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What are tensors ?

Tensor product of vectors

For I = {1,..., N}, an element v of the vector space R’ is identified with the set of
its coefficients (v;)jc; on a certain basis {e;};c; of R,

v = Z Vi€i.
iel
Given d index sets IY = {1,...,N,}, 1 < v < d, we introduce the multi-index set
I=/1><...></d.

An element v of R is called a tensor of order d and is identified with a
multidimensional array
(Vidier = (Vig,.oig)ineln o igely

which represents the coefficients of v on a certain basis of R/.
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What are tensors ?

Tensor product of vectors

The entries of the multidimensional array are equivalently denoted
v(i) = v(i1,...,id)-

Given d vectors v(*) € R 1 < v < d, the tensor product of these vectors
V= v(1)®...®v(d)

is defined by
v(i) = v®(ip) .. v (iy).

Such a tensor is called an elementary tensor. For d = 2, using matrix notations, v ® w

is identified with the matrix vw .
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Tensor product of vectors

The tensor space R/ = Rh%--*ld | also denoted R @ ... ® R/, is defined by

R =R g...@RM :span{v(1)®...®v(d) v®) eR"’,lgugd}
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What are tensors ?

Tensor product of functions

Let Xy, CR,1<v <d, be an interval and V,, be a space of functions defined on X, .

The tensor product of functions v(¥) € V,,, denoted
v = v(1)®...®v(d)7
is a multivariate function defined on X = X3 X ... X X4 and such that
v(x) = vixt, .., xq) = vO () .. v (xg)

for x = (x1,...,xq4) € X. For example, for i € N9, the monomial x' = x* ... x' is an
3 s Xd P 0 1 d
elementary tensor.
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What are tensors ?

Tensor product of functions

The algebraic tensor product of spaces V), is defined as
VIR...® Vd:span{v(1)®.l.®v(d) v ¢ Vi, 1<v <d}

which is the space of multivariate functions v which can be written as a finite linear
combination of elementary (separated functions), i.e.

v(x) = Z vﬁl)(xl) .. v,gd)(xd).
k=1

Up to a formal definition of the tensor product ®, the above construction can be
extended to arbitrary vector spaces V,, (not only spaces of functions).

Anthony Nouy 7/41



What are tensors ?

Infinite dimensional tensor spaces

For infinite dimensional spaces V,,, a Hilbert (or Banach) tensor space equipped with
a norm || - || is obtained by the completion (w.r.t. || - ||) of the algebraic tensor space

VH'H :m\\'ll.

Example 1 (LP spaces)
Let 1 < p < oo. If Vi =L, (X.), then

L5, (A1) ®...® LB (Xg) C LA(XL X ... X Xy)

with g = p1 ® ... ® pg, and

LfL1(X1)®~~~®Lde(Xd) ZLZ(XlX...XXd)

where || - || is the natural norm on L (X1 X ... X Xy).

| A\

Example 2 (Bochner spaces)

Let X be equipped with a finite measure p, and let W be a Hilbert (or Banach) space.
For 1 < p < oo, the Bochner space L}, (X; W) is the set of Bochner-measurable
functions u : X — W with bounded norm |lull, = ([, Hu(x)Hf,Vy(dx))l/P, and

1l
LE(X; W) = Wea Lh(x) .
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What are tensors ?

Tensor product basis

If {7,[)5”)},-6/” is a basis of V,, then a basisof V=V; ®...® V, is given by
i1

{¢i:¢(1)®...®¢f:):iel:llx...xld}.

A tensor v € V admits a decomposition

v=>aliwi=Y > a, i @ e v,

icl i€l ig€ly
and v can be identified with the set of its coefficients

aeR.
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What are tensors ?

Hilbert tensor spaces

If the V,, are Hilbert spaces with inner products (-,-),, and associated norms || - ||, a
canonical inner product on V can be first defined for elementary tensors

(VW @...o v W g @wd)=(® Wy () wld)
and then extended by linearity to the whole space V. The associated norm || - || is

called the canonical norm.

If the {z/)f”)},-e,v are orthonormal bases of spaces Vi, then {¢;};c/ is an orthonormal

= ai

iel

Ivil = /> a2 =llal.
iel

Therefore, the map W which associates to a tensor a € R/ the tensor
v =W(a) := 3", aj); defines a linear isometry from R/ to V for finite dimensional

basis of VIl A tensor

is such that

spaces, and between ¢>(/) and VlHl for infinite dimensional spaces.
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What are tensors ?

Curse of dimensionality

A tensor a € R/ = R %~ Xld or a corresponding tensor v = > ics @i, when
#1, = O(n) for each v, has a storage complexity

#1 = #h ... #lg = O(n%)

which grows exponentially with the dimension.

Manipulating tensors requires exploiting special properties of tensors such as sparsity
or low rankness.
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Low-rank order-two tensors

Rank of order-two tensors

The rank of an order-two tensor u € V ® W, denoted rank(u), is the minimal integer

r such that
.
u= Z Vi @ Wy
k=1

for some v, € V and w, € W.

A tensor u € R” ® R™ is identified with a matrix in u € R"™™. The rank of u
coincides with the matrix rank, which is the minimal integer r such that

r
u= E kakT: VWT,
k=1

where V = (vi,...,v,) ER™ and W = (wy,...,w,) € R™X",
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Low-rank order-two tensors

Singular value decomposition

Consider the case of a tensor space V ® WH‘HV, where V and W are Hilbert spaces
(e.g. spaces of functions), even infinite-dimensional, and where || - ||/ denote the
injective norm on V ® W (the spectral norm for a matrix).

Atensorue V® WH'”v admits a singular value decomposition

N

u= E Ok Vi & W,
k=1

with N = min{dim(V), dim(W)} € NU {oo}, where v, and wy are orthonormal
vectors.

The set of singular values of u is o(u) = {ox(u)}_,.
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Low-rank order-two tensors

Singular value decomposition of order-two tensors

Example 3 (Proper Orthogonal Decomposition)

For Q X | a space-time domain and V a Hilbert space of functions defined on Q, a
function u € L2(/; V) admits a singular value decomposition

Ll(t) = iakvkwk(t)

k=1

which is known as the Proper Orthogonal Decomposition (POD).

| N

Example 4 (Karhunen-Loeve decomposition)

For a probability space (€2, i), an element u € Li(Q; V) is a second-order V-valued
random variable. If u is zero-mean, the singular value decomposition of u is known as
the Karhunen-Loeve decomposition

u(w) =Y opviwi(w)
=1

where wj : Q — R are uncorrelated (orthogonal) random variables.

A\
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Low-rank order-two tensors

Singular value decomposition

The canonical norm
llull = llo(u)ll2
is also called the Hilbert-Schmidt norm.

It is a particular case of Schatten p-norms which are defined for 1 < p < oo by

lullo, = llo(w)llp-

The rank of u is the number of non-zero singular values,

rank(u) = ||o(u)||o = #{k : ox(u) # 0}.

A tensor u has low rank if the vector of its singular values o(u) is sparse.
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Low-rank order-two tensors

Low-rank format for order-two tensors

The set of tensors in V ® W with rank bounded by r, denoted
Rr={v:rank(v) <r},

is not a linear space nor a convex set. However, it has many favorable properties for a
numerical use.

In particular, since the application v — rank(v) is lower semi-continuous, the set R, is
closed, which makes best approximation problems in R, well posed.
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Low-rank order-two tensors

Low-rank approximation of order-two tensors

For a Hilbert tensor space equipped with the canonical norm || - ||, the best
approximation of a tensor u by an element of R, is provided by the truncated singular

value decomposition
r
ur = E Ok Vi @ wi
k=1
where we only retain the r dominant singular values:

. 2\1/2
min flu—vl| = lu—urll = ( 3= oF)M2.
" k>r+1
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Canonical format

Canonical rank of higher-order tensors

For tensors u € V4 ® ... ® Vy with d > 3, there are different notions of rank.

The canonical rank, which is the natural extension of the notion of rank for order-two
tensors, is the minimal integer r such that

U:Zv£1)®.“®v£d),
k=1
(v)

for some vectors v, € Vu.

A multivariate function u(xi,...,xy) with canonical rank bounded by r is such that
4 1 d
u(x) = Z V‘E )(xl) e v,(( )(Xd),
k=1

where the v,((")(xl,) are in the function space V,, .
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Canonical format

Canonical format

The subset of tensors in V = Vj ® ... ® Vg4 with canonical rank bounded by r is
denoted

Rr={v e V:rank(v) < r}.
A tensor in R, has a representation

r

v(x1,...,xq4) = Z v,gl)(X1) . v/Ed)(xd) = vD (xa, k). v D) (xg, k).
k=1 k=1

The storage complexity of tensors in R is

d
storage(R,) = erim(Vy) = O(rdn)

v=1

for dim(V,,) = O(n).
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Canonical format

Canonical format

For d > 3, the set R, looses many of the favorable properties of the case d = 2.
@ Determining the rank of a given tensor is a NP-hard problem.
@ The set R, is not an algebraic variety.

@ The application v — rank(v) is not lower semi-continuous and therefore, R, is
not closed. The consequence is that for most problems involving approximation in
canonical format R, there is no robust method when d > 2.

Example 5

Consider the 3-order tensor
v=a®a®b+al®bR®a+bRa®a

where a and b are linearly independent vectors in R™. The rank of v is 3. The
sequence of rank-2 tensors

1 1 1
vp = n(a+ ;b)@(a—l— ;b)@(a—l— ;b)—na@a@a

converges to v as n — oo.
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a-ranks and related low-rank tensor formats

a-rank

For a non-empty subset a of D ={1,...,d}, atensorue V=V ®...® Vy can be
identified with an order-two tensor

where Vo, = Q

vea

Ma(u) EVa® Vac7

Vy, and a© = D\ a.. The operator My =V — Vo ® Ve is

called the matricisation operator.

My

M2y

The a-rank of u, denoted rankq (u), is the rank of the order-two tensor M (u),

which is the minimal integer ro such that

for some vg* € Vi, and Wﬁc € Vqe. We note that rankq (u) = rankge(u).

Anthony Nouy
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a-ranks and related low-rank tensor formats

a-rank

A multivariate function u(xi, ..., xq) with rankq(u) < rq is such that

0 = v (xa )W ()
k=1

for some functions v (xa) and W,‘}C (xac) of groups of variables

Xa = {x,,}yg,l and  xgc = {Xu}ueac~

Example 6

u(x1,...,%xq) = u1(x1) + ...+ ug(xq) where uq, ..., ug are non constant functions
satisfies rankq (u) = 2 for all a.
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a-ranks and related low-rank tensor formats

a-rank and minimal subspace

For a subset oo of D = {1, ..., d}, the minimal subspace
U(Tin u)
of a tensor u € Vi ® ... ® Vj is defined as the smallest subspace

Ua CVa=QR Vo

vEa

such that
Ma(u) € Ua ® Vie.

The a-rank of u is the dimension of the minimal subspace U7 (u),

rankq (u) = dim(U™"(u)).
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a-ranks and related low-rank tensor formats

Singular value decomposition

For Hilbert spaces the order-two tensor
Ma(u) € V@ v
admits a singular value decomposition

Ma(u) =" ogvi @ we".
k>1

The set 0%(u) := {0} }x>1 is called the set of a-singular values of u. The a-rank of u
is the number of non-zero a-singular values

rankq (u) = [|[o®(u)llo-

A tensor u has low a-rank if the vector of its a-singular values o (u) is sparse.
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a-ranks and related low-rank tensor formats

Subset of tensors with bounded a-rank

For a given subset o C D, we define the subset of tensors with a-rank bounded by r,
as
ﬂia} ={v e V:ranka(v) < ro}.

Elements of 77(&05} admit the representation

fa
V(Xa, Xac) = Z Z C(ka, kac )V (Xa s ka)w® (xac,kac)

ka=1koc=1

c
where C € RfeX’a and v® and w® are order-two tensors.

Jou

ik
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a-ranks and related low-rank tensor formats

Subset of tensors with bounded a-rank

The motivation behind the definition of tensor formats based on a-ranks is to benefit
from the nice properties of the rank of order-two tensors.

}

The application v — rankq (v) is lower semi-continuous and therefore, T,iu is closed.

For a Hilbert tensor space equipped with the canonical norm, a best approximation of
a given tensor u in ’T,ia} is provided by the truncated a-singular value decomposition

where we retain the r, largest a-singular values.

For a given o C D, the determination of the a-rank of a tensor, which is equivalent to
the determination of the rank an order-two tensor, is feasible.

Also, 'T,ia} is a smooth manifold.
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a-ranks and related low-rank tensor formats

a-ranks and related low-rank formats

For T a collection of subsets of D, we define the T-rank of a tensor v, denoted
rankt(u), as the tuple
rankr(v) = {ranka(v)}acT-

The subset of tensors in V with T-rank bounded by r = (ro)qcT is

7'rT ={ve V:rankr(v)<r} = ﬂ Tria}'

acT

{

As a finite intersection of subsets T,aa}, 7,7 inherits from geometrical and topological

properties of the subsets T,ia} which are favorable for numerical simulation. In
particular, 7—,7— is closed.
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a-ranks and related low-rank tensor formats

Higher-order singular value decompositions

For a Hilbert tensor space equipped with the canonical norm, and for a tree-structured
set T, quasi-best approximations u, of a given tensor u in 7,7 can be constructed
from truncated singular value decompositions of a-matricisations of u (or of a
sequence of approximations), o € T, such that

lu—ur| < C(d) min_|lu— v,
VET,T

with C(d) = O(/d).

A possible algorithm

Let T = {oa,...,ax7} with the sequence a ordered by decreasing level in the
tree-structured set T.
Set u® = u, and for k =0, ..., #T — 1,
utl carg min |uk —v]|,
v€772£

and set u, = u#7.

Anthony Nouy 28 /41



a-ranks and related low-rank tensor formats

a-ranks and related low-rank formats

Different choices for T yield different tensor formats, the standard formats being
o the Tucker format,
@ the Tensor Train format,

o and more general tree-based (or hierarchical) Tucker formats.
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a-ranks and related low-rank tensor formats Tucker format

Tucker format

For

T={{1},....{d}},

the tuple
rank(v) = {rankg1}(v),...,rankigy(v)}

is called the Tucker (or multilinear) rank of the tensor v.

The set of tensors with Tucker rank bounded by r = (r1,. .., rg), denoted
Tr={v:rank;y(v) < n,1 <v < d}

is such that

Tr={velhh®.. Uy :dm(U,)=r,1<v<d}
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a-ranks and related low-rank tensor formats Tucker format

Tucker format

A tensor in v € T, admits a representation

n rd
V(X]_7 [P 7Xd) = Z e Z C(k17 ey kd)v(l)(X]_7 kl) e V(d)(Xd, kd)
ki1=1 kg=1

where C € R1X---X1d is an order-d tensor and the v(*) are order-two tensors.

(e

X2

d d
storage(7;) = H o+ Z r, dim(V,) = O(R? + Rnd)
v=1 v=1

X1

Xd

The storage complexity is

with r, = O(R) and dim(V,) = O(n). This format still suffers from the curse of
dimensionality.
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a-ranks and related low-rank tensor formats Tensor Train format
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a-ranks and related low-rank tensor formats Tensor Train format

Tensor train format

For

T:{{1}7{172}7"‘1{17"'7‘1_1}}7

the tuple
rankr(v) = {rankg1y(v),rankgy 23(v), ... rankgy . g—13(v)}

is called the TT-rank of the tensor v.

For a tuple r = (r1,...,ry_1), the set 7,7 of tensors with TT-rank bounded by r is
denoted

TTr={v:rankg, . )y =rankgqa a3 (V) <n,1<v <d-1}
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a-ranks and related low-rank tensor formats Tensor Train format

Tensor train format

A tensor v in TT; has a representation

fd—1

n
v(x) = Z Z v (g, k)@ (ke X, k2) - D (kg1 xq).

ki=1  kg_1=1

kd—1 kd

X1 X2 Xd—1 Xd

The storage complexity of an element in 77, is

d
storage(77;) = Z ry—1r, dim(V,) = O(dnR?)

v=1

with dim(V,) = O(n), r, = O(R). Here we use the convention rp = rg = 1.
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a-ranks and related low-rank tensor formats Tree-based (hierarchical) Tucker format
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a-ranks and related low-rank tensor formats Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Tree-based (or hierarchical) Tucker formats are associated with a partition dimension
tree T over D = {1,...,d}, with root D and leaves {v}, 1 <v <d.

{17 27 3747 57 6}

{2} {3}

The tree-based rank of a tensor v is the tuple rank7(v) = (ranka(v))acT-
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a-ranks and related low-rank tensor formats Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Let v be a tensor in 7,7 with r = (ro)aeT. At the first level, v admits the
representation

"B1 "Bs
v = D0 D0 CPkgy e kg WU (xay kg ) v (g, s, ).
kg =1 kps=1

where {B1,...,8s} = S(D) are the children of the root node D.

{17 27 37 47 57 6}

{1,2,3} {4,5,6}

X{4,5,6}
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a-ranks and related low-rank tensor formats Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Then, for an interior node « of the tree, with children S(a) = {B1,...,8s}, the tensor
v® admits the representation

81 Bs
V¥ (xarka) = D .. Z Cl(kar kgy, - kg )V (xay, k) - v (xs,., kg,
k31*1 kgs=
{17273?47576}
{17273} {47576}

{11{2,3} {4} {5} {6}
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a-ranks and related low-rank tensor formats Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Finally, denoting by £(T) = {{v} : v € D} the leaves of the tree, the tensor v admits
the Tucker-like representation

=Y (X [T 0k (ke)sesian) v G ka) - () (xa, ka)
1<ky<r,  1<ka<ra p€T\L(T)
ve{l,...,d} a€T\L(T)

(D) )

where we use the convention C(Z%)Bes(D) = Gk )pesion and rp = 1.

k1,23

{1,2,3,4,5,6}

{1,2,3} {4,5,6}

{1} {4} {5} {6}

{2} {3} x2 x3
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a-ranks and related low-rank tensor formats Tensor networks

Tensor networks

More general tensor formats, called tensor networks, are associated with graphs
G = (N, €) with nodes N and edges &.

Tree-based tensor formats are particular cases of tensor networks, called tree tensor
networks, where G is a dimension partition tree.
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Parametrization of low-rank tensor formats

Parametrization and storage of low-rank tensor formats

Ultimately, a tensor in a certain low-rank tensor format M, admits a multilinear
parametrization of the form

rn 73 d M
vixa,oxa) =3 3 TP s (kidies,) TT ™) ((Ki)ies,)
ki=1 ky=1v=1 v=d+1

where the parameter p(*) is an element of a tensor space P(*) which depends on a
subset of summation variables (ki)ics, := ks, .

For a low-rank tensor format M, there exists a multilinear map
v P o PM 4y
which associates to a set of parameters {p(l), R p(M)} the tensor
v= \Il(p(l), RN p(M)).

Approximation in low-rank tensor formats is the first step between linear
approximation and nonlinear approximation.
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Parametrization of low-rank tensor formats

Parametrization and storage of low-rank tensor formats

The storage complexity is

d L
storage(M,) = Zdim(Vu) H ri+ Z H i

i€s, v=d+1i€S,

If i = O(R), dim(V,,)) = O(n), #S, = O(s) for v < d and #S, = O(s') for v > d,
then
storage(M,) = O(dnR*® + (M — d)Rs/).

The key to break the curse of dimensionality is to consider low-rank formats with
s=0(1) and s’ = O(1).
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Parametrization of low-rank tensor formats

Parametrization and storage of low-rank tensor formats

o Canonical format: L=1, M =d, S, = {1} for all v.

storage(R,) = O(ndR)

o Tucker format: L=d, M=d+1, S, ={v} forl1<v <d, and
So+1={1,...,d}.
storage(7;) = O(ndR + RY)
@ Tensor train format: L=d —1, M =d, S; = {1}, Sy = {d — 1} and
Ss={v—-1v}for2<v<d-1

storage(77;) = O(ndR?)

o Tree-based tensor format (for a dimension partition tree T): L =#T — 1,
M=#T,S, ={v} for1 <v <dandS, cointains the sons of the node {v} for
v>d.

storage(7,7) = O(ndR + dR 1)
where k is the maximal number of sons of the nodes (k = 2 for a binary tree).
@ Tensor networks: arbitrary L and M and #{v:i€ S,} =2 forall 1 </ < L.
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