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High dimensional problems

Many problems of computational science, statistics and probability require the
approximation, integration or optimization of functions of many variables

u(x1, . . . , xd)

High dimensional PDEs (Boltzmann, Schrödinger, Black-Scholes...)

Parameter-dependent or stochastic equations

Multiscale problems

Statistical learning (density estimation, classification, regression)

Probabilistic modelling

...

2 / 45



Approximation

The goal of approximation is to replace a target function u by a simpler function (easy to
evaluate and to operate with).

An approximation is searched in a set of functions Xn, where n is related to some
complexity measure, typically the number of parameters.
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Approximation

We distinguish

linear approximation when Xn is a finite-dimensional linear space (polynomials,
trigonometric polynomials, fixed knot splines...)

Xn = {
n∑

i=1

aiϕi : ai ∈ R}

where the ϕi form a basis of Xn .

nonlinear approximation when Xn is a nonlinear set (rational functions, free knot
splines, n-term approximation, neural networks, tensor networks...), e.g.

Xn = {
n∑

i=1

aiϕi : ai ∈ R, ϕi ∈ D}

for n-term approximation from a dictionary of functions D, or

Xn = {g(a) : a ∈ Rn}

with some given nonlinear map g from Rn to Xn.
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Error of best approximation

For a given function u from a normed vector space X and a given subset Xn, the error of
best approximation

en(u)X := E(u,Xn)X = inf
v∈Xn

‖u − v‖X

quantifies the best we can expect from Xn.
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Fundamental problems in approximation

For a sequence (Xn)n≥1 of sets of growing complexity, called an approximation tool, we
would like to address the following questions.

(universality) Does en(u)X converge to 0 for all functions u in X ?

(expressivity) For a certain class of functions in X , determine how fast en(u)X
converges to 0, or determine the complexity n = n(ε, u) such that en(u) ≤ ε.
Typically,

en(u)X ≤ Mγ(n)−1

where γ is a strictly increasing function (growth function), and

n(ε, u) ≥ γ−1(ε/M)

(approximation classes) Characterize the class of functions for which a certain
convergence type is achieved, e.g.

Aγ(X , (Xn)n≥1) =

{
u : sup

n≥1
γ(n)en(u)X < +∞

}
for some growth function γ.
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Fundamental problems in approximation

(proximinality) Determine if for all u ∈ X , there exists an element of best
approximation un ∈ Xn such that

‖u − un‖X = en(u)X .

(algorithm) Construct an approximation un ∈ Xn such that

‖u − un‖X ≤ Cen(u)X

with C independent of n or C(n)en(u)→ 0 as n→∞.

Algorithms depend on the available information, e.g. given by linear functionals such
as evaluations of the function (interpolation, discrete least-squares), or equations
satisfied by the function (variational/Galerkin methods).

The approximation un should be constructed with limited amount of information /
limited complexity.
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Fundamental problems in approximation

(optimal approximation/algorithm) If we know that the function u belongs to some
class of functions K , we would like to find an approximation tool Xn together with
an algorithm presenting a good performance, or even the optimal performance for
that class.

A fundamental problem is to quantify the best we can expect.
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Outline of the course

1. About optimal performance we can expect for the approximation of a function class
K . That will reveal the need to exploit structures for high-dimensional
approximation, beyond classical regularity.

2. Classical tools Xn for high-dimensional approximation, sufficiently flexible to
approximate a large class of functions. Focus on neural networks and tensor
networks.

3. How to construct dedicated approximation tools Xn for specific function classes K ,
using manifold approximation methods.

4. How to construct approximations from limited information, with a focus on how to
generate a good information, for linear and nonlinear approximation.
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Optimal approximation for a model class

Assume we want to approximate functions for some set K in X .

To measure the optimal performance we can expect from an approximation tool and
associated algorithm, we rely on different measures of complexity of K depending on

how we measure the error over K :

sup
u∈K

E(u,Xn)X (worst-case error),(∫
K

E(u,Xn)pXdµ(u)

)1/p

(average error)

the type of approximation (linear or nonlinear),

and possibly the properties of the approximation process (type of information,
stability...).
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Outline

1 Optimal linear approximation

2 Optimal nonlinear approximation

3 How to beat the curse of dimensionality ?
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Optimal linear approximation (worst-case setting)
Kolmogorov widths

For a compact subset K of a normed vector space X and a n-dimensional space Xn in X ,
we define the worst-case error

E(K ,Xn)X = sup
u∈K

E(u,Xn)X = sup
u∈K

inf
v∈Xn

‖u − v‖X
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Optimal linear approximation (worst-case setting)
Kolmogorov widths

The Kolmogorov n-width of K is defined as

dn(K)X = inf
dim(Xn)=n

sup
u∈K

E(u,Xn)X = inf
dim(Xn)=n

sup
u∈K

inf
v∈Xn

‖u − v‖X

where the infimum is taken over all linear subspaces Xn of dimension n.

dn(K)X measures how well the set K can be approximated (uniformly) by a
n-dimensional space. It measures the ideal performance that we can expect from linear
approximation methods.

Near to optimal spaces can be constructed by greedy algorithms (see in part 3).
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Optimal linear approximation (average setting)
Average Kolmogorov widths

If K is equipped with a measure µ, an average Kolmogorov n-width is defined by

d (p)
n (K , µ)X = inf

dim(Xn)=n

(∫
K

E(u,Xn)pXdµ(u)

)1/p

.

If the measure is finite,
d (p)
n (K , µ)X ≤ µ(K)1/pdn(K)X .

For X a Hilbert space, p = 2 and µ the push-forward measure of a K -valued random
variable U ∈ L2(Ω;X ), this is equivalent to

inf
dim(Xn)=n

E(‖U − PXnU‖
2
X )1/2

and an optimal space is given by Principal Component Analysis, that is a dominant
eigenspace of the operator v 7→ E((U, v)XU) (see in part 3).
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Optimal linear approximation (worst-case setting)
Linear widths

Another measure of complexity taking into account the approximation process is the
linear width

an(K)X = inf
An

sup
u∈K
‖u − Anu‖X

where the infimum is taken over all continuous linear maps An : K → X with rank at
most n.

Equivalently,
an(K)X = inf

g,a
sup
u∈K
‖u − g(a(u))‖X

where both a : K → Rn (encoder) and g : Rn → X (decoder) are linear maps.

For a Hilbert space X ,

an(K)X = dn(K)X = inf
dim(Xn)=n

sup
u∈K
‖u − PXnu‖X

with optimal map An given by the orthogonal projection PXn onto an optimal space Xn.

For a general Banach space X ,

dn(K)X ≤ an(K)X ≤
√
n dn(K)X
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Optimal linear approximation from point evaluations (worst case)
Linear sampling numbers

For functions defined on a set X , by restricting the information to point evaluations, the
performance is characterized by sampling numbers.

For deterministic information, the worst-case optimal performance for the approximation
of functions in K is measured through the linear sampling number

ρn(K)X = inf
x

inf
R

sup
u∈K
‖u − R(u(x1), . . . , u(xn))‖X

where the infimum is taken over all linear maps R and points x = (x1, . . . , xn) ∈ X n, or
equivalently

ρn(K)X = inf
x

inf
ϕ1,...,ϕn∈X

sup
u∈K
‖u −

n∑
i=1

u(xi )ϕi‖X

This quantifies the best we can expect from a linear algorithm using n samples for the
approximation of functions in the class K .

Clearly,
ρn(K)X ≥ an(K)X ≥ dn(K)X
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Optimal linear approximation from point evaluations (worst case)
Linear sampling numbers

For random information, the optimal performance can be measured in average mean
squared error through the (linear) sampling number

ρrandn (K)2
X = inf

νn
inf
R

sup
u∈K

Ex∼νn (‖u − R(u(x1), . . . , u(xn))‖2X )

with an infimum taken over all measures νn on X n and linear maps R. Choosing for νn a
Dirac measure on an optimal deterministic set of points, we deduce that

dn(K)X ≤ ρrandn (K)X ≤ ρn(K)X

The question is how far sampling numbers ρn(K)X or ρrandn (K)X are from Kolmogorov
widths dn(K)X , and how to generate optimal samples and algorithms in practice.

17 / 45



Optimal linear approximation from point evaluations (worst case)
Linear sampling numbers

For random information, the optimal performance can be measured in average mean
squared error through the (linear) sampling number

ρrandn (K)2
X = inf

νn
inf
R

sup
u∈K

Ex∼νn (‖u − R(u(x1), . . . , u(xn))‖2X )

with an infimum taken over all measures νn on X n and linear maps R. Choosing for νn a
Dirac measure on an optimal deterministic set of points, we deduce that

dn(K)X ≤ ρrandn (K)X ≤ ρn(K)X

The question is how far sampling numbers ρn(K)X or ρrandn (K)X are from Kolmogorov
widths dn(K)X , and how to generate optimal samples and algorithms in practice.

17 / 45



Optimal linear approximation from point evaluations (worst case)
Linear sampling numbers

A series of results have been recently obtained for L2 approximation, comparing sampling
numbers with Kolmogorov widths, e.g. [Cohen and Dolbeault 2021,
Nagel, Schafer and Ullrich 2021, Temlyakov 2021, Dolbeault, Krieg and Ullrich 2022].

These results are based on constructive approaches for the approximation of functions in
a given model class.

See in the last part.
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Variants depending on the type of information

Other complexity measures can be defined with general linear information

`1(u), . . . , `n(u)

Information can be chosen non-adaptively or adaptively, deterministically or randomly
(see [Krieg et al 2024] for comparisons).
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Bounds of Kolmogorov widths dn(K )X

Upper bounds for dn(K)X can be obtained by specific linear approximation methods.
Proofs are sometimes constructive.

Lower bounds for dn(K) can be obtained using different techniques.

Using diversity in K :
dn(K)X ≥ dn(S)X

with S some subset of K whose Kolmogorov width can be bounded from below.

Example: if X is a Hilbert space and K contains a set of orthogonal vectors
S = {u1, . . . , um} with norm ‖ui‖X = cm,

dn(K)X ≥ dn(S)X = dn(bc(S))X = dn(cmB(`1(Rm)))`2 ≥ cm
√

1− n/m

where we used the fact that the n-width of S is equal to the n-width of its balanced
convex hull

bc(S) = {
m∑
i=1

αiui : u1, . . . , um ∈ S ,
m∑
i=1

|αi | ≤ 1,m ∈ N}

which is isomorphic to cmB(`1(Rm)), and a result of Stechkin (1954) for n-widths of
`p balls.
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Bounds of Kolmogorov widths dn(K )X

Using Bernstein width

bn(K)X = sup
dim(Xn+1)=n+1

sup{r : rB(Xn+1) ⊂ K}

that is the largest r > 0 such that K contains the ball of radius r of some
(n + 1)-dimensional space

dn(K)X ≥ bn(K)X
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Bounds of Kolmogorov widths dn(K )X

Using covering number Nε(K)X (minimal number of balls of radius ε for covering K)
or entropy numbers

εn(K)X = inf{ε : K ⊂
2n⋃
i=1

B(ui , ε), ui ∈ K} = inf{ε : log2(Nε(K)X ) ≤ n}

that is the smallest ε such that K can be covered by 2n balls of radius ε. Any u ∈ K
can be encoded with n bits up to precision εn(K).

Carl’s inequality: for all s > 0,

(n + 1)sεn(K)X ≤ Cs sup
0≤m≤n

(m + 1)sdm(K)X

Therefore, if εn(K)X & n−s , then dn(K)X . n−r can not hold with r > s.

22 / 45



Bounds of Kolmogorov widths dn(K )X

Using covering number Nε(K)X (minimal number of balls of radius ε for covering K)
or entropy numbers

εn(K)X = inf{ε : K ⊂
2n⋃
i=1

B(ui , ε), ui ∈ K} = inf{ε : log2(Nε(K)X ) ≤ n}

that is the smallest ε such that K can be covered by 2n balls of radius ε. Any u ∈ K
can be encoded with n bits up to precision εn(K).

Carl’s inequality: for all s > 0,

(n + 1)sεn(K)X ≤ Cs sup
0≤m≤n

(m + 1)sdm(K)X

Therefore, if εn(K)X & n−s , then dn(K)X . n−r can not hold with r > s.

22 / 45



Kolmogorov width of a set of discontinuous functions

Letting χ(a,b) denote the indicator function of the interval (a, b), consider for K the set of
indicator functions in X = L2(−1, 1):

K = {χ[−1,s] : s ∈ [−1, 1]}.

The balanced convex hull bc(K) contains the set of functions

S = {ψi =
1
2
χ(xi ,xi+1] : 1 ≤ i ≤ m}

with xi = −1 + 2i/m and ‖ψi‖L2 = (2m)−1/2 := cm.

Therefore it holds

dn(K)X = dn(bc(K))X ≥ dn(S)X = dn(bc(S))X = dn(cmB(`1(Rm)))`2 ≥ cm
√

1− n/m.

Taking m = 2n, we obtain
dn(K)X ≥ 2−3/2n−1/2
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Kolmogorov width of Sobolev balls

For X = Lp(X ), X = [0, 1]d , 1 ≤ p ≤ ∞, and K the unit ball of W k,p(X ), that are
functions u such that

max
|α|1≤k

‖Dαu‖Lp ≤ 1,

it holds
dn(K)X ∼ n−k/d

and optimal performance is obtained e.g. by fixed knot splines (with degree adapted to
the regularity).

We observe

the curse of dimensionality: deterioration of the rate of approximation when d
increases. Exponential growth with d of the complexity for reaching a given
accuracy.

the blessing of smoothness: improvement of the rate of approximation when k
increases.
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Kolmogorov width of mixed Sobolev balls

For X = Lp(X ), X = [0, 1]d , 1 ≤ p ≤ ∞, and K the unit ball of MW k,p(X ) (Sobolev
space with dominating mixed smoothness), that are functions u such that

max
|α|∞≤k

‖Dαu‖Lp ≤ 1.

we have
dn(K)X ∼ n−k log(n)k(d−1).

with optimal performance achieved by hyperbolic cross approximation (n-term
approximation with tensor products of dilated splines) [Dung et al 2016].

Curse of dimensionality is milder but still present.
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Optimal nonlinear approximation

For evaluating the ideal performance of nonlinear methods for the approximation of
functions from a class K , different notions of widths have been introduced.
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Optimal nonlinear approximation (worst case setting)
Nonlinear Kolmogorov widths

A measure of complexity closely related to n-term approximation and relevant for
nonlinear model reduction is the nonlinear Kolmogorov width [Temlyakov 1998] or library
width

dn(K ,N)X = inf
#LN,n=N

sup
u∈K

inf
Vn∈Ln

E(u,Vn)X

where the infimum is taken over all libraries LN,n of N linear spaces of dimension n.

For a given library LN,n = {V1, . . . ,VN}, this corresponds to an approximation in
M =

⋃N
k=1 Vk .
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Optimal nonlinear approximation (worst case setting)
Nonlinear Kolmogorov widths

Choosing N = N(n), this yields a width only depending on n. Interesting regimes are
N(n) = bn or N(n) = nαn.

It clearly holds
d1(K , 2n)X ≤ εn(K)X

Also, we have a Carl’s type inequality: for all r > 0,

nr εn(K)X ≤ C(r , b) max
1≤k≤n

k rdk−1(K , bk)X .

Therefore if for some b > 0, dn−1(K , bn)X . n−r , then εn(K)X . n−r .

For unit balls K of Besov spaces Bαq (Lτ ) compactly embedding in Lp((0, 1)d), since
εn(K) & n−α/d , we deduce that dn(K , bn)X . n−β can not hold with β > α/d .
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Optimal nonlinear approximation (worst case setting)
Manifold approximation

Consider the approximation from a n-dimensional "manifold"

Xn = {g(a) : a ∈ Rn}

parametrized by a nonlinear map g : Rn → X . We could consider the problem of finding
the best manifold of dimension n for approximating functions from K :

inf
g

sup
u∈K

inf
a∈Rn
‖u − g(a)‖X := ηn

where the infimum is taken among all maps g from Rn to X .

For any compact set K , ηn = 0 for all n ≥ 1. Indeed, K admits a countable dense subset
{ui}i∈N (space-filling manifold). For n = 1, letting g(a) = uk for a ∈ [k, k + 1), we
obtain η1 = 0.

We can even provide a continuous parametrization, by considering a dense subset {ui}i∈Z
and g(a) = (a− k)uk+1 + (k + 1− a)uk for a ∈ [k, k + 1].

In general, the map which associates to u ∈ K the coefficients a(u) of its best
approximation (if it exists) is not continuous, which makes the approximation process not
reasonable.
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parametrized by a nonlinear map g : Rn → X . We could consider the problem of finding
the best manifold of dimension n for approximating functions from K :

inf
g

sup
u∈K

inf
a∈Rn
‖u − g(a)‖X := ηn

where the infimum is taken among all maps g from Rn to X .

For any compact set K , ηn = 0 for all n ≥ 1. Indeed, K admits a countable dense subset
{ui}i∈N (space-filling manifold). For n = 1, letting g(a) = uk for a ∈ [k, k + 1), we
obtain η1 = 0.

We can even provide a continuous parametrization, by considering a dense subset {ui}i∈Z
and g(a) = (a− k)uk+1 + (k + 1− a)uk for a ∈ [k, k + 1].
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Optimal nonlinear approximation (worst case setting)
Manifold widths

The following definition of manifold width [DeVore, Howard and Micchelli 1989]
quantifies how well the set K can be approximated by n-dimensional nonlinear manifolds
having continuous parametrization and a continuous parameter selection

δn(K)X = inf
g,a

sup
u∈K
‖u − g(a(u))‖X

where the infimum is taken over all continuous maps a (encoder) from K to Rn and all
continuous maps g (decoder) from Rn to K .
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Optimal nonlinear approximation (worst case setting)
Manifold widths

Further assuming that encoders a and decoders g are Lipschitz continuous yields the
notion of stable width introduced in [Cohen et al 2022].

As for linear widths, manifold widths are lower bounded by Bernstein widths
[DeVore, Howard and Micchelli 1989, Theorem 3.1]

δn(K)X ≥ bn(K)X .
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Optimal nonlinear approximation (worst-case setting)
Sensing numbers and Gelfand widths

Sensing numbers measure the optimal performance of nonlinear approximation using
linear information

sn(K)X = inf
g,a

sup
u∈K
‖u − g(a(u))‖X

where a is a linear continuous map from K to Rn extracting n linear information

a(u) = (`1(u), . . . , `n(u)) ∈ Rn

and g is an arbitrary nonlinear map from Rn to X .

It is closely related with Gelfand widths

dn(K)X = inf
a∈L(X ;Rn)

sup
v∈K∩Ker(a)

‖v‖X

which are such that
sn(K)X ≤ dn(K − K)X ≤ 2sn(K)X

and sn(K)X = dn(K)X when K convex and centrally symmetric.
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Manifold width of Sobolev balls

For X = Lp(X ), X = [0, 1]d , and K the unit ball of Sobolev spaces W s,q or Besov spaces
B s

q(Lτ ) which compactly embed in Lp

δn(K)X ∼ n−s/d

Rate O(n−s/d) is achieved for a larger class of functions than for linear methods
(functions with regularity measured in norms weaker than Lp) .

Optimal performance is achieved by free knot splines or best n-term approximation with a
dictionary of tensor products of dilated splines.

Again, we observe the curse of dimensionality, which can not be avoided by such
nonlinear methods.
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Could extra regularity help ?

Consider X = L∞(X ) with X = [0, 1]d and

K = {v ∈ C∞([0, 1]d) : sup
α
‖Dαu‖L∞ <∞},

It holds
K ⊂ B(W sd,∞) ∀s > 0,

so that for all s > 0, the sensing numbers

sn(K)L∞ . n−s .

However, it holds [Novak and Wozniakowski 2009]

sn(K)L∞ = 1 for all n = 0, 1, . . . , 2bd/2c − 1

or
min{n : sn(K)L∞ < 1} ≥ 2bd/2c

This even holds when information is chosen adaptively.

Extra regularity can not help...

More assumptions on model classes K are needed...
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Parameter dependent PDEs

Consider a parameter-dependent equation

P(u(y); y) = 0, u(y) ∈ X

with y ∈ Y some parameter.

The objective is to approximate the solution manifold (model reduction methods)

K = {u(y) : y ∈ Y }

or to approximate explicitly the solution map y 7→ u(y).

As an example, consider the elliptic diffusion equation on a convex domain D ⊂ Rd

−div(a(y)∇u(y)) = f

with f ∈ H−1, 0 < a ≤ a(y) ≤ a <∞, and homogeneous Dirichlet boundary conditions.

The solutions
u(y) ∈ H1

0 := X .
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Parameter dependent PDEs

Assuming f ∈ L2 and a(y) sufficiently smooth, we know that K is in some ball of
H2(D), so that

dn(K)H1 . n−1/d

with optimal performance achieved by splines (finite elements with uniform mesh).

If a(y) = a0 +
∑m

i=1 aiyi with (‖ai‖L∞)i≥1 ∈ `p for some p > 1, then

dn(K)H1 ≤ Cn−s , s = p−1 − 1

with constant C independent of d (no curse of dimensionality).

These rates are achieved by sparse polynomial expansions of y 7→ u(y), exploiting
anisotropic analyticity of the solution map.

More generally, letting A = {a(y) : y ∈ Y }, we have [Cohen and DeVore 2015]

sup
n≥1

nsdn(K)H1 . sup
n≥1

nrdn(A)L∞ , ∀s < r − 1.

Optimal spaces Xn are data-dependent. Almost optimal spaces can be constructed
using greedy algorithms (reduced basis methods) or sparse polynomial expansions.

Similar results between nonlinear widths δn(K)H1 and δn(A)Lq .
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How to beat the curse of dimensionality ?

No (reasonable) approximation tool is able to overcome the curse of dimensionality
for standard regularity classes.

The key is to make more assumptions on model classes of functions and to provide
ad-hoc approximation tools.

We would like flexible approximation tools Xn that perform well for a wide range of
applications, that usually require a high number of parameters (Part 2),

Or construct "low-dimensional" sets Xn that approximate a specific class K (Part 3).
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Proofs of some results

Theorem
Let K be a subset of X and bc(K) its balanced convex hull defined by

bc(K) = {
m∑
i=1

αiui : u1, . . . , um ∈ K ,
m∑
i=1

|αi | ≤ 1,m ∈ N}

It holds dn(K)X = dn(bc(K))X .

Proof.
The inclusion K ⊂ bc(K) implies dn(K)X ≤ dn(bc(K))X . Then let Xn be an optimal
space such that dn(K)X = supu∈K infv∈Xn ‖u − v‖X . Then

dn(bc(K))X ≤ sup
u∈bc(K)

E(u,Xn)X = sup
m

sup
u1,...,um

sup
|α1|+···+|αm|≤1

inf
v∈Xn

‖
m∑
i=1

αiui − v‖X

≤ sup
m

sup
u1,...,um

sup
|α1|+···+|αm|≤1

m∑
i=1

|αi |‖ui − vi‖X

with vi ∈ Xn such that
‖ui − vi‖X = infv∈Xn ‖ui − v‖X ≤ supu∈K infv∈Xn ‖u − v‖X = dn(K)X . We deduce
dn(bc(K))X ≤ dn(K)X . 43 / 45



Proofs of some results

Theorem
For any n ≥ 1, it holds

dn(K)X ≥ bn(K)X

Proof.
Let λ > 0 and Xn+1 such that λB(Xn+1) ⊂ K . It holds

dn(K)X ≥ dn(λB(Xn+1))X = λdn(B(Xn+1))X ,

and from [Pinkus 2012, Theorem 1.5], dn(B(Xn+1))X = 1. Theorefore, it holds
dn(K)X ≥ λ, and the result follows by taking the supremum over λ and Xn+1.
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Proofs of some results

Theorem

sn(K)X ≤ dn(K − K)X ≤ 2sn(K)X

Proof.

sn(K)X = inf
a∈L(X ;Rn)

inf
g

sup
u∈K
‖u − g(a(u))‖X

≤ inf
a∈L(X ;Rn)

sup
u,v∈K ,a(u)=a(v)

‖u − v‖X = dn(K − K)X

that is the first inequality. Now consider a∗ and g∗ realizing the infimum sn(K)X . It holds

dn(K − K)X ≤ sup
u,v∈K ,a∗(u)=a∗(v)

‖u − g∗(a∗(u))‖X + ‖g∗(a∗(v))− v‖X

≤ sup
u,v∈K

‖u − g∗(a∗(u))‖X + ‖g∗(a∗(v))− v‖X

= 2sn(K)X
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