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Approximation

We consider the approximation of a function f of a normed space V by an element of a
set Vm described by m parameters.

An approximation tool (Vm)m≥1 is selected from some prior knowledge on the function
class K to approximate, for obtaining a fast (hopefully optimal) convergence of the best
approximation error

inf
g∈Vm

‖f − g‖V

Analytic smoothness: polynomials

Sobolev or Besov smoothness: splines, wavelets

For a larger class of functions: tensor networks, neural networks

Low-dimensional space or manifold Vm = {D(a) : a ∈ Rm} which approximates K ,
obtained by manifold approximation methods.
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Approximation from limited information

In practice, an approximation in Vm is produced by an algorithm An using only a limited
number of information L1(f ), . . . , Ln(f ) and returning

An(f ) = R(L1(f ), . . . , Ln(f ))

where R is a reconstruction map with values in Vm.

An algorithm is quasi-optimal for a function class if for any function from this class,

‖f − An(f )‖V ≤ C inf
g∈Vm

‖f − g‖V

A random algorithm is quasi-optimal in average (of order p) if

E(‖f − An(f )‖pV )1/p ≤ C inf
g∈Vm

‖f − g‖V
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Type of information

Different types of information (context dependent)

pointwise evaluations of the function (aka standard information)

Li (f ) = f (xi )

pointwise evaluations of the function and its derivatives

Li (f ) = (Dαf (xi ))|α|≤s

linear forms
Li (f ) = 〈ϕi , f 〉

linear (or nonlinear) maps

Li (f ) = 〈ϕi ,Bf 〉 or (Bf )(xi )

with B some linear (or nonlinear) operator, e.g. for solving Bf = g .

This is the framework of Galerkin or variational methods for PDEs, Physics-informed
machine learning (Deep-Galerkin, Deep-Ritz, PINN, ...).
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Type of information

We distinguish two different settings:

Information is given (passive learning). The complexity of the model class Vm is
limited. Adaptive strategies play with a collection of model classes (Vm)m≥1 and
require model selection techniques to take the best from the available information.

Information can be freely generated (active learning). A typical setting in
computer/physical experiments, numerical analysis of PDEs, or scientific machine
learning.
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Optimal information in active learning

A fundamental question is how to generate a good (or optimal) information for a given
model class Vm.

When getting information is costly, a challenge is to provide quasi-optimal algorithms
using a number of information n close to the number of parameters m.

Adaptive strategies play with a collection of model classes (Vm)m≥1 and generate
information adaptively. A question is then to recycle information in order to obtain a
near-optimal performance in terms of information.
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Outline

1 Linear approximation

2 Nonlinear approximation
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Linear approximation from point evaluations

We consider the approximation of functions from a normed space V of functions defined
on a set X , using point evaluations (standard information) and linear algorithms (linear
approximation).

We assume that we are given a m-dimensional linear space Vm.

The question is how to generate good points in X and a linear algorithm that allow to
obtain an approximation in Vm with an error close to the best approximation error.
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Interpolation

For a set of points x = (x1, . . . , xm) unisolvent for Vm, we let IVm : V → Vm be the
corresponding interpolation (linear) operator.

We have
‖f − IVm f ‖V ≤ (1 + ‖IVm‖) inf

v∈Vm

‖f − v‖V

For (V , ‖ · ‖∞) the set of functions with bounded norm ‖f ‖∞ := supx∈X |f (x)|, ‖IVm‖ is
the Lebesgue constant, with

‖IVm‖ = sup
x∈X

m∑
i=1

|hi (x)|

where h1, . . . , hm is the basis of Vm satisfying the interpolation property (hi (xj) = δij for
all i , j).

For univariate functions and classical spaces Vm (polynomials, splines), the theory is well
established and suitable choices of points are available.

Except in very specific cases (e.g. piecewise constant or linear approximation), ‖IVm‖
grows with m. The question is to find good points such that ‖IVm‖ grows not too fast
with m.
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Empirical interpolation based on feature map

Let ϕ(x) = (ϕ1(x), . . . , ϕm(x)) ∈ Rm, where ϕ : X → Rm is the feature map associated
with Vm. The feature space Rm is equipped with the Euclidian norm ‖ · ‖.

The idea is to construct an increasing sequence of spaces

Uk = span{ϕ(x1), . . . ,ϕ(xk)} ⊂ Rm

for the approximation of the manifold {ϕ(x) : x ∈ X}.

Starting from U0 = {0}, we define

xk ∈ arg max
x∈X

Λk(x), Λk(x) = ‖ϕ(x)− PUk−1ϕ(x)‖22

where PUk−1 is the orthogonal projection from Rm to Uk−1.
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Empirical interpolation based on feature map

Let (e1, . . . , em) be the orthonormal basis of Rm defined by

ek ∝ ϕ(xk)− PUk−1ϕ(xk), ‖ek‖2 = 1.

If Vm is a Hilbert space and the functions ϕi form an orthonormal basis of Vm, then the
functions ψi (x) = ϕ(x)Te i also form an orthonormal basis of Vm and

Λk(x) =
m∑
i=k

ψi (x)2 = ‖ϕ(x)‖22 −
k−1∑
i=1

ψi (x)2
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Empirical interpolation based on feature map

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure: Polynomial space Vm = P9 on [−1, 1]. Function Λk (x) and corresponding interpolation
point xk = arg maxx Λk (x)

(a) k = 5 (b) k = 6

(c) k = 8 (d) k = 10

Figure: Polynomial space Vm = P9 on [−1, 1]. Function Λk (x) and corresponding interpolation
point xk = arg maxx Λk (x)
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Empirical interpolation based on feature map

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure: Haar wavelets space Vm on [0, 1], with resolution 5. Function Λk (x) and corresponding
interpolation point xk = arg maxx Λk (x).

(a) k = 5 (b) k = 6

(c) k = 8 (d) k = 10

Figure: Haar wavelets space Vm on [0, 1], with resolution 5. Function Λk (x) and corresponding
interpolation point xk = arg maxx Λk (x).
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Empirical interpolation based on feature map

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure: Bivariate polynomial space Vm = P4 on [−1, 1]2. Function Λk (x) and corresponding
interpolation point xk = arg maxx Λk (x).

(a) k = 5 (b) k = 6

(c) k = 8 (d) k = 10

Figure: Bivariate polynomial space Vm = P4 on [−1, 1]2. Function Λk (x) and corresponding
interpolation point xk = arg maxx Λk (x).
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Empirical interpolation based on feature map — adaptive setting

In the context of adaptive approximation in a sequence of spaces V1 ⊂ . . . ⊂ Vm ⊂ . . .,
and in order to recycle interpolation points, we modify the algorithm by considering at
step k the feature map ϕ associated with the basis of Vk .
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Empirical interpolation based on feature map — adaptive setting

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure: Polynomial space Vm = P9 on [-1,1]. Function Λk (x) and corresponding interpolation
point xk = arg maxx Λk (x).

(a) k = 5 (b) k = 6

(c) k = 8 (d) k = 10

Figure: Polynomial space Vm = P9 on [-1,1]. Function Λk (x) and corresponding interpolation
point xk = arg maxx Λk (x).
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Interpolation in RKHS

A reproducing kernel Hilbert space (RKHS) H is a Hilbert space of functions defined on
X such that the point evaluation δx : f 7→ f (x) is a continuous linear map. There is a so
called reproducing kernel k such that k(x , ·) is the Riesz representer of δx , that is

f (x) = (f , k(x , ·))H ,

where (·, ·)H is the inner product on H.

For given points x = (x1, . . . , xk), the interpolation operator IWk onto the space
Wk = span{k(·, x1), . . . , k(·, xk)} is defined by

IWk f (x) = k(x , x)k(x , x)−1f (x)

where k(x , y) = (k(xi , yj))i,j and f (x) = (f (xj))j . The operator IWk is the

H-orthogonal projection onto Wk , which provides the element of best approximation of a
function in Wk . Indeed, for f ∈ H, the interpolation conditions

IWk f (xi ) = f (xi ), 1 ≤ i ≤ k,

are equivalent to
(k(·, xi ), IWk f − f )H = 0, 1 ≤ i ≤ k,

that is IWk f − f is orthogonal to Wk .
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Interpolation in RKHS

The error of interpolation at point x ∈ X is such that

|f (x)− IWk f (x)| = | (k(x , ·), IWk f − f )H |
= | (k(x , ·)− IWk k(x , ·), IWk f − f )H |
≤ ‖k(x , ·)− IWk k(x , ·)‖H‖f ‖H

A natural definition of a new basis function k(xk+1, ·) is to consider a point xk+1 where
the error bound is maximum, that is

xk+1 ∈ arg max
x∈X

Λk(x),

with
Λk(x) = ‖k(x , ·)− IWk k(x , ·)‖2H = k(x , x)− k(x , x)k(x , x)−1k(x , x).
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Interpolation in RKHS

A finite dimensional space Vm with basis ϕ1, . . . , ϕm defines a RKHS with kernel

k(x , y) = ϕ(x)Tϕ(y), ϕ(x) := (ϕ1(x), . . . , ϕm(x))

A sequential interpolation method consists in defining a sequence of points (xk)k≥1 and
corresponding spaces Wk = span{k(x1, ·), . . . , k(xk , ·)} such that

xk+1 = arg max
x∈X

Λk(x),

where
Λk(x) = ‖ϕ(x)‖22 −ϕ(x)Tϕ(x)(ϕ(x)ϕ(x)T )−1ϕ(x)Tϕ(x)

with x = (x1, . . . , xk) and ϕ(x) = (ϕi (xj))1≤i≤m,1≤j≤k .

In bayesian regression with gaussian processes (with noisy-free observations), the function
Λk(x) is the variance of the conditional gaussian process given observations at points
x = (x1, . . . , xk).

Note that the obtained sequence of points only depends on the space Vm.

Letting Uk = span{ϕ(x1), . . . ,ϕ(xk)} ⊂ Rm, we note that

Λk(x) = ‖ϕ(x)− PUk−1ϕ(x)‖22
This is equivalent to the previously presented empirical interpolation based on feature
map.

19 / 77



Least squares approximation

Consider the approximation of a function f in V = L2
µ(X ) equipped with the norm

‖f ‖2 =

∫
f (x)2dµ(x).

We are given a m-dimensional space Vm in L2
µ(X ).

A weighted least-squares approximation f̂m ∈ Vm is defined by minimizing

1
n

n∑
i=1

w(xi )(f (xi )− v(xi ))2 := ‖f − v‖2n

over v ∈ Vm, for some suitably chosen points x = (x1, . . . , xn) and weight function w .

If xi are samples from a distribution ν = w−1µ, then

E(‖ · ‖2n) = ‖ · ‖2
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Least squares approximation

Given an L2
µ-orthonormal basis ϕ1(x), ..., ϕm(x) of Vm,

λmin(G)‖v‖2 ≤ ‖v‖2n ≤ λmax(G)‖v‖2 ∀v ∈ Vm,

where G is the empirical Gram matrix given by

G =
1
n

n∑
i=1

w(xi )ϕ(xi )ϕ(xi )
T

with ϕ(x) = (ϕ1(x), ..., ϕm(x))T ∈ Rm.

The quality of least-squares projection is related to how much G deviates from the
identity. Indeed

‖f − f̂m‖2 ≤ ‖f − PVm f ‖
2 + ‖PVm f − f̂m‖2

≤ ‖f − PVm f ‖
2 + λmin(G)−1‖PVm f − f̂m‖2n

≤ ‖f − PVm f ‖
2 + λmin(G)−1‖PVm f − f ‖2n

where we have used the fact that f̂m is the orthogonal projection of f onto Vm w.r.t. the
semi-norm ‖ · ‖n.
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Least-squares approximation with i.i.d. sampling and conditioning

If the xi are samples from ν = w−1µ,

E(G) = I

For i.i.d. samples, G := 1
n

∑n
i=1 A(xi ) where the matrices A(xi ) := w(xi )ϕ(xi )ϕ(xi )

T are
i.i.d. and with spectral norm almost surely bounded by

Kw (Vm) = sup
x∈X

w(x)‖ϕ(x)‖22.

From matrix Chernoff inequality [Tropp 2010, Cohen and Migliorati 2017], we know that

P(λmax(G) > 1 + δ) ∧ P(λmin(G) < 1− δ) ≤ m exp(− nδ2

2Kw (Vm)
)

Therefore, provided
n ≥ 2Kw (Vm)δ−2 log(mη−1)

it holds
P(λmin(G) < 1− δ) ≤ η.
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Classical least-squares approximation with i.i.d. sampling

For classical least-squares, w = 1 (ν = µ).

For Vm piecewise constant functions on a uniform partition of (0, 1) and µ the
uniform measure, K1,m = m .

For Vm trigonometric polynomials of degree (m − 1)/2 on (0, 2π) and µ the uniform
measure, K1,m = m .

For polynomial spaces Vm = Pm−1 and µ the uniform measure, K1,m = m2 .

For polynomial spaces Vm = Pm−1 and µ the gaussian measure on R, K1,m =∞ .
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Optimal measure for i.i.d. sampling

Optimal sampling measure (leverage score sampling) is given by

νm = w−1
m µ with wm(x)−1 =

1
m
‖ϕ(x)‖22 =

1
m

m∑
j=1

ϕj(x)2 (Inverse Christoffel function)

This gives an optimal constant Kwm (Vm) = m.

24 / 77



Optimal weighted least squares with i.i.d. sampling

For Vm piecewise constant functions on a uniform partition of (0, 1) and µ the
uniform measure, wm(x) = 1.

For Vm trigonometric polynomials of degree (m − 1)/2 on (0, 2π) and µ the uniform
measure, wm(x) = 1.

For polynomial spaces Vm = Pm−1 and µ the uniform measure on (−1, 1)

(a) m = 6 (b) m = 40

Figure: Polynomials and uniform measure: density of νm
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Optimal weighted least squares with i.i.d. sampling

For polynomial spaces Vm = Pm−1 and µ the standard gaussian measure on R

(a) m = 0 (b) m = 6

(c) m = 40

Figure: Polynomials and Gaussian measure: density of νm = w−1
m µ
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Optimal weighted least squares with i.i.d. sampling

For d-variate polynomials,

Vm = PΛ := span{xα = xα1
1 . . . xαd

d : ν ∈ Λ ⊂ Nd}

Λ = Λ1,p := {α : ‖α‖1 ≤ p} corresponds to polynomials with total degree ≤ p.
Λ = Λ∞,p := {α : ‖α‖∞ ≤ p} corresponds to polynomials with partial degree ≤ p.

(a) Λ1,4 (b) Λ∞,4

Figure: Polynomials and uniform measure on [−1, 1]2:
density wm for polynomials with total (left) or partial (right) degree less than 4.
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Sampling from the optimal measure (i.i.d. setting)

We have to sample from the optimal measure

dνm = w−1
m dµ, wm(x)−1 =

1
m

m∑
j=1

ϕj(x)2

Standard sampling technique can be used: inverse transform, rejection, Markov Chain
Monte-Carlo...

However, for general spaces Vm, sampling may be a non trivial task.
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Sampling from the optimal measure: mixture sampling

We observe that νm is a mixture of measures

dν(j)(x) = ϕj(x)2dµ(x)

with equal weights 1/m. We can first sample j uniformly at random in {1, . . . ,m} and
then sample from ν(j).
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Recycling samples for adaptive approximation

In adaptive approximation, we construct approximations from a sequence of spaces
(Vm)m≥1.

To each space Vm is associated a specific optimal sampling measure νm = w−1
m µ.

When functions evaluations are costly, we would like to exploit samples generated at
previous iterations.
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Recycling samples for adaptive approximation: hierarchical spaces

Consider the adaptive approximation in a sequence of nested spaces

V1 ⊂ . . . ⊂ Vm ⊂ Vm+1 ⊂ . . .

Let (ϕj)j≥1 be such that Vm = span{ϕ1, . . . , ϕm}. Then

Vm+1 = Vm ⊕ span{ϕm+1}

and the optimal sampling measure νm+1 associated to Vm+1 is such that

dνm+1(x) =
1

m + 1

m+1∑
j=1

ϕj(x)2dµ(x) =
m

m + 1
dνm(x) +

1
m + 1

ϕ2
m+1dµ(x)

that corresponds to a mixture between νm and ϕ2
m+1µ, with respective weights m

m+1 and
1

m+1 .

To sample the mixture, draw a Bernoulli variable B( 1
m+1 ). If 1 is obtained, generate a

new sample from ϕ2
m+1µ. If 0 is obtain, then either pick without replacement a sample

from previously generated samples from νm, or generate a new sample from νm.

Different strategies can be found in [Arras et al 2019, Migliorati 2019].

31 / 77



Optimal weighted least-squares with conditioning

Assume that x = (x1, . . . , xn) are drawn from ν⊗n
m conditioned to satisfy the event

Sδ = {λmin(G) > 1− δ}. This can be obtained by sampling x from ν⊗n
m until Sδ is

satisfied (rejection).

Under the condition
n ≥ mδ−2 log(2mη−1) (1)

we have
P(Sδ) ≥ 1− η

For η < 1, the random number N of samples from ν⊗n
m generated before acceptation

follows a geometric distribution with parameter P(Sδ), is almost surely finite, and with
expectation E(N) = P(Sδ)−1 ≤ (1− η)−1.

The least-squares estimator satisfies

E(‖f − f̂m‖2) ≤ ‖f − fm‖2 + (1− δ)−1E(‖f − fm‖2n)

≤ ‖f − fm‖2 + (1− δ)−1(1− η)−1Ex∼ν⊗n
m

(‖f − fm‖2n)

= (1 + (1− δ)−1(1− η)−1)‖f − fm‖2
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Optimal weighted least-squares with conditioning

Therefore, we deduce a quasi-optimality in expectation

E(‖f − f̂m‖2)1/2 ≤ C inf
v∈Vm

‖f − v‖,

with C = (1 + (1− δ)−1(1− η)−1)1/2.

For a compact set K of functions in L2
µ, using the previous result with an optimal

subspace Vm of dimension m such that

inf
v∈Vm

‖f − v‖ = dm(K)L2
µ
,

we deduce that for n ≥ cm log(m), for some universal constant c, there exists a
distribution over X n and a linear recovery map A such that

E(‖f − A(f (x1), . . . , f (xn))‖2)1/2 ≤ Cdm(K)L2
µ

which proves
ρrandcm log(m)(K)L2

µ
≤ Cdm(K)L2

µ
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Reducing the sampling complexity

The number of i.i.d. samples n ∼ δ−2m log(m) may still be large compared to m, and a
fundamental question is whether we can achieve stability with n ∼ m.

One route is to rely on subsampling [Haberstich, Nouy and Perrin 2022]
[Dolbeault and Cohen 2022] [Dolbeault, Krieg and Ullrich 2023]
[Bartel, Schafer and T. Ullrich 2023], i.e. start with a large number of samples ensuring
stability of the Gram matrix, and then select a (hopefully small) subset of samples
preserving stability.

Another route is to introduce dependence between the samples to better control the
spectrum of the Gram matrix. [Dolbeault and Chkifa 2024] introduce a sequential
sampling algorithm inspired by subsampling algorithms, yielding quasi-optimality in
expectation with minimal oversampling.
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Introducing dependence by volume sampling

An indirect way to control the minimal eigenvalue of the empirical Gram matrix is to
maximize its determinant det(G(x)).

In a deterministic setting, this corresponds to D-optimal design of experiments and is
related to maximum volume concept in linear algebra [Goreinov et al 2010, Fonarev et al
2016], or Fekete points in interpolation.

In a randomized setting, consider a sample x = (x1, . . . , xm) of size m from

dγm(x) ∝ det(G(x))dν⊗m
m (x)

that tends to promote high determinant of G(x) and high likelihood w.r.t. optimal i.i.d.
sampling measure ν⊗m

m .
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Introducing dependence by volume sampling

For V = L2
µ, γm is the distribution of a projection determinantal point process (DPP)

for Vm and reference measure µ [Lavancier et al 2015]

dγm(x) =
1
m!

det(ϕ(x)Tϕ(x))dµ⊗m(x), ϕ(x)T = (ϕ(x1) . . .ϕ(xm)) ∈ Rm×m.

The density det(ϕ(x)Tϕ(x)) introduces a repulsion between points (null density
whenever ϕ(xi ) = ϕ(xj) for i 6= j), and promotes dissimilarity in the selected features
ϕ(xi ).

The marginals are all equal to the optimal measure νm for i.i.d. sampling.

The conditional distribution of xk+1 given (x1, . . . , xk) has an explicit expression

xk+1|x1, . . . , xk ∼
1

m − k
‖ϕ(x)− PUkϕ(x)‖22dµ(x),

with Uk = span{ϕ(x1), . . . ,ϕ(xk)} ⊂ Rm. This allows to easily sample sequentially.

Note that it is equivalent to a randomized version of the empirical interpolation method
based on feature maps (or adaptive gaussian process interpolation) where the point xk+1

is chosen to maximize ‖ϕ(x)− PUkϕ(x)‖22.
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How to improve stability ?

Stability can be ensured with higher probability

by adding n −m i.i.d. samples from µ (if µ is a probability measure), which
corresponds to volume sampling [Poinas, Bardenet 2022]

det(ϕ(x)Tϕ(x))dµ⊗n(x)

A natural approach for classical (non-weighted) least-squares, but bad performance
compared to optimal i.i.d. sampling.

by adding n −m i.i.d. samples from νm, which corresponds to volume-rescaled
sampling [Dereziński et al 2022]

dγn(x) ∝ det(G(x))dν⊗n
m (x)

It yields an unbiased estimate of the orthogonal projection, E(f̂m) = PVm f , but the
performance is similar to i.i.d. optimal sampling from ν⊗n

m .
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How to improve stability ?

by using multiple samples from γm (repeated DPP) [Nouy and Michel 2024].

Theorem

Assume that (x1, . . . , xn) is drawn (by rejection) from γ
⊗(n/m)
m conditioned to the

event Sδ = {λmin(G) ≥ 1− δ}. Then the weighted LS projection satisfies

E(‖f − f̂m‖2) ≤ (1 +
m

n
P(Sδ)−1(1− δ)−2) inf

g∈Vm

‖f − g‖2.

Similar theoretical guarantees as optimal i.i.d., but better concentration properties in
practice.
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P(Sp(G) ⊂ [1/2, 3/2]) as a function of m and n

(a) i.i.d. µ (Classical) (b) i.i.d. νm (Optimal i.i.d.)

(c) γm + n − m i.i.d. νm

(Volume-rescaled sampling)
(d) multiple γm (Repeated
DPP)

Figure: P(Sp(G) ⊂ [ 1
2 ,

3
2 ]) as a function of m and n, from 0 (black) to 1 (white). Vm is a

polynomial space of degree m − 1 and µ the uniform measure over [−1, 1].
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Other metrics, other information

These results can be extended to a Hilbert space V of functions equipped with a
(semi-)norm

‖f ‖2V =

∫
X
|Lx f |2dµ(x)

where Lx : H → Rk is linear, using information `i (f ) = Lxi f .

For example:

V = L2(X , µ) for Lx f = f (x)

V = Hs(X , µ), X ⊂ Rd , with Lx f = (Dαf (x))α∈Λ, Λ = {α : |α| ≤ s}

V = Hs(X , µ) with Lx f =
∑
α aα(x)Dαf (x) (differential operator)

V = Hs(Y, ρ), Y ⊂ Rd , X = Y × Λ, µ = ρ⊗ (
∑
α∈Λ δα), Lx f = Dαf (y) for

x = (y , α)
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Other metrics, other information

A weighted least-squares approximation f̂m ∈ Vm is defined by minimizing over v ∈ Vm

1
n

n∑
i=1

w(xi )
−1|Lxi f − Lxi v |

2 := ‖f − v‖2n, xi ∼ wµ.

Given a V -orthonormal basis ϕ1, ..., ϕm of Vm,

λmin(G)‖v‖2V ≤ ‖v‖2n ≤ λmax(G)‖v‖2V ∀v ∈ Vm,

where G is the empirical Gram matrix given by

G =
1
n

n∑
i=1

w(xi )LxiϕLxiϕ
T

with Lxϕ = (Lxϕ1, . . . , Lxϕm)T ∈ Rm×`.

For i.i.d. samples, G := 1
n

∑n
i=1 A(xi ) where the matrices A(xi ) := w(xi )LxiϕLxiϕ

T are
i.i.d. and with spectral norm almost surely bounded by

Kw (Vm) = sup
x∈X

w(x)‖Lxϕ‖22.
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Other metrics, other information

An optimal sampling measure (leverage score sampling for L2
µ) is given by

νm = w−1
m µ with wm(x)−1 =

1
cm
‖Lxϕ‖22 (Inverse generalized Christoffel function)

This gives an optimal constant Kwm (Vm) = cm ≤ m.

With conditioned sampling and O(m log(m)) samples, we prove quasi-optimality result in
expectation in the V norm [Gruhlke, Nouy and Trunschke 2024]

E(‖f − f̂m‖2V )1/2 ≤ C inf
g∈Vm

‖f − g‖V .

Volume sampling [Nouy and Michel 2024] can also be generalized to this setting.
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Almost sure error bounds

We would like to obtain quasi-optimality guarantees almost surely. This requires further
assumptions on the target function and a suitable correction of the weighted
least-squares projection.

A weighted least-squares approximation satisfies

‖f − f̂m‖V ≤ ‖f − g‖V + λmin(G)−1/2‖f − g‖n, ∀g ∈ Vm

We require almost sure control of λmin(G)−1 ≤ (1− δ)−1 (by conditioning) and of the
empirical norm ‖ · ‖n.

Assuming the target function is in a subspace H such that for all g ∈ H,

‖g‖V ≤ CH‖g‖H (continuous embedding H ↪→ V )

and
‖g‖n ≤ C ′H‖g‖H ,

it holds almost surely

‖f − f̂m‖V ≤ (CH + C ′H(1− δ)−1/2) inf
v∈Vm

‖f − v‖H
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Assume that there exists a positive density h > 0 such that

ess sup
x∈X

h(x)−1/2|Lxg | ≤ ‖g‖H , ∀g ∈ H

For example

V = L2
µ(X ), H = L∞µ (X ) and h(x) = 1. C 2

H = µ(X ).

H a RKHS continuously embedded in V = L2
µ(X ) with kernel k and h(x) = k(x , x).

C 2
H =

∫
X k(x , x)dµ(x).

Then by choosing for the density a mixture

w(x)−1 =
1
2
wm(x)−1 +

1
2
h(x)

it holds

‖g‖n ≤ 2‖g‖H and Kw (Vm) = sup
x∈X

w(x)‖Lxϕ‖22 ≤ 2Kwm (Vm) = 2cm

Only a factor 2 is lost in the number of i.i.d. samples required to ensure
λmin(G)−1 ≤ (1− δ)−1 with controlled probability.

We can also generalize volume sampling and obtain similar guarantees
[Nouy and Michel 2024]
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Sampling numbers

Using subsampling techniques from [Cohen and Dolbeault 2021], we prove that for
H = L∞ or H a RKHS associated with a trace class operator, there exists a set of
n ≤ cm points and a linear algorithm such that for all f ∈ H, the produced
approximation f̂m = A(f (x1), . . . , f (xn)) is such that

‖f − f̂m‖V ≤ C inf
g∈Vm

‖f − g‖H

Consider a compact set K ⊂ H and an optimal approximating subspace Vm in the sense
that supf∈K E(f ;Vm)H = dm(K)H . We then have proven that

ρcm(K)L2 ≤ Cdm(K)H

For K the unit ball of a RKHS (with the trace class assumption), a refined analysis (see
[Dolbeault, Krieg and Ullrich 2023]) yields

ρcm(K)L2 ≤
√

1
m

∑
k≥m

dk(K)2
L2

for some universal constant c, which is known as a sharp bound.
For a larger class of spaces including the space of bounded functions equipped with the
supremum norm, it holds

ρcm(K)L2 ≤

 1
m

∑
k≥m

dk(K)p
L2

1/p

for any 0 < p < 2
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Outline

1 Linear approximation

2 Nonlinear approximation
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Nonlinear approximation: theory to practice gap

For a nonlinear manifold M described by m parameters, for obtaining an approximation
f̂m ∈ M with an error close to

inf
v∈M
‖f − v‖

the required number of samples n can be much higher than the number of parameters m.

This is the theory to practice gap, proven for neural networks
[Grohs and Voigtlander 2021] and tensor networks for i.i.d. samples
[Eigel, Schneider and Trunschke, 2022].

Quasi-optimality can be proven with i.i.d. sampling provided some condition
n & Kw (M) [Trunschke 2022, Cardenas, Adcock, Dexter 2024], which yields an
optimal sampling strategy (only depending on M), but with unreasonable sampling
complexity when M is a highly nonlinear manifold.

E.g. for sets M of low-rank tensors in a tensor space U⊗d , Kw (M) = Kw (U⊗d), that
yields the condition n & dim(U)d (curse of dimensionality).

More assumptions on functions are needed and algorithms and sampling should (in
general) be adaptive.
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Variational setting

Consider that f is solution of an optimization problem

min
v∈V
L(v),

where L is some loss functional, e.g.

L(v) =
1
2
‖f − v‖2V ,

or others for different machine learning or scientific machine learning tasks.

Consider a differentiable manifold M in the Hilbert space V and assume we have access
to evaluations of ∇L(v) for a given v ∈ M.
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A natural gradient descent

A natural gradient algorithm (in V ) for solving

min
v∈M
L(v)

constructs a sequence (fk)k≥0 by successive corrections in linear spaces Vk ,

fk+1 = Rk(fk − skgk)

with
fk + Vk is a local approximation of M
gk a projection of the gradient ∇L(fk) onto Vk

sk a step size
Rk a retraction map with values in M

M

fk

fk −∇L(fk)

fk + Vk

fk − gkfk − skgk
fk+1
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Optimal sampling for natural gradient descent1

gk is defined as an empirical (quasi-)projection of the gradient onto Vk

gk = P̂Vk∇L(fk)

using evaluations of ∇L(fk) at points drawn from an optimal sampling distribution
for Vk .

A natural choice for Vk is a linearization of M = {F (θ) : θ ∈ Rm} at fk = F (θk),

TfkM = span{ψ := ∇θF (θk)}

or a subspace of TfkM.

1R. Gruhlke, A. Nouy and P. Trunschke. Optimal sampling for stochastic and natural
gradient descent: arXiv:2402.03113.
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Optimal sampling for natural gradient descent

A natural retraction is

fk+1 = Rk(fk − skgk) = F (θk+1) with θk+1 = θk − skγk and gk(x) = ψ(x)Tγk .

With L(v) =
∫
`(v(x); x)dµ(x) estimated by Ln(v) = 1

n

∑n
i=1 `(v(xi ); xi ), taking

γk = ∇θ(Ln(F (θk))) = (ψ,∇L(fk))n

corresponds to classical batch stochastic gradient descent (SGD), where gk is a
quasi-projection on Vk . It can be very far from the orthogonal projection of ∇L(fk).
Using empirical projection yields a preconditioned SGD

γk = G−1(ψ,∇L(fk))n (G : empirical Gram of ψ)
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Application to neural networks

Consider the approximation of f (x) = (1 +
∏d

i=1 xi )
−1, x ∈ X = [0, 1]d with

M = {cTσ(Ax + b) : c, b ∈ Rs ,A ∈ Rs×d} (shallow neural network with softplus
activation function σ(t) = log(1 + exp(−x))).

Figure: d = 3, s = 6. Comparison of GD and NGD given data.

Figure: (d = 3, s = 6. Comparison of GD and NGD given data and batch SGD and NGD with
optimal sampling.
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Application to tree tensor networks

Tree tensor networks form a prominent class of approximation tools for the
approximation of multivariate functions f (x1, . . . , xd). This includes Tensor Train format
[Oseledets & Tyrtyshnikov 2009], Hierarchical Tucker format [Hackbusch & Kuhn 2009].

They have a high approximation power (optimal rates for a large class of smoothness
classes).

They admits a multilinear parametrization in terms of a collection of low-order tensors θα:

M = {F (θ1, . . . , θL) : θ1 ∈ RI1 , . . . , θL ∈ RIL}, F multilinear.

θ1,...,5

θ1,2,3

θ1

φ1

x1

θ2,3

θ2

φ2

x2

θ3

φ3

x3

θ4,5

θ4

φ4

x4

θ5

φ5

x5
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Application to tree tensor networks

M is a differentiable manifold2 with tangent space

TF (θ)M = span{∇θ1F (θ)}+ . . .+ span{∇θLF (θ)}

Controlled retraction using higher order singular value decomposition.

Choosing Vk as span{∇θiF (θ)} corresponds to coordinate descent (alternating
minimization). No retraction is needed.

Using classical linear algebra, we obtain optimal sampling density in a format amenable
for sequential sampling in high dimension.

2A. Falcó, W. Hackbusch, and A. Nouy. Geometry of tree-based tensor formats in tensor banach
spaces. Annali di Matematica Pura ed Applicata (1923 -), 2023.
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Application to tree tensor networks

Approximation of function f (x) = (1 +
∑d

i=1 xi )
−1 on [0, 1]d (d = 5) using tensor train

format. Use of alternating minimization with step size s = 1.

(a) Classical i.i.d. sampling (no conditioning) (b) Optimal i.i.d. sampling (conditioning)

Figure: Error versus iteration for different ranks and different oversampling factors β, where
n = β4d log(4d) , d = dim(Vk ).
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Convergence analysis

Convergence results under assumptions on manifolds (smoothness and convexity) and
assumptions on empirical projections, satisfied by empirical projections using i.i.d.
samples from optimal distribution or (repeated) volume sampling.

Results are obtained for general loss functionals L under standard smoothness
assumptions on L.

See [Gruhlke, Nouy and Trunschke 2024].
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Conclusions

Theory of sampling well advanced for linear approximation and rather general type
of information, for a given class Vm.

Some challenging questions in adaptive settings (recycling information).

Theory of optimal sampling for nonlinear approximation is very limited.

Natural gradient methods for nonlinear approximation allow to use optimal sampling
for linear approximation, with some convergence guarantees.

Applies to a large class of risk functionals and metrics... towards physics informed
optimal sampling and other machine learning tasks.

Sampling can be efficiently implemented for some model classes (tree tensor
networks and shallow networks in L2 setting). Still some computational challenges
for general nonlinear classes (deep networks) and risk functionals.
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Empirical interpolation

Given a space Vm with basis ϕ1, . . . , ϕm, a general greedy algorithm has been proposed in
[1] to construct interpolation points, called magic points.

The idea is to construct a good sequence of spaces Wk = span{ψ1, . . . , ψk} for the
approximation of the discrete set {ϕi : 1 ≤ i ≤ m} in (X , ‖ · ‖∞), and associated
interpolation points.

Starting from V0 = {0}, we define

ik ∈ arg max
1≤i≤m

‖ϕi − IWk−1ϕi‖∞, ψk = ϕik − IWk−1ϕik

where IWk−1 is the interpolation onto Wk−1 using points (x1, . . . xk−1), and define

xk ∈ arg max
x∈X
|ψk(x)|.
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Empirical interpolation

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure: Polynomial space Vm = P9 on [−1, 1]. Function |ψk (x)| and corresponding interpolation
point xk = arg maxx |ψk (x)|

(a) k = 5 (b) k = 6

(c) k = 8 (d) k = 10

Figure: Polynomial space Vm = P9 on [−1, 1]. Function |ψk (x)| and corresponding interpolation
point xk = arg maxx |ψk (x)|
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Empirical interpolation

In the context of adaptive approximation in a sequence of spaces V1 ⊂ . . . ⊂ Vm ⊂ . . .,
and in order to recycle interpolation points, we modify the algorithm by simply taking
Wk = Vk .

Letting V0 = {0}, we define
ψk = ϕk − IVk−1ϕk

where IVk−1 is the interpolation onto Vk−1 using points (x1, . . . xk−1), and define

xk ∈ arg max
x∈X
|ψk(x)|.
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Empirical interpolation — adaptive setting

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure: Polynomial space Vm = P9 on [−1, 1]. Function |ψk (x)| and corresponding interpolation
point xk = arg maxx |ψk (x)|

(a) k = 5 (b) k = 6

(c) k = 8 (d) k = 10

Figure: Polynomial space Vm = P9 on [−1, 1]. Function |ψk (x)| and corresponding interpolation
point xk = arg maxx |ψk (x)|
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Optimal design of experiments

Consider the model
Y = f (X ) + ε

where X ∼ µ and ε ∼ N (0, λ) is independent of X , that corresponds to noisy evaluations
of a function f .

For given points x = (x1, . . . , xn) we have access to y = (y1, . . . , yn) such that

yi = f (xi ) + εi

with ε = (ε1, . . . , εn) ∼ N (0,Λ) independent of x .

A weighted least-squares estimate f̂m is then obtained by solving

min
v∈Vm

1
n

n∑
i=1

wi (v(xi )− yi )
2

Letting Φ := Φ(x) = (ϕj(xi ))1≤i≤n,1≤j≤m (the design matrix) and W = diag(w) the
weight matrix, we have

f̂m(x) = ϕ(x)T â, â = G−1ΦTWy

with
G := G(x ,w) = ΦTW Φ
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Optimal design of experiments

For fixed x , the covariance of â is

Cov(â) = (ΦTW Φ)−1ΦTW ΛW Φ(ΦTW Φ)−1

For Λ = λW−1, we obtain
Cov(â) = λG−1

and the variance of the prediction f̂m(x) at some point x is

V(f̂m(x)) = λϕ(x)TG−1ϕ(x)

In order to minimize the variance for any x ∈ X , that is for any ϕ(x) ∈ Rm, we would
like to minimize G−1 over x ∈ X n and w ∈ Rn

+, in the sense of the Loewner order, over
the space S+

m of symmetric positive semi-definite matrices. However, a global optimum
does not necessarily exist since Loewner order is only a partial order.
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Optimal design of experiments

A common approach is to consider as a proxy the minimization of a decreasing convex
function h : S+

m → R, i.e. such that

h(A) ≤ h(B) for A < B,

and solve
min
x,w

h(G(x ,w))

E-optimal design corresponds h(G) = λmax(G−1) = λmin(G)−1

A-optimal design corresponds to h(G) = Tr(G−1)

D-optimal design corresponds to h(G) = det(G−1) = det(G)−1

c-optimal design correspond to h(G) = cTG−1c for some vector c ∈ Rm.
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Convergence analysis

We make the following asumptions

The empirical (quasi-)projection P̂U onto a d-dimensional linear space U satisfies

(PUg ,E(P̂n
Ug − PUg)) ≥ −cb‖PUg‖‖(id − PU)g‖ (bias),

E(‖P̂n
Ug‖2) ≤ cv‖g‖2 (variance)

where cb = cb(n)→ 0 as n→∞.

Satisfied by (unbiased) quasi-projection or least-squares projections using i.i.d.
samples from optimal distribution or (repeated) determinantal point processes.
Requires a number of samples n . d log(d).
The retraction map Rk at fk satisfies

L(Rk(fk + g)) ≤ L(fk + g) +
CR

2
‖g‖2 + βk

with some prescribed sequence βk = o(sk).

Requires an assumption on the reach (or
curvature) of the manifold and adaptation of
the step size.
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Convergence analysis

With (Fk)k≥1 the filtration associated with the samples generated until step k, it holds

E(L(fk+1)|Fk) ≤ L(fk)− γksk‖PVk∇L(fk)‖+
1 + CR

2
cv s

2
k ‖∇L(fk)‖2 + βk

where
γk = 1− cb

‖(id − PVk )∇L(fk)‖
‖PVk∇L(fk)‖

For unbiased projections (cb = 0) and step size sk sufficiently small (deterministic)

E(L(fk+1)|Fk) ≤ L(fk)

We even obtain almost sure convergence using martingale theory ([Robbins and
Siegmund 1971]), with algebraic rates between O(k−1) (GD) and O(k−1/2) (SGD).
In favorable cases (recovery setting) and assuming strong Polyak-Lojasiewicz
condition on manifold, we even get the exponential rate of GD, unlike SGD.
For biased projections (cb > 0), possible decay with sufficiently small step size only if
γk > 0. Condition depending on the capacity of Vk to approximate the current
gradient ∇L(fk). Feasible with sufficiently small cb (large n).

We prove a convergence towards a neighborhood of a stationary point.
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