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Introduction

In this lecture, we give the interpretation of high dimensional partial differential
equations and parameter-dependent equations as operator equations in tensor spaces,
and we present practical aspects for obtaining a formulation suitable for the
application of tensor methods.

Ultimately, tensor-structured equations will be of the form

Au = b, u ∈ RI = RI1×...×Id .
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Tensor product of operators

Tensor product of operators

Let V = V 1 ⊗ . . .⊗ V d and W = W 1 ⊗ . . .⊗W d be two algebraic tensor spaces.

Let L(V ν ,W ν) denote the space of linear operators from V ν to W ν . The elementary
tensor product of operators A(ν) ∈ L(V ν ,W ν), 1 ≤ ν ≤ d , denoted by

A = A(1) ⊗ . . .⊗ A(d),

is defined in a standard way. Then, we can define the algebraic tensor space

L := L(V 1,W 1)⊗ . . .⊗ L(V d ,W d ),

which is the set of finite linear combinations of elementary tensors.
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Tensor product of operators

Tensor product of operators

For the case where
V = W = RI , I = I1 × . . .× Id ,

L(V ν ,W ν) is identified with RIν×Iν and an operator in L is identified with an element
of RI×I , such that for u ∈ RI , Au ∈ RI is given by

(Au)(i) =
∑
j∈I

A(i , j)u(j).

An elementary tensor A = A(1) ⊗ . . .⊗ A(d) is such that

A(i , j) = A((i1, . . . , id ), (j1, . . . , jd )) = A(1)(i1, j1) . . .A(d)(id , jd ).
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Tensor product of operators Operators in low-rank formats

Operators in low-rank formats

L being a tensor product of vector spaces, the ranks of tensors in L are defined in a
usual way, as well as the corresponding tensor formats.

An operator A in canonical format has a representation

A =
r∑

k=1

A
(1)
k ⊗ . . .⊗ A

(d)
k C(k).

Ultimately, an operator in low-rank format has a representation of the form

A =

r1∑
k1=1

. . .

rL∑
kL=1

A
(1)
kS1
⊗ . . .⊗ A

(d)
kSd

M∏
ν=d+1

C (ν)(kSν ),

where C (ν) is a tensor of order #Sν depending on a subset Sν ⊂ {1, . . . ,M} of
summation indices, and where the A

(ν)
kSν

are operators in L(V ν ,W ν).
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Tensor product of operators Operators in low-rank formats

Operators in Tucker format

An operator A in Tucker format has a representation

A =

r1∑
k1=1

. . .

rd∑
kd=1

A
(1)
k1
⊗ . . .⊗ A

(d)
kd

C(k1, . . . , kd ).

C

A(1)

i1 j1

k1

A(2)

i2 j2

k2

A(d)

id jd

kd
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Tensor product of operators Operators in low-rank formats

Operators in Tensor Train format

An operator A in tensor train format has a representation of the form

A =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

A
(1)
1,k1
⊗ A

(2)
k1,k2

⊗ . . .⊗ A
(d)
kd−1,1

.

A(1) A(2) A(d)

i1 i2 id

j1 j2 jd

k1 k2 kd
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Tensor structure of parameter-dependent equations Parameter-dependent equations

Parameter-dependent equations

Let us consider a parameter-dependent operator equation

A(ξ)u(ξ) = b(ξ), (1)

where ξ = (ξ1, . . . , ξs) are parameters or random variables taking values in Ξ,

A(ξ) : V → W

is a parameter-dependent linear operator, and

b(ξ) ∈ W

is a parameter-dependent vector.
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Tensor structure of parameter-dependent equations Parameter-dependent equations

Affine representations

We here assume that A(ξ) and b(ξ) admit so-called affine representations

A(ξ) =
L∑

i=1

λi (ξ)Ai , b(ξ) =
R∑
i=1

ηi (ξ)bi , (2)

with Ai : V → W and bi ∈ W.

Example 1 (Diffusion-reaction equation)

The problem

−λ1(ξ)∆u + λ2(ξ)u = η1(ξ)b1 on D, u = 0 on ∂D,

can be written in the form A(ξ)u(ξ) = b(ξ), where A(ξ) has an affine representation
with L = 2, A1v = −∆v and A2v = v , and where b(ξ) has an affine representation
with R = 1.

Remark.

Some problems have operators and right-hand side directly given in the form (2). If
this is not the case (or if R and L are high), a preliminary approximation step is
required (e.g. using interpolation).
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Tensor structure of parameter-dependent equations Parameter-dependent equations

Parameter-dependent equations
For simplicity, let us assume that V and W are N-dimensional spaces and identify the
equation

A(ξ)u(ξ) = b(ξ),

with a linear system of equations

A(ξ)u(ξ) = b(ξ),

with
A(ξ) ∈ RN×N , u(ξ) ∈ RN , b(ξ) ∈ RN .

Example 2 (Diffusion-reaction equation)

In example 1, consider that V =W is an approximation space in H1
0 (D) (e.g. a finite

element space) with basis {ϕi}Ni=1, and let u ∈ V be the standard Galerkin
approximation of the solution of the PDE.

Then u(ξ) are the coefficients of u on the basis of V, and A(ξ) and b(ξ) admit affine
representations

A(ξ) = A1λ1(ξ) + A2λ2(ξ) and b(ξ) = b1η1(ξ),

with
A1(i , j) =

∫
D
∇ϕi · ∇ϕj , A2(i , j) =

∫
D
ϕiϕj , b1(i) =

∫
D
ϕib1.
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Tensor structure of parameter-dependent equations Parameter-dependent equations for a finite training set

Parameter-dependent equations for a finite training set

We also assume that we are interested in evaluating the solution u(ξ) at a finite set of
values {ξk}k∈K of ξ (a training set) , such that

A(ξk )u(ξk ) = b(ξk ), ∀k ∈ K . (3)

The set of vectors {u(ξk )}k∈K and {b(ξk )}k∈K , as elements of (RN)K , can be
identified with order-two tensors

u ∈ RN ⊗ RK and b ∈ RN ⊗ RK .

The set of matrices {A(ξk )}k∈K , considered as a linear operator from RN ⊗ RK and
RN ⊗ RK , can be identified with a tensor

A ∈ RN×N ⊗ RK×K .

Finally, the set of equations (3) can be identified with a operator equation

Au = b.
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Tensor structure of parameter-dependent equations Parameter-dependent equations for a finite training set

Parameter-dependent equations for a finite training set

The affine representations of parameter-dependent operator A(ξ) yields a low-rank
representation for the tensor A in the form

A =
L∑

i=1

Ai ⊗ Λi , with Λi = diag(λi ), λi = (λi (ξ
k ))k∈K .

Also, the affine representation of parameter-dependent vector b(ξ) yields a low-rank
representation for the tensor b in the form

b =
R∑
i=1

bi ⊗ ηi , ηi = (ηi (ξ
k ))k∈K .
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Tensor structure of parameter-dependent equations Parameter-dependent equations for a finite training set

Parameter-dependent equations for a tensorized training set

Let us assume that ξ = (ξ1, . . . , ξs) is a vector of parameters taking values in a
product set Ξ = Ξ1 × . . .× Ξs .

Let {ξkνν }kν∈Kν be a grid in Ξν , and let us consider for the training set the tensorized
grid

{ξk = (ξk11 , . . . , ξkss )}k∈K , K = K1 × . . .× Kd .

A vector a ∈ RK is then identified with a tensor in RK1 ⊗ . . .⊗ RKs .

Then the tensor u ∈ RN ⊗ RK can be identified with a higher-order tensor

u ∈ RN ⊗ RK1 ⊗ . . .⊗ RKs

and a parameter-dependent equation can also be interpreted as an operator equation
on the tensor space RN ⊗ RK1 ⊗ . . .⊗ RKs .
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Tensor structure of high-dimensional PDEs

High-dimensional partial differential equations

Let X in Rd be a product domain of Rd , with

X = X1 × . . .×Xd .

Let us consider the problem of finding a multivariate function

u(x1, . . . , xd )

which satisfies suitable boundary conditions on ∂X and a partial differential equation

A(u) = b on X ,

where b is a given multivariate function and A is an operator such that A(u) depends
on the partial derivatives

Dαu =
∂|α|

∂xα11 . . . ∂x
αd
d

u,

where |α| := ‖α‖1 is the length of the multi-index α ∈ Nd .

Example 3 (Laplace operator)

∆u =
∂2

∂x2
1
u + . . .+

∂2

∂x2
d

u = D(2,0...,0)u + . . .+ D(0,...,0,2)u
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Tensor structure of high-dimensional PDEs Tensor structure of differential operators

Tensor structure of differential operators

Assume that the problem admits a unique solution u in a space V
‖·‖ where

V = V 1 ⊗ . . .⊗ V d is the tensor product of spaces V ν of functions defined on Xν .

For an elementary tensor

v(x) = v (1)(x1) . . . v (d)(xd ),

and for α = (α1, . . . , αd ) ∈ Nd , the differential operator Dα is such that

Dαv(x) = Dα1v (1)(x1) . . .Dαd v (d)(xd ).

Then Dα can be interpreted as an elementary operator on the tensor space V , with

Dα = Dα1 ⊗ . . .⊗ Dαd .
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Tensor structure of high-dimensional PDEs Tensor structure of differential operators

Differential operators in low-rank tensor formats

A linear partial differential operator of the form

A =
∑
α

aαD
α,

where aα ∈ R, can then be identified with an operator on V with admits a
representation in canonical format

A =
∑
α

aαD
α1 ⊗ . . .⊗ Dαd .

Example 4 (Laplace operator)

The Laplace operator is identified with a tensor with canonical rank d

∆ = D2 ⊗ I ⊗ . . .⊗ I + . . .+ I ⊗ . . .⊗ I ⊗ D2,
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Tensor structure of high-dimensional PDEs Tensor structure of differential operators

Differential operators in low-rank tensor formats

Differential operators may have representations with reduced complexity in other
tensor formats.

Example 5 (Laplace operator in tensor train format)

The Laplace operator admits a representation in tensor train format with TT-rank
(2, . . . , 2)

∆ =
2∑

k1=1

. . .
2∑

kd−1=1

B2,k1 ⊗ Bk1,k2 . . .⊗ Bkd−1,1

where
B1,1 = B2,2 = I , B1,2 = 0, B(2, 1) = D2.

This can be represented in a more convenient block form where each block represents
a collection of operators {Bk1,k2}

∆ =
(
D2 I

)
on
(

I 0
D2 I

)
on . . . on

(
I 0
D2 I

)
on
(

I
D2

)
.

where(
A11 A12
A21 A22

)
on
(
B11 B12
B21 B22

)
=

(
A11 ⊗ B11 + A12 ⊗ B21 A11 ⊗ B12 + A12 ⊗ B22
A21 ⊗ B11 + A22 ⊗ B21 A21 ⊗ B12 + A22 ⊗ B22

)
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Tensor structure of high-dimensional PDEs Functional framework and Galerkin methods

Some details about the functional tensor framework

Under standard assumptions, the problem is proved to be well-posed, with a solution u
in the Sobolev space

Hk (X )

of functions u with weak partial derivatives Dαu in L2(X ), for |α| ≤ k.

The space Hk (X ), equipped with the norm

‖u‖2Hk
=
∑
|α|≤k

‖Dαu‖2L2 ,

is a Hilbert space which can be identified with the completion of the algebraic tensor
space Hk (X1)⊗ . . .⊗ Hk (Xd ) with respect to the norm ‖u‖Hk

, that means

Hk (X ) = Hk (X1)⊗ . . .⊗ Hk (Xd )
‖·‖

Hk
.
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Tensor structure of high-dimensional PDEs Functional framework and Galerkin methods

Some details about the functional framework

The canonical norm on the algebraic tensor product space Hk (X1)⊗ . . .⊗ Hk (Xd ),
which is induced by the norms on the spaces Hk (Xν), corresponds to the Hk

mix norm
defined by

‖v‖2
Hk
mix

=
∑

‖α‖∞≤k

‖Dαv‖2L2 ,

and such that for v(x) = v (1)(x1) . . . v (d)(xd ),

‖v‖Hk
mix

=
d∏
ν=1

‖v (ν)‖Hk .

Noting that ‖v‖Hk ≤ ‖v‖Hk
mix
, we have that the tensor space

Hk
mix (X ) = Hk (X1)⊗ . . .⊗ Hk (Xd )

‖·‖
Hk
mix

is such that
Hk
mix (X ) ⊂ Hk (X ),

with strict inclusion. The spaces Hk
mix with mixed Sobolev regularity play an important

role in the analysis of approximation methods in high-dimension (sparse grids,
low-rank approximations).
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Tensor structure of high-dimensional PDEs Functional framework and Galerkin methods

Galerkin methods

Assume that the problem admits a weak solution u ∈ V, where V is a Hilbert space of
functions in Hk (X ), such that

a(u, v) = `(v) ∀v ∈ V,

where a = V × V → R is a bilinear form and ` = V → R a linear form.

Let V = V 1 ⊗ . . .⊗ V d be an approximation space in V, with V ν ⊂ Hk (Xν).

A standard Galerkin projection method defines an approximation ũ of u in V by

a(ũ, v) = `(v) ∀v ∈ V ,

Letting {φi = ψ
(1)
i1
⊗ . . .⊗ ψ(d)

id
}i∈I be a tensor product basis of V , the Galerkin

projection is defined by the equation

Au = b,

where the tensor u ∈ RI is the set of coefficients of ũ on the tensor product basis, and
where A ∈ RI×I and b ∈ RI are defined by

A(i , j) = a(ψj , ψi ), b(i) = `(ψi ).
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