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Approximation from limited information

Consider the approximation of functions f : X → R from a set K ⊂ X using n information

`1(f ), . . . , `n(f )

that can be deterministic or random.

When `i : X → R are linear (or affine) maps, we talk about linear (or affine) information.
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Type of information

A particular type of linear information is point evaluations (aka standard information)

`i (f ) = f (xi )

Another type of linear information is

`i (f ) =

∫
X
ψi (x)f (x)dµ(x)

If f is known to satisfy an equation

B(f ) = b

with given right-hand side b ∈ Z ′ ⊂ RX and operator B : X → Z ′, we can have access to
the information

`i (f ) = B(f )(xi ), or `i (f ) = 〈ψi ,B(f )〉

for some function ψi ∈ Z . For linear (resp. nonlinear) operator B, this corresponds to
linear (resp. nonlinear) information. This is the framework of Galerkin or variational
methods for PDEs, Physics-informed machine learning (Deep-Galerkin, Deep-Ritz, PINN,
...).
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Type of information

We distinguish two different settings

information is given (passive learning)

information can be freely generated (active learning), a typical setting in
computer/physical experiments, numerical analysis of PDEs, or scientific machine
learning.
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Algorithm

Given information `(f ) = (`1(f ), . . . , `n(f )), an algorithm returns an approximation

A(`(f ))

in a subset of X , where the map A is related to the choice of a restricted model class (or
approximation tool).

A linear algorithm, with A also a linear map, corresponds to linear approximation:

A(`(f )) =
n∑

i=1

ai (`(f ))ϕi

where the ai are linear maps and span{ϕ1, . . . , ϕn} is the range of A.
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Restricted model classes

The approximation problem from limited information is an ill-posed problem unless some
additional information on the function class K is taken into account.

It could be a low-dimensional manifold Vm (model class) that is known to approximate
well the set K , or a sequence of models with increasing complexity (Vm)m≥1

(approximation tool) that is known to approximate the manifold with a good rate of
convergence.

For K a ball of Sobolev or Besov spaces: splines (with fixed or adaptive mesh) or
wavelets (with or without sparsity)

For K a set of analytic functions: polynomial spaces

For K a set of analytic functions with singularities: rational polynomials, h-p splines

For a larger class of sets K : neural networks or tensor networks

For more general manifolds K , Vm can be obtained by manifold approximation (or
dimension reduction) methods

6 / 94



Restricted model classes

The approximation problem from limited information is an ill-posed problem unless some
additional information on the function class K is taken into account.

It could be a low-dimensional manifold Vm (model class) that is known to approximate
well the set K , or a sequence of models with increasing complexity (Vm)m≥1

(approximation tool) that is known to approximate the manifold with a good rate of
convergence.

For K a ball of Sobolev or Besov spaces: splines (with fixed or adaptive mesh) or
wavelets (with or without sparsity)

For K a set of analytic functions: polynomial spaces

For K a set of analytic functions with singularities: rational polynomials, h-p splines

For a larger class of sets K : neural networks or tensor networks

For more general manifolds K , Vm can be obtained by manifold approximation (or
dimension reduction) methods

6 / 94



Restricted model classes

The approximation problem from limited information is an ill-posed problem unless some
additional information on the function class K is taken into account.

It could be a low-dimensional manifold Vm (model class) that is known to approximate
well the set K , or a sequence of models with increasing complexity (Vm)m≥1

(approximation tool) that is known to approximate the manifold with a good rate of
convergence.

For K a ball of Sobolev or Besov spaces: splines (with fixed or adaptive mesh) or
wavelets (with or without sparsity)

For K a set of analytic functions: polynomial spaces

For K a set of analytic functions with singularities: rational polynomials, h-p splines

For a larger class of sets K : neural networks or tensor networks

For more general manifolds K , Vm can be obtained by manifold approximation (or
dimension reduction) methods

6 / 94



Restricted model classes

The approximation problem from limited information is an ill-posed problem unless some
additional information on the function class K is taken into account.

It could be a low-dimensional manifold Vm (model class) that is known to approximate
well the set K , or a sequence of models with increasing complexity (Vm)m≥1

(approximation tool) that is known to approximate the manifold with a good rate of
convergence.

For K a ball of Sobolev or Besov spaces: splines (with fixed or adaptive mesh) or
wavelets (with or without sparsity)

For K a set of analytic functions: polynomial spaces

For K a set of analytic functions with singularities: rational polynomials, h-p splines

For a larger class of sets K : neural networks or tensor networks

For more general manifolds K , Vm can be obtained by manifold approximation (or
dimension reduction) methods

6 / 94



Restricted model classes

The approximation problem from limited information is an ill-posed problem unless some
additional information on the function class K is taken into account.

It could be a low-dimensional manifold Vm (model class) that is known to approximate
well the set K , or a sequence of models with increasing complexity (Vm)m≥1

(approximation tool) that is known to approximate the manifold with a good rate of
convergence.

For K a ball of Sobolev or Besov spaces: splines (with fixed or adaptive mesh) or
wavelets (with or without sparsity)

For K a set of analytic functions: polynomial spaces

For K a set of analytic functions with singularities: rational polynomials, h-p splines

For a larger class of sets K : neural networks or tensor networks

For more general manifolds K , Vm can be obtained by manifold approximation (or
dimension reduction) methods

6 / 94



Restricted model classes

The approximation problem from limited information is an ill-posed problem unless some
additional information on the function class K is taken into account.

It could be a low-dimensional manifold Vm (model class) that is known to approximate
well the set K , or a sequence of models with increasing complexity (Vm)m≥1

(approximation tool) that is known to approximate the manifold with a good rate of
convergence.

For K a ball of Sobolev or Besov spaces: splines (with fixed or adaptive mesh) or
wavelets (with or without sparsity)

For K a set of analytic functions: polynomial spaces

For K a set of analytic functions with singularities: rational polynomials, h-p splines

For a larger class of sets K : neural networks or tensor networks

For more general manifolds K , Vm can be obtained by manifold approximation (or
dimension reduction) methods

6 / 94



Approximation in a given model class

For a given model class Vm and given information z = `(f ), an approximation
fm = A(z) ∈ Vm may be defined by

`(fm) = z . (1)

If for any z there exists a unique element fm in Vm satisfying (1), we say that ` is
unisolvent for Vm. When information are point evaluations, this corresponds to
interpolation. When information are linear functionals of an equation’s residual, this
corresponds to (Petrov-)Galerkin projection.

More generally, fm = A(z) can be defined as a solution of

min
fm∈Vm

d(`(fm), z),

and in particular

min
fm∈Vm

n∑
i=1

wi (`i (fm)− zi )
2

When information are point evaluations, this corresponds to (weighted) least-squares
approximation. When information are linear functionals of an equation’s residual, this
corresponds to (Petrov-)Galerkin projection.
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Adaptivity, model selection

When the information is given (passive learning), the complexity of the model class Vm is
limited. Adaptive strategies play with a collection of model classes (Vm)m≥1 and require
model selection techniques to take the best from the available information.

When the information can be generated (active learning), a fundamental question is how
to generate a good information for a given model class Vm. Adaptive strategies play with
a collection of model classes (Vm)m≥1 and generate information adaptively. A question is
then to recycle information in order to obtain a near-optimal performance in terms of
complexity.
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Outline

1 Manifold approximation

2 Linear approximation from point evaluations

3 Tensor networks approximation with point evaluations
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Manifold approximation

Assume we want to approximate (or recover) functions from a general manifold K in a
vector space X . If K can be sampled, a suitable low-dimensional model class Vm (or
sequence of model classes) can be obtained by manifold approximation (or dimension
reduction) methods using samples from K .

Typical model classes Vm include
Low-dimensional linear/affine spaces

Vm = {g(a) : a ∈ Rm}, with g : Rm → X linear/affine
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Manifold approximation

Union of low-dimensional linear spaces

Vm =
m⋃

k=1

Wk
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Manifold approximation

Manifold Vm = {g(a) : a ∈ Rm} with continuous parametrization map g : Rm → X .
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Manifold approximation

A typical setting is when K is the set of trajectories of a random process or more
generally the range of some function-valued random variable. A possible dimension
reduction method is principal component analysis (for linear approximation).

Another setting is the solution of forward or inverse problems of parameter-dependent
equations where K = {u(y) : y ∈ Y } is the manifold of solutions. Manifold
approximation is called model order reduction (reduced basis, POD, ...).
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Principal component analysis (for linear approximation)

Let Y be equipped with a probability measure µ and X a Hilbert space, and
K = {u(y) : y ∈ Y } with u a map in the Bochner space L2(Y ;X ).

The optimal performance of a linear approximation of K is measured in mean-squared
error by

d2,µ
m (K)X = inf

dim(Vm)=m

∫
Y

E(u(y);Vm)2
Xdµ(y) = inf

dim(Vm)=m
Ey∼µ(‖u(y)− PVmu(y)‖2X )

An optimal subspace Vm is given by principal component analysis (PCA), where Vm is the
dominant eigenspace of the self-adjoint compact operator T : v 7→ Ey∼µ((u(y), v)Xu(y))
and the error is

Ey∼µ(‖u(y)− PVmu(y)‖2X ) =
∑
i>m

λi

where (λi )i≥1 is the decreasing sequence of eigenvalues of T . This is related to singular
value decomposition (or Karhunen-Loeve decomposition) of u ∈ L2(Y )⊗ X ,

u(y) =
∑
i≥1

√
λiϕiai (y), PVmu(y) =

m∑
i=1

√
λiϕiai (y)

PCA even provides a hierarchical sequence of model classes (Vm)m≥1.
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Principal component analysis (for linear approximation)

An estimation of Vm is given by empirical PCA which consists in solving

min
dim(Vm)=m

1
n

n∑
i=1

‖u(yi )− PVmu(yi )‖2X

where the yi are samples in Y and the u(yi ) are the corresponding samples in K .
The solution is the dominant eigenspace of the operator

Tn : v 7→ 1
n

n∑
i=1

u(yi )(u(yi ), v)X .

For an analysis of empirical PCA, see e.g. [3, 4].
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Principal component analysis (for linear approximation)

Assuming X is finite dimensional with orthonormal basis (ei )1≤i≤N , u(y) =
∑N

i=1 ai (y)ei ,
and a basis of Vm is given by the dominant eigenvectors of the matrix

1
n

n∑
i=1

a(yi )a(yi )
T .

This is equivalent to obtain the dominant left singular vectors of the matrix

A = (a(y1), . . . a(yn)) ∈ RN×n

Optimal sampling strategy have been proposed for singular value decomposition of
matrices. This requires an estimation of dominant right singular vectors.
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Greedy algorithms (for linear approximation)

Given a set K from a Banach space X , the optimal performance of linear approximation
in worst case error is measured through the Kolmogorov width

dn(K)X = inf
dim(Vm)=m

sup
u∈K

E(u,Vm) with E(u,Vm)X := inf
v∈Vm

‖u − v‖X

Greedy algorithms can be used to the construction of a hierarchical sequence of spaces
(Vm)m≥1 using samples (snapshots) from K . Spaces are defined by
Vm = span{u1, . . . , um} where (ui )i≥1 is a sequence from K selected greedily.

Given Vm, um+1 is the element which provides the highest error of approximation by Vm

E(um+1,Vm)X = max
u∈K

E(u,Vm)X
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Greedy algorithms (for linear approximation)

When K = {u(y) : y ∈ Y }, um+1 = u(ym+1) where the parameter value ym+1 is such that

ym+1 ∈ arg max
y∈Y

E(u(y),Vm)X

In practice, for a computationally feasible algorithm, E(u(y),Vm)X is replaced by some
error estimate ∆(u(y),Vm), and the maximum is taken over a finite training set in Y
(possibly random [Cohen et al 2020]).

A typical setting is when K = {u(y) : y ∈ Y } ⊂ X is the solution of some parameter
dependent equation

R(u(y); y) = 0

Here ∆(u(y),Vm) is typically defined as some residual norm

∆(u(y),Vm) = ‖R(um(y); y)‖

with um(y) a Galerkin projection of u(y) onto Vm.

Randomized linear algebra can be used for an efficient and stable estimation of residual
norms [Balabanov and Nouy 2021a], and for the construction of preconditioners
[Balabanov and Nouy 2021b].
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Greedy algorithms (for linear approximation)

This yield a suboptimal selection of um+1 satisfying

E(um+1,Vm)X ≥ γmax
u∈K

E(u,Vm)X , γ ≤ 1.

This algorithm therefore generates a suboptimal sequence of spaces yielding a worst case
error

σm(K)X := sup
u∈K

E(u,Vm)X ≥ dm(K)X

Assuming γ ≥ 1 is independent of m, the algorithm is a weak greedy algorithm for which
results have been obtained in [DeVore et al 2013].

For X a Hilbert space, it holds

σ2m(K)X ≤
√
2γ−1

√
dm(K)X

If dm(K)X ≤ C0m
−α then σm(K)X ≤ C1m

−α

If dm(K)X ≤ C0e
−c0m

α

then σm(K)X ≤ C1e
−c1m

α

For X a Banach space, similar but slightly worse results hold.
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Multi-space approximation

h or h-p reduced basis methods [Eftang et al 2010] are multi-space approximation
methods that consist is partitioning the manifold K (or corresponding parameter set Y )
into subsets Kk , and approximating each subset by a linear space Wk of fixed dimension
(h method) or variable dimension (h-p method).

These methods requires a partitioning (or clustering) strategy.
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Dictionary-based multi-space approximation

Multiple spaces can be extracted from a dictionary D = {u1, . . . , uN} of samples from K .
By considering subspaces with dimension less than m, this yields the model class

Vm := Vm(D) =
⋃

α∈{1,...,N}m
Wα(D), Wα(D) = span{uα1 , . . . , uαm}

This is equivalent to m-term approximation

Vm = {g(a) :=
N∑
i=1

aiui : a ∈ RN , ‖a‖0 ≤ m}.

The dictionary (samples) can be taken arbitrarily or generated with a greedy procedure
proposed in [Balabanov and Nouy 2021a], using randomized linear algebra for handling
large dictionaries.
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Nonlinear manifold approximation

Several approaches exist for the approximation of a set K by a parametrized nonlinear
manifold of the form

Vm = {g(a) : a ∈ Rm}, g : Rm → X .

Neural networks are popular tools for this task.
For X = RN , a neural network representation can be used for g : Rm → RN .

a1

a2

a3

23 / 94



Nonlinear manifold approximation

Several approaches exist for the approximation of a set K by a parametrized nonlinear
manifold of the form

Vm = {g(a) : a ∈ Rm}, g : Rm → X .

Neural networks are popular tools for this task.
For X = RN , a neural network representation can be used for g : Rm → RN .

a1

a2

a3

23 / 94



Nonlinear manifold approximation

Learning a map g from samples from K can be done (offline) by learning a compositional
function (or autoencoder) g ◦ h, where both functions h : RN → Rm (the encoder) and
g : Rm → RN (the decoder) can be represented by neural networks.
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Nonlinear manifold approximation

Given samples {u1, . . . , un} ⊂ K , h and g can be obtained by minimizing

n∑
i=1

‖ui − g ◦ h(ui )‖2X (2)

This methodology is not restricted to the use of neural networks for h and g .

For h, one can use a linear map (a matrix of size N ×m), so that g ◦ h corresponds to a
ridge approximation.

Note that if h and g are restricted to be linear maps (or matrices of size N ×m and
m × N respectively), it boils down to linear approximation learned by PCA.

A two-step strategy can be used, by first learning a composition of linear maps g̃ ◦ h by
PCA, or another algorithm for linear approximation, and then learning g ◦ h with a fixed
h by solving (2).
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Nonlinear manifold approximation

If we know that K = {u(y) : y ∈ Y } the image through a map u of a low-dimensional
space Y , we can learn the map g from samples in Y by learning a compositional function

g ◦ h

where h : Y → Rm. Given samples y1, . . . , yn in Y , this can be done by minimizing

n∑
i=1

‖u(yi )− g ◦ h(yi )‖2X

y g ◦ h(y)
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Nonlinear manifold approximation

If K in an infinite dimensional space X , a discretization is required.

A discretization can be represented by some encoder-decoder pair (E ,R) with
E : X → RN and D : RN → X (e.g. E could provide the values E(u) of a function at the
nodes of a mesh, and D(E(u)) a spline interpolation), and the functions g and h can be
learned by solving

min
h,g

n∑
i=1

‖ui − D ◦ g ◦ h ◦ E(ui ))‖2X

u
E7−→ E(u) g ◦ h(E(u))

D7−→ D(g(h(E(u))))

The map D ◦ g ◦ h ◦ E is called an Operator Network that aims at approximating the
identity map from K to X .
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Nonlinear manifold approximation

For K a set of functions defined on a domain X , with values in R, an alternative is to
consider

Vm = {g(·, a) : x 7→ g(x , a) : a ∈ Rm}

with g : X × Rm → R in some high-dimensional approximation format (e.g. neural or
tensor networks).

Function g can be learned (offline) from samples in K by solving

min
h,g

n∑
i=1

‖ui − g(·, h(E(ui ))‖2X

where E : K → RN is some fixed discretization map (encoder) and h : RN → Rm. Here,
no explicit decoder is used.
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Outline

1 Manifold approximation

2 Linear approximation from point evaluations

3 Tensor networks approximation with point evaluations
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Linear approximation from point evaluations

We consider the approximation of functions from a set

K ⊂ X ⊂ RX

using point evaluations (standard information) and linear algorithms (linear
approximation).

The best we can expect for the linear approximation of functions from a set K is
characterized by sampling numbers ρn(K)X (for deterministic setting) or ρrandn (K)X (for
randomized setting) (see Part 1).

We assume that we are given a m-dimensional linear space Vm that is supposed to
approximate well the set K .

The question is how to generate good points in X that allow to obtain an approximation
in Vm with an error close to the best approximation error.
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Interpolation

For a set of points x = (x1, . . . , xm) unisolvent for Vm, we let IVm : X → Vm be the
corresponding interpolation (linear) operator.

We have
‖f − IVm f ‖X ≤ (1 + ‖IVm‖) inf

v∈Vm

‖f − v‖X

For (X , ‖ · ‖∞) the set of functions with bounded norm ‖f ‖∞ := supx∈X |f (x)|, ‖IVm‖ is
the Lebesgue constant, with

‖IVm‖ = sup
x∈X

m∑
i=1

|Li (x)|

where L1, . . . , Lm is the basis of Vm satisfying the interpolation property (Li (xj) = δij for
all i , j).

For univariate functions and classical spaces Vm (polynomials, splines), the theory is well
established and suitable choices of points are available.

Except in very specific cases (e.g. piecewise constant or linear approximation), ‖IVm‖
grows with m. The question is to find good points such that ‖IVm‖ grows not too fast
with m.
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Empirical interpolation

Given a space Vm with basis ϕ1, . . . , ϕm, a general greedy algorithm has been proposed in
[Maday et al 2009] to construct interpolation points, called magic points.

The idea is to construct a good sequence of spaces Wk = span{ψ1, . . . , ψk} for the
approximation of the discrete set {ϕi : 1 ≤ i ≤ m} in (X , ‖ · ‖∞), and associated
interpolation points.

Starting from V0 = {0}, we define

ik ∈ arg max
1≤i≤m

‖ϕi − IWk−1ϕi‖∞, ψk = ϕik − IWk−1ϕik

where IWk−1 is the interpolation onto Wk−1 using points (x1, . . . xk−1), and define

xk ∈ arg max
x∈X
|ψk(x)|.
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Empirical interpolation

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure: Polynomial space Vm = P9 on [−1, 1]. Function |ψk (x)| and corresponding interpolation
point xk = arg maxx |ψk (x)|
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Empirical interpolation

(a) k = 5 (b) k = 6

(c) k = 8 (d) k = 10

Figure: Polynomial space Vm = P9 on [−1, 1]. Function |ψk (x)| and corresponding interpolation
point xk = arg maxx |ψk (x)|
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Empirical interpolation

In the context of adaptive approximation in a sequence of spaces V1 ⊂ . . . ⊂ Vm ⊂ . . .,
and in order to recycle interpolation points, we modify the algorithm by simply taking
Wk = Vk .

Letting V0 = {0}, we define
ψk = ϕk − IVk−1ϕk

where IVk−1 is the interpolation onto Vk−1 using points (x1, . . . xk−1), and define

xk ∈ arg max
x∈X
|ψk(x)|.
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Empirical interpolation — adaptive setting

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure: Polynomial space Vm = P9 on [−1, 1]. Function |ψk (x)| and corresponding interpolation
point xk = arg maxx |ψk (x)|
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Empirical interpolation — adaptive setting

(a) k = 5 (b) k = 6

(c) k = 8 (d) k = 10

Figure: Polynomial space Vm = P9 on [−1, 1]. Function |ψk (x)| and corresponding interpolation
point xk = arg maxx |ψk (x)|
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Empirical interpolation based on feature map

Another strategy can be defined as follows. Let ϕ(x) = (ϕ1(x), . . . , ϕm(x)) ∈ Rm, where
ϕ : X → Rm is the feature map associated with Vm. The feature space Rm is equipped
with the Euclidian norm ‖ · ‖.

The idea is to construct an increasing sequence of spaces

Uk = span{ϕ(x1), . . . ,ϕ(xk)} ⊂ Rm

for the approximation of the manifold {ϕ(x) : x ∈ X}.

Starting from U0 = {0}, we define

xk ∈ arg max
x∈X

Λk(x), Λk(x) = ‖ϕ(x)− PUk−1ϕ(x)‖22

where PUk−1 is the orthogonal projection from Rm to Uk−1.
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Empirical interpolation based on feature map

Let (e1, . . . , em) be the orthonormal basis of Rm defined by

ek ∝ ϕ(xk)− PUk−1ϕ(xk), ‖ek‖2 = 1.

If Vm is a Hilbert space and the functions ϕi form an orthonormal basis of Vm, then the
functions ψi (x) = ϕ(x)Te i also form an orthonormal basis of Vm and

Λk(x) =
m∑
i=k

ψi (x)2 = ‖ϕ(x)‖22 −
k−1∑
i=1

ψi (x)2

37 / 94



Empirical interpolation based on feature map

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure: Polynomial space Vm = P9 on [−1, 1]. Function Λk (x) and corresponding interpolation
point xk = arg maxx Λk (x)
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Empirical interpolation based on feature map

(a) k = 5 (b) k = 6

(c) k = 8 (d) k = 10

Figure: Polynomial space Vm = P9 on [−1, 1]. Function Λk (x) and corresponding interpolation
point xk = arg maxx Λk (x)
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Empirical interpolation based on feature map

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure: Haar wavelets space Vm on [0, 1], with resolution 5. Function Λk (x) and corresponding
interpolation point xk = arg maxx Λk (x).
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Empirical interpolation based on feature map

(a) k = 5 (b) k = 6

(c) k = 8 (d) k = 10

Figure: Haar wavelets space Vm on [0, 1], with resolution 5. Function Λk (x) and corresponding
interpolation point xk = arg maxx Λk (x).
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Empirical interpolation based on feature map

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure: Bivariate polynomial space Vm = P4 on [−1, 1]2. Function Λk (x) and corresponding
interpolation point xk = arg maxx Λk (x).
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Empirical interpolation based on feature map

(a) k = 5 (b) k = 6

(c) k = 8 (d) k = 10

Figure: Bivariate polynomial space Vm = P4 on [−1, 1]2. Function Λk (x) and corresponding
interpolation point xk = arg maxx Λk (x).
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Empirical interpolation based on feature map — adaptive setting

In the context of adaptive approximation in a sequence of spaces V1 ⊂ . . . ⊂ Vm ⊂ . . .,
and in order to recycle interpolation points, we modify the algorithm by considering at
step k the feature map ϕ associated with the basis of Vk .
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Empirical interpolation based on feature map — adaptive setting

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure: Polynomial space Vm = P9 on [-1,1]. Function Λk (x) and corresponding interpolation
point xk = arg maxx Λk (x).
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Empirical interpolation based on feature map — adaptive setting

(a) k = 5 (b) k = 6

(c) k = 8 (d) k = 10

Figure: Polynomial space Vm = P9 on [-1,1]. Function Λk (x) and corresponding interpolation
point xk = arg maxx Λk (x).
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Interpolation in RKHS

A reproducing kernel Hilbert space (RKHS) H is a Hilbert space of functions defined on
X such that the point evaluation δx : f : x 7→ f (x) is a continuous linear map. There is a
so called reproducing kernel k such that k(x , ·) is the Riesz representer of δx , that is

f (x) = (f , k(x , ·))H ,

where (·, ·)H is the inner product on H.

For given points x = (x1, . . . , xk), the interpolation operator IWk onto the space
Wk = span{k(·, x1), . . . , k(·, xk)} is defined by

IWk f (x) = k(x , x)k(x , x)−1f (x)

where k(x , y) = (k(xi , yj))i,j and f (x) = (f (xj))j . The operator IWk is the

H-orthogonal projection onto Wk , which provides the element of best approximation of a
function in Wk . Indeed, for f ∈ H, the interpolation conditions

IWk f (xi ) = f (xi ), 1 ≤ i ≤ k,

are equivalent to
(k(·, xi ), IWk f − f )H = 0, 1 ≤ i ≤ k,

that is IWk f − f is orthogonal to Wk .
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Interpolation in RKHS

The error of interpolation at point x ∈ X is such that

|f (x)− IWk f (x)| = | (k(x , ·), IWk f − f )H |
= | (k(x , ·)− IWk k(x , ·), IWk f − f )H |
≤ ‖k(x , ·)− IWk k(x , ·)‖H‖f ‖H

A natural definition of a new basis function k(xk+1, ·) is to consider a point xk+1 where
the error bound is maximum, that is

xk+1 ∈ arg max
x∈X

Λk(x),

with
Λk(x) = ‖k(x , ·)− IWk k(x , ·)‖2H = k(x , x)− k(x , x)k(x , x)−1k(x , x).
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Interpolation in RKHS

A finite dimensional space Vm with basis ϕ1, . . . , ϕm defines a RKHS with kernel

k(x , y) = ϕ(x)Tϕ(y), ϕ(x) := (ϕ1(x), . . . , ϕm(x))

A sequential interpolation method consists in defining a sequence of points (xk)k≥1 and
corresponding spaces Wk = span{k(x1, ·), . . . , k(xk , ·)} such that

xk+1 = arg max
x∈X

Λk(x),

where
Λk(x) = ‖ϕ(x)‖22 −ϕ(x)Tϕ(x)(ϕ(x)ϕ(x)T )−1ϕ(x)Tϕ(x)

with x = (x1, . . . , xk) and ϕ(x) = (ϕi (xj))1≤i,j≤k .

In bayesian regression with gaussian processes (with noisy-free observations), the function
Λk(x) is the variance of the conditional gaussian process given observations at points
x = (x1, . . . , xk).

Note that the obtained sequence of points only depends on the space Vm.

Letting Uk = span{ϕ(x1), . . . ,ϕ(xk)} ⊂ Rm, we note that

Λk(x) = ‖ϕ(x)− PUk−1ϕ(x)‖22
This is equivalent to the previously presented empirical interpolation based on feature
map.
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Least squares approximation

Consider the approximation of a function f in X = L2
µ(X ) equipped with the norm

‖f ‖2 =

∫
f (x)2dµ(x).

Given a m-dimensional space Vm in L2
µ(X ), a weighted least-squares approximation

f̂m ∈ Vm is defined by minimizing

1
n

n∑
i=1

wi (v(xi )− f (xi ))2

over v ∈ Vm, for some suitably chosen points x = (x1, . . . , xn) and corresponding weights
w = (w1, . . . ,wn).

46 / 94



Least squares approximation

This is equivalent to minimize
‖f − v‖2n

where ‖ · ‖2n is a semi-norm defined by

‖f ‖2n =
1
n

n∑
i=1

wi f (xi )
2

Assuming that the xi are i.i.d. samples from a distribution ν defined by

dν(x) = w(x)−1dµ(x),

and the weights wi = w(xi ), then for all f ∈ L2
µ

E(‖f ‖2n) = Ex∼ν(w(x)f (x)2) = Ex∼µ(f (x)2) = ‖f ‖2
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Least squares approximation

Given an L2
µ-orthonormal basis ϕ1(x), ..., ϕm(x) of Vm, and letting

ϕ(x) = (ϕ1(x), ..., ϕm(x))T ∈ Rm, a function v ∈ Vm can be written

v(x) =
m∑
i=1

aiϕi (x) = ϕ(x)Ta

We have
‖v‖2 = ‖a‖22

and
‖v‖2n = aTGa

where G is the empirical Gram matrix (or weighted information matrix) given by

G := G(x) =
1
n

n∑
i=1

wiϕ(xi )ϕ(xi )
T .

We have
λmin(G)‖v‖2 ≤ ‖v‖2n ≤ λmax(G)‖v‖2 ∀v ∈ Vm.

The quality of least-squares projection is related to how much G deviates from the
identity.
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Optimal design of experiments

Consider the model
Y = f (X ) + ε

where X ∼ µ and ε ∼ N (0, λ) is independent of X , that corresponds to noisy evaluations
of a function f .

For given points x = (x1, . . . , xn) we have access to y = (y1, . . . , yn) such that

yi = f (xi ) + εi

with ε = (ε1, . . . , εn) ∼ N (0,Λ) independent of x .

A weighted least-squares estimate f̂m is then obtained by solving

min
v∈Vm

1
n

n∑
i=1

wi (v(xi )− yi )
2

Letting Φ := Φ(x) = (ϕj(xi ))1≤i≤n,1≤j≤m (the design matrix) and W = diag(w) the
weight matrix, we have

f̂m(x) = ϕ(x)T â, â = G−1ΦTWy

with
G := G(x ,w) = ΦTW Φ
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Optimal design of experiments

For fixed x , the covariance of â is

Cov(â) = (ΦTW Φ)−1ΦTW ΛW Φ(ΦTW Φ)−1

For Λ = λW−1, we obtain
Cov(â) = λG−1

and the variance of the prediction f̂m(x) at some point x is

V(f̂m(x)) = λϕ(x)TG−1ϕ(x)

In order to minimize the variance for any x ∈ X , that is for any ϕ(x) ∈ Rm, we would
like to minimize G−1 over x ∈ X n and w ∈ Rn

+, in the sense of the Loewner order, over
the space S+

m of symmetric positive semi-definite matrices. However, a global optimum
does not necessarily exist since Loewner order is only a partial order.
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Optimal design of experiments

A common approach is to consider as a proxy the minimization of a decreasing convex
function h : S+

m → R, i.e. such that

h(A) ≤ h(B) for A < B,

and solve
min
x,w

h(G(x ,w))

E-optimal design corresponds h(G) = λmax(G−1) = λmin(G)−1

A-optimal design corresponds to h(G) = Tr(G−1)

D-optimal design corresponds to h(G) = det(G−1) = det(G)−1

c-optimal design correspond to h(G) = cTG−1c for some vector c ∈ Rm.
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Least-squares approximation with i.i.d. sampling

Assume that the xi are i.i.d. samples from a distribution dν(x) = w(x)−1dµ(x) for some
weight function w , and wi = w(xi ). We have

G =
1
n

n∑
i=1

Ai , Ai = w(xi )ϕ(xi )ϕ(xi )
T ,

where the Ai are i.i.d. rank-one matrices with expectation

E(Ai ) = Ex∼ν(w(x)ϕ(x)ϕ(x)T ) = Ex∼µ(ϕ(x)ϕ(x)T ) = I

and spectral norm
‖Ai‖ = w(xi )‖ϕ(xi )‖22 ≤ Kw,m,

with
Kw,m = sup

x∈X
w(x)‖ϕ(x)‖22.

Based on matrix Chernoff concentration inequality, it can be shown that for any
0 < δ < 1,

P(λmax(G) > 1 + δ) ∧ P(λmin(G) < 1− δ) ≤ m exp(− nδ2

Kw,m
)

and

P(‖G − I‖ > δ) = P(λmax(G) > 1 + δ or λmin(G) < 1− δ) ≤ 2m exp(− nδ2

Kw,m
)
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Least-squares approximation with i.i.d. sampling

We obtain that
P(‖G − I‖ > δ) ≤ η

provided that
n ≥ Kw,mδ

−2 log(2mη−1).

We note that

Kw,m = sup
x∈X

w(x)‖ϕ(x)‖22 ≥ Ex∼ν(w(x)‖ϕ(x)‖22) = Ex∼µ(
m∑
j=1

ϕj(x)2)

so that
Kw,m ≥ m
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Classical least-squares approximation with i.i.d. sampling

For classical least-squares, w = 1 (ν = µ).

For Vm piecewise constant functions on a uniform partition of (0, 1) and µ the
uniform measure, K1,m = m .

For Vm trigonometric polynomials of degree (m − 1)/2 on (0, 2π) and µ the uniform
measure, K1,m = m .

For polynomial spaces Vm = Pm−1 and µ the uniform measure, K1,m = m2 .

For polynomial spaces Vm = Pm−1 and µ the gaussian measure on R, K1,m =∞ .
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Optimal weighted least squares with i.i.d. sampling

With i.i.d. sampling, an optimal sampling measure νm is given by
dνm(x) = wm(x)−1dµ(x) with density

wm(x)−1 =
1
m

m∑
j=1

ϕj(x)2

that minimizes Kw,m over all densities, and yields

Kwm,m = m.

For polynomial approximation,
∑m

j=1 ϕj(x)2 is the inverse of the Christoffel function.

Under the condition
n ≥ mδ−2 log(2mη−1)

we have
P(‖G − I‖ > δ) ≤ η
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Optimal weighted least squares with i.i.d. sampling

For Vm piecewise constant functions on a uniform partition of (0, 1) and µ the
uniform measure, wm(x) = 1.

For Vm trigonometric polynomials of degree (m − 1)/2 on (0, 2π) and µ the uniform
measure, wm(x) = 1.

For polynomial spaces Vm = Pm−1 and µ the uniform measure on (−1, 1)

(a) m = 6 (b) m = 40

Figure: Polynomials and uniform measure: density of νm
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Optimal weighted least squares with i.i.d. sampling

For polynomial spaces Vm = Pm−1 and µ the gaussian measure on R

(a) m = 0 (b) m = 6

(c) m = 40

Figure: Polynomials and Gaussian measure: density of νm
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Optimal weighted least squares with i.i.d. sampling

For d-variate polynomials,

Vm = PΛ := span{xα = xα1
1 . . . xαd

d : ν ∈ Λ ⊂ Nd}

Λ = Λ1,p := {α : ‖α‖1 ≤ p} corresponds to polynomials with total degree ≤ p.
Λ = Λ∞,p := {α : ‖α‖∞ ≤ p} corresponds to polynomials with partial degree ≤ p.

(a) Λ1,4 (b) Λ∞,4

Figure: Polynomials and uniform measure on [−1, 1]2:
density wm for polynomials with total (left) or partial (right) degree less than 4.
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Sampling from the optimal measure

We have to sample from the optimal measure

dνm = w−1
m dµ, wm(x)−1 =

1
m

m∑
j=1

ϕj(x)2

Standard sampling technique can be used: inverse transform, rejection, Markov Chain
Monte-Carlo...

However, for general spaces Vm, sampling may be a non trivial task.

59 / 94



Sampling from the optimal measure: mixture sampling

We observe that νm is a mixture of measures

dν(j)(x) = ϕj(x)2dµ(x)

with equal weights 1/m. We can first sample j uniformly at random in {1, . . . ,m} and
then sample from ν(j).
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Recycling samples for adaptive approximation

In adaptive approximation, we construct approximations from a sequence of spaces
(Vm)m≥1.

To each space Vm is associated a specific optimal sampling measure νm = w−1
m µ.

When functions evaluations are costly, we would like to exploit samples generated at
previous iterations.
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Recycling samples for adaptive approximation: hierarchical spaces

Consider the adaptive approximation in a sequence of nested spaces

V1 ⊂ . . . ⊂ Vm ⊂ Vm+1 ⊂ . . .

Let (ϕj)j≥1 be such that Vm = span{ϕ1, . . . , ϕm}. Then

Vm+1 = Vm ⊕ span{ϕm+1}

and the optimal sampling measure νm+1 associated to Vm+1 is such that

dνm+1(x) =
1

m + 1

m+1∑
j=1

ϕj(x)2dµ(x) =
m

m + 1
dνm(x) +

1
m + 1

ϕ2
m+1dµ(x)

that corresponds to a mixture between νm and ϕ2
m+1µ, with respective weights m

m+1 and
1

m+1 .

To sample the mixture, draw a Bernoulli variable B( 1
m+1 ). If 1 is obtained, generate a

new sample from ϕ2
m+1µ. If 0 is obtain, then either pick without replacement a sample

from previously generated samples from νm, or generate a new sample from νm.

Different strategies can be found in [Arras et al 2019, Migliorati 2019].
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Optimal weighted least-squares: error analysis

Let fm = PVm f be the orthogonal projection of f onto Vm w.r.t. the norm ‖ · ‖, that is
the element of best approximation of f in Vm.
We have

‖f − f̂m‖2 ≤ ‖f − fm‖2 + ‖fm − f̂m‖2

≤ ‖f − fm‖2 + λmin(G)−1‖fm − f̂m‖2n
≤ ‖f − fm‖2 + λmin(G)−1‖fm − f ‖2n

where we have used the fact that f̂m is the orthogonal projection of f onto Vm w.r.t. the
semi-norm ‖ · ‖n.

If ‖G − I‖ ≤ δ, then λmin(G) ≥ 1− δ and

‖f − f̂m‖2 ≤ ‖f − fm‖2 + (1− δ)−1‖f − fm‖2n

In order to control of the approximation when ‖G − I‖ > δ, different alternatives:
assuming ‖f ‖∞ ≤ τ , define a truncated estimator f̂ τm = Tτ ◦ f̂m with
Tτ (t) = sign(t) min{|t|, τ},
define a conditional estimator f̂ Cm = fm if ‖G − I‖ ≤ δ or 0 if ‖G − I‖ > δ,
condition the samples to guarantee stability ‖G − I‖.
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Optimal weighted least-squares with conditioning

Assume that x = (x1, . . . , xn) are drawn from ν⊗n conditioned to satisfy the event
S = {‖G(x)− I‖ ≤ δ}. This can be obtained by sampling x from ν⊗n until S is satisfied
(rejection).

Under the condition
n ≥ mδ−2 log(2mη−1) (3)

we have
P(S) ≥ 1− η

For η < 1, the random number N of samples from ν⊗n generated before acceptation
follows a geometric distribution with parameter P(S), is almost surely finite, and with
expectation E(N) = P(S)−1 ≤ (1− η)−1.

The least-squares estimator satisfies

E(‖f − f̂m‖2) ≤ ‖f − fm‖2 + (1− δ)−1E(‖f − fm‖2n)

≤ ‖f − fm‖2 + (1− δ)−1(1− η)−1Ex∼ν⊗n (‖f − fm‖2n)

= (1 + (1− δ)−1(1− η)−1)‖f − fm‖2
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Optimal weighted least-squares with conditioning

Therefore, we deduce a quasi-optimality in expectation

E(‖f − f̂m‖2)1/2 ≤ C inf
v∈Vm

‖f − v‖,

with C = (1 + (1− δ)−1(1− η)−1)1/2.

For a compact set K of functions in L2
µ, using the previous result with an optimal

subspace Vm of dimension m such that

inf
v∈Vm

‖f − v‖ = dm(K)L2
µ
,

we deduce that for n & cm log(m), for some universal constant c, there exists a
distribution over X n and a linear recovery map A such that

E(‖f − A(f (x1), . . . , f (xn))‖2)1/2 ≤ Cdm(K)L2
µ

which proves
ρrandcm log(m)(K)L2

µ
≤ Cdm(K)L2

µ

65 / 94



Optimal weighted least-squares with conditioning

Therefore, we deduce a quasi-optimality in expectation

E(‖f − f̂m‖2)1/2 ≤ C inf
v∈Vm

‖f − v‖,

with C = (1 + (1− δ)−1(1− η)−1)1/2.

For a compact set K of functions in L2
µ, using the previous result with an optimal

subspace Vm of dimension m such that

inf
v∈Vm

‖f − v‖ = dm(K)L2
µ
,

we deduce that for n & cm log(m), for some universal constant c, there exists a
distribution over X n and a linear recovery map A such that

E(‖f − A(f (x1), . . . , f (xn))‖2)1/2 ≤ Cdm(K)L2
µ

which proves
ρrandcm log(m)(K)L2

µ
≤ Cdm(K)L2

µ

65 / 94



Optimal weighted least-squares with conditioning and subsampling

By conditioning, we obtain n ≥ cm log(m) samples that guarantee almost surely

‖G − I‖ ≤ δ

However, the number of samples n may be large compared to m, and a fundamental
question is whether the log(m) factor can be removed.

In [Haberstich, Nouy and Perrin 2022], a subsampling approach is proposed, which
consists in removing samples until the stability condition is violated.
More precisely, for I ⊂ {1, . . . , n}, we let G I = 1

|I |
∑

i∈I Ai . Starting from the set
I = {1, . . . , n}, we successively remove from the current set I an index i such that

i ∈ min
j∈I
‖G I\{j} − I‖

If ‖G I\{i} − I‖ > δ, we stop and return I . Otherwise, we continue removing samples.

We observe in many applications that the algorithm returns a number of samples close to
or even equal to m, without any theoretical guaranty.
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Optimal weighted least-squares with conditioning and subsampling

In [Cohen and Dolbeault 2021], it is proposed a subsampling strategy, based on
successive random partitioning of the set of samples, which yields a number of samples in
O(m) while preserving stability.1

Note that

G =
n∑

i=1

aiaT
i with ai =

√
w(xi )

n
ϕ(xi ) ∈ Rm.

We have

(1− δ)I 4
n∑

i=1

aiaT
i 4 (1 + δ)I and ‖ai‖22 = m/n.

A procedure is introduced which provides a partition of {1, . . . , n} into sets J1, . . . , J2L

with cardinal |Jk | ≤ cm, and such that for all 1 ≤ k ≤ 2L

c0I 4
n

m

∑
i∈Jk

aiaT
i 4 C0I

with universal constants c0 and C0. Then pick k at random in {1, . . . , 2L} with
probability pk = |Jk |/m.

1It relies on results from [Markus, Spielman and Srivastava 2015][Nitzan, Olevskii and Olevskii 2016]
that provide a solution to the Kadinson-Singer problem.
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Optimal weighted least-squares with conditioning and subsampling

This proves that
ρrandcm (K)L2

µ
≤ Cdm(K)L2

µ

for some universal constants c and C .

However, the subsampling strategy is not computationally feasible.

Other subsampling strategy have been proposed in [Bartel et al 2022], with theoretical
guarantees and feasible implementations.
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Optimal weighted least-squares with conditioning and subsampling

Note that the samples x1, . . . , xn obtained by conditioning (and possibly subsampling) are
no more independent and follows a distribution which is not explicit.

In adaptive setting, we can no more recycle samples using mixture sampling.

An alternative recycling method has been proposed in [Haberstich 2020].
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Control in probability

We would like to obtain quasi-optimality guarantees with high probability, or even almost
surely, for the approximation of functions from a space X continuously embedded in L2

µ,
that is such that ‖f ‖ ≤ CX‖f ‖X for all f ∈ X .

For that, the sampling should depend on both X and Vm.

We can consider a mixture between the optimal distribution w−1
m dµ and a distribution

hdµ, with density

w(x)−1 =
1
2
wm(x)−1 +

1
2
h(x),

where h is a related to X .

The empirical Gram matrix G remains an unbiased estimator of I and

Kw,m = sup
x∈X

w(x)‖ϕ(x)‖22 ≤ 2Kwm,m = 2m

Therefore, only a factor 2 is lost in the number of samples required to ensure ‖G − I‖ ≤ δ
with nonzero probability. By conditioning we obtain almost surely the error bound

‖f − f̂m‖ ≤ ‖f − g‖+ (1− δ)−1/2‖f − g‖n ∀g ∈ Vm.

If the function h is chosen such that for all f ∈ X , ‖f ‖n ≤ C‖f ‖X , we obtain

‖f − f̂m‖ ≤ (CX + (1− δ)−1/2C) inf
g∈Vm

‖f − g‖X
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µ,
that is such that ‖f ‖ ≤ CX‖f ‖X for all f ∈ X .

For that, the sampling should depend on both X and Vm.

We can consider a mixture between the optimal distribution w−1
m dµ and a distribution

hdµ, with density

w(x)−1 =
1
2
wm(x)−1 +

1
2
h(x),

where h is a related to X .

The empirical Gram matrix G remains an unbiased estimator of I and

Kw,m = sup
x∈X

w(x)‖ϕ(x)‖22 ≤ 2Kwm,m = 2m

Therefore, only a factor 2 is lost in the number of samples required to ensure ‖G − I‖ ≤ δ
with nonzero probability. By conditioning we obtain almost surely the error bound

‖f − f̂m‖ ≤ ‖f − g‖+ (1− δ)−1/2‖f − g‖n ∀g ∈ Vm.
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Control in probability

For X = L∞µ (X ) equipped with its natural norm ‖ · ‖∞, we can take

h(x) = 1

so that w(x)−1 ≥ 1/2. For all f ∈ X , we then have ‖f ‖ ≤ ‖f ‖∞ and

‖f ‖2n =
1
n

n∑
i=1

w(xi )f (xi )
2 ≤ 2

n

n∑
i=1

f (xi )
2 ≤ 2‖f ‖2∞

This yields
‖f − f̂m‖ ≤ (1 + (1− δ)−1/2√2) inf

g∈Vm

‖f − g‖∞
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Control in probability

Consider for X a RKHS with a kernel k in L2
µ⊗µ(X × X ) that admits a decomposition

k(x , y) =
∑
i≥1

λiψi (x)ψi (y)

where the ψi form an orthonormal basis of L2
µ(X ) and where (λi )i≥1 is a decreasing

sequence of strictly positive numbers such that∑
i≥1

λ2
i = ‖k‖2L2 <∞.

The (ψi , λi ) are the eigenpairs of the Hilbert-Schmidt integral operator Tk with kernel k.

The norm on X is given by
‖f ‖2X =

∑
i≥1

(f , ψi )
2
L2
µ
/λi ,

and
‖f ‖2 =

∑
i≥1

(f , ψi )
2
L2
µ

=
∑
i≥1

λi (f , ψi )
2
L2
µ
/λi ≤ λ1‖f ‖2X .

Therefore, X is continuously embedded in L2
µ with embedding constant CX = λ

1/2
1 .
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Control in probability

We further assume (up to a rescaling) that∑
i≥1

λi =

∫
k(x , x)dµ(x) = 1 <∞

that is Tk is nuclear (trace class) with unit nuclear norm.

Therefore, k(x , x) defines a density and we can take

h(x) = k(x , x).

We have w(x)−1 ≥ k(x , x)/2, so that

‖f ‖2n ≤
2
n

n∑
i=1

k(xi , xi )
−1f (xi )

2 =
2
n

n∑
i=1

k(xi , xi )
−1(k(xi , ·), f )2

X ≤ 2‖f ‖2X

We finally deduce

‖f − f̂m‖ ≤ (λ1 + (1− δ)−1/2√2) inf
g∈Vm

‖f − g‖X
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Sampling numbers

Using subsampling techniques from [Cohen and Dolbeault 2021], we then prove that for
X = L∞ or X a RKHS associated with a trace class operator, there exists a set of
n ≤ cm points and a linear algorithm such that for all f ∈ X , the produced
approximation f̂m = A(f (x1), . . . , f (xn)) is such that

‖f − f̂m‖ ≤ CE(f ;Vm)X

Consider a compact set K ⊂ X and an optimal approximating subspace Vm in the sense
that supf∈K E(f ;Vm)X = dm(K)X . We then have proven that

ρcm(K)L2 ≤ Cdm(K)X

For K the unit ball of a RKHS (with the trace class assumption), a refined analysis (see
[1]) yields

ρcm(K)L2 ≤
√

1
m

∑
k≥m

dk(K)2
L2

for some universal constant c, which is known as a sharp bound. For a larger class of
spaces including the space of bounded functions equipped with the supremum norm, they
show

ρcm(K)L2 ≤

 1
m

∑
k≥m

dk(K)p
L2

1/p

for any 0 < p < 2
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Outline

1 Manifold approximation

2 Linear approximation from point evaluations

3 Tensor networks approximation with point evaluations
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Algorithms for approximation with tensor networks

For the approximation of tensors (or functions) using tensor networks, different contexts
depending on the available information:

all entries of the tensor,

equations satisfied by the tensor,

some entries, either arbitrary or structured,

more general functionals of the tensor.
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Available packages

tensap. A Python package for the approximation of functions and tensors. (link to
GitHub page).

ApproximationToolbox. An object-oriented MATLAB toolbox for the approximation
of functions and tensors. (link to GitHub page).
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Learning from structured evaluations

For the approximation of a multivariate function with tree tensor networks using point
evaluations, different strategies have been proposed, either based on cross approximation
[Oseledets’10, Ballani’13] or principal component analysis [Nouy’19, Haberstich’21].

These methods rely on structured evaluations

u(x i
α, x

j
αc )

where x i
α are samples of the variables xα, and x j

αc samples of the variables xαc .
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Learning from principal component analysis

Consider a multivariate function u ∈ L2
µ(X ) where X = X1 × . . .×Xd is equipped with a

probability measure µ = µ1 ⊗ . . .⊗ µd . Let X = (X1, . . . ,Xd) be a random vector with
distribution µ, such that the L2

µ-norm is given by

‖u‖2 =

∫
u(x)2dµ(x) = E(u(X )2).

For each a subset of variables α and its complementary subset αc = D \ α, u is identified
with a bivariate function defined on Xα ×Xαc which admits a singular value
decomposition

u(xα, xαc ) =

rankα(u)∑
k=1

σαk v
α
k (xα)vα

c

k (xαc )

79 / 94



Learning from principal component analysis

The subspace of α-principal components

Uα = span{vα1 , . . . , vαrα}

is such that
urα(·, xαc ) = PUαu(·, xαc )

It is solution of
min

dim(Uα)=rα
‖u − PUαu‖

2

that is for ‖ · ‖ the L2
µ(X )-norm,

min
dim(Uα)=rα

E
(
‖u(·,Xαc )− PUαu(·,Xαc )‖2L2

µα
(Xα)

)
where u is seen as a function-valued random variable

u(·,Xαc ) ∈ L2
µα(Xα).

Uα is the optimal m-dimensional space for the approximation of the manifold
{u(·, xαc ) : xαc ∈ Xαc } in mean-squared error.
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Truncation scheme for tree-based tensor formats

For tree tensor networks

T T
r (V ) = {v ∈ V : rankα(v) ≤ rα, α ∈ T},

where T is a dimension partition tree over D = {1, . . . , d}, different variants of higher
order singular value decomposition (also called hierarchical singular value decomposition)
can be defined from singular value decompositions of bivariate functions.
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Higher-order principal component analysis for Tucker format

Tucker format corresponds a trivial tree with d + 1 nodes (the root and the d leaves).

{1, 2, 3, . . . , d}

{1} {2} {3}
...

{d}

For each leaf ν ∈ {1, . . . , d}, we determine a {ν}-principal subspace Uνrν of dimension rν
(a space of functions of the variable xν).

Then, we obtain an approximation in Tucker format (with ranks r1, . . . , rd) by a
projection of the function u onto the linear tensor product space

U1 ⊗ . . .⊗ Ud

.
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Leaves to root strategy for general tree tensor networks

For each leaf node α, let Uαrα be the rα-dimensional α-principal subspace of u.

For each interior node α ∈ T \ {D} with children S(α), define a tensor space

Vα =
⊗
β∈S(α)

Uβrβ

and let Uαrα ⊂ Vα be the rα-dimensional α-principal subspace of the function uα defined
by

uα(·, xαc ) = PVαu(·, xαc )
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Leaves to root strategy for general tree tensor networks

Finally define an approximation ur as a projection of u onto the tensor space
VD =

⊗
α∈S(D) Uα.

We can prove that the resulting approximation ur is a tree tensor network with ranks rα,
α ∈ T .
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Leaves to root truncation scheme for tree-based tensor formats

Provided we use orthogonal projections, the obtained approximation ur is such that

‖u − ur‖2 ≤
∑

α∈T\D

min
rankα(v)≤rα

‖u − v‖2 =
∑

α∈T\D

∑
kα>rα

(σαkα)2,

from which we deduce that ur is a quasi-optimal approximation of u in T T
r such that

‖u − ur‖ ≤ C(T ) min
v∈T T

r

‖u − v‖,

where C(T ) =
√

#T − 1 is the square root of the number of projections applied to the
tensor. The number of nodes of a dimension partition tree T being bounded by 2d − 1,

C(T ) ≤
√
2d − 2.

Also, if we select the ranks (rα)α∈T\D such that for all α∑
kα>rα

(σαkα)2 ≤ ε2

C(T )2

∑
kα≥1

(σαkα)2 =
ε2

C(T )2 ‖u‖
2,

we finally obtain an approximation ur with relative precision ε,

‖u − ur‖ ≤ ε‖u‖.
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Leaves to root truncation scheme for tree-based tensor formats

Given a finite dimensional tensor space V = V1 ⊗ . . .⊗ Vd , an approximation in the
tensor format T T

r (V ) can be obtained by modifying the procedure for the leaves.

For each leaf node α, Uαrα is defined as a α-principal subspace of uα = PVαu.

Theorem (Fixed rank)

For a given T -rank, we obtain an approximation ur ∈ T T
r (V ) such that

‖ur − u‖2 ≤ C(T )2 min
v∈T T

r

‖v − u‖2 +
∑

leaves α

‖u − PVαu‖
2

Theorem (Fixed precision)

For a desired precision ε, if the α-ranks are determined such that

‖PUαrα
uα − uα‖ ≤

ε

C(T )
‖uα‖,

we obtain an approximation ur such that

‖ur − u‖2 ≤ ε2‖u‖2 +
∑

leaves α

‖u − PVαu‖
2.
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Learning algorithm based on principal component analysis

For a feasible algorithm using samples:

Replacement of orthogonal projections by sampled-based projections, based on
interpolation [Nouy 2019] or optimal least-squares projections [Haberstich 2021].

Statistical estimation of principal subspaces Uα by empirical PCA, using samples
u(·, x j

αc )

The estimation of principal subspaces requires the evaluation of u on a structured set of
points

{(x i
α, x

j
αc ) : 1 ≤ i ≤ Mα, 1 ≤ j ≤ Nα}

where Nα is the number of samples x j
αc used for the estimation of Uα by empirical PCA,

and Mα is the number of points x i
α used for the projections onto the space Vα.

The sampling strategy is adaptive to the function.

Some guarantees can be obtained under additional assumptions on the function to
approximate [Haberstich 2021].

But yet not guaranty of quasi-optimality in a general setting.
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Concluding remarks

Development of near optimal learning algorithms.

Theory well established for least-squares approximation in linear spaces

Mainly an open problem for linear approximation in other spaces than L2

Only partial results on optimal sampling for least-squares approximation with tensor
networks, and mainly open problem for neural networks.

Optimal sampling for manifold approximation ? Some results for linear manifold
approximation (PCA, Reduced basis), but mainly an open problem for general
nonlinear approximation of manifolds.
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