
Numerical methods for PDEs, IESC, Cargèse, 2016

Tensor numerical methods for
high-dimensional problems

—–

Part 4
Low-rank methods for tensor-structured problems

Anthony Nouy 1 / 29

Low-rank methods for tensor-structured problems

We present algorithms for computing low-rank approximations of the solution of
variational problems

min
v∈V
J (v),

where V is a tensor space.

Anthony Nouy 2 / 29

Different contexts

For the approximation of a given tensor u with respect to a certain norm,

J (v) = ‖u − v‖.

Here, the aim is the compression of u or the extraction of information from u
(data analysis).

For the solution of an equation Au = b, the functional J (v) will measure some
distance between u and the approximation v , e.g.

J (v) = ‖Av − b‖.

The aim is here to obtain an approximation of the solution u with a low
computational complexity.

Anthony Nouy 3 / 29

Different contexts

In tensor completion,
J (v) =

∑
i∈Ω

|u(i)− v(i)|2,

where Ω ⊂ I is a set of known entries of the tensor. The aim is here to recover
(or complete) a tensor from partial information, by exploiting low-rank structures
of the tensor.

For inverse problems, where we want identify a tensor u from indirect and partial
observations, the functional J (v) measures some distance between observations
y and a prediction Av , where A is an observation map:

J (v) = d(y ,Av).

Exploiting low-rank structures in u allows to reduce the number of parameters to
estimate and possibly makes the problem well-posed.

For least-squares approximation of a function u(X),

J (v) =
1
n

n∑
k=1

(u(xk)− v(xk))2.

Other problems in statistics and machine learning (estimation of density,
supervised learning, ...)

Anthony Nouy 4 / 29

Outline

1 Direct optimization in subsets of low-rank tensors

2 Greedy algorithms

3 Iterative solvers with tensor truncation

Anthony Nouy 5 / 29

Direct optimization in subsets of low-rank tensors

Outline

1 Direct optimization in subsets of low-rank tensors

2 Greedy algorithms

3 Iterative solvers with tensor truncation

Anthony Nouy 6 / 29

Direct optimization in subsets of low-rank tensors

Direct optimization in subsets of low-rank tensors

LetMr be a subset of tensors in a certain low-rank formatMr with a multilinear
parametrization of the form

v(i1, . . . , id) =

r1∑
k1=1

. . .

rL∑
kL=1

d∏
ν=1

p(ν) (iν , (ki)i∈Sν)
M∏

ν=d+1

p(ν) ((ki)i∈Sν)

and let
Mr = {v = Ψ(p(1), . . . , p(M)) : p(ν) ∈ P(ν), 1 ≤ ν ≤ M},

where Ψ is a multilinear map.

The problem
min

v∈Mr

J (v)

can be written as an optimization problem over the parameters

min
p(1)

. . .min
p(M)
J (Ψ(p(1), . . . , p(M))).

Anthony Nouy 6 / 29

Direct optimization in subsets of low-rank tensors

Alternating minimization algorithm

The alternating minimization algorithm consists in solving successively minimization
problems

min
p(ν)∈P(ν)

J (Ψ(p(1), . . . , p(ν), . . . , p(M))) := min
p(ν)∈P(ν)

Jν(p(ν)) (1)

over the parameter p(ν), letting the other parameters p(η), η 6= ν, fixed.

When P(ν) is a linear vector space, problem (1) is a linear approximation problem.

If J is a convex (resp. differentiable) functional, then Jν is a convex (resp.
differentiable) functional.

Anthony Nouy 7 / 29

Direct optimization in subsets of low-rank tensors

Modified alternating minimization algorithm

Modified alternating minimization algorithm1 is a modification of the alternating
minimization algorithm which allows for an automatic rank adaptation.

It can be used for optimization in tree-based tensor formats or more general tensor
networks.

At each step of the algorithm, we consider two nodes ν and η connected by an edge e
and we update simultaneously the associated parameters p(ν) and p(η).

ν η
e

1known as DMRG algorithm (for Density Matrix Renormalization Group) for tensor networks.

Anthony Nouy 8 / 29

Direct optimization in subsets of low-rank tensors

Modified alternating minimization algorithm
In the expression of a tensor v = Ψ(p(1), . . . , p(M)), the two tensors pν and pη

connected by the edge e appear as

re∑
ke=1

p(ν)(ke , ...)p
(η)(ke , ...) := p(e)(...)

where p(e) is a tensor of order

order(p(e)) = order(p(ν)) + order(p(η))− 2.

p(ν) p(η)
ke

←→ p(e)

This corresponds to a new tensor networks where the nodes ν and η and edge e are
replaced by a single node e, and a new parametrization

v = Ψe(. . . , p(e), . . .).

Anthony Nouy 9 / 29

Direct optimization in subsets of low-rank tensors

Modified alternating minimization algorithm

We first solve an optimization problem

min
p(e)
J (Ψe(. . . , p(e), . . .))

for obtaining an new value of the tensor p(e).

Then, we compute a low-rank approximation of the tensor p(e)

p(e)(...) ≈
re∑

ke=1

p(ν)(ke , ...)p
(η)(ke , ...)

where the rank re in general differs from the initial rank.

In practice, the approximation is obtained using truncated singular value
decomposition.

Anthony Nouy 10 / 29

Direct optimization in subsets of low-rank tensors

Direct optimization in subsets of low-rank tensors

Other optimization algorithms (e.g. gradient descent, Newton) can be used, possibly
exploiting the geometry of low-rank tensor manifoldsMr .

Under rather standard assumptions, some results have been obtained for the
convergence of algorithms: local convergence to a global optimizer, or global
convergence to stationary points.

Up to now, there is no available algorithm for obtaining a global optimizer of a general
(even convex) functional in a subset of low-rank tensors.

Anthony Nouy 11 / 29

Greedy algorithms

1 Direct optimization in subsets of low-rank tensors

2 Greedy algorithms
Greedy algorithms for canonical format
Greedy algorithms for Tucker format
Partially greedy algorithms for Tucker format

3 Iterative solvers with tensor truncation

Anthony Nouy 12 / 29

Greedy algorithms Greedy algorithms for canonical format

1 Direct optimization in subsets of low-rank tensors

2 Greedy algorithms
Greedy algorithms for canonical format
Greedy algorithms for Tucker format
Partially greedy algorithms for Tucker format

3 Iterative solvers with tensor truncation

Anthony Nouy 12 / 29

Greedy algorithms Greedy algorithms for canonical format

Greedy algorithms for canonical format

A tensor v ∈ Rr with canonical rank r can be written as a sum of r rank-one tensors

v =
r∑

k=1

ckwk , wk ∈ R1.

Therefore, v can be interpreted as a n-sparse element with respect to dictionary of
rank-one tensors R1.

Anthony Nouy 12 / 29

Greedy algorithms Greedy algorithms for canonical format

Greedy algorithms for canonical format

Standard greedy algorithms can be used to construct a sequence of approximations un

with increasing canonical rank

un =
n∑

k=1

cnkwk , cnk ∈ R,

where
wn = w

(1)
n ⊗ . . .⊗ w

(d)
n ∈ R1

is such that
wn ∈ arg min

w∈R1
J (un−1 + w), (2)

and where the coefficients cnk can be either taken as cnk = 1 (for a pure greedy
algorithm), or as the solution of

min
c1,...,cn

J (
n∑

k=1

ckwk). (3)

Each step requires to solve an optimization problem in R1, for which we can rely on
an alternating minimization algorithm or other optimization algorithms.

Anthony Nouy 13 / 29

Greedy algorithms Greedy algorithms for canonical format

Greedy algorithms with dictionary of low-rank tensors

These algorithms are essentially used for the approximation in canonical format but
R1 could be replaced by another subset of low-rank tensorsM containing R1.

Convergence is guaranteed under quite general assumptions on J (strongly convex,
differentiable with Lipschitz differential) and the setM (M closed, spanM = V).

Greedy algorithms with a dictionary R1 of rank-one tensors often present a slow
convergence compared to the ideal performance of n-term approximations

inf
v∈Rn

J (v).

Also, these algorithms do not really exploit the structure of tensors.

Anthony Nouy 14 / 29

Greedy algorithms Greedy algorithms for Tucker format

1 Direct optimization in subsets of low-rank tensors

2 Greedy algorithms
Greedy algorithms for canonical format
Greedy algorithms for Tucker format
Partially greedy algorithms for Tucker format

3 Iterative solvers with tensor truncation

Anthony Nouy 15 / 29

Greedy algorithms Greedy algorithms for Tucker format

Approximation in Tucker format: a subspace point of view

The set Tr of tensors with Tucker rank bounded by r = (r1, . . . , rd) is defined by

Tr =

v =
∑

1≤k1≤r1

. . .
∑

1≤kd≤rd

Ck1,...,kd v
(1)
k1
⊗ . . .⊗ v

(d)
kd

: C ∈ Rr1×...×rd , v
(ν)
kν
∈ Vν

 .

It can be equivalenlty parametrized by subspaces

Tr = {v : v ∈ U1 ⊗ . . .⊗ Ud with Uν ⊂ Vν , dim(Uν) = rν} .

Then, an optimization problem on Tr can be interpreted as a problem of finding
optimal low-dimensional spaces:

min
v∈Tr

J (v) = min
dim(U1)=r1

. . . min
dim(Ud)=rd

min
v∈U1⊗...⊗Ud

J (v).

This is a multilinear version of projection-based model order-reduction methods, where
an approximation is searched in a tensor product Ur1

1 ⊗ . . .⊗ U
rd
d of optimal subspaces

Urν
ν of dimension rν .

Anthony Nouy 15 / 29

Greedy algorithms Greedy algorithms for Tucker format

Greedy algorithms for approximation in Tucker format

Greedy algorithms with a subspace point of view, which are similar to greedy
algorithms for reduced basis methods, can be introduced for the construction of
approximations un in an increasing sequence of tensor subspaces

Un
1 ⊗ . . .⊗ Un

d , n ≥ 1,

with
U1
ν ⊂ . . . ⊂ Un

ν ⊂ . . . , 1 ≤ ν ≤ d .

Anthony Nouy 16 / 29

Greedy algorithms Greedy algorithms for Tucker format

Greedy algorithms for approximation in Tucker format

At step n of these algorithms, we have an approximation un−1 and associated
subspaces Un−1

ν of dimension rn−1
ν , 1 ≤ ν ≤ d .

Assume that we have selected a set of dimensions Dn ⊂ {1, . . . , d} to be enriched
(Dn = {1, . . . , d} for an isotropic enrichment).

For ν /∈ Dn, we let Un
ν = Un−1

ν , and for ν ∈ Dn we construct new spaces Un
ν with

dimension rnν = rn−1
ν + 1 and such that Un

ν ⊃ Un−1
ν .

An optimal greedy algorithm would consist in solving

J (un) = min
dim(Un

ν)=rnν
Un
ν⊃Un−1

ν
ν∈Dn

min
v∈Un

1⊗...⊗Un
d

J (v)

Anthony Nouy 17 / 29

Greedy algorithms Greedy algorithms for Tucker format

Greedy algorithms for approximation in Tucker format

A practical greedy algorithm consists in computing an optimal rank-one correction of
un−1

J (un−1 + w
(1)
n ⊗ . . .⊗ w

(d)
n) = min

w∈R1
J (un−1 + w),

in enriching the spaces according to

Un
ν = Un−1

ν + span(w
(ν)
n), ν ∈ Dn,

and finally in computing the best approximation un in the tensor space Un
1 ⊗ . . .⊗ Un

d
by solving

J (un) = min
v∈Un

1⊗...⊗Un
d

J (v)

or
min

C∈Rrn1×...×rn
d

J (
∑

1≤k1≤rn1

. . .
∑

1≤kd≤rn
d

Ckv
(1)
k1
⊗ . . .⊗ v

(d)
kd

) (4)

where {v (ν)
i }

rnν
i=1 is a basis of Un

ν .

For high-dimensional problems, the practical solution of (4) requires a structured
approximation of the tensor C , e.g. using sparse or low-rank formats. Note that if we
add the constraint of having a super-diagonal tensor C , we recover a standard greedy
algorithm for approximation in canonical format.

Anthony Nouy 18 / 29

Greedy algorithms Partially greedy algorithms for Tucker format

1 Direct optimization in subsets of low-rank tensors

2 Greedy algorithms
Greedy algorithms for canonical format
Greedy algorithms for Tucker format
Partially greedy algorithms for Tucker format

3 Iterative solvers with tensor truncation

Anthony Nouy 19 / 29

Greedy algorithms Partially greedy algorithms for Tucker format

Partially greedy algorithms for Tucker format

For order-two tensors in V1 ⊗ V2, greedy algorithms for Tucker format construct a
sequence of spaces

Un = Un
1 ⊗ Un

2 ,

with a greedy enrichment of both left and right spaces, and a corresponding sequence
of rank-n approximations un with

J (un) = min
v∈Un

1⊗Un
2
J (v) = min

C∈Rn×n
J (

n∑
i,j=1

v
(1)
i ⊗ v

(2)
j Ci,j)

A partially greedy strategy consists in constructing a sequence of spaces

Un = Un
1 ⊗ V2,

where only the left spaces are constructed in a greedy fashion.

Anthony Nouy 19 / 29

Greedy algorithms Partially greedy algorithms for Tucker format

Partially greedy algorithms for Tucker format

At step n, a suboptimal algorithm consists in computing a rank-one correction of un−1

J (un−1 + w
(1)
n ⊗ w

(2)
n) = min

w (1),w (2)
J (un−1 + w (1) ⊗ w (2)),

in enriching the left subspace according to

Un
1 = Un−1

1 + span(w
(1)
n),

and then in computing an approximation un in Un
1 ⊗ V2 by solving

J (un) = min
v∈Un

1⊗V2
J (v) = min

v
(2)
1 ,...,v

(2)
n

J (
n∑

i=1

v
(1)
i ⊗ v

(2)
i)

where {v (1)
i }

n
i=1 is a basis of Un

1 .

Anthony Nouy 20 / 29

Iterative solvers with tensor truncation

1 Direct optimization in subsets of low-rank tensors

2 Greedy algorithms

3 Iterative solvers with tensor truncation

Anthony Nouy 21 / 29

Iterative solvers with tensor truncation

Iterative solvers with tensor truncation

Another strategy for solving an operator equation

Au = b

or a more general optimization problem

min
v∈V
J (v)

is to rely on classical iterative solvers by interpreting all standard algebraic operations
on vector spaces as algebraic operations in tensor spaces.

Anthony Nouy 21 / 29

Iterative solvers with tensor truncation

Iterative solvers with tensor truncation

As a motivating example, consider a simple Richardson algorithm

un = un−1 − ω(Aun−1 − b).

For A and b given in low-rank formats, computing un involves standard algebraic
operations.

However, the representation rank of the iterates dramatically increases since

rank(un) = rank(A) rank(un−1) + rank(un−1) + rank(b).

This requires additional truncation steps for reducing the ranks of the iterates, such as

un = T (un−1 − ω(Aun−1 − b)),

where T (v) provides a low-rank approximation of v .

We now analyze the behavior of these algorithms depending on the properties of the
truncation operator T .

Anthony Nouy 22 / 29

Iterative solvers with tensor truncation

Fixed point iterations algorithm

Let us consider a problem which can be written as a fixed point problem

F (u) = u,

where F : V → V is a contractive map, such that for all u, v ∈ V ,

‖F (u)− F (v)‖ ≤ ρ‖u − v‖,

with 0 ≤ ρ < 1.

Then, consider the fixed point iterations algorithm

un+1 = F (un)

which provides a sequence (un)n≥1 which converges to u, such that

‖u − un‖ ≤ ρn‖u − u0‖.

Example 1

For a problem Au = b, consider F (u) = u − ω(Au − b), with ω such that
‖I − ωA‖ < 1. Fixed point iterations un+1 = un − ω(Aun − b) correspond to
Richardson iterations.

Anthony Nouy 23 / 29

Iterative solvers with tensor truncation

Perturbed fixed point iterations algorithm

Now consider the perturbed fixed point iterations

vn+1 = F (un), un+1 = T (vn+1)

where T is a mapping which for a tensor v provides an approximation (called
truncation) T (v) in a certain low-rank formatMr .

Anthony Nouy 24 / 29

Iterative solvers with tensor truncation

Truncations with controlled relative precision

Suppose that the mapping T provides an approximation with relative precision ε, i.e.

‖T (v)− v‖ ≤ ε‖v‖.

This is made possible by using an adaptation of the ranks.

Then the sequence (un)n≥1 is such that

‖u − un‖ ≤ γn‖u − u0‖+
ε

1− γ
‖u‖,

with γ = ρ(1 + ε). Therefore, if γ < 1

lim sup
n→∞

‖u − un‖ ≤
ε

1− γ
‖u‖

which means that the sequence tends to enter a neighborhood of u with radius
ε

1−γ ‖u‖.

The drawback of this algorithm is that the ranks of the iterates are not controlled and
may become very high during the iterations.

Anthony Nouy 25 / 29

Iterative solvers with tensor truncation

Truncations in fixed subsets

Now consider that the mapping T provides an approximation in a fixed subset of
tensorsMr with rank bounded by r .

Let us assume that for all v , T (v) provides a quasi-optimal approximation of v such
that

‖T (v)− v‖ ≤ C min
w∈Mr

‖v − w‖. (5)

A practical realization of a mapping T verifying (5) is provided by truncated
higher-order singular value decompositions, where

C = O(
√
d).

Anthony Nouy 26 / 29

Iterative solvers with tensor truncation

Truncations in fixed subsets

Let ur be an element of best approximation of u, with

‖u − ur‖ = min
v∈Mr

‖u − v‖.

The sequence (un)n≥1 is such that

‖u − un‖ ≤ γn‖u − u0‖+
C

1− γ
‖u − ur‖,

with γ = ρ(1 + C). If γ < 1 (which may be quite restrictive on ρ), we obtain

lim sup
n→∞

‖u − un‖ ≤
C

1− γ
min

v∈Mr

‖u − v‖,

which means that the sequence tends to enter a neighborhood of u with radius
C

1−γ σr , where σr is the best approximation error of u by elements ofMr .

An advantage of this approach is that the ranks of the iterates are controlled. A
drawback is that the condition γ < 1 imposes to rely on an iterative solver with small
contractivity constant ρ < (1 + C)−1, which may be quite restrictive (requires good
preconditioners).

Anthony Nouy 27 / 29

Iterative solvers with tensor truncation

Truncations with non-expansive maps

Now we assume that the mapping T providing an approximation in low-rank format is
non-expansive, i.e.

‖T (v)− T (w)‖ ≤ ‖v − w‖ (6)

The sequence un is defined by
un+1 = G(un),

where G = T ◦ F is a contractive mapping with the same contractivity constant ρ as
F . Therefore, the sequence un converges to the unique fixed point u? of G such that

G(u?) = u?,

with
‖u? − un‖ ≤ ρn‖u? − u0‖.

The obtained approximation u? is such that

(1 + ρ)−1‖u − T (u)‖ ≤ ‖u − u?‖ ≤ (1− ρ)−1‖u − T (u)‖.

A practical realization of a mapping T verifying (5) is provided by the soft singular
values thresholding operator. The ranks of the iterates are not controlled. However, it
is observed in practice that the ranks of iterates are usually lower than with
truncations with controlled relative precision.

Anthony Nouy 28 / 29

Iterative solvers with tensor truncation

Other topics

Approximation power of low-rank formats

Interpolation methods for low-rank approximation

Geometry of low-rank formats and its consequences in model order reduction of
dynamical systems and optimization.

Strategy for the selection of a tensor format

Higher-order tensor methods for low-dimensional problems : quantization

...

Anthony Nouy 29 / 29

	Direct optimization in subsets of low-rank tensors
	Greedy algorithms
	Greedy algorithms for canonical format
	Greedy algorithms for Tucker format
	Partially greedy algorithms for Tucker format

	Iterative solvers with tensor truncation

