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Tensor numerical methods for
high-dimensional problems

Part 3
Tensor structure of high-dimensional equations
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Introduction

In this lecture, we give the interpretation of high dimensional partial differential
equations and parameter-dependent equations as operator equations in tensor spaces,
and we present practical aspects for obtaining a formulation suitable for the
application of tensor methods.

Ultimately, tensor-structured equations will be of the form

Au:b, uER’:RIlX“‘XI".
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Tensor product of operators

Tensor product of operators

Let V=VI®...@Viand W =W!®...® WY be two algebraic tensor spaces.

Let L(V¥, W") denote the space of linear operators from V¥ to W¥. The elementary
tensor product of operators A¥) € L(V¥, W¥), 1 < v < d, denoted by

A:A(1)®...®A(d),
is defined in a standard way. Then, we can define the algebraic tensor space
L=LV'WhHe.. oLV wd),

which is the set of finite linear combinations of elementary tensors.
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Tensor product of operators

Tensor product of operators

For the case where
V=W=R I=&x...xl

L(V¥, W") is identified with R >/ and an operator in L is identified with an element
of R!*!, such that for u € R/, Aue R/ is given by

(Au)(i) = 37 A, j)ulj

Jjel
An elementary tensor A = A1) @ ... @ A is such that

Aiyj) = A((iy - - id)s (s - - -1 Ja)) = AD (i, 1) ... AD (ig, jg).
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Operators in low-rank formats

Tensor product of operators

Operators in low-rank formats

L being a tensor product of vector spaces, the ranks of tensors in L are defined in a
usual way, as well as the corresponding tensor formats.

An operator A in canonical format has a representation
~ %)
1 d
A=>"AV®...0 A C(k).
k=1
Ultimately, an operator in low-rank format has a representation of the form

rn L M
A= S AV e oA T cWiks,),
1 d
ki=1 k=1 v=d+1

where C(*) is a tensor of order #5, depending on a subset S, C {1,..., M} of

summation indices, and where the AE(';) are operators in L(VY, WY).

v
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Tensor product of operators Operators in low-rank formats

Operators in Tucker format

An operator A in Tucker format has a representation

rn

rd
A= 3 AV e oAl Clk, . k).
ki=1  kg=1

1
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Tensor product of operators Operators in low-rank formats

Operators in Tensor Train format

An operator A in tensor train format has a representation of the form

fd—1

r
_ (1) (2) (d)
A= E E A1,k1®Ak1¢k2®"'®Akd71,1'
ki=1 = kg_1=1

h J2 Jd

k1 (Jj ko kq
A1) A2) -- Ad)
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Tensor structure of p depend i Par d d

Parameter-dependent equations

Let us consider a parameter-dependent operator equation
A(&)u(&) = b(8), 1)
where £ = (£1,...,&s) are parameters or random variables taking values in =,
A):V—->W
is a parameter-dependent linear operator, and
b(§) e W

is a parameter-dependent vector.
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Tensor structure of p d d i Par d d

Affine representations

We here assume that A(¢) and b(&) admit so-called affine representations

L

R
A€) =3 N(©A,  b(E) = mi(&)b;, ()
i=1

i=1
with A; : V — W and b; € W.
Example 1 (Diffusion-reaction equation)
The problem
“A1()Au+ X (&)u=m1(6)pr on D, u=0 on D,
can be written in the form A(&)u(€) = b(€), where A(€) has an affine representation

with L =2, Ajv = —Av and Axv = v, and where b(¢) has an affine representation
with R = 1.

Remark.

| A\

Some problems have operators and right-hand side directly given in the form (2). If
this is not the case (or if R and L are high), a preliminary approximation step is
required (e.g. using interpolation).
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Tensor structure of p depend i Par d d

Parameter-dependent equations

For simplicity, let us assume that V and W are N-dimensional spaces and identify the

equation

A(&)u(€) = b(8),
with a linear system of equations

A(§)u(&) = b(¢),

with
A) e RVNu(g) eRY, b(¢) e RV

Example 2 (Diffusion-reaction equation)

In example 1, consider that V = W is an approximation space in H&(D) (e.g. a finite
element space) with basis {¢;} |, and let u € V be the standard Galerkin
approximation of the solution of the PDE.

Then u() are the coefficients of u on the basis of V, and A(¢) and b(&) admit affine
representations

A() = A1A1(€) + A2X2(€) and  b(E) = bimi(§),

with
M) = [ ViV Balid)= [ iy bil) = [ et
D D D
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Tensor structure of p d d P; d d

for a finite training set

Parameter—dependent equations for a finite tralnmg set

We also assume that we are interested in evaluating the solution u(¢) at a finite set of
values {¢¥} ek of € (a training set) , such that

A u(E) =b(E"), VkeK. 3)

The set of vectors {u(¢¥)} ek and {b(¢¥)}ick, as elements of (RV)X, can be
identified with order-two tensors

ucRV@RX and beRNgRX.

The set of matrices {A(£%)}kek, considered as a linear operator from RN @ RX and
RN @ RK, can be identified with a tensor

Ac RNXN ®]RKXK.
Finally, the set of equations (3) can be identified with a operator equation

Au=b.
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Tensor structure of p d d P; d d

for a finite training set

Parameter—dependent equations for a finite tralnmg set

The affine representations of parameter-dependent operator A(&) yields a low-rank
representation for the tensor A in the form

L

A= A ®@N, with A =diag(\), A= (\i(E"))kek-
i=1

Also, the affine representation of parameter-dependent vector b(¢) yields a low-rank
representation for the tensor b in the form

R

b= Zbi ®n;, m = @i(€"))kek-

i=1
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Tensor structure of p d d P depend i for a finite training set

Parameter—dependent equations for a tensorized training set

Let us assume that £ = (£1,...,&s) is a vector of parameters taking values in a
product set = = =3 X ... X =s.

Let {55”};(”6;(,/ be a grid in =,, and let us consider for the training set the tensorized
grid .
{€ =" & her, K=FKix...xKa.

A vector a € R is then identified with a tensor in RF1 @ ... @ RKs.

Then the tensor u € RY ® R¥ can be identified with a higher-order tensor
ueRVeRM ®. . @R

and a parameter-dependent equation can also be interpreted as an operator equation
on the tensor space RN @ R¥t @ ... @ RKs.
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Tensor structure of high-dimensional PDEs

High-dimensional partial differential equations

Let X in R? be a product domain of R?, with
X =1 X...xX Xy.
Let us consider the problem of finding a multivariate function
u(x1,...,xdq)
which satisfies suitable boundary conditions on X and a partial differential equation
A(u)=b on X,

where b is a given multivariate function and A is an operator such that A(u) depends
on the partial derivatives
olel

D= ——————u
ag ag U
Oxyt ... 0xy

where |a| := ||a||1 is the length of the multi-index o € N9,

Example 3 (Laplace operator)

0? 62
Au = 7u+_”+7u:D(Z,O...,O)u_,’_.”_*_D(O,...,O,Z)u
Ox? ox2
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Tensor structure of high-dimensional PDEs Tensor structure of differential operators

Tensor structure of differential operators

Assume that the problem admits a unique solution u in a space VlHl where
V=V1®...Q V?is the tensor product of spaces V* of functions defined on X, .

For an elementary tensor
v(x) = v(l)(xl) .. v(d)(xd)7
and for a = (a1,...,aq) € N¢, the differential operator D is such that
D®v(x) = D*1 v(l)(xl) ...D%d v(d)(xd).
Then D% can be interpreted as an elementary operator on the tensor space V, with

D¥=D""®...0 DV,
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Tensor structure of high-dimensional PDEs Tensor structure of differential operators

Differential operators in low-rank tensor formats

A linear partial differential operator of the form
A=>a,D",
«

where a, € R, can then be identified with an operator on V with admits a
representation in canonical format

A:ZaaDO‘l@...@Dad.
(%

Example 4 (Laplace operator)

The Laplace operator is identified with a tensor with canonical rank d

A=D’Q®I®..Ql+...+1®...01% D?
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Tensor structure of high-dimensional PDEs Tensor structure of differential operators

Differential operators in low-rank tensor formats

Differential operators may have representations with reduced complexity in other
tensor formats.

Example 5 (Laplace operator in tensor train format)

The Laplace operator admits a representation in tensor train format with TT-rank

@2,...,2)
2 2

A= Z Z B2ky @ Bigka -+ ® Biy_5 1
ki=1 kg _1=1

where
Bii=Bp=1, Bi»=0, B(21)=D>

This can be represented in a more convenient block form where each block represents
a collection of operators {By, «, }

l 0 l 0 l
A= (D? I)M(Dz I)M...M(Dz I)M(Dz)'
where

A1 A x Bii Bi2\ _ (A1 ®Bi1 +A12® Ba1 A11 Q Biz + A12 @ B
A1 Ax B>y B2 A21 ® Bi1 + A22 ® Bo1 A21 ® Bi2 + A2 ® Baa

v
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Tensor structure of high-dimensional PDEs Functional framework and Galerkin methods

Some details about the functional tensor framework

Under standard assumptions, the problem is proved to be well-posed, with a solution u

in the Sobolev space
H(x)

of functions u with weak partial derivatives D®u in L2(X), for |a| < k.

The space HX(X), equipped with the norm
lullf, = > ID%ull?2,

la|<k

is a Hilbert space which can be identified with the completion of the algebraic tensor
space H*(X1) ® ... ® H*(Xy) with respect to the norm ||ul|y,, that means

HE(X) = HE(X) @ . @ HE(Xg) "
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Tensor structure of high-dimensional PDEs Functional framework and Galerkin methods

Some details about the functional framework

The canonical norm on the algebraic tensor product space H¥(X1) ® ... ® H*(Xy),
k

which is induced by the norms on the spaces H¥(X,), corresponds to the HY . norm
defined by
IVIZe = > DI,
T ledleo<k

and such that for v(x) = v(l)(xl) L. v(d)(xd),

d
I, = T e
v=

Noting that ||v||« < ||v||y« , we have that the tensor space

11 e
mix

Hpyi(X) = H (1) @ ... @ H*(Xq)
is such that
k k
Hmfx(X) CH (X)v
with strict inclusion. The spaces H,’;,.X with mixed Sobolev regularity play an important
role in the analysis of approximation methods in high-dimension (sparse grids,
low-rank approximations).
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Tensor structure of high-dimensional PDEs Functional framework and Galerkin methods

Galerkin methods

Assume that the problem admits a weak solution u € V, where V is a Hilbert space of
functions in HX(X), such that

a(u,v) =4(v) VYvev,
where a =V x V — R is a bilinear form and £ =V — R a linear form.

Let V = V! ®...® V? be an approximation space in V, with V¥ C HX(X,).

A standard Galerkin projection method defines an approximation i of u in V by
a(d,v) =4(v) VYvevV,

Letting {¢; = 'gb;ll) ®...® d),(:)}iel be a tensor product basis of V, the Galerkin
projection is defined by the equation

Au=0b,

where the tensor u € R/ is the set of coefficients of i on the tensor product basis, and
where A € R'*! and b € R/ are defined by

A(i,j) = a(¥;,¥i), b(i) = L(¥).
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