, . . . ,Xd) given by

f (x) = f1(x1)f2|1(x2|x1) . . . fd|d−1(xd |xd−1)

where bivariate functions fi|i−1 have a rank r .

• With the linear tree T containing interior nodes
{1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1}, f admits a representation in tree-based
format with storage complexity in r4.

• The canonical rank of f is exponential in d .
• But when considering the linear tree Tσ obtained by applying permutation
σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) to the tree T , the storage complexity in
tree-based format is also exponential in d .

66 / 86

Influence of the tree

Consider the probability distribution f (x) = P(X = x) of a Markov chain
X = (X1, . . . ,Xd) given by

f (x) = f1(x1)f2|1(x2|x1) . . . fd|d−1(xd |xd−1)

where bivariate functions fi|i−1 have a rank r .

• With the linear tree T containing interior nodes
{1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1}, f admits a representation in tree-based
format with storage complexity in r4.

• The canonical rank of f is exponential in d .
• But when considering the linear tree Tσ obtained by applying permutation
σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) to the tree T , the storage complexity in
tree-based format is also exponential in d .

66 / 86

Influence of the tree

Consider the probability distribution f (x) = P(X = x) of a Markov chain
X = (X1, . . . ,Xd) given by

f (x) = f1(x1)f2|1(x2|x1) . . . fd|d−1(xd |xd−1)

where bivariate functions fi|i−1 have a rank r .

• With the linear tree T containing interior nodes
{1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1}, f admits a representation in tree-based
format with storage complexity in r4.

• The canonical rank of f is exponential in d .

• But when considering the linear tree Tσ obtained by applying permutation
σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) to the tree T , the storage complexity in
tree-based format is also exponential in d .

66 / 86

Influence of the tree

Consider the probability distribution f (x) = P(X = x) of a Markov chain
X = (X1, . . . ,Xd) given by

f (x) = f1(x1)f2|1(x2|x1) . . . fd|d−1(xd |xd−1)

where bivariate functions fi|i−1 have a rank r .

• With the linear tree T containing interior nodes
{1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1}, f admits a representation in tree-based
format with storage complexity in r4.

• The canonical rank of f is exponential in d .
• But when considering the linear tree Tσ obtained by applying permutation
σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) to the tree T , the storage complexity in
tree-based format is also exponential in d .

66 / 86

How to choose a good tree ?

A combinatorial problem...

{2} {3}

{7}

{5} {4}

{8}

{1} {6} {2} {7}

{4}

{8} {1} {5} {3}

{6}

{1} {4}{2} {8}

{3} {7} {6}

{5}

{3} {2}{4}

{7}{5}

{8}{6} {1}

67 / 86

Outline

1 Overview of classical approximation tools

2 Approximation theory of (deep) neural networks

3 Approximation theory of tree tensor networks
Introduction to tree tensor networks
Approximation tools based on tree tensor networks
Universality, Proximinality and Expressivity
Choice of tensor format
Approximation classes of tree tensor networks
Overview of results and open questions

68 / 86

Properties of tree tensor networks

We here consider approximation tools (Φn)n≥1 based on tensorization and tensor train
format (with or without sparsity).
They satisfy

(P1) Φ0 = {0}, 0 ∈ Φn

(P2) aΦn = Φn for any a ∈ R \ {0} (cone)
(P3) Φn ⊂ Φn+1 (nestedness)

(P4) Φn + Φn ⊂ Φcn for some constant c (not too nonlinear)

For X = Lp, they further satisfy

(P5)
⋃

n Φn is dense in Lp for 0 < p <∞ (universality),

(P6) for each f ∈ Lp for 0 < p ≤ ∞, there exists a best approximation in ΦFn (proximinal
sets). However, ΦSn is not closed.

69 / 86

Properties of tree tensor networks

We here consider approximation tools (Φn)n≥1 based on tensorization and tensor train
format (with or without sparsity).
They satisfy

(P1) Φ0 = {0}, 0 ∈ Φn

(P2) aΦn = Φn for any a ∈ R \ {0} (cone)
(P3) Φn ⊂ Φn+1 (nestedness)

(P4) Φn + Φn ⊂ Φcn for some constant c (not too nonlinear)

For X = Lp, they further satisfy

(P5)
⋃

n Φn is dense in Lp for 0 < p <∞ (universality),

(P6) for each f ∈ Lp for 0 < p ≤ ∞, there exists a best approximation in ΦFn (proximinal
sets). However, ΦSn is not closed.

69 / 86

Approximation classes

For an approximation tool Φ = (Φn)n∈N, we define for any α > 0 the approximation class

Aα∞(Lp) := Aα∞(Lp,Φ)

of functions f ∈ Lp such that
E(f ,Φn)Lp ≤ Cn−α

Properties (P1)-(P4) of Φ imply that Aα∞(Lp) is a quasi-Banach space with
quasi-semi-norm

|f |Aα∞ := sup
n≥1

nαE(f ,Φn)Lp

Full and sparse complexity measures yield two different approximation spaces

Fα∞(Lp) = Aα∞(Lp,ΦF), Sα∞(Lp) = Aα∞(Lp,ΦS)

such that
Fα∞(Lp) ↪→ Sα∞(Lp) ↪→ Fα/2∞ (Lp)

70 / 86

Approximation classes

For an approximation tool Φ = (Φn)n∈N, we define for any α > 0 the approximation class

Aα∞(Lp) := Aα∞(Lp,Φ)

of functions f ∈ Lp such that
E(f ,Φn)Lp ≤ Cn−α

Properties (P1)-(P4) of Φ imply that Aα∞(Lp) is a quasi-Banach space with
quasi-semi-norm

|f |Aα∞ := sup
n≥1

nαE(f ,Φn)Lp

Full and sparse complexity measures yield two different approximation spaces

Fα∞(Lp) = Aα∞(Lp,ΦF), Sα∞(Lp) = Aα∞(Lp,ΦS)

such that
Fα∞(Lp) ↪→ Sα∞(Lp) ↪→ Fα/2∞ (Lp)

70 / 86

Approximation classes

For an approximation tool Φ = (Φn)n∈N, we define for any α > 0 the approximation class

Aα∞(Lp) := Aα∞(Lp,Φ)

of functions f ∈ Lp such that
E(f ,Φn)Lp ≤ Cn−α

Properties (P1)-(P4) of Φ imply that Aα∞(Lp) is a quasi-Banach space with
quasi-semi-norm

|f |Aα∞ := sup
n≥1

nαE(f ,Φn)Lp

Full and sparse complexity measures yield two different approximation spaces

Fα∞(Lp) = Aα∞(Lp,ΦF), Sα∞(Lp) = Aα∞(Lp,ΦS)

such that
Fα∞(Lp) ↪→ Sα∞(Lp) ↪→ Fα/2∞ (Lp)

70 / 86

Direct embeddings

From results on the approximation properties for Besov spaces, we have the following
results.

(Linear approximation) For α > 0 and 0 < p ≤ ∞,

Bαq (Lp) ↪→ Fα/d∞ (Lp),

MBαq (Lp) ↪→ Sα∞(Lp),

ABα
q (Lp) ↪→ Ss/d

∞ (Lp)

with s(α) := d(α−1
1 + . . .+ α−1

d)−1.

(Nonlinear approximation) For α > 0, 1 ≤ p <∞, 0 < q ≤ τ < p <∞ and
α
d
> 1

τ
− 1

p
,

Bαq (Lτ) ↪→ Sα̃/d∞ (Lp)↪→ F α̃/(2d)
∞ (Lp),

MBαq (Lτ) ↪→ Sα̃∞(Lp)↪→ F α̃/2∞ (Lp)

for arbitrary α̃ < α, and

ABα
q (Lτ) ↪→ Sα̃/d∞ (Lp)↪→ F α̃/(2d)

∞ (Lp)

for arbitrary α̃ < s(α).

71 / 86

Direct embeddings

From results on the approximation properties for Besov spaces, we have the following
results.

(Linear approximation) For α > 0 and 0 < p ≤ ∞,

Bαq (Lp) ↪→ Fα/d∞ (Lp),

MBαq (Lp) ↪→ Sα∞(Lp),

ABα
q (Lp) ↪→ Ss/d

∞ (Lp)

with s(α) := d(α−1
1 + . . .+ α−1

d)−1.

(Nonlinear approximation) For α > 0, 1 ≤ p <∞, 0 < q ≤ τ < p <∞ and
α
d
> 1

τ
− 1

p
,

Bαq (Lτ) ↪→ Sα̃/d∞ (Lp)↪→ F α̃/(2d)
∞ (Lp),

MBαq (Lτ) ↪→ Sα̃∞(Lp)↪→ F α̃/2∞ (Lp)

for arbitrary α̃ < α, and

ABα
q (Lτ) ↪→ Sα̃/d∞ (Lp)↪→ F α̃/(2d)

∞ (Lp)

for arbitrary α̃ < s(α).

71 / 86

Interpolation family

The properties of Φn allow to apply classical results from approximation theory, in
particular to deduce from embedding results on Aα∞(Lp) embedding results on
interpolation spaces

Aβq (Lp) = (Lp,Aα∞(Lp))β/α,q, 0 < β < α, 0 < q ≤ ∞

that are quasi-Banach spaces with quasi-norm

‖f ‖Aαq = ‖f ‖Lp + |f |Aαq , |f |Aαq =

(
∞∑
n=1

n−1 (nαE(f ,Φn)X)q
)1/q

(functions with faster convergence than those of Aα∞(Lp)).

72 / 86

No inverse embedding

For any α > 0, q ≤ ∞, and any β,

Fαq (Lp) 6↪→ Bβq (Lp).

That means that approximation classes contain functions that have no smoothness in a
classical sense.

Tree tensor networks may be useful for the approximation of functions beyond standard
smoothness classes.

73 / 86

No inverse embedding

This is proved by contradiction by considering the sawtooth function ϕL with 2L teeth
such that ϕL ∈ Φn with n ∼ L.

From properties (P1)-(P6), Fαq (Lp) satisfies the Berstein inequality, that is

‖ϕ‖Fαq (Lp) . nα‖ϕ‖Lp ∀ϕ ∈ Φn.

Moreover, ‖ϕL‖Lp ∼ 1 and ‖ϕL‖Bβq (Lp)
& 2βL. If the embedding were true, we would have

2βn . ‖ϕL‖Bβq (Lp)
. ‖ϕL‖Fαq (Lp) . nα,

a contradiction.

74 / 86

The role of depth

Consider the approximation with restricted resolution

ΦLn = {f ∈ Φn : L(f) ≤ L(n)}

where L(f) is the minimal resolution L such that f ∈ VL, and L some growth function.

Since L(f) ≤ n for f ∈ Φn, ΦLn = Φn for L = n.

In dimension d = 1, for L(n) = r logb(n) + c, the following Bernstein inequality holds

|f |Bm+1
τ (Lτ) . ‖f ‖Lpb

c(m+1)nr(m+1)

with τ the Sobolev embedding number, and m the local polynomial degree. This implies
the inverse embedding of the corresponding approximation class

Aα∞(Lp; (ΦLn)) ↪→ Bα/(m+1)
τ (Lτ)

Hence the importance of depth L for going beyond standard regularity classes.

75 / 86

Overview of results on approximation theory of tensor networks

Using tensorization of functions, efficient encoding of many approximation tools:
polynomials, trigonometric polynomials, free knot splines, multi-resolution analysis
(wavelets).

Using tensorization, no need to adapt the approximation tool to the regularity of
functions. For that, allowing deep networks (high resolution) is crucial.

For analytic functions (with possible singularities), exponential convergence is
achieved.

For Sobolev spaces W α,p or Besov spaces Bαq (Lp), tensor networks (full or sparse)
achieve optimal rate in O(n−α/d).

For Besov spaces Bαq (Lτ) (τ < p), sparse tensor networks achieve arbitrary close to
optimal rate in O(n−α/d), while full tensor networks achieve a rate arbitrarily close
to O(n−α/(2d)).

76 / 86

Overview of results on approximation theory of tensor networks

Using tensorization of functions, efficient encoding of many approximation tools:
polynomials, trigonometric polynomials, free knot splines, multi-resolution analysis
(wavelets).

Using tensorization, no need to adapt the approximation tool to the regularity of
functions. For that, allowing deep networks (high resolution) is crucial.

For analytic functions (with possible singularities), exponential convergence is
achieved.

For Sobolev spaces W α,p or Besov spaces Bαq (Lp), tensor networks (full or sparse)
achieve optimal rate in O(n−α/d).

For Besov spaces Bαq (Lτ) (τ < p), sparse tensor networks achieve arbitrary close to
optimal rate in O(n−α/d), while full tensor networks achieve a rate arbitrarily close
to O(n−α/(2d)).

76 / 86

Overview of results on approximation theory of tensor networks

Using tensorization of functions, efficient encoding of many approximation tools:
polynomials, trigonometric polynomials, free knot splines, multi-resolution analysis
(wavelets).

Using tensorization, no need to adapt the approximation tool to the regularity of
functions. For that, allowing deep networks (high resolution) is crucial.

For analytic functions (with possible singularities), exponential convergence is
achieved.

For Sobolev spaces W α,p or Besov spaces Bαq (Lp), tensor networks (full or sparse)
achieve optimal rate in O(n−α/d).

For Besov spaces Bαq (Lτ) (τ < p), sparse tensor networks achieve arbitrary close to
optimal rate in O(n−α/d), while full tensor networks achieve a rate arbitrarily close
to O(n−α/(2d)).

76 / 86

Overview of results on approximation theory of tensor networks

Using tensorization of functions, efficient encoding of many approximation tools:
polynomials, trigonometric polynomials, free knot splines, multi-resolution analysis
(wavelets).

Using tensorization, no need to adapt the approximation tool to the regularity of
functions. For that, allowing deep networks (high resolution) is crucial.

For analytic functions (with possible singularities), exponential convergence is
achieved.

For Sobolev spaces W α,p or Besov spaces Bαq (Lp), tensor networks (full or sparse)
achieve optimal rate in O(n−α/d).

For Besov spaces Bαq (Lτ) (τ < p), sparse tensor networks achieve arbitrary close to
optimal rate in O(n−α/d), while full tensor networks achieve a rate arbitrarily close
to O(n−α/(2d)).

76 / 86

Overview of results on approximation theory of tensor networks

Using tensorization of functions, efficient encoding of many approximation tools:
polynomials, trigonometric polynomials, free knot splines, multi-resolution analysis
(wavelets).

Using tensorization, no need to adapt the approximation tool to the regularity of
functions. For that, allowing deep networks (high resolution) is crucial.

For analytic functions (with possible singularities), exponential convergence is
achieved.

For Sobolev spaces W α,p or Besov spaces Bαq (Lp), tensor networks (full or sparse)
achieve optimal rate in O(n−α/d).

For Besov spaces Bαq (Lτ) (τ < p), sparse tensor networks achieve arbitrary close to
optimal rate in O(n−α/d), while full tensor networks achieve a rate arbitrarily close
to O(n−α/(2d)).

76 / 86

Overview of results on approximation theory of tensor networks

For Besov spaces with mixed dominating smoothness MBαq (Lp) , sparse tensor
networks achieve near to optimal performance in O(n−α log(n)d).

For Besov spaces with anisotropic smoothness ABα
q (Lp), sparse tensor networks also

achieve near to optimal rates in O(n−s(α)/d) with

s(α)/d = (α−1
1 + . . .+ α−1

d)−1

the aggregated smoothness. Curse of dimensionality can be circumvented with
sufficient anisotropy.

Curse of dimensionality can be circumvented for non usual function classes such as
compositions of smooth functions

77 / 86

Overview of results on approximation theory of tensor networks

For Besov spaces with mixed dominating smoothness MBαq (Lp) , sparse tensor
networks achieve near to optimal performance in O(n−α log(n)d).

For Besov spaces with anisotropic smoothness ABα
q (Lp), sparse tensor networks also

achieve near to optimal rates in O(n−s(α)/d) with

s(α)/d = (α−1
1 + . . .+ α−1

d)−1

the aggregated smoothness. Curse of dimensionality can be circumvented with
sufficient anisotropy.

Curse of dimensionality can be circumvented for non usual function classes such as
compositions of smooth functions

77 / 86

Overview of results on approximation theory of tensor networks

For Besov spaces with mixed dominating smoothness MBαq (Lp) , sparse tensor
networks achieve near to optimal performance in O(n−α log(n)d).

For Besov spaces with anisotropic smoothness ABα
q (Lp), sparse tensor networks also

achieve near to optimal rates in O(n−s(α)/d) with

s(α)/d = (α−1
1 + . . .+ α−1

d)−1

the aggregated smoothness. Curse of dimensionality can be circumvented with
sufficient anisotropy.

Curse of dimensionality can be circumvented for non usual function classes such as
compositions of smooth functions

77 / 86

Overview of results on approximation theory of tensor networks

Can approximate very efficiently functions with low (or no) regularity in a usual
sense: discontinuous functions, nowhere differentiable functions, fractals

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

−1
−0.5 0

0.5 1−1

0

1
0

0.5

1

Approximation classes of tensor networks (using tensorization) are not embedded in
any Besov space. Tensor networks can efficiently approximate functions beyond
standard smoothness classes.

78 / 86

Overview of results on approximation theory of tensor networks

Can approximate very efficiently functions with low (or no) regularity in a usual
sense: discontinuous functions, nowhere differentiable functions, fractals

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

−1
−0.5 0

0.5 1−1

0

1
0

0.5

1

Approximation classes of tensor networks (using tensorization) are not embedded in
any Besov space. Tensor networks can efficiently approximate functions beyond
standard smoothness classes.

78 / 86

Overview of results on approximation theory of tensor networks

ΦFn is closed while ΦSn is not. Manipulating sparse tensor networks may be difficult
in practice (to be compared with sparsely connected neural networks).

Approximation classes of sparse tensor networks are larger than those of full tensor
networks. However, if sparse tensor networks achieve a convergence in O(n−α), then
full tensor networks achieve a convergence in O(n−α/2)

The choice of the tensor format (ordering of variables, dimension partition tree T)
may have a big influence on the performance.

f (x) = f1(x1)f2|1(x2|x1) . . . fd|d−1(xd |xd−1)

How to select a good tree ? Combinatorial problem. Possible stochastic algorithms.

{2} {3}

{7}

{5} {4}

{8}

{1} {6} {2} {7}

{4}

{8} {1} {5} {3}

{6}

79 / 86

Overview of results on approximation theory of tensor networks

ΦFn is closed while ΦSn is not. Manipulating sparse tensor networks may be difficult
in practice (to be compared with sparsely connected neural networks).

Approximation classes of sparse tensor networks are larger than those of full tensor
networks. However, if sparse tensor networks achieve a convergence in O(n−α), then
full tensor networks achieve a convergence in O(n−α/2)

The choice of the tensor format (ordering of variables, dimension partition tree T)
may have a big influence on the performance.

f (x) = f1(x1)f2|1(x2|x1) . . . fd|d−1(xd |xd−1)

How to select a good tree ? Combinatorial problem. Possible stochastic algorithms.

{2} {3}

{7}

{5} {4}

{8}

{1} {6} {2} {7}

{4}

{8} {1} {5} {3}

{6}

79 / 86

Overview of results on approximation theory of tensor networks

ΦFn is closed while ΦSn is not. Manipulating sparse tensor networks may be difficult
in practice (to be compared with sparsely connected neural networks).

Approximation classes of sparse tensor networks are larger than those of full tensor
networks. However, if sparse tensor networks achieve a convergence in O(n−α), then
full tensor networks achieve a convergence in O(n−α/2)

The choice of the tensor format (ordering of variables, dimension partition tree T)
may have a big influence on the performance.

f (x) = f1(x1)f2|1(x2|x1) . . . fd|d−1(xd |xd−1)

How to select a good tree ? Combinatorial problem. Possible stochastic algorithms.

{2} {3}

{7}

{5} {4}

{8}

{1} {6} {2} {7}

{4}

{8} {1} {5} {3}

{6}

79 / 86

Overview of results on approximation theory of tensor networks

ΦFn is closed while ΦSn is not. Manipulating sparse tensor networks may be difficult
in practice (to be compared with sparsely connected neural networks).

Approximation classes of sparse tensor networks are larger than those of full tensor
networks. However, if sparse tensor networks achieve a convergence in O(n−α), then
full tensor networks achieve a convergence in O(n−α/2)

The choice of the tensor format (ordering of variables, dimension partition tree T)
may have a big influence on the performance.

f (x) = f1(x1)f2|1(x2|x1) . . . fd|d−1(xd |xd−1)

How to select a good tree ? Combinatorial problem. Possible stochastic algorithms.

{2} {3}

{7}

{5} {4}

{8}

{1} {6} {2} {7}

{4}

{8} {1} {5} {3}

{6}

79 / 86

Some open questions

What are the properties of the approximation tool with free tree T over
{1, . . . , (L + 1)d}

Φn = {f ∈ ΦL,T ,r,m : L ∈ N0,T ⊂ 2{1,...,(L+1)d}, r ∈ N#T , compl(f) ≤ n} ?

x2 x3

x7

x5 x4

x8

x1 x6

x2 x7

x4

x8 x1 x5 x3

x6

What about approximation classes of more general tensor networks ?

x1

x2

x3

x4

80 / 86

Some open questions

Algorithms to practically compute approximations achieving a certain precision with
almost optimal complexity, using available information on the function (model
equations, point samples...)

Computational complexity of (deterministic or randomized) algorithms based on
point samples for functions from approximation classes of tensor networks ?

Theory to practice gap ?

81 / 86

References I

Approximation theory of neural networks

R. Gribonval, G. Kutyniok, M. Nielsen, and F. Voigtlaender.

Approximation spaces of deep neural networks.
Constructive approximation, 55(1):259–367, 2022.

I. Gühring, M. Raslan, and G. Kutyniok.

Expressivity of deep neural networks.
arXiv preprint arXiv:2007.04759, 2020.

R. DeVore, B. Hanin, and G. Petrova.

Neural network approximation.
Acta Numerica, 30:327–444, 2021.

I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova.

Nonlinear approximation and (deep) ReLU networks.
Constructive Approximation, 55(1):127–172, 2022.

D. Yarotsky.

Error bounds for approximations with deep relu networks.
Neural Networks, 94:103–114, 2017.

82 / 86

References II

D. Yarotsky and A. Zhevnerchuk.

The phase diagram of approximation rates for deep neural networks.
Advances in neural information processing systems, 33:13005–13015, 2020.

M. Ali and A. Nouy.

Approximation of smoothness classes by deep ReLU networks, arXiv:2007.15645, To appear in SIAM
Journal on Numerical Analysis.

P. Grohs and F. Voigtländer.

Proof of the theory-to-practice gap in deep learning via sampling complexity bounds for neural
network approximation spaces.
CoRR, abs/2104.02746, 2021.

Introduction to tensors and tensor networks

W. Hackbusch.

Tensor spaces and numerical tensor calculus, volume 42 of Springer series in computational
mathematics.
Springer, Heidelberg, 2012.

A. Nouy.

Low-rank methods for high-dimensional approximation and model order reduction.
In P. Benner, A. Cohen, M. Ohlberger, and K. Willcox (eds.), Model Reduction and Approximation:
Theory and Algorithms. SIAM, Philadelphia, PA, 2016.

83 / 86

References III

R. Orus.

A practical introduction to tensor networks: Matrix product states and projected entangled pair
states.
Annals of Physics, 349:117 – 158, 2014.

A. Falcó, W. Hackbusch, and A. Nouy.

Tree-based tensor formats.
SeMA Journal, Oct 2018.

W. Hackbusch.

Minimal divergence for border rank-2 tensor approximation.
Linear and Multilinear Algebra, pages 1–17, 2021.

Approximation theory of tensor networks

R. Schneider and A. Uschmajew.

Approximation rates for the hierarchical tensor format in periodic sobolev spaces.
Journal of Complexity, 30(2):56 – 71, 2014.
Dagstuhl 2012.

M. Ali and A. Nouy.

Approximation with tensor networks. part i: Approximation spaces.
ArXiv, abs/2007.00118, 2020.

84 / 86

References IV

M. Ali and A. Nouy.

Approximation with tensor networks. part ii: Approximation rates for smoothness classes.
ArXiv, abs/2007.00128, 2020.

M. Ali and A. Nouy.

Approximation with tensor networks. part iii: Multivariate approximation.
arXiv preprint arXiv:2101.11932, 2021.

M. Bachmayr, A. Nouy, and R. Schneider.

Approximation by tree tensor networks in high dimensions: Sobolev and compositional functions.
arXiv preprint arXiv:2112.01474, 2021.

N. Cohen, O. Sharir, and A. Shashua.

On the expressive power of deep learning: A tensor analysis.
In Conference on Learning Theory, pages 698–728, 2016.

Valentin Khrulkov, Alexander Novikov, and Ivan Oseledets.

Expressive power of recurrent neural networks.
In International Conference on Learning Representations, 2018.

Vladimir Kazeev and Christoph Schwab.

Approximation of singularities by quantized-tensor fem.
PAMM, 15(1):743–746, 2015.

85 / 86

References V

Vladimir Kazeev, Ivan Oseledets, Maxim Rakhuba, and Christoph Schwab.

Qtt-finite-element approximation for multiscale problems i: model problems in one dimension.
Advances in Computational Mathematics, 43(2):411–442, Apr 2017.

86 / 86

	Overview of classical approximation tools
	Approximation theory of (deep) neural networks
	Approximation theory of tree tensor networks
	Introduction to tree tensor networks
	Approximation tools based on tree tensor networks
	Universality, Proximinality and Expressivity
	Choice of tensor format
	Approximation classes of tree tensor networks
	Overview of results and open questions

