Numerical methods for PDEs, IESC, Cargèse, 2016

Tensor numerical methods for high-dimensional problems

Part 2

Tensors and low-rank tensor formats

Outline

1 What are tensors ?

2 Low-rank order-two tensors

Canonical format

4 α -ranks and related low-rank tensor formats

Parametrization of low-rank tensor formats

Outline

What are tensors ?

2 Low-rank order-two tensors

Canonical format

40~lpha-ranks and related low-rank tensor formats

Parametrization of low-rank tensor formats

Tensor product of vectors

For $I = \{1, ..., N\}$, an element v of the vector space \mathbb{R}^{l} is identified with the set of its coefficients $(v_{i})_{i \in I}$ on a certain basis $\{e_{i}\}_{i \in I}$ of \mathbb{R}^{l} ,

$$v=\sum_{i\in I}v_ie_i.$$

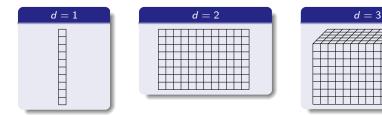
Given d index sets $I^{
u}=\{1,\ldots,N_{
u}\}$, $1\leq
u\leq d$, we introduce the multi-index set

$$I = I_1 \times \ldots \times I_d$$

An element v of \mathbb{R}^{l} is called a tensor of order d and is identified with a multidimensional array

$$(v_i)_{i\in I} = (v_{i_1,\ldots,i_d})_{i_1\in I_1,\ldots,i_d\in I_d}$$

which represents the coefficients of v on a certain basis of \mathbb{R}^{l} .



Tensor product of vectors

The entries of the multidimensional array are equivalently denoted

$$v(i) = v(i_1,\ldots,i_d).$$

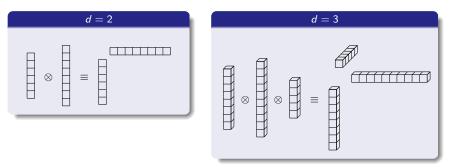
Given d vectors $v^{(
u)} \in \mathbb{R}^{l_{
u}}, \ 1 \leq
u \leq d$, the tensor product of these vectors

$$v := v^{(1)} \otimes \ldots \otimes v^{(d)}$$

is defined by

$$v(i) = v^{(1)}(i_1) \dots v^{(d)}(i_d).$$

Such a tensor is called an elementary tensor. For d = 2, using matrix notations, $v \otimes w$ is identified with the matrix vw^{T} .



Tensor product of vectors

The tensor space $\mathbb{R}^{l} = \mathbb{R}^{l_{1} \times \ldots \times l_{d}}$, also denoted $\mathbb{R}^{l_{1}} \otimes \ldots \otimes \mathbb{R}^{l_{d}}$, is defined by $\mathbb{R}^{l} = \mathbb{R}^{l_{1}} \otimes \ldots \otimes \mathbb{R}^{l_{d}} = \operatorname{span}\{v^{(1)} \otimes \ldots \otimes v^{(d)} : v^{(\nu)} \in \mathbb{R}^{l_{\nu}}, 1 \leq \nu \leq d\}$ Let $\mathcal{X}_{\nu} \subset \mathbb{R}$, $1 \leq \nu \leq d$, be an interval and V_{ν} be a space of functions defined on \mathcal{X}_{ν} . The tensor product of functions $v^{(\nu)} \in V_{\nu}$, denoted

$$v = v^{(1)} \otimes \ldots \otimes v^{(d)},$$

is a multivariate function defined on $\mathcal{X}=\mathcal{X}_1\times\ldots\times\mathcal{X}_d$ and such that

$$v(x) = v(x_1, \ldots, x_d) = v^{(1)}(x_1) \ldots v^{(d)}(x_d)$$

for $x = (x_1, \ldots, x_d) \in \mathcal{X}$. For example, for $i \in \mathbb{N}_0^d$, the monomial $x^i = x_1^{i_1} \ldots x_d^{i_d}$ is an elementary tensor.

The algebraic tensor product of spaces V_{ν} is defined as

$$V_1 \otimes \ldots \otimes V_d = \mathsf{span}\{v^{(1)} \otimes \ldots \otimes v^{(d)} : v^{(\nu)} \in V_{\nu}, 1 \le \nu \le d\}$$

which is the space of multivariate functions v which can be written as a finite linear combination of elementary (separated functions), i.e.

$$v(x) = \sum_{k=1}^{n} v_k^{(1)}(x_1) \dots v_k^{(d)}(x_d).$$

Up to a formal definition of the tensor product \otimes , the above construction can be extended to arbitrary vector spaces V_{ν} (not only spaces of functions).

Infinite dimensional tensor spaces

For infinite dimensional spaces V_{ν} , a Hilbert (or Banach) tensor space equipped with a norm $\|\cdot\|$ is obtained by the completion (w.r.t. $\|\cdot\|$) of the algebraic tensor space

$$\overline{V}^{\|\cdot\|} = \overline{V_1 \otimes \ldots \otimes V_d}^{\|\cdot\|}.$$

Example 1 (L^p spaces)

Let $1 \leq p < \infty$. If $V_{
u} = L^p_{\mu_{
u}}(\mathcal{X}_{
u})$, then

$$L^{p}_{\mu_{1}}(\mathcal{X}_{1}) \otimes \ldots \otimes L^{p}_{\mu_{d}}(\mathcal{X}_{d}) \subset L^{p}_{\mu}(\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d})$$

with $\mu = \mu_1 \otimes \ldots \otimes \mu_d$, and

$$\overline{L^p_{\mu_1}(\mathcal{X}_1) \otimes \ldots \otimes L^p_{\mu_d}(\mathcal{X}_d)}^{\|\cdot\|} = L^p_{\mu}(\mathcal{X}_1 \times \ldots \times \mathcal{X}_d)$$

where $\|\cdot\|$ is the natural norm on $L^p_{\mu}(\mathcal{X}_1 \times \ldots \times \mathcal{X}_d)$.

Example 2 (Bochner spaces)

Let \mathcal{X} be equipped with a finite measure μ , and let W be a Hilbert (or Banach) space. For $1 \leq p < \infty$, the Bochner space $L^p_{\mu}(\mathcal{X}; W)$ is the set of Bochner-measurable functions $u : \mathcal{X} \to W$ with bounded norm $||u||_p = (\int_{\mathcal{X}} ||u(x)||_{W}^p (dx))^{1/p}$, and

$$L^p_{\mu}(\mathcal{X}; W) = \overline{W \otimes L^p_{\mu}(\mathcal{X})}^{\|\cdot\|_p}.$$

Tensor product basis

If $\{\psi_i^{(\nu)}\}_{i\in I_{\nu}}$ is a basis of V_{ν} , then a basis of $V=V_1\otimes\ldots\otimes V_d$ is given by

$$\left\{\psi_i=\psi_{i_1}^{(1)}\otimes\ldots\otimes\psi_{i_d}^{(d)}:i\in I=I_1\times\ldots\times I_d\right\}.$$

A tensor $v \in V$ admits a decomposition

$$\mathbf{v} = \sum_{i \in I} \mathbf{a}(i)\psi_i = \sum_{i_1 \in I_1} \dots \sum_{i_d \in I_d} \mathbf{a}(i_1, \dots, i_d)\psi_{i_1}^{(1)} \otimes \dots \otimes \psi_{i_d}^{(d)},$$

and v can be identified with the set of its coefficients

 $a \in \mathbb{R}^{I}$.

Hilbert tensor spaces

If the V_{ν} are Hilbert spaces with inner products $(\cdot, \cdot)_{\nu}$ and associated norms $\|\cdot\|_{\nu}$, a canonical inner product on V can be first defined for elementary tensors

$$(v^{(1)} \otimes \ldots \otimes v^{(d)}, w^{(1)} \otimes \ldots \otimes w^{(d)}) = (v^{(1)}, w^{(1)}) \dots (v^{(d)}, w^{(d)})$$

and then extended by linearity to the whole space V. The associated norm $\|\cdot\|$ is called the canonical norm.

If the $\{\psi_i^{(\nu)}\}_{i \in I_{\nu}}$ are orthonormal bases of spaces V_{ν} , then $\{\psi_i\}_{i \in I}$ is an orthonormal basis of $\overline{V}^{\|\cdot\|}$. A tensor

$$\mathsf{v} = \sum_{i \in I} \mathsf{a}_i \psi_i$$

is such that

$$\|v\| = \sqrt{\sum_{i \in I} a_i^2} := \|a\|.$$

Therefore, the map Ψ which associates to a tensor $a \in \mathbb{R}^{I}$ the tensor $v = \Psi(a) := \sum_{i \in I} a_{i}\psi_{i}$ defines a linear isometry from \mathbb{R}^{I} to V for finite dimensional spaces, and between $\ell_{2}(I)$ and $\overline{V}^{\|\cdot\|}$ for infinite dimensional spaces.

Anthony Nouy

What are tensors ? Curse of dimensionality

A tensor $\mathbf{a} \in \mathbb{R}^{l} = \mathbb{R}^{l_{1} \times \ldots \times l_{d}}$ or a corresponding tensor $\mathbf{v} = \sum_{i \in I} \mathbf{a}_{i} \psi_{i}$, when $\# l_{\nu} = O(n)$ for each ν , has a storage complexity

$$\#I = \#I_1 \dots \#I_d = O(n^d)$$

which grows exponentially with the dimension.

Manipulating tensors requires exploiting special properties of tensors such as sparsity or low rankness.

Outline

1 What are tensors ?

2 Low-rank order-two tensors

Canonical format

40~lpha-ranks and related low-rank tensor formats

Parametrization of low-rank tensor formats

Low-rank order-two tensors

Rank of order-two tensors

The rank of an order-two tensor $u \in V \otimes W$, denoted rank(u), is the minimal integer r such that

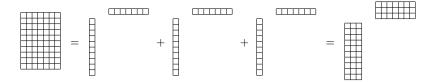
$$u=\sum_{k=1}^r v_k\otimes w_k$$

for some $v_k \in V$ and $w_k \in W$.

A tensor $u \in \mathbb{R}^n \otimes \mathbb{R}^m$ is identified with a matrix in $u \in \mathbb{R}^{n \times m}$. The rank of u coincides with the matrix rank, which is the minimal integer r such that

$$u = \sum_{k=1}^{r} v_k w_k^T = V W^T,$$

where $V = (v_1, \ldots, v_r) \in \mathbb{R}^{n \times r}$ and $W = (w_1, \ldots, w_r) \in \mathbb{R}^{m \times r}$.



Consider the case of a tensor space $\overline{V \otimes W}^{\|\cdot\|_{V}}$, where V and W are Hilbert spaces (e.g. spaces of functions), even infinite-dimensional, and where $\|\cdot\|_{V}$ denote the injective norm on $V \otimes W$ (the spectral norm for a matrix).

A tensor $u \in \overline{V \otimes W}^{\|\cdot\|_{\vee}}$ admits a singular value decomposition

$$u=\sum_{k=1}^N\sigma_k\mathbf{v}_k\otimes\mathbf{w}_k,$$

with $N = \min\{dim(V), dim(W)\} \in \mathbb{N} \cup \{\infty\}$, where v_k and w_k are orthonormal vectors.

The set of singular values of u is $\sigma(u) = {\sigma_k(u)}_{k=1}^N$.

Singular value decomposition of order-two tensors

Example 3 (Proper Orthogonal Decomposition)

For $\Omega \times I$ a space-time domain and V a Hilbert space of functions defined on Ω , a function $u \in L^2(I; V)$ admits a singular value decomposition

$$u(t) = \sum_{k=1}^{\infty} \sigma_k v_k w_k(t)$$

which is known as the Proper Orthogonal Decomposition (POD).

Example 4 (Karhunen-Loeve decomposition)

For a probability space (Ω, μ) , an element $u \in L^2_{\mu}(\Omega; V)$ is a second-order V-valued random variable. If u is zero-mean, the singular value decomposition of u is known as the Karhunen-Loeve decomposition

$$u(\omega) = \sum_{k=1}^{\infty} \sigma_k v_k w_k(\omega)$$

where $w_k : \Omega \to \mathbb{R}$ are uncorrelated (orthogonal) random variables.

Anthony Nouy

Singular value decomposition

The canonical norm

$$\|u\| = \|\sigma(u)\|_2$$

is also called the Hilbert-Schmidt norm.

It is a particular case of Schatten p-norms which are defined for $1 \leq p \leq \infty$ by

$$\|u\|_{\sigma_p} = \|\sigma(u)\|_p.$$

The rank of u is the number of non-zero singular values,

$$\operatorname{rank}(u) = \|\sigma(u)\|_0 = \#\{k : \sigma_k(u) \neq 0\}.$$

A tensor u has low rank if the vector of its singular values $\sigma(u)$ is sparse.

Low-rank format for order-two tensors

The set of tensors in $V \otimes W$ with rank bounded by r, denoted

 $\mathcal{R}_r = \{v : \mathsf{rank}(v) \le r\},\$

is not a linear space nor a convex set. However, it has many favorable properties for a numerical use.

In particular, since the application $v \mapsto \operatorname{rank}(v)$ is lower semi-continuous, the set \mathcal{R}_r is closed, which makes best approximation problems in \mathcal{R}_r well posed.

Low-rank approximation of order-two tensors

For a Hilbert tensor space equipped with the canonical norm $\|\cdot\|$, the best approximation of a tensor u by an element of \mathcal{R}_r is provided by the truncated singular value decomposition

$$u_r = \sum_{k=1}^r \sigma_k v_k \otimes w_k$$

where we only retain the r dominant singular values:

$$\min_{v\in\mathcal{R}_r}\|u-v\|=\|u-u_r\|=(\sum_{k>r+1}\sigma_k^2)^{1/2}.$$

Outline

1 What are tensors ?

2 Low-rank order-two tensors

Canonical format

 $_{\bullet}$ lpha-ranks and related low-rank tensor formats

Parametrization of low-rank tensor formats

Canonical rank of higher-order tensors

For tensors $u \in V_1 \otimes \ldots \otimes V_d$ with $d \ge 3$, there are different notions of rank.

The canonical rank, which is the natural extension of the notion of rank for order-two tensors, is the minimal integer r such that

$$u=\sum_{k=1}^r v_k^{(1)}\otimes\ldots\otimes v_k^{(d)},$$

for some vectors $v_k^{(\nu)} \in V_{\nu}$.

A multivariate function $u(x_1, \ldots, x_d)$ with canonical rank bounded by r is such that

$$u(x) = \sum_{k=1}^{r} v_k^{(1)}(x_1) \dots v_k^{(d)}(x_d),$$

where the $v_k^{(\nu)}(x_{\nu})$ are in the function space V_{ν} .

Canonical format

Canonical format

The subset of tensors in $V = V_1 \otimes \ldots \otimes V_d$ with canonical rank bounded by r is denoted

$$\mathcal{R}_r = \{ v \in V : \operatorname{rank}(v) \leq r \}.$$

A tensor in \mathcal{R}_r has a representation

$$v(x_1,\ldots,x_d) = \sum_{k=1}^r v_k^{(1)}(x_1)\ldots v_k^{(d)}(x_d) := \sum_{k=1}^r v^{(1)}(x_1,k)\ldots v^{(d)}(x_d,k).$$

The storage complexity of tensors in \mathcal{R}_r is

storage
$$(\mathcal{R}_r) = r \sum_{\nu=1}^{d} \dim(V_{\nu}) = O(rdn)$$

for dim $(V_{\nu}) = O(n)$.

Canonical format

Canonical format

For $d \geq 3$, the set \mathcal{R}_r looses many of the favorable properties of the case d = 2.

- Determining the rank of a given tensor is a NP-hard problem.
- The set \mathcal{R}_r is not an algebraic variety.
- The application v → rank(v) is not lower semi-continuous and therefore, R_r is not closed. The consequence is that for most problems involving approximation in canonical format R_r, there is no robust method when d > 2.

Example 5

Consider the 3-order tensor

$$v = a \otimes a \otimes b + a \otimes b \otimes a + b \otimes a \otimes a$$

where a and b are linearly independent vectors in \mathbb{R}^m . The rank of v is 3. The sequence of rank-2 tensors

$$v_n = n(a + rac{1}{n}b) \otimes (a + rac{1}{n}b) \otimes (a + rac{1}{n}b) - na \otimes a \otimes a$$

converges to v as $n \to \infty$.

Outline

What are tensors ?

Low-rank order-two tensors

Canonical format

4 α -ranks and related low-rank tensor formats

Parametrization of low-rank tensor formats

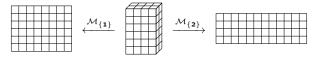
α -ranks and related low-rank tensor formats

α -rank

For a non-empty subset α of $D = \{1, ..., d\}$, a tensor $u \in V = V_1 \otimes ... \otimes V_d$ can be identified with an order-two tensor

$$\mathcal{M}_{\alpha}(u) \in V_{\alpha} \otimes V_{\alpha^{c}},$$

where $V_{\alpha} = \bigotimes_{\nu \in \alpha} V_{\nu}$, and $\alpha^{c} = D \setminus \alpha$. The operator $\mathcal{M}_{\alpha} = V \to V_{\alpha} \otimes V_{\alpha^{c}}$ is called the matricisation operator.



The α -rank of u, denoted rank $_{\alpha}(u)$, is the rank of the order-two tensor $\mathcal{M}_{\alpha}(u)$,

$$\operatorname{rank}_{\alpha}(u) = \operatorname{rank}(\mathcal{M}_{\alpha}(u)),$$

which is the minimal integer r_{α} such that

$$\mathcal{M}_{\alpha}(u) = \sum_{k=1}^{r_{\alpha}} v_k^{\alpha} \otimes w_k^{\alpha'}$$

for some $v_k^{\alpha} \in V_{\alpha}$ and $w_k^{\alpha^c} \in V_{\alpha^c}$. We note that $\operatorname{rank}_{\alpha}(u) = \operatorname{rank}_{\alpha^c}(u)$.

Anthony Nouy

α -rank

A multivariate function $u(x_1, \ldots, x_d)$ with rank_{α} $(u) \leq r_{\alpha}$ is such that

$$u(x) = \sum_{k=1}^{r_{\alpha}} v_k^{\alpha}(x_{\alpha}) w_k^{\alpha^c}(x_{\alpha^c})$$

for some functions $v_k^{lpha}(x_{lpha})$ and $w_k^{lpha^c}(x_{lpha^c})$ of groups of variables

$$x_{\alpha} = \{x_{\nu}\}_{\nu \in \alpha} \quad \text{and} \quad x_{\alpha^{c}} = \{x_{\nu}\}_{\nu \in \alpha^{c}}.$$

Example 6

 $u(x_1, \ldots, x_d) = u_1(x_1) + \ldots + u_d(x_d)$ where u_1, \ldots, u_d are non constant functions satisfies rank_{α}(u) = 2 for all α .

For a subset α of $D = \{1, \ldots, d\}$, the minimal subspace

 $U^{min}_{\alpha}(u)$

of a tensor $u \in V_1 \otimes \ldots \otimes V_d$ is defined as the smallest subspace

$$U_{lpha} \subset V_{lpha} = \bigotimes_{
u \in lpha} V_{
u}$$

such that

$$\mathcal{M}_{\alpha}(u) \in U_{\alpha} \otimes V_{\alpha^{c}}.$$

The α -rank of u is the dimension of the minimal subspace $U_{\alpha}^{\min}(u)$,

 $\operatorname{rank}_{\alpha}(u) = \dim(U_{\alpha}^{\min}(u)).$

For Hilbert spaces the order-two tensor

$$\mathcal{M}_{\alpha}(u) \in V^{\alpha} \otimes V^{\alpha^{c}}$$

admits a singular value decomposition

$$\mathcal{M}_{\alpha}(u) = \sum_{k\geq 1} \sigma_k^{\alpha} v_k^{\alpha} \otimes w_k^{\alpha^c}.$$

The set $\sigma^{\alpha}(u) := \{\sigma_{k}^{\alpha}\}_{k \geq 1}$ is called the set of α -singular values of u. The α -rank of u is the number of non-zero α -singular values

$$\operatorname{rank}_{\alpha}(u) = \|\sigma^{\alpha}(u)\|_{0}.$$

A tensor u has low α -rank if the vector of its α -singular values $\sigma^{\alpha}(u)$ is sparse.

Subset of tensors with bounded α -rank

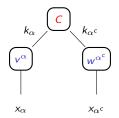
For a given subset $\alpha \subset D$, we define the subset of tensors with α -rank bounded by r_{α} as

$$\mathcal{T}_{r_{\alpha}}^{\{\alpha\}} = \{ v \in V : \mathsf{rank}_{\alpha}(v) \leq r_{\alpha} \}.$$

Elements of $\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}$ admit the representation

$$v(x_{\alpha}, x_{\alpha^{c}}) = \sum_{k_{\alpha}=1}^{r_{\alpha}} \sum_{k_{\alpha^{c}}=1}^{r_{\alpha}} \mathsf{C}(k_{\alpha}, k_{\alpha^{c}}) v^{\alpha}(x_{\alpha}, k_{\alpha}) w^{\alpha^{c}}(x_{\alpha^{c}}, k_{\alpha^{c}})$$

where $C \in \mathbb{R}^{r_{\alpha} \times r_{\alpha}}$ and v^{α} and $w^{\alpha^{c}}$ are order-two tensors.



Subset of tensors with bounded α -rank

The motivation behind the definition of tensor formats based on α -ranks is to benefit from the nice properties of the rank of order-two tensors.

The application $v \mapsto \operatorname{rank}_{\alpha}(v)$ is lower semi-continuous and therefore, $\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}$ is closed.

For a Hilbert tensor space equipped with the canonical norm, a best approximation of a given tensor u in $\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}$ is provided by the truncated α -singular value decomposition where we retain the r_{α} largest α -singular values.

For a given $\alpha \subset D$, the determination of the α -rank of a tensor, which is equivalent to the determination of the rank an order-two tensor, is feasible.

Also, $\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}$ is a smooth manifold.

α -ranks and related low-rank formats

For T a collection of subsets of D, we define the T-rank of a tensor v, denoted rank_T(u), as the tuple

$$\operatorname{rank}_T(v) = {\operatorname{rank}_\alpha(v)}_{\alpha \in T}.$$

The subset of tensors in V with T-rank bounded by $r = (r_{\alpha})_{\alpha \in T}$ is

$$\mathcal{T}_r^T = \{ v \in V : \operatorname{rank}_T(v) \le r \} = \bigcap_{\alpha \in T} \mathcal{T}_{r_\alpha}^{\{\alpha\}}.$$

As a finite intersection of subsets $\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}$, \mathcal{T}_{r}^{T} inherits from geometrical and topological properties of the subsets $\mathcal{T}_{r_{\alpha}}^{\{\alpha\}}$ which are favorable for numerical simulation. In particular, \mathcal{T}_{r}^{T} is closed.

Higher-order singular value decompositions

For a Hilbert tensor space equipped with the canonical norm, and for a tree-structured set T, quasi-best approximations u_r of a given tensor u in \mathcal{T}_r^T can be constructed from truncated singular value decompositions of α -matricisations of u (or of a sequence of approximations), $\alpha \in T$, such that

$$\|u-u_r\|\leq C(d)\min_{v\in\mathcal{T}_r^{\mathcal{T}}}\|u-v\|,$$

with $C(d) = O(\sqrt{d})$.

A possible algorithm

Let $T = \{\alpha_1, \dots, \alpha_{\#T}\}$ with the sequence α_k ordered by decreasing level in the tree-structured set T. Set $u^0 = u$, and for $k = 0, \dots, \#T - 1$, $u^{k+1} \in \arg\min_{v \in \mathcal{T}_{t\alpha_k}} \|u^k - v\|$, and set $u_t = u^{\#T}$.

$\alpha\text{-ranks}$ and related low-rank formats

Different choices for T yield different tensor formats, the standard formats being

- the Tucker format,
- the Tensor Train format,
- and more general tree-based (or hierarchical) Tucker formats.

Low-rank order-two tensors

3 Canonical format

lpha-ranks and related low-rank tensor formats

Tucker format

- Tensor Train format
- Tree-based (hierarchical) Tucker format
- Tensor networks

Parametrization of low-rank tensor formats

Tucker format

For

$$T = \{\{1\}, \ldots, \{d\}\},\$$

the tuple

$$\mathsf{rank}_{\mathcal{T}}(v) = \{\mathsf{rank}_{\{1\}}(v), \dots, \mathsf{rank}_{\{d\}}(v)\}$$

is called the Tucker (or multilinear) rank of the tensor v.

The set of tensors with Tucker rank bounded by $r = (r_1, \ldots, r_d)$, denoted

$$\mathcal{T}_r = \{ \mathsf{v} : \mathsf{rank}_{\{\nu\}}(\mathsf{v}) \leq \mathsf{r}_{\nu}, 1 \leq \nu \leq \mathsf{d} \},\$$

is such that

$$\mathcal{T}_r = \{ v \in U_1 \otimes \ldots \otimes U_d : \dim(U_\nu) = r_\nu, 1 \le \nu \le d \}.$$

lpha-ranks and related low-rank tensor formats

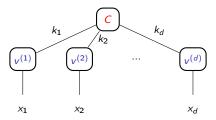
Tucker format

Tucker format

A tensor in $v \in \mathcal{T}_r$ admits a representation

$$v(x_1,\ldots,x_d) = \sum_{k_1=1}^{r_1} \ldots \sum_{k_d=1}^{r_d} C(k_1,\ldots,k_d) v^{(1)}(x_1,k_1) \ldots v^{(d)}(x_d,k_d).$$

where $C \in \mathbb{R}^{r_1 \times \ldots \times r_d}$ is an order-*d* tensor and the $v^{(\nu)}$ are order-two tensors.



The storage complexity is

$$\mathsf{storage}(\mathcal{T}_r) = \prod_{\nu=1}^d r_\nu + \sum_{\nu=1}^d r_\nu \dim(V_\nu) = O(R^d + Rnd)$$

with $r_{\nu} = O(R)$ and dim $(V_{\nu}) = O(n)$. This format still suffers from the curse of dimensionality.

Anthony Nouy

What are tensors ?

Low-rank order-two tensors

3 Canonical format

$_{\Phi}$ lpha-ranks and related low-rank tensor formats

• Tucker format

Tensor Train format

- Tree-based (hierarchical) Tucker format
- Tensor networks

Tensor Train format

Tensor train format

For

$$T = \{\{1\}, \{1, 2\}, \dots, \{1, \dots, d-1\}\},\$$

the tuple

$$\mathsf{rank}_{\mathcal{T}}(v) = \{\mathsf{rank}_{\{1\}}(v), \mathsf{rank}_{\{1,2\}}(v), \dots, \mathsf{rank}_{\{1,\dots,d-1\}}(v)\}$$

is called the TT-rank of the tensor v.

For a tuple $r = (r_1, \ldots, r_{d-1})$, the set \mathcal{T}_r^T of tensors with TT-rank bounded by r is denoted

$$\mathcal{TT}_r = \{ \mathsf{v} : \mathsf{rank}_{\{1,\ldots,\nu\}} = \mathsf{rank}_{\{\nu+1,\ldots,d\}}(\mathsf{v}) \leq \mathbf{r}_{\nu}, 1 \leq \nu \leq d-1 \}.$$

lpha-ranks and related low-rank tensor formats

Tensor Train format

Tensor train format

A tensor v in \mathcal{TT}_r has a representation

$$v(x) = \sum_{k_1=1}^{r_1} \dots \sum_{k_{d-1}=1}^{r_{d-1}} v^{(1)}(x_1, k_1) v^{(2)}(k_1, x_2, k_2) \dots v^{(d)}(k_{d-1}, x_d).$$

The storage complexity of an element in \mathcal{TT}_r is

$$\mathsf{storage}(\mathcal{TT}_r) = \sum_{\nu=1}^d r_{\nu-1} r_{\nu} \dim(V_{\nu}) = O(dnR^2)$$

with dim $(V_{\nu}) = O(n)$, $r_{\nu} = O(R)$. Here we use the convention $r_0 = r_d = 1$.

3 Canonical format

a α -ranks and related low-rank tensor formats

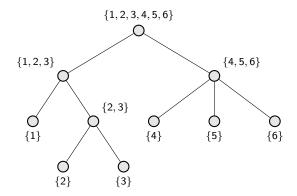
- Tucker format
- Tensor Train format
- Tree-based (hierarchical) Tucker format
- Tensor networks

α -ranks and related low-rank tensor formats

Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Tree-based (or hierarchical) Tucker formats are associated with a partition dimension tree T over $D = \{1, ..., d\}$, with root D and leaves $\{\nu\}$, $1 \le \nu \le d$.



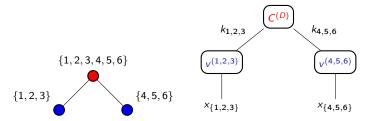
The tree-based rank of a tensor v is the tuple rank_T(v) = $(\operatorname{rank}_{\alpha}(v))_{\alpha \in T}$.

Tree-based (hierarchical) Tucker format

Let v be a tensor in \mathcal{T}_r^T with $r = (r_\alpha)_{\alpha \in T}$. At the first level, v admits the representation

$$v(x) = \sum_{k_{\beta_{1}}=1}^{r_{\beta_{1}}} \dots \sum_{k_{\beta_{s}}=1}^{r_{\beta_{s}}} C^{(D)}(k_{\beta_{1}}, \dots, k_{\beta_{s}})v^{(\beta_{1})}(x_{\beta_{1}}, k_{\beta_{1}}) \dots v^{(\beta_{s})}(x_{\beta_{s}}, k_{\beta_{s}}).$$

where $\{\beta_1, \ldots, \beta_s\} = S(D)$ are the children of the root node D.



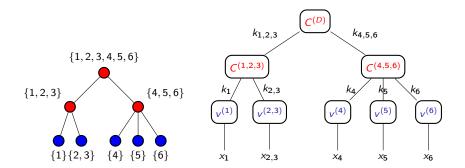
lpha-ranks and related low-rank tensor formats

Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Then, for an interior node α of the tree, with children $S(\alpha) = \{\beta_1, \dots, \beta_s\}$, the tensor v^{α} admits the representation

$$\boldsymbol{v}^{\alpha}(\boldsymbol{x}_{\alpha},\boldsymbol{k}_{\alpha})=\sum_{\boldsymbol{k}_{\beta_{1}}=1}^{\boldsymbol{r}_{\beta_{1}}}\ldots\sum_{\boldsymbol{k}_{\beta_{s}}=1}^{\boldsymbol{r}_{\beta_{s}}}\boldsymbol{C}^{(\alpha)}(\boldsymbol{k}_{\alpha},\boldsymbol{k}_{\beta_{1}},\ldots,\boldsymbol{k}_{\beta_{s}})\boldsymbol{v}^{(\beta_{1})}(\boldsymbol{x}_{\beta_{1}},\boldsymbol{k}_{\beta_{1}})\ldots\boldsymbol{v}^{(\beta_{s})}(\boldsymbol{x}_{\beta_{s}},\boldsymbol{k}_{\beta_{s}}).$$



lpha-ranks and related low-rank tensor formats

Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Finally, denoting by $\mathcal{L}(T) = \{\{\nu\} : \nu \in D\}$ the leaves of the tree, the tensor ν admits the Tucker-like representation

$$v(x) = \sum_{\substack{1 \le k_{\nu} \le r_{\nu} \\ \nu \in \{1, \dots, d\}}} \left(\sum_{\substack{1 \le k_{\alpha} \le r_{\alpha} \\ \alpha \in T \setminus \mathcal{L}(T)}} \prod_{\mu \in T \setminus \mathcal{L}(T)} \mathcal{C}^{(\mu)}(k_{\mu}, (k_{\beta})_{\beta \in S(\alpha)}) \right) v^{(1)}(x_{1}, k_{1}) \dots v^{(d)}(x_{d}, k_{d})$$
where we use the convention $C^{(D)}_{(k_{\beta})_{\beta \in S(D)}} = C^{(D)}_{1, (k_{\beta})_{\beta \in S(D)}}$ and $r_{D} = 1$.
$$\begin{cases} 1, 2, 3, 4, 5, 6 \} \\ \{1, 2, 3\} \\ \{2, 3\} \\ \{3, 3\} \\ \{2, 3\} \\ \{3,$$

Anthony Nouy

What are tensors ?

Low-rank order-two tensors

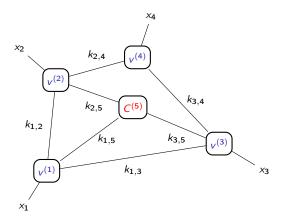
3 Canonical format

lacepsilon lpha-ranks and related low-rank tensor formats

- Tucker format
- Tensor Train format
- Tree-based (hierarchical) Tucker format
- Tensor networks

Tensor networks

More general tensor formats, called tensor networks, are associated with graphs $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ with nodes \mathcal{N} and edges \mathcal{E} .



Tree-based tensor formats are particular cases of tensor networks, called tree tensor networks, where ${\cal G}$ is a dimension partition tree.

Outline

What are tensors ?

Low-rank order-two tensors

Canonical format

40~lpha-ranks and related low-rank tensor formats

Parametrization and storage of low-rank tensor formats

Ultimately, a tensor in a certain low-rank tensor format \mathcal{M}_r admits a multilinear parametrization of the form

$$v(x_1,\ldots,x_d) = \sum_{k_1=1}^{r_1} \ldots \sum_{k_L=1}^{r_L} \prod_{\nu=1}^d p^{(\nu)}(x_{\nu},(k_i)_{i\in S_{\nu}}) \prod_{\nu=d+1}^M p^{(\nu)}((k_i)_{i\in S_{\nu}})$$

where the parameter $p^{(\nu)}$ is an element of a tensor space $P^{(\nu)}$ which depends on a subset of summation variables $(k_i)_{i \in S_{\nu}} := k_{S_{\nu}}$.

For a low-rank tensor format \mathcal{M}_r , there exists a multilinear map

$$\Psi: P^{(1)} \times \ldots \times P^{(M)} \to V$$

which associates to a set of parameters $\{p^{(1)},\ldots,p^{(M)}\}$ the tensor

$$v = \Psi(p^{(1)}, \ldots, p^{(M)}).$$

Approximation in low-rank tensor formats is the first step between linear approximation and nonlinear approximation.

Parametrization and storage of low-rank tensor formats

The storage complexity is

$$\mathsf{storage}(\mathcal{M}_r) = \sum_{\nu=1}^d \dim(V_\nu) \prod_{i \in S_\nu} r_i + \sum_{\nu=d+1}^L \prod_{i \in S_\nu} r_i.$$

If $r_i = O(R)$, dim $(V_{\nu}) = O(n)$, $\#S_{\nu} = O(s)$ for $\nu \leq d$ and $\#S_{\nu} = O(s')$ for $\nu > d$, then

$$storage(\mathcal{M}_r) = O(dnR^s + (M - d)R^{s'}).$$

The key to break the curse of dimensionality is to consider low-rank formats with s = O(1) and s' = O(1).

Parametrization and storage of low-rank tensor formats

Examples

• Canonical format: L = 1, M = d, $S_{\nu} = \{1\}$ for all ν .

$$storage(\mathcal{R}_r) = O(ndR)$$

• Tucker format: L = d, M = d + 1, $S_{\nu} = \{\nu\}$ for $1 \le \nu \le d$, and $S_{d+1} = \{1, \dots, d\}$.

$$storage(\mathcal{T}_r) = O(ndR + R^d)$$

• Tensor train format: L = d - 1, M = d, $S_1 = \{1\}$, $S_d = \{d - 1\}$ and $S_{\nu} = \{\nu - 1, \nu\}$ for $2 \le \nu \le d - 1$.

storage(
$$\mathcal{TT}_r$$
) = $O(ndR^2)$

• Tree-based tensor format (for a dimension partition tree *T*): L = #T - 1, M = #T, $S_{\nu} = \{\nu\}$ for $1 \le \nu \le d$ and S_{ν} cointains the sons of the node $\{\nu\}$ for $\nu > d$.

$$\mathsf{storage}(\mathcal{T}_r^{\mathcal{T}}) = O(\mathit{ndR} + \mathit{dR}^{k+1})$$

where k is the maximal number of sons of the nodes (k = 2 for a binary tree).

• Tensor networks: arbitrary L and M and $\#\{\nu : i \in S_{\nu}\} = 2$ for all $1 \le i \le L$.