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What are tensors ?

Tensor product of vectors
For I = {1, . . . ,N}, an element v of the vector space RI is identified with the set of
its coefficients (vi )i∈I on a certain basis {ei}i∈I of RI ,

v =
∑
i∈I

viei .

Given d index sets Iν = {1, . . . ,Nν}, 1 ≤ ν ≤ d , we introduce the multi-index set

I = I1 × . . .× Id .

An element v of RI is called a tensor of order d and is identified with a
multidimensional array

(vi )i∈I = (vi1,...,id )i1∈I1,...,id∈Id

which represents the coefficients of v on a certain basis of RI .

d = 1 d = 2 d = 3
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What are tensors ?

Tensor product of vectors
The entries of the multidimensional array are equivalently denoted

v(i) = v(i1, . . . , id ).

Given d vectors v (ν) ∈ RIν , 1 ≤ ν ≤ d , the tensor product of these vectors

v := v (1) ⊗ . . .⊗ v (d)

is defined by
v(i) = v (1)(i1) . . . v (d)(id ).

Such a tensor is called an elementary tensor. For d = 2, using matrix notations, v ⊗w
is identified with the matrix vwT .

d = 2

⊗ ≡

d = 3

⊗ ⊗ ≡
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What are tensors ?

Tensor product of vectors

The tensor space RI = RI1×...×Id , also denoted RI1 ⊗ . . .⊗ RId , is defined by

RI = RI1 ⊗ . . .⊗ RId = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ RIν , 1 ≤ ν ≤ d}
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What are tensors ?

Tensor product of functions

Let Xν ⊂ R, 1 ≤ ν ≤ d , be an interval and Vν be a space of functions defined on Xν .

The tensor product of functions v (ν) ∈ Vν , denoted

v = v (1) ⊗ . . .⊗ v (d),

is a multivariate function defined on X = X1 × . . .×Xd and such that

v(x) = v(x1, . . . , xd ) = v (1)(x1) . . . v (d)(xd )

for x = (x1, . . . , xd ) ∈ X . For example, for i ∈ Nd
0 , the monomial x i = x i11 . . . x

id
d is an

elementary tensor.
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What are tensors ?

Tensor product of functions

The algebraic tensor product of spaces Vν is defined as

V1 ⊗ . . .⊗ Vd = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ Vν , 1 ≤ ν ≤ d}

which is the space of multivariate functions v which can be written as a finite linear
combination of elementary (separated functions), i.e.

v(x) =
n∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd ).

Up to a formal definition of the tensor product ⊗, the above construction can be
extended to arbitrary vector spaces Vν (not only spaces of functions).
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What are tensors ?

Infinite dimensional tensor spaces
For infinite dimensional spaces Vν , a Hilbert (or Banach) tensor space equipped with
a norm ‖ · ‖ is obtained by the completion (w.r.t. ‖ · ‖) of the algebraic tensor space

V
‖·‖

= V1 ⊗ . . .⊗ Vd
‖·‖
.

Example 1 (Lp spaces)

Let 1 ≤ p <∞. If Vν = Lpµν (Xν), then

Lpµ1 (X1)⊗ . . .⊗ Lpµd
(Xd ) ⊂ Lpµ(X1 × . . .×Xd )

with µ = µ1 ⊗ . . .⊗ µd , and

Lpµ1 (X1)⊗ . . .⊗ Lpµd
(Xd )

‖·‖
= Lpµ(X1 × . . .×Xd )

where ‖ · ‖ is the natural norm on Lpµ(X1 × . . .×Xd ).

Example 2 (Bochner spaces)

Let X be equipped with a finite measure µ, and let W be a Hilbert (or Banach) space.
For 1 ≤ p <∞, the Bochner space Lpµ(X ;W ) is the set of Bochner-measurable
functions u : X →W with bounded norm ‖u‖p = (

∫
X ‖u(x)‖pWµ(dx))1/p , and

Lpµ(X ;W ) = W ⊗ Lpµ(X )
‖·‖p

.
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What are tensors ?

Tensor product basis

If {ψ(ν)
i }i∈Iν is a basis of Vν , then a basis of V = V1 ⊗ . . .⊗ Vd is given by{

ψi = ψ
(1)
i1
⊗ . . .⊗ ψ(d)

id
: i ∈ I = I1 × . . .× Id

}
.

A tensor v ∈ V admits a decomposition

v =
∑
i∈I

a(i)ψi =
∑
i1∈I1

. . .
∑
id∈Id

a(i1, . . . , id )ψ
(1)
i1
⊗ . . .⊗ ψ(d)

id
,

and v can be identified with the set of its coefficients

a ∈ RI .

Anthony Nouy 9 / 41



What are tensors ?

Hilbert tensor spaces

If the Vν are Hilbert spaces with inner products (·, ·)ν and associated norms ‖ · ‖ν , a
canonical inner product on V can be first defined for elementary tensors

(v (1) ⊗ . . .⊗ v (d),w (1) ⊗ . . .⊗ w (d)) = (v (1),w (1)) . . . (v (d),w (d))

and then extended by linearity to the whole space V . The associated norm ‖ · ‖ is
called the canonical norm.

If the {ψ(ν)
i }i∈Iν are orthonormal bases of spaces Vν , then {ψi}i∈I is an orthonormal

basis of V ‖·‖. A tensor
v =

∑
i∈I

aiψi

is such that

‖v‖ =

√∑
i∈I

a2
i := ‖a‖.

Therefore, the map Ψ which associates to a tensor a ∈ RI the tensor
v = Ψ(a) :=

∑
i∈I aiψi defines a linear isometry from RI to V for finite dimensional

spaces, and between `2(I ) and V
‖·‖ for infinite dimensional spaces.
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What are tensors ?

Curse of dimensionality

A tensor a ∈ RI = RI1×...×Id or a corresponding tensor v =
∑

i∈I aiψi , when
#Iν = O(n) for each ν, has a storage complexity

#I = #I1 . . .#Id = O(nd )

which grows exponentially with the dimension.

Manipulating tensors requires exploiting special properties of tensors such as sparsity
or low rankness.
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Low-rank order-two tensors

Rank of order-two tensors
The rank of an order-two tensor u ∈ V ⊗W , denoted rank(u), is the minimal integer
r such that

u =
r∑

k=1

vk ⊗ wk

for some vk ∈ V and wk ∈W .

A tensor u ∈ Rn ⊗ Rm is identified with a matrix in u ∈ Rn×m. The rank of u
coincides with the matrix rank, which is the minimal integer r such that

u =
r∑

k=1

vkw
T
k = VWT ,

where V = (v1, . . . , vr ) ∈ Rn×r and W = (w1, . . . ,wr ) ∈ Rm×r .

= + + =
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Low-rank order-two tensors

Singular value decomposition

Consider the case of a tensor space V ⊗W
‖·‖∨ , where V and W are Hilbert spaces

(e.g. spaces of functions), even infinite-dimensional, and where ‖ · ‖∨ denote the
injective norm on V ⊗W (the spectral norm for a matrix).

A tensor u ∈ V ⊗W
‖·‖∨ admits a singular value decomposition

u =
N∑

k=1

σkvk ⊗ wk ,

with N = min{dim(V ), dim(W )} ∈ N ∪ {∞}, where vk and wk are orthonormal
vectors.

The set of singular values of u is σ(u) = {σk (u)}Nk=1.
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Low-rank order-two tensors

Singular value decomposition of order-two tensors

Example 3 (Proper Orthogonal Decomposition)

For Ω× I a space-time domain and V a Hilbert space of functions defined on Ω, a
function u ∈ L2(I ;V ) admits a singular value decomposition

u(t) =
∞∑
k=1

σkvkwk (t)

which is known as the Proper Orthogonal Decomposition (POD).

Example 4 (Karhunen-Loeve decomposition)

For a probability space (Ω, µ), an element u ∈ L2
µ(Ω;V ) is a second-order V -valued

random variable. If u is zero-mean, the singular value decomposition of u is known as
the Karhunen-Loeve decomposition

u(ω) =
∞∑
k=1

σkvkwk (ω)

where wk : Ω→ R are uncorrelated (orthogonal) random variables.
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Low-rank order-two tensors

Singular value decomposition

The canonical norm
‖u‖ = ‖σ(u)‖2

is also called the Hilbert-Schmidt norm.

It is a particular case of Schatten p-norms which are defined for 1 ≤ p ≤ ∞ by

‖u‖σp = ‖σ(u)‖p .

The rank of u is the number of non-zero singular values,

rank(u) = ‖σ(u)‖0 = #{k : σk (u) 6= 0}.

A tensor u has low rank if the vector of its singular values σ(u) is sparse.
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Low-rank order-two tensors

Low-rank format for order-two tensors

The set of tensors in V ⊗W with rank bounded by r , denoted

Rr = {v : rank(v) ≤ r},

is not a linear space nor a convex set. However, it has many favorable properties for a
numerical use.

In particular, since the application v 7→ rank(v) is lower semi-continuous, the set Rr is
closed, which makes best approximation problems in Rr well posed.
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Low-rank order-two tensors

Low-rank approximation of order-two tensors

For a Hilbert tensor space equipped with the canonical norm ‖ · ‖, the best
approximation of a tensor u by an element of Rr is provided by the truncated singular
value decomposition

ur =
r∑

k=1

σkvk ⊗ wk

where we only retain the r dominant singular values:

min
v∈Rr

‖u − v‖ = ‖u − ur‖ = (
∑

k>r+1

σ2
k )1/2.
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Canonical format

Outline

1 What are tensors ?

2 Low-rank order-two tensors

3 Canonical format

4 α-ranks and related low-rank tensor formats

5 Parametrization of low-rank tensor formats

Anthony Nouy 18 / 41



Canonical format

Canonical rank of higher-order tensors

For tensors u ∈ V1 ⊗ . . .⊗ Vd with d ≥ 3, there are different notions of rank.

The canonical rank, which is the natural extension of the notion of rank for order-two
tensors, is the minimal integer r such that

u =
r∑

k=1

v
(1)
k ⊗ . . .⊗ v

(d)
k ,

for some vectors v
(ν)
k ∈ Vν .

A multivariate function u(x1, . . . , xd ) with canonical rank bounded by r is such that

u(x) =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd ),

where the v
(ν)
k (xν) are in the function space Vν .
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Canonical format

Canonical format

The subset of tensors in V = V1 ⊗ . . .⊗ Vd with canonical rank bounded by r is
denoted

Rr = {v ∈ V : rank(v) ≤ r}.

A tensor in Rr has a representation

v(x1, . . . , xd ) =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd ) :=

r∑
k=1

v (1)(x1, k) . . . v (d)(xd , k).

The storage complexity of tensors in Rr is

storage(Rr ) = r
d∑
ν=1

dim(Vν) = O(rdn)

for dim(Vν) = O(n).
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Canonical format

Canonical format

For d ≥ 3, the set Rr looses many of the favorable properties of the case d = 2.

Determining the rank of a given tensor is a NP-hard problem.

The set Rr is not an algebraic variety.

The application v 7→ rank(v) is not lower semi-continuous and therefore, Rr is
not closed. The consequence is that for most problems involving approximation in
canonical format Rr , there is no robust method when d > 2.

Example 5

Consider the 3-order tensor

v = a⊗ a⊗ b + a⊗ b ⊗ a + b ⊗ a⊗ a

where a and b are linearly independent vectors in Rm. The rank of v is 3. The
sequence of rank-2 tensors

vn = n(a +
1
n
b)⊗ (a +

1
n
b)⊗ (a +

1
n
b)− na⊗ a⊗ a

converges to v as n→∞.
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α-ranks and related low-rank tensor formats

α-rank

For a non-empty subset α of D = {1, . . . , d}, a tensor u ∈ V = V1 ⊗ . . .⊗ Vd can be
identified with an order-two tensor

Mα(u) ∈ Vα ⊗ Vαc ,

where Vα =
⊗
ν∈α Vν , and αc = D \ α. The operatorMα = V → Vα ⊗ Vαc is

called the matricisation operator.

M{1}←−−−−
M{2}−−−−→

The α-rank of u, denoted rankα(u), is the rank of the order-two tensorMα(u),

rankα(u) = rank(Mα(u)),

which is the minimal integer rα such that

Mα(u) =

rα∑
k=1

vαk ⊗ wα
c

k

for some vαk ∈ Vα and wα
c

k ∈ Vαc . We note that rankα(u) = rankαc (u).
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α-ranks and related low-rank tensor formats

α-rank

A multivariate function u(x1, . . . , xd ) with rankα(u) ≤ rα is such that

u(x) =

rα∑
k=1

vαk (xα)wα
c

k (xαc )

for some functions vαk (xα) and wα
c

k (xαc ) of groups of variables

xα = {xν}ν∈α and xαc = {xν}ν∈αc .

Example 6

u(x1, . . . , xd ) = u1(x1) + . . .+ ud (xd ) where u1, . . . , ud are non constant functions
satisfies rankα(u) = 2 for all α.
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α-ranks and related low-rank tensor formats

α-rank and minimal subspace

For a subset α of D = {1, . . . , d}, the minimal subspace

Umin
α (u)

of a tensor u ∈ V1 ⊗ . . .⊗ Vd is defined as the smallest subspace

Uα ⊂ Vα =
⊗
ν∈α

Vν

such that
Mα(u) ∈ Uα ⊗ Vαc .

The α-rank of u is the dimension of the minimal subspace Umin
α (u),

rankα(u) = dim(Umin
α (u)).
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α-ranks and related low-rank tensor formats

Singular value decomposition

For Hilbert spaces the order-two tensor

Mα(u) ∈ Vα ⊗ Vα
c

admits a singular value decomposition

Mα(u) =
∑
k≥1

σαk v
α
k ⊗ wα

c

k .

The set σα(u) := {σαk }k≥1 is called the set of α-singular values of u. The α-rank of u
is the number of non-zero α-singular values

rankα(u) = ‖σα(u)‖0.

A tensor u has low α-rank if the vector of its α-singular values σα(u) is sparse.
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α-ranks and related low-rank tensor formats

Subset of tensors with bounded α-rank

For a given subset α ⊂ D, we define the subset of tensors with α-rank bounded by rα
as

T {α}rα = {v ∈ V : rankα(v) ≤ rα}.

Elements of T {α}rα admit the representation

v(xα, xαc ) =

rα∑
kα=1

rα∑
kαc =1

C(kα, kαc )vα(xα, kα)wα
c
(xαc , kαc )

where C ∈ Rrα×rα and vα and wα
c
are order-two tensors.

C

vα

xα

kα

wα
c

xαc

kαc
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α-ranks and related low-rank tensor formats

Subset of tensors with bounded α-rank

The motivation behind the definition of tensor formats based on α-ranks is to benefit
from the nice properties of the rank of order-two tensors.

The application v 7→ rankα(v) is lower semi-continuous and therefore, T {α}rα is closed.

For a Hilbert tensor space equipped with the canonical norm, a best approximation of
a given tensor u in T {α}rα is provided by the truncated α-singular value decomposition
where we retain the rα largest α-singular values.

For a given α ⊂ D, the determination of the α-rank of a tensor, which is equivalent to
the determination of the rank an order-two tensor, is feasible.

Also, T {α}rα is a smooth manifold.
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α-ranks and related low-rank tensor formats

α-ranks and related low-rank formats

For T a collection of subsets of D, we define the T -rank of a tensor v , denoted
rankT (u), as the tuple

rankT (v) = {rankα(v)}α∈T .

The subset of tensors in V with T -rank bounded by r = (rα)α∈T is

T T
r = {v ∈ V : rankT (v) ≤ r} =

⋂
α∈T
T {α}rα .

As a finite intersection of subsets T {α}rα , T T
r inherits from geometrical and topological

properties of the subsets T {α}rα which are favorable for numerical simulation. In
particular, T T

r is closed.
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α-ranks and related low-rank tensor formats

Higher-order singular value decompositions

For a Hilbert tensor space equipped with the canonical norm, and for a tree-structured
set T , quasi-best approximations ur of a given tensor u in T T

r can be constructed
from truncated singular value decompositions of α-matricisations of u (or of a
sequence of approximations), α ∈ T , such that

‖u − ur‖ ≤ C(d) min
v∈T T

r

‖u − v‖,

with C(d) = O(
√
d).

A possible algorithm

Let T = {α1, . . . , α#T } with the sequence αk ordered by decreasing level in the
tree-structured set T .
Set u0 = u, and for k = 0, ...,#T − 1,

uk+1 ∈ arg min
v∈T αk

rαk

‖uk − v‖,

and set ur = u#T .
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α-ranks and related low-rank tensor formats

α-ranks and related low-rank formats

Different choices for T yield different tensor formats, the standard formats being

the Tucker format,

the Tensor Train format,

and more general tree-based (or hierarchical) Tucker formats.
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α-ranks and related low-rank tensor formats Tucker format

Tucker format

For
T = {{1}, . . . , {d}},

the tuple
rankT (v) = {rank{1}(v), . . . , rank{d}(v)}

is called the Tucker (or multilinear) rank of the tensor v .

The set of tensors with Tucker rank bounded by r = (r1, . . . , rd ), denoted

Tr = {v : rank{ν}(v) ≤ rν , 1 ≤ ν ≤ d},

is such that

Tr = {v ∈ U1 ⊗ . . .⊗ Ud : dim(Uν) = rν , 1 ≤ ν ≤ d}.
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α-ranks and related low-rank tensor formats Tucker format

Tucker format
A tensor in v ∈ Tr admits a representation

v(x1, . . . , xd ) =

r1∑
k1=1

. . .

rd∑
kd=1

C(k1, . . . , kd )v (1)(x1, k1) . . . v (d)(xd , kd ).

where C ∈ Rr1×...×rd is an order-d tensor and the v (ν) are order-two tensors.

C

v (1)

x1

k1

v (2)

x2

k2

... v (d)

xd

kd

The storage complexity is

storage(Tr ) =
d∏
ν=1

rν +
d∑
ν=1

rν dim(Vν) = O(Rd + Rnd)

with rν = O(R) and dim(Vν) = O(n). This format still suffers from the curse of
dimensionality.
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α-ranks and related low-rank tensor formats Tensor Train format

Tensor train format

For
T = {{1}, {1, 2}, . . . , {1, . . . , d − 1}},

the tuple

rankT (v) = {rank{1}(v), rank{1,2}(v), . . . , rank{1,...,d−1}(v)}

is called the TT-rank of the tensor v .

For a tuple r = (r1, . . . , rd−1), the set T T
r of tensors with TT-rank bounded by r is

denoted

T Tr = {v : rank{1,...,ν} = rank{ν+1,...,d}(v) ≤ rν , 1 ≤ ν ≤ d − 1}.
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α-ranks and related low-rank tensor formats Tensor Train format

Tensor train format

A tensor v in T Tr has a representation

v(x) =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

v (1)(x1, k1)v (2)(k1, x2, k2) . . . v (d)(kd−1, xd ).

v (1) v (2) v (d−1) v (d)

x1 x2 xd−1 xd

k1 k2 kd−1 kd

The storage complexity of an element in T Tr is

storage(T Tr ) =
d∑
ν=1

rν−1rν dim(Vν) = O(dnR2)

with dim(Vν) = O(n), rν = O(R). Here we use the convention r0 = rd = 1.
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α-ranks and related low-rank tensor formats Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Tree-based (or hierarchical) Tucker formats are associated with a partition dimension
tree T over D = {1, . . . , d}, with root D and leaves {ν}, 1 ≤ ν ≤ d .

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

The tree-based rank of a tensor v is the tuple rankT (v) = (rankα(v))α∈T .
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α-ranks and related low-rank tensor formats Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Let v be a tensor in T T
r with r = (rα)α∈T . At the first level, v admits the

representation

v(x) =

rβ1∑
kβ1 =1

. . .

rβs∑
kβs =1

C (D)(kβ1 , . . . , kβs )v (β1)(xβ1 , kβ1 ) . . . v (βs )(xβs , kβs ).

where {β1, . . . , βs} = S(D) are the children of the root node D.

{1, 2, 3, 4, 5, 6}

{1, 2, 3} {4, 5, 6}

C (D)

v (1,2,3)

x{1,2,3}

k1,2,3

v (4,5,6)

x{4,5,6}

k4,5,6
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α-ranks and related low-rank tensor formats Tree-based (hierarchical) Tucker format

Tree-based (hierarchical) Tucker format

Then, for an interior node α of the tree, with children S(α) = {β1, . . . , βs}, the tensor
vα admits the representation

vα(xα, kα) =

rβ1∑
kβ1 =1

. . .

rβs∑
kβs =1

C (α)(kα, kβ1 , . . . , kβs )v (β1)(xβ1 , kβ1 ) . . . v (βs )(xβs , kβs ).

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}{2, 3}

{4, 5, 6}

{4} {5} {6}

C (D)

C (1,2,3)

v (1)

x1

k1

v (2,3)

x2,3

k2,3

k1,2,3

C (4,5,6)

v (4)

x4

k4

v (5)

x5

k5

v (6)

x6

k6

k4,5,6
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Tree-based (hierarchical) Tucker format
Finally, denoting by L(T ) = {{ν} : ν ∈ D} the leaves of the tree, the tensor v admits
the Tucker-like representation

v(x) =
∑

1≤kν≤rν
ν∈{1,...,d}

( ∑
1≤kα≤rα
α∈T\L(T )

∏
µ∈T\L(T )

C (µ)(kµ, (kβ)β∈S(α))
)
v (1)(x1, k1) . . . v (d)(xd , kd )

where we use the convention C
(D)
(kβ )β∈S(D)

= C
(D)
1,(kβ )β∈S(D)

and rD = 1.
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k4

v (5)

x5
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Tensor networks

More general tensor formats, called tensor networks, are associated with graphs
G = (N , E) with nodes N and edges E.

v (1)

x1

v (2)

x2

v (3)

x3

v (4)

x4

C (5)

k1,2

k3,4

k2,4

k1,5

k2,5

k1,3

k3,5

Tree-based tensor formats are particular cases of tensor networks, called tree tensor
networks, where G is a dimension partition tree.
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Parametrization and storage of low-rank tensor formats

Ultimately, a tensor in a certain low-rank tensor formatMr admits a multilinear
parametrization of the form

v(x1, . . . , xd ) =

r1∑
k1=1

. . .

rL∑
kL=1

d∏
ν=1

p(ν) (xν , (ki )i∈Sν )
M∏

ν=d+1

p(ν) ((ki )i∈Sν )

where the parameter p(ν) is an element of a tensor space P(ν) which depends on a
subset of summation variables (ki )i∈Sν := kSν .

For a low-rank tensor formatMr , there exists a multilinear map

Ψ : P(1) × . . .× P(M) → V

which associates to a set of parameters {p(1), . . . , p(M)} the tensor

v = Ψ(p(1), . . . , p(M)).

Approximation in low-rank tensor formats is the first step between linear
approximation and nonlinear approximation.
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Parametrization and storage of low-rank tensor formats

The storage complexity is

storage(Mr ) =
d∑
ν=1

dim(Vν)
∏
i∈Sν

ri +
L∑

ν=d+1

∏
i∈Sν

ri .

If ri = O(R), dim(Vν) = O(n), #Sν = O(s) for ν ≤ d and #Sν = O(s′) for ν > d ,
then

storage(Mr ) = O(dnRs + (M − d)Rs′ ).

The key to break the curse of dimensionality is to consider low-rank formats with
s = O(1) and s′ = O(1).
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Parametrization and storage of low-rank tensor formats

Examples

Canonical format: L = 1, M = d , Sν = {1} for all ν.

storage(Rr ) = O(ndR)

Tucker format: L = d , M = d + 1, Sν = {ν} for 1 ≤ ν ≤ d , and
Sd+1 = {1, . . . , d}.

storage(Tr ) = O(ndR + Rd )

Tensor train format: L = d − 1, M = d , S1 = {1}, Sd = {d − 1} and
Sν = {ν − 1, ν} for 2 ≤ ν ≤ d − 1.

storage(T Tr ) = O(ndR2)

Tree-based tensor format (for a dimension partition tree T ): L = #T − 1,
M = #T , Sν = {ν} for 1 ≤ ν ≤ d and Sν cointains the sons of the node {ν} for
ν > d .

storage(T T
r ) = O(ndR + dRk+1)

where k is the maximal number of sons of the nodes (k = 2 for a binary tree).

Tensor networks: arbitrary L and M and #{ν : i ∈ Sν} = 2 for all 1 ≤ i ≤ L.
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